2019高考数学(文)一本策略复习课后训练:专题三第二讲数列的综合应用Word版含解析
2019-2020年高考数学一轮复习 第二讲 数列求和及数列的综合应用讲练 理 新人教A版
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
解:(1)设数列{an}的公差为d,
依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4,
当d=0时,an=2;
当d=4时,an=2+(n-1)·4=4n-2,
从而得数列{an}的通项公式为an=2或an=4n-2.
(2)当an=2时,Sn=2n,显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn= =2n2.
二、错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法.
三、裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
常用的拆项方法
(1) =
(2) = ( - )
(3) =
(4) =
四、倒序相加法和并项求和法
1.倒序相加法
且,即,解得:
.
(Ⅱ)由(Ⅰ)知:,
①当n为偶数时:
②当n为奇数时:
综上:
跟踪练习[xx·湖南卷]已知数列{an}的前n项和Sn= ,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
解:(1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1= - =n.
[精品]2019高考数学二轮复习专题三数列第二讲数列的综合应用教案理
第二讲 数列的综合应用由递推关系求通项授课提示:对应学生用书第30页[悟通——方法结论] 求数列通项常用的方法(1)定义法:①形如a n +1=a n +C (C 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. [全练——快速解答]1.(2018·洛阳四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2C .a n =2nD .a n =2n +2解析:由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则n ≥2时,有12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n ≥2,两式相减可得,a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n ≥2,n ∈N *.当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2.答案:B2.(2018·潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列{a n }的通项公式是________.解析:法一:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1,故{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.法二:由于a n +1=S n +1-S n ,a n +1=2S n +1, 所以S n +1-S n =2S n +1,S n +1=3S n +1, 所以S n +1+12=3⎝⎛⎭⎪⎫S n +12,所以数列⎩⎨⎧⎭⎬⎫S n +12为首项是S 1+12=32,公比为3的等比数列,故S n +12=32×3n -1=12×3n,即S n =12×3n -12.所以,当n ≥2时,a n =S n -S n -1=3n -1,由n =1时a 1=1也适合这个公式,知所求的数列{a n }的通项公式是a n =3n -1.答案:a n =3n -13.(2018·福州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)证明数列{a n }是等比数列;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1-1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), 所以a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列. (2)由(1)知,a n =2n -1, 所以b n =(2n -1)×2n -1,所以T n =1+3×2+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1①2T n =1×2+3×22+…+(2n -3)×2n -1+(2n -1)×2n②由①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)×2n=(3-2n )×2n-3, 所以T n =(2n -3)×2n+3.由a n 与S n 关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2. (2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一“合写”.(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.数列求和授课提示:对应学生用书第31页[悟通——方法结论] 常用求和方法(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法.裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. (3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2017·高考全国卷Ⅲ)(12分)设数列{a n }满足(1)求{a n }的通项公式;(2)求数列的前n 项和.[学审题][12n 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).(2分)两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).(4分)又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1.(6分) (2)记{a n2n +1}的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.(10分)则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.(12分)1.分类讨论思想在数列求和中的应用(1)当数列通项中含有(-1)n时,在求和时要注意分n 为奇数与偶数处理. (2)对已知数列满足a n +2a n=q ,在求{a n }的前n 项和时分奇数项和偶数项分别求和.2.学科素养:通过数列求和着重考查学生逻辑推理与数学运算能力.[练通——即学即用]1.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.答案:B2.已知数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.(2018·张掖诊断)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解析:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4, 知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1. ∴H n =2-n +22n.又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n+nn +1.数列的综合应用授课提示:对应学生用书第32页[悟通——方法结论]数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想解决数列中的问题,用不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.(1)(2018·德州模拟)已知点O 为坐标原点,点A n (n ,a n )(n ∈N *)为函数f (x )=1x +1的图象上的任意一点,向量i =(0,1),θn 是向量OA n →与i的夹角,则数列⎩⎨⎧⎭⎬⎫cos θn sin θn 的前2 015项的和为( ) A .2 B.2 0142 015 C.2 0152 016D .1解析:因为a n =1n +1,所以OA n →=(n ,1n +1),所以cos θn =OA n →·i |OA n →||i |=1n +1n 2+1(n +1)2,因为0≤θn ≤π,所以sin θn =1-cos 2θn =nn 2+1(n +1)2,所以cos θn sin θn =1n (n +1)=1n -1n +1,所以cos θ1sin θ1+cos θ2sin θ2+…+cos θ 2 015sin θ2 015=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016. 答案:C(2)(2018·日照模拟)已知数列{a n }的前n 项和S n 满足:2S n +a n =1. ①求数列{a n }的通项公式;②设b n =2a n +1(1+a n )(1+a n +1),数列{b n }的前n 项和为T n ,求证:T n <14.解析:①因为2S n +a n =1,所以2S n +1+a n +1=1, 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n ,即a n +1a n =13, 又2S 1+a 1=1,所以a 1=13,所以数列{a n }是首项、公比均为13的等比数列.故a n =13·(13)n -1=(13)n ,数列{a n }的通项公式为a n =(13)n.②证明:因为b n =2a n +1(1+a n )(1+a n +1),所以b n =2·(13)n +1[1+(13)n ][1+(13)n +1]=23n +13n +13n ·3n +1+13n +1=2·3n(3n +1)·(3n +1+1)=13n +1-13n +1+1. 故T n =b 1+b 2+…+b n =(131+1-132+1)+(132+1-133+1)+…+(13n +1-13n +1+1)=14-13n +1+1<14.所以T n <14.数列与不等式的交汇多为不等式恒成立与证明,在求解时要注意等价转化即分离参数法与放缩法的技巧应用.[练通——即学即用]1.(2018·宝鸡摸底)正项等比数列{a n }中,a 2 017=a 2 016+2a 2 015,若a m a n =16a 21,则4m +1n的最小值等于( )A .1 B.32 C.53D.136解析:设等比数列{a n }的公比为q ,且q >0, ∵a 2 015q 2=a 2 015q +2a 2 015,∴q 2-q -2=0,∴q =2或q =-1(舍去), 又a 1q m -1·a 1qn -1=16a 21,∴2m +n -2=16,∴m +n -2=4,m +n =6,∴⎝ ⎛⎭⎪⎫4m +1n ·m +n 6=16⎝ ⎛⎭⎪⎫5+4n m +m n ≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32,当且仅当m =4,n =2时等号成立.故4m +1n 的最小值为32.答案:B2.(2018·烟台模拟)设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t4n 恒成立,求实数t 的取值范围. 解析:(1)由a n =f (1a n -1)得,a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是首项为1,公差为23的等差数列.所以a n =1+23(n -1)=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=9(2n +1)(2n +3)=92(12n +1-12n +3).则S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92(13-12n +3)=3n 2n +3. 故S n ≥3t 4n 恒成立等价于3n 2n +3≥3t 4n ,即t≤4n 22n +3恒成立.令g (x )=4x 22x +3(x >0),则g ′(x )=8x (x +3)(2x +3)2>0,所以g (x )=4x22x +3(x >0)为单调递增函数.所以当n =1时,4n 22n +3取得最小值,且(4n 22n +3)min =45.所以t≤45,即实数t 的取值范围是(-∞,45].授课提示:对应学生用书第131页一、选择题1.(2018·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 018OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 018等于( )A .1 007B .1 009C .2 016D .2 018解析:∵A ,B ,C 三点共线,∴a 1+a 2 018=1, ∴S 2 018=2 018(a 1+a 2 018)2=1 009.答案:B2.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B4.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立. 答案:B5.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.答案:B6.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D7.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C8.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B9.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4032.答案:C10.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2 cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:由已知得2a n +1=a n +a n +2, 即数列{a n }为等差数列. 又f (x )=sin 2x +1+cos x ,a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0, 又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin 2a 1+sin 2a 9=sin 2a 2+sin 2a 8=…=sin 4a 5=0,故数列{y n }的前9项和为9. 答案:C11.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D12.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.答案:A 二、填空题13.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________.解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a n a n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)14.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n 6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,18(5-3n )(8-3n ),n ≥2.答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥215.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:016.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________. 解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题17.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn =a n +1a nαnβn =1a n,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n-1.(2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n)1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.18.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d ,即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n =116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.19.(2018·临汾中学模拟)已知数列{a n }的前n 项和为S n ,且S n =12(a 2n +a n ),a n >0.(1)求数列{a n }的通项公式;(2)若b n =a n2n -1,数列{b n }的前n 项和为T n ,则是否存在正整数m ,使得m ≤T n <m +3对任意的正整数n 恒成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)S n =12(a 2n +a n ),即a 2n +a n -2S n =0,①当n ≥2时, S n -1=12(a 2n -1+a n -1),即a 2n -1+a n -1-2S n -1=0,②①-②得(a n -a n -1)(a n +a n -1)+a n -a n -1-2a n =0, (a n +a n -1)(a n -a n -1-1)=0, ∵a n >0, ∴a n -a n -1=1,当n =1时,a 21+a 1-2a 1=0,∵a n >0, ∴a 1=1,∴a n =1+(n -1)=n . (2)由(1)知b n =n2n -1,所以T n =1×(12)0+2×(12)1+…+n (12)n -1,③12T n =1×(12)1+2×(12)2+…+n (12)n,④ ③-④得12T n =1+12+…+(12)n -1-n (12)n =2[1-(12)n ]-n (12)n,故T n =4[1-(12)n ]-2n (12)n =4-4×(12)n -2n (12)n =4-(2n +4)(12)n.易知T n <4,∵T n +1-T n =4-(2n +6)(12)n +1-4+(2n +4) ·(12)n =(n +1)(12)n>0,∴T n ≥T 1=1,故存在正整数m =1满足题意.。
2019年高考数学二轮复习 第二讲 数列求和及综合应用
2019年高考数学二轮复习第二讲数列求和及综合应用一、选择题1.已知等差数列{a n}前n项和为S n,若a1+a2 012=1,a2 013=-1 006,则使S n取最值时n的值为()A.1 005 B.1 006C.1 007 D.1 006或1 007答案:D2.设等差数列{a n}的前n项和为S n,若a1=-11,a3+a7=-6,则当S n取最小值时,n=()A.9 B.8 C.7 D.6答案:D3.等比数列{a n}前n项的积为T n,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是()A.T10B.T13C.T17D.T25解析:∵a3a6a18=a1q2·a1q5·a1q17=(a1q8)3=(a9)3为定值.∴T17=a1a2…a17=(a1q8)17=(a9)17也是定值.答案:C4.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=()A.n(2n-1) B.(n+1)2C.n2D.(n-1)2解析:由a5·a2n-5=22n(n≥3)得a2n=22n,a n>0,则a n=2n,log2a1+log2a3+…+log2a2n =1+3+…+(2n-1)=n2.故选C.-1答案:C5.公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项, S 8=32,则S 10=( )A .18B .24C .60D .90解析:由a 24=a 3a 7,得(a 1+3d)2=(a 1+2d)(a 1+6d),得2a 1+3d =0,再由S 8=8a 1+562d =32,得2a 1+7d =8,则d =2,a 1=-3,所以S 10=10a 1+902d =60.故选C.答案:C6.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x ≤0,f (x -1)+1,x >0,把函数g(x)=f(x)-x 的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( )A .a n =n (n -1)2 B .a n =n -1C .a n =n(n -1)D .a n =2n -2解析:若0<x≤1,则-1<x -1<0,得f(x)=f(x -1)+1=2x-1,若1<x≤2,则0<x -1≤1,得f(x)=f(x -1)+1=2x -2+1, 若2<x≤3,则1<x -1≤2,得f(x)=f(x -1)+1=2x -3+2, 若3<x≤4,则2<x -1<3,得f(x)=f(x -1)+1=2x -4+3. 以此类推,若n<x≤n +1(其中n ∈N),则f(x)=f(x -1)+1=2x -n -1+n,下面分析函数f(x)=2x 的图象与直线y =x +1的交点. 很显然,它们有两个交点(0,1)和(1,2),由于指数函数f(x)=2x 为增函数且图象下凸,故它们只有这两个交点.①将函数f(x)=2x 和y =x +1的图象同时向下平移一个单位即得到函数f(x)=2x -1和y =x 的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0). 即当x≤0时,方程f(x)-x =0有且仅有一个根x =0.②取①中函数f(x)=2x -1和y =x 图象-1<x ≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x -1和y =x 在0<x≤1上的图象,显然,此时它们仍然只有一个交点(1,1). 即当0<x≤1时,方程f(x)-x =0有且仅有一个根x =1.③取②中函数f(x)=2x -1和y =x 在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,显然,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)-x =0有且仅有一个根x =2.④以此类推,函数y =f(x)与y =x 在(2,3],(3,4],…,(n ,n +1]上的交点依次为(3,3),(4,4),…,(n +1,n +1).即方程f(x)-x =0在(2,3],(3,4],…,(n ,n +1]上的根依次为3,4,…,n +1. 综上所述方程f(x)-x =0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…,n +1,其通项公式为a n =n -1.故选B. 答案:B二、填空题 7.对正整数n ,设曲线y =x n (1-x)在x =2处的切线与y 轴交点的纵坐标为a n ,则⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是________.解析:曲线y =x n (1-x)=x n -x n +1,曲线导数为y′=nx n -1-(n +1)x n ,所以切线斜率为k =n2n -1-(n +1)2n =-(n +2)2n -1,切点为(2,-2n ),所以切线方程为y +2n =-(n +2)2n -1(x -2),令x =0得,y +2n =(n +2)2n ,即y =(n +1)2n ,所以a n =(n +1)2n ,所以a nn +1=2n ,是以2为首项,q =2为公比的等比数列,所以S n =2(1-2n )1-2=2n +1-2.答案:2n +1-28.等比数列{a n }的公比q >0, 已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:由a n +2+a n +1=6a n 得:q n +1+q n =6q n -1,即q 2+q -6=0,q >0,解得q =2,又a 2=1,所以a 1=12,S 4=12(1-24)1-2=152.答案:152三、解答题9.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值.(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.解析:(1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③ 若a 2=0, 由①知a 1=0, 若a 2≠0,易知a 2-a 1=1.④ 由①④得:a 1=2+1,a 2=2+2或a 1=1-2,a 2=2-2;综上所述,a 1=0,a 2=0或a 1=1+2,a 2=2+2或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知, a 1=2+1,a 2=2+2; 当n≥2时,有(2+2)a n =S 2+S n , (2+2)a n -1=S 2+S n -1.两式相减得(1+2)a n =(2+2)a n -1. 所以a n =2a n -1(n≥2).所以a n =a 1(2)n -1=(2+1)×(2)n -1. 令b n =lg10a 1a n ,则b n =1-lg(2)n -1=12lg 1002n -1. 又b 1=1,b n -b n -1=12⎝⎛⎭⎫lg 1002n -1-lg 1002n -2=-12lg 2,所以数列{b n }是以1为首项,-12lg 2为公差,且单调递减的等差数列.则b 1>b 2>…>b 7=lg 108>lg 1=0.当n≥8时,b n ≤b 8=12lg 100128<12lg 1=0.所以,n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7-212lg 2.10.已知数列{a n }满足:a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式; (2)设b n =a 2n -1·a 2n ,求数列{b n }的前n 项和S n .解析:(1)经计算a 3=3,a 4=14,a 5=5,a 6=18.当n 为奇数时,a n +2=a n +2,即数列{a n }的奇数项成等差数列, ∴a 2n -1=a 1+(n -1)·2=2n -1.当n 为偶数,a n +2=12a n ,即数列{a n }的偶数项成等比数列,∴a 2n =a 2·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n. 因此,数列{a n }的通项公式为 a n =⎩⎪⎨⎪⎧n ,n 为奇数,⎝⎛⎭⎫12n 2,n 为偶数.(2)∵b n =(2n -1)×⎝⎛⎭⎫12n, ∴S n =1×12+3×⎝⎛⎭⎫122+5×⎝⎛⎭⎫123+…+(2n -3)×⎝⎛⎭⎫12n -1+(2n -1)×⎝⎛⎭⎫12n .① 12S n=1×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+5×⎝⎛⎭⎫124+…+(2n -3)×⎝⎛⎭⎫12n +(2n -1)×⎝⎛⎭⎫12n +1.② ①②两式相减,得12S n =1×12+2[(12)2+(12)3+…+(12)n ]-(2n -1)×⎝⎛⎭⎫12n +1 =12+12×⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -11-12-(2n -1)×⎝⎛⎭⎫12n +1=32-(2n +3)×⎝⎛⎭⎫12n +1. ∴S n =3-(2n +3)×⎝⎛⎭⎫12n. .。
【高考推荐】2019-2020高考数学二轮复习专题三数列第二讲数列的综合应用能力训练理
第二讲 数列的综合应用一、选择题1.(2018·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 018OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 018等于( )A .1 007B .1 009C .2 016D .2 018解析:∵A ,B ,C 三点共线,∴a 1+a 2 018=1, ∴S 2 018=a 1+a 2 0182=1 009.答案:B2.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50++2=2 600.答案:B4.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.答案:B5.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.答案:B6.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D7.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a nn 为正奇数,a n +n 为正偶数,则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C8.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B9.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=a 1+a 4 0322=a 2 016+a 2 0172>0,S 4 033=a 1+a 4 0332=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032.答案:C10.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2 cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:由已知得2a n +1=a n +a n +2, 即数列{a n }为等差数列. 又f (x )=sin 2x +1+cos x ,a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0, 又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin 2a 1+sin 2a 9=sin 2a 2+sin 2a 8=…=sin 4a 5=0,故数列{y n }的前9项和为9. 答案:C11.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D12.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a na n.若对任意的n∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a na n,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.答案:A 二、填空题13.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________. 解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a n a n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n-1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n=2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *). 答案:2n -1(n ∈N *)14.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n 6,∴S n =65-3n.当n ≥2时,a n =12S n S n -1=12×65-3n ×65-n -=18-3n-3n,又a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,18-3n-3n ,n ≥2.答案:⎩⎪⎨⎪⎧3,n =118-3n-3n ,n ≥215.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a na n +=1a n -1a n +1, 即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:016.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列, 所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题17.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n ,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn =a n +1a nαnβn =1a n,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n-1. (2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,② ①-②得-P n =2+22+23+…+2n -n ×2n +1=-2n1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n n +2,∴T n =P n -Q n =(n -1)×2n +1+2-n n +2.18.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式; (2)令b n =n +a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2S 2-32=1a 2·S 3得⎩⎪⎨⎪⎧a 1+21d -a 1+6d =2a 1+d -a 1+d =3a 1+3d,即⎩⎪⎨⎪⎧-2a 1+3d =2a 1+d a 1+d -=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =n +a 2n a 2n +2=n +1n +2n 2=116[1n 2-1n +2].T n =b 1+b 2+b 3+…+b n=116(112-132)+116(122-142)+116(132-152)+…+ 116[1n -2-1n +2]+116[1n2-1n +2]=116[1+14-1n +2-1n +2]=564-116[1n +2+1n +2],∴64T n =5-4[1n +2+1n +2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.19.(2018·临汾中学模拟)已知数列{a n }的前n 项和为S n ,且S n =12(a 2n +a n ),a n >0.(1)求数列{a n }的通项公式;(2)若b n =a n2n -1,数列{b n }的前n 项和为T n ,则是否存在正整数m ,使得m ≤T n <m +3对任意的正整数n 恒成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)S n =12(a 2n +a n ),即a 2n +a n -2S n =0,①当n ≥2时, S n -1=12(a 2n -1+a n -1),即a 2n -1+a n -1-2S n -1=0,②①-②得(a n -a n -1)(a n +a n -1)+a n -a n -1-2a n =0, (a n +a n -1)(a n -a n -1-1)=0, ∵a n >0, ∴a n -a n -1=1,当n =1时,a 21+a 1-2a 1=0,∵a n >0, ∴a 1=1,∴a n =1+(n -1)=n . (2)由(1)知b n =n2n -1,所以T n =1×(12)0+2×(12)1+…+n (12)n -1,③12T n =1×(12)1+2×(12)2+…+n (12)n ,④ ③-④得12T n =1+12+…+(12)n -1-n (12)n =2[1-(12)n ]-n (12)n,故T n =4[1-(12)n ]-2n (12)n =4-4×(12)n -2n (12)n =4-(2n +4)(12)n.易知T n <4,∵T n +1-T n =4-(2n +6)(12)n +1-4+(2n +4) ·(12)n =(n +1)(12)n>0,∴T n ≥T 1=1,故存在正整数m =1满足题意.。
2019高考数学二轮复习 专题3 数列 第二讲 数列求和及综合应用 文.doc
第二讲 数列求和及综合应用高考数列一定有大题,按近几年高考特点,可估计2016年不会有大的变化,考查递推关系、数学归纳法的可能较大,但根据高考题命题原则,一般会有多种方法可以求解.因此,全面掌握数列求和相关的方法更容易让你走向成功.数列求和的基本方法 1.公式法.(1)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d 2W.(2)等比数列前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.2.转化法.有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比或常见的数列,即先分别求和,然后再合并.3.错位相减法.这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.4.倒序相加法.这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),把它与原数列相加,若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.5.裂项相消法.利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.数列的应用1.应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.2.数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决此类题的关键是建立一个数列模型{a n },利用该数列的通项公式、递推公式或前n 项和公式求解.3.解应用问题的基本步骤.判断下面结论是否正确(请在括号中打“√”或“×”).(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(√)(3)求S n =a +2a 2+3a 3+……+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(4)数列⎩⎨⎧⎭⎬⎫12n +2n -1的前n 项和为n 2+12n .(×)(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.(√)(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+……+sin 288°+sin 289°=44.5.(√)1.(2015·福建卷)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于(D )A.6B.7C.8D.9解析:不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴ a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴ ⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴ ⎩⎪⎨⎪⎧a =4,b =1,∴ p =5,q =4,∴ p +q =9. 2.(2015·新课标Ⅱ卷)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=(A ) A.5 B.7 C.9 D.11解析:解法一 ∵ a 1+a 5=2a 3,∴ a 1+a 3+a 5=3a 3=3,∴ a 3=1,∴ S 5=5(a 1+a 5)2=5a 3=5,故选A.解法二 ∵ a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3,∴ a 1+2d =1,∴ S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.3.在数列{a n }中,a n =n (n +1)2,则:(1)数列{a n }的前n 项和S n = ; (2)数列{S n }的前n 项和T n = W. 解析:(1)a n =n (n +1)2=n (n +1)[](n +2)-(n -1)6=16×[]n (n +1)(n +2)-(n -1)n (n +1)S n =16×[(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+n ×(n +1)×(n +2)-(n -1)×n ×(n +1)]=n (n +1)(n +2)6.(2)S n =n (n +1)(n +2)6=n (n +1)(n +2)[(n +3)-(n -1)]24=124×[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)]T n =124×[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n ×(n+1)×(n +2)×(n +3)-(n -1)×n ×(n +1)×(n +2)]=n (n +1)(n +2)(n +3)24.答案:(1)n (n +1)(n +2)6(2)n (n +1)(n +2)(n +3)244.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n}前10项的和为 W.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵ a 1=1,∴ a n =n 2+n2(n ≥2).∵ 当n =1时也满足此式,∴ a n =n 2+n2(n ∈N *).∴ 1a n =2n 2+n =2(1n -1n +1). ∴ S 10=2(11-12+12-13+…+110-111)=2×(1-111)=2011.答案:2011。
2019高考数学一本策略复习 专题三 数列 第二讲 数列的综合应用教案 文
第二讲数列的综合应用年份卷别考查角度及命题位置命题分析及学科素养2018 Ⅱ卷等差数列的前n项和最值问题·T17命题分析数列在解答题中的考查常从数列的相关项以及关系式,或数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n项和,有时与参数的求解、数列、不等式的证明等加以综合.试题难度中等.学科素养通过递推关系求通项,根据通项结构选择恰当的求和方法求和.2017Ⅱ卷等差、等比数列的综合应用·T17Ⅲ卷已知递推关系求通项与裂项求和·T172016Ⅱ卷等差数列的基本运算·T 17Ⅲ卷数列的通项公式·T17由递推关系求通项授课提示:对应学生用书第30页[悟通——方法结论]求数列通项常用的方法(1)定义法:①形如a n+1=a n+C(C为常数),直接利用定义判断其为等差数列.②形如a n+1=ka n(k为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n+1=a n+f(n),利用a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1),求其通项公式.(3)叠乘法:形如a n+1a n=f(n)≠0,利用a n=a1·a2a1·a3a2·…·a na n-1,求其通项公式.(4)待定系数法:形如a n+1=pa n+q(其中p,q均为常数,pq(p-1)≠0),先用待定系数法把原递推公式转化为a n+1-t=p(a n-t),其中t=q1-p,再转化为等比数列求解.(5)构造法:形如a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n+1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.[全练——快速解答]1.(2018·洛阳四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2C .a n =2nD .a n =2n +2解析:由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则n ≥2时,有12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n ≥2, 两式相减可得,a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n ≥2,n ∈N *.当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2.答案:B2.(2018·潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列{a n }的通项公式是________.解析:法一:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2).又a 2=2S 1+1=3,∴a 2=3a 1,故{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.法二:由于a n +1=S n +1-S n ,a n +1=2S n +1, 所以S n +1-S n =2S n +1,S n +1=3S n +1, 所以S n +1+12=3⎝⎛⎭⎪⎫S n +12,所以数列⎩⎨⎧⎭⎬⎫S n +12为首项是S 1+12=32,公比为3的等比数列,故S n +12=32×3n -1=12×3n,即S n =12×3n-12.所以,当n ≥2时,a n =S n -S n -1=3n -1,由n =1时a 1=1也适合这个公式,知所求的数列{a n }的通项公式是a n =3n -1.答案:a n =3n -13.(2018·福州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)证明数列{a n }是等比数列;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1-1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), 所以a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列. (2)由(1)知,a n =2n -1, 所以b n =(2n -1)×2n -1,所以T n =1+3×2+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1①2T n =1×2+3×22+…+(2n -3)×2n -1+(2n -1)×2n②由①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)×2n=(3-2n )×2n-3, 所以T n =(2n -3)×2n+3. 【类题通法】由a n 与S n 关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一“合写”.(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.数列求和授课提示:对应学生用书第31页[悟通——方法结论] 常用求和方法(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法.裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.(3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2017·高考全国卷Ⅲ)(12分)设数列{a n }满足(1)求{a n }的通项公式;(2)求数列的前n 项和.[学审题]条件信息想到方法 注意什么由❶a 1+3a 2+…+(2n -1)a n =2na n 与S n 的关系求解分n =1,n ≥2讨论 由❷⎩⎨⎧⎭⎬⎫a n 2n +1 根据通项结构选裂项求和裂项时消去项与保留项的首尾对应12n 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).(2分)两式相减得(2n -1)a n =2,d 所以a n =22n -1(n ≥2).(4分)又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1. (6分)(2)记{a n2n +1}的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.(10分)则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.(12分)【类题通法】1.分类讨论思想在数列求和中的应用(1)当数列通项中含有(-1)n时,在求和时要注意分n 为奇数与偶数处理. (2)对已知数列满足a n +2a n=q ,在求{a n }的前n 项和时分奇数项和偶数项分别求和. 2.学科素养:通过数列求和着重考查学生逻辑推理与数学运算能力.[练通——即学即用]1.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.答案:B2.已知数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.(2018·张掖诊断)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解析:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4, 知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1. ∴H n =2-n +22n.又M n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,∴T n =H n +M n =2-n +22n+nn +1.数列的综合应用授课提示:对应学生用书第32页[悟通——方法结论]数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想解决数列中的问题,用不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.(1)(2018·德州模拟)已知点O 为坐标原点,点A n (n ,a n )(n ∈N *)为函数f (x )=1x +1的图象上的任意一点,向量i =(0,1),θn 是向量OA n →与i 的夹角,则数列⎩⎨⎧⎭⎬⎫cos θn sin θn 的前2 015项的和为( )A .2 B.2 0142 015 C.2 0152 016D .1解析:因为a n =1n +1,所以OA n →=(n ,1n +1),所以cos θn =OA n →·i |OA n →||i |=1n +1n 2+1(n +1)2,因为0≤θn ≤π,所以sin θn =1-cos 2θn =n n 2+1(n +1)2,所以cos θn sin θn =1n (n +1)=1n-1n +1,所以cos θ1sin θ1+cos θ2sin θ2+…+cos θ2 015sin θ2 015=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016. 答案:C(2)(2018·日照模拟)已知数列{a n }的前n 项和S n 满足:2S n +a n =1. ①求数列{a n }的通项公式;②设b n =2a n +1(1+a n )(1+a n +1),数列{b n }的前n 项和为T n ,求证:T n <14.解析:①因为2S n +a n =1,所以2S n +1+a n +1=1, 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n ,即a n +1a n =13, 又2S 1+a 1=1,所以a 1=13,所以数列{a n }是首项、公比均为13的等比数列.故a n =13·(13)n -1=(13)n ,数列{a n }的通项公式为a n =(13)n.②证明:因为b n =2a n +1(1+a n )(1+a n +1),所以b n =2·(13)n +1[1+(13)n ][1+(13)n +1]=23n +13n +13n ·3n +1+13n +1=2·3n(3n +1)·(3n +1+1)=13n +1-13n +1+1. 故T n =b 1+b 2+…+b n =(131+1-132+1)+(132+1-133+1)+…+(13n +1-13n +1+1)=14-13n +1+1<14. 所以T n <14.【类题通法】数列与不等式的交汇多为不等式恒成立与证明,在求解时要注意等价转化即分离参数法与放缩法的技巧应用.[练通——即学即用]1.(2018·宝鸡摸底)正项等比数列{a n }中,a 2 017=a 2 016+2a 2 015,若a m a n =16a 21,则4m +1n的最小值等于( )A.1B.32C.53D.136解析:设等比数列{a n }的公比为q ,且q >0, ∵a 2 015q 2=a 2 015q +2a 2 015,∴q 2-q -2=0,∴q =2或q =-1(舍去), 又a 1q m -1·a 1qn -1=16a 21,∴2m +n -2=16,∴m +n -2=4,m +n =6,∴⎝ ⎛⎭⎪⎫4m +1n ·m +n 6=16⎝ ⎛⎭⎪⎫5+4n m +m n ≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32,当且仅当m =4,n =2时等号成立.故4m +1n 的最小值为32.答案:B2.(2018·烟台模拟)设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t4n 恒成立,求实数t 的取值范围.解析:(1)由a n =f (1a n -1)得,a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是首项为1,公差为23的等差数列.所以a n =1+23(n -1)=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=9(2n +1)(2n +3)=92(12n +1-12n +3).则S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92(13-12n +3)=3n 2n +3. 故S n ≥3t 4n 恒成立等价于3n 2n +3≥3t 4n ,即t≤4n 22n +3恒成立.令g (x )=4x 22x +3(x >0),则g ′(x )=8x (x +3)(2x +3)2>0,所以g (x )=4x22x +3(x >0)为单调递增函数.所以当n =1时,4n 22n +3取得最小值,且(4n 22n +3)min =45.所以t ≤45,即实数t 的取值范围是(-∞,45].授课提示:对应学生用书第120页一、选择题1.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B2.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B3.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.答案:B4.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D5.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C6.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B7.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032= 4 032(a 1+a 4 032)2= 4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032.答案:C8.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D 二、填空题9.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________.解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a na n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)10.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧ 3,n =1,18(5-3n )(8-3n ),n ≥2.答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥211.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:012.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题13.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn)(1-1βn)=1-2n ,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn=an +1anαnβn=1an,又(1-1αn)(1-1βn)=1-2n,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n -1.(2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n)1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.14.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d ,即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n=116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.。
数列的综合应用 2019高考绝密资料
数列的综合应用主标题:数列的综合应用副标题:为学生详细的分析数列的综合应用的高考考点、命题方向以及规律总结。
关键词:数列,数列的综合应用,交汇点难度:3重要程度:5考点剖析:能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.命题方向:1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.2.解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题具有综合性强、立意新、角度活、难度大的特点.规律总结:1.数列试题形式多样,时常有新颖的试题入卷,学生时常感觉难以把握,为了在高考中取得好成绩,必须复习、掌握好数列这一板块及其相关的知识技能,了解近几年来高考中对解数列试题的能力考查的特点,掌握相关的应对策略,以提高解决数列问题的能力.2.近几年高考中一些难题均是以高等数学的某些知识为背景而用初等数学的语言表述的试题.这就启示我们在复习备考时,要在高等数学与初等数学的衔接点上多下工夫,要提高将陌生问题转化、化归为熟知问题的能力.复习时要抓住主流综合,同时做到不忽视冷门、新型综合.【知识梳理】1.等差数列和等比数列的综合等差数列中最基本的量是其首项a1和公差d,等比数列中最基本的量是其首项a1和公比q,在等差数列和等比数列的综合问题中就是根据已知的条件建立方程组求解出这两个数列的基本量解决问题的.2.数列和函数、不等式的综合(1)等差数列的通项公式和前n项和公式是在公差d≠0的情况下关于n的一次或二次函数.(2)等比数列的通项公式和前n项和公式在公比q≠1的情况下是公比q的指数函数模型.(3)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.3.数列的应用题(1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知;②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型;③求出数学模型,根据求解结果对实际问题作出结论.(2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n-1的递推关系,或前n项和S n与S n-1之间的递推关系.导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
高考训练专题6.5 数列的综合应用(讲)-2019年高考数学----精校解析 Word版
【知识清单】一、等差数列和等比数列比较=常数=常数中项公式法:⇔通项公式法:为)项和公式法:中项公式法:通项公式法:均是不为的常数,⇔) 为等比数列,且么数列,且)⇔(总有意若,,则,,(2) 等比数列依次每(时,;当时,【考纲解读】二.数列求和1. 等差数列的前和的求和公式:.2.等比数列前项和公式 一般地,设等比数列的前项和是,当时,或;当时,(错位相减法).3. 数列前项和①重要公式:(1)(2)(3)(4)②等差数列中,;③等比数列中,.【重点难点突破】考点1 等差数列和等比数列的综合问题【1-1】【黑龙江省2018年仿真模拟(十)】正项等差数列中,已知,,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1),.(2).【解析】【1-2】设是等差数列,其前项和为;是等比数列,公比大于0,其前项和为.已知.(1)求和;(2)若,求正整数的值.【答案】(1),;(2)4【解析】【分析】(1)根据等差等比数列基本量之间的关系,列方程即可求解;(2)根据的特点采用分组求和后,解关于的方程即可.【详解】【领悟技法】1.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2.倒序相加法:类似于等差数列的前项和的公式的推导方法,如果一个数列的前项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法,如等差数列的前项和公式即是用此法推导的.3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求,如等比数列的前项和公式就是用此法推导的.若,其中是等差数列,是公比为等比数列,令,则两式错位相减并整理即得.4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.5. [易错提示]利用裂项相消法解决数列求和问题,容易出现的错误有两个方面:(1)裂项过程中易忽视常数,如容易误裂为,漏掉前面的系数;(2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误.应用错位相减法求和时需注意:①给数列和S n的等式两边所乘的常数应不为零,否则需讨论;②在转化为等比数列的和后,求其和时需看准项数,不一定为n.【触类旁通】【变式一】已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值()A.29 B.31 C.33 D.35【答案】B【解析】由题意得,因此,因此选B.【变式二】已知等差数列,等比数列的公比为,设,的前项和分别为,.若,则__________.【答案】,解得考点2 数列的综合应用【2-1】【安徽省六安市第一中学2018届第二次月考】某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:)()A. 2021年B. 2020年C. 2019年D. 2018年【答案】C【解析】设第年开始超过万元,则,化为,,取,因此开始超过万元的年份是年,故选C. 【2-2】已知,已知数列满足,且,则( )A.有最大值6030 B . 有最小值6030 C.有最大值6027 D . 有最小值6027【答案】A.【2-3】【2018年模拟(二)】设正项等比数列的前项和为,已知.(1)记,判断:数列是否成等差数列,若是,请证明;若不是,请说明理由;(2)记,数列的前项和为,求满足的最小正整数的值.【答案】(1)见解析(2)【解析】【分析】(1) 设等比数列的首项为,公比为,求出进而得到,结合等差数列定义即可作出判断;(2) 由(1)可知,.利用裂项相消法求出,即可求出最小正整数的值.【详解】则 .令,解得,又,所以.【2-4】【2017届浙江省台州市4月一模】已知数列满足:.(1)求证:;(2)求证:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据,证明右边,再根据基本不等式,【领悟技法】1. 数列与不等式的综合问题是近年来的高考热门问题,与不等式相关的大多是数列的前n 项和问题,对于这种问题,在解答时需要利用化归的思想将问题转化为我们较熟悉的问题来解决,要掌握常见的解决不等式的方法,以便更好地解决问题.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围.以数列为背景的不等式恒成立问题,或不等式的证明问题,多与数列求和相联系,最后利用函数的单调性求解,或利用放缩法证明.解决数列和式与不等式证明问题的关键是求和,特别是既不是等差、等比数列,也不是等差乘等比的数列求和,要利用不等式的放缩法,放缩为等比数列求和、错位相减法求和、裂项相消法求和,最终归结为有限项的数式大小比较.数列与不等式综合的问题是常见题型,常见的证明不等式的方法有:①作差法;②作商法;③综合法;④分析法;⑤放缩法.2. 数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决.3. 处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理.若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.还可以根据已知条件建立恒等式,利用等式恒成立的条件求解.4. 解答数列综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解.5.数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.,解决此类问题时要注意把握以下两点:(1)正确审题,深抠函数的性质与数列的定义;(2)明确等差、等比数列的通项、求和公式的特征.【触类旁通】【变式一】【2017届浙江省杭州市4月二模】已知数列的各项均为非负数,其前项和为,且对任意的,都有.(1)若,,求的最大值;(2)若对任意,都有,求证: .【答案】(1)见解析(2)见解析则,且,,所以,.(2)若存在,使得,则由,得,因此,从项开始,数列严格递增,故,对于固定的,当足够大时,必有,与题设矛盾,所以不可能递增,即只能.令,,由,得,,故,,所以,综上,对一切,都有.【变式二】已知点是函数 (),且)的图象上一点,等比数列的前项和为,数列 ()的首项为,且前项和满足: ().(1).求数列和的通项公式;(2).若数列的通项求数列的前项和;(3).若数列前项和为,试问的最小正整数是多少.【答案】( 1)(2)(3)112【解析】【易错试题常警惕】易错典例:【2016高考浙江理数】设数列满足,.(I)证明:,;(II)若,,证明:,.易错分析:一是不能正确理解题意,二是在证明过程中不能正确第进行不等式的放缩.正确解析:试题分析:(I)先利用三角形不等式得,变形为,再用累加法可得,进而可证;(II)由(I)可得,进而可得,再利用的任意性可证.,故.从而对于任意,均有.由的任意性得.①温馨提醒:(I)先利用三角形不等式及变形得,再用累加法可得,进而可证;(II)由(I)的结论及已知条件可得,再利用的任意性可证.【学科素养提升之思想方法篇】----数列求和与不等式数列与不等式知识相结合的考查方式主要有四种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明;四是考查与数列有关不等式的解法.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法.【典例】已知数列满足.(Ⅰ)求的通项公式;(Ⅱ)设为数列的前项和,解关于的不等式.【答案】(Ⅰ);(Ⅱ)或.【解析】(Ⅰ)由题意故时,,当时,,经检验时,上式也成立,。
2019高考数学(文)一本策略复习课后训练:专题三 第二讲 数列的综合应用 Word版含解析
一、选择题1.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3=( )A .2B .4C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B2.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B3.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.答案:B4.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D5.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C6.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B7.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032= 4 032(a 1+a 4 032)2= 4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032.答案:C8.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧ a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D 二、填空题9.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________. 解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a na n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n-1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)10.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n-1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n 6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,18(5-3n )(8-3n ),n ≥2. 答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥2 11.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎡⎦⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1,于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝⎛⎫1a 1-1a 2+⎝⎛⎫1a 2-1a 3+…+⎝⎛⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎡⎦⎤1a 1-1a 2 018=0.答案:012.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a nn =-40+(n -1)×2=2n -42,所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题13.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n ,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎨⎧αn+βn =a n +1a nαn βn=1an,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn =1-2n ,整理得,a n +1-a n =2n ,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n 1-2=2n -1.(2)由(1)知,b n =log 2(2n -1+1)=n , ∴c n =n (2n -1)=n ·2n -n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n -(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n ,①则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.14.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d , 由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得 ⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d , 即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0, 解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎨⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n=116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5, 为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.。
2019年高考数学(文)热点题型和提分秘籍专题25 数列的综合应用(教学案) Word版含解析
1.熟练掌握等差、等比数列的前n项和公式2.掌握非等差、等比数列求和的几种常见方法3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题热点题型一公式法求和例1、等比数列{a n}中,已知a1=2,a4=16。
(1)求数列{a n}的通项公式。
(2)若a3,a5分别为等差数列{b n}的第4项和第16项,试求数列{b n}的通项公式及前n项和S n。
【提分秘籍】几类可以使用公式求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解。
(2)奇数项和偶数项分别构成等差数列或者等比数列的,可以分项数为奇数和偶数时使用等差数列或等比数列的求和公式求解。
【举一反三】已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和。
(1)求a n及S n。
(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0。
求{b n }的通项公式及其前n 项和T n 。
热点题型二 分组法求和例2、已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *。
(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和。
【解析】(1)当n =1时,a 1=S 1=1; 当n ≥2时,热点题型三 裂项相消法求和例3.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12。
(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n 。
【提分秘籍】常见的裂项方法(其中n 为正整数)裂项方法⎩⎨⎧⎭⎬⎫1nn +k(k 为非零常数)1nn +k=1k ⎝⎛⎭⎫1n -1n +k ⎩⎨⎧⎭⎬⎫1nn +n +12⎣⎡⎦⎤1nn +-1n +n +【举一反三】在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0。
2019高考(押题)数学二轮复习 专题三 数列 第二讲 数列的综合应用教案 理
第二讲 数列的综合应用由递推关系求通项授课提示:对应学生用书第30页[悟通——方法结论] 求数列通项常用的方法(1)定义法:①形如a n +1=a n +C (C 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式.(3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n+1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.[全练——快速解答]1.(2018·洛阳四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2C .a n =2nD .a n =2n +2解析:由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则n ≥2时,有12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n ≥2, 两式相减可得,a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n ≥2,n ∈N *.当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2.答案:B2.(2018·潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列{a n }的通项公式是________.解析:法一:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2).又a 2=2S 1+1=3,∴a 2=3a 1,故{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.法二:由于a n +1=S n +1-S n ,a n +1=2S n +1, 所以S n +1-S n =2S n +1,S n +1=3S n +1, 所以S n +1+12=3⎝⎛⎭⎪⎫S n +12,所以数列⎩⎨⎧⎭⎬⎫S n +12为首项是S 1+12=32,公比为3的等比数列,故S n +12=32×3n -1=12×3n ,即S n =12×3n-12.所以,当n ≥2时,a n =S n -S n -1=3n -1,由n =1时a 1=1也适合这个公式,知所求的数列{a n }的通项公式是a n =3n -1.答案:a n =3n -13.(2018·福州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)证明数列{a n }是等比数列;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1-1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), 所以a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列. (2)由(1)知,a n =2n -1, 所以b n =(2n -1)×2n -1,所以T n =1+3×2+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1①2T n =1×2+3×22+…+(2n -3)×2n -1+(2n -1)×2n②由①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)×2n=(3-2n )×2n-3, 所以T n =(2n -3)×2n+3.由a n 与S n 关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一“合写”.(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.数列求和授课提示:对应学生用书第31页[悟通——方法结论] 常用求和方法(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法.裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.(3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2017·高考全国卷Ⅲ)(12分)设数列{a n }满足(1)求{a n }的通项公式;(2)求数列的前n 项和.[学审题]12n 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).(2分)两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).(4分)又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1. (6分)(2)记{a n2n +1}的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.(10分)则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.(12分)1.分类讨论思想在数列求和中的应用(1)当数列通项中含有(-1)n时,在求和时要注意分n 为奇数与偶数处理. (2)对已知数列满足a n +2a n=q ,在求{a n }的前n 项和时分奇数项和偶数项分别求和. 2.学科素养:通过数列求和着重考查学生逻辑推理与数学运算能力.[练通——即学即用]1.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.答案:B2.已知数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.(2018·张掖诊断)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解析:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4, 知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =12+22+…+n -12+n2,② ①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1. ∴H n =2-n +22n.又M n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,∴T n =H n +M n =2-n +22n+nn +1.数列的综合应用授课提示:对应学生用书第32页[悟通——方法结论]数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想解决数列中的问题,用不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.(1)(2018·德州模拟)已知点O 为坐标原点,点A n (n ,a n )(n ∈N *)为函数f (x )=1x +1的图象上的任意一点,向量i =(0,1),θn 是向量OA n →与i 的夹角,则数列⎩⎨⎧⎭⎬⎫cos θn sin θn 的前2 015项的和为( )A .2 B.2 0142 015 C.2 0152 016D .1解析:因为a n =1n +1,所以OA n →=(n ,1n +1),所以cos θn =OA n →·i |OA n →||i |=1n +1n 2+1(n +1)2,因为0≤θn ≤π,所以sin θn =1-cos 2θn =n n 2+1(n +1)2,所以cos θn sin θn =1n (n +1)=1n-1n +1,所以cos θ1sin θ1+cos θ2sin θ2+…+cos θ 2 015sin θ 2 015=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016. 答案:C(2)(2018·日照模拟)已知数列{a n }的前n 项和S n 满足:2S n +a n =1. ①求数列{a n }的通项公式;②设b n =2a n +1(1+a n )(1+a n +1),数列{b n }的前n 项和为T n ,求证:T n <14.解析:①因为2S n +a n =1,所以2S n +1+a n +1=1, 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n ,即a n +1a n =13, 又2S 1+a 1=1,所以a 1=13,所以数列{a n }是首项、公比均为13的等比数列.故a n =13·(13)n -1=(13)n ,数列{a n }的通项公式为a n =(13)n.②证明:因为b n =2a n +1(1+a n )(1+a n +1),所以b n =2·(13)n +1[1+(13)n ][1+(13)n +1]=23n +13n +13n ·3n +1+13n +1=2·3n(3n +1)·(3n +1+1)=13n +1-13n +1+1. 故T n =b 1+b 2+…+b n =(131+1-132+1)+(132+1-133+1)+…+(13n +1-13n +1+1)=14-13n +1+1<14.所以T n <14.数列与不等式的交汇多为不等式恒成立与证明,在求解时要注意等价转化即分离参数法与放缩法的技巧应用.[练通——即学即用]1.(2018·宝鸡摸底)正项等比数列{a n }中,a 2 017=a 2 016+2a 2 015,若a m a n =16a 21,则4m +1n的最小值等于( )A .1 B.32 C.53D.136解析:设等比数列{a n }的公比为q ,且q >0, ∵a 2 015q 2=a 2 015q +2a 2 015,∴q 2-q -2=0,∴q =2或q =-1(舍去), 又a 1q m -1·a 1qn -1=16a 21,∴2m +n -2=16,∴m +n -2=4,m +n =6,∴⎝ ⎛⎭⎪⎫4m +1n ·m +n 6=16⎝ ⎛⎭⎪⎫5+4n m +m n ≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32,当且仅当m =4,n =2时等号成立.故4m +1n 的最小值为32.答案:B2.(2018·烟台模拟)设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t4n 恒成立,求实数t 的取值范围.解析:(1)由a n =f (1a n -1)得,a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是首项为1,公差为23的等差数列.所以a n =1+23(n -1)=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=9(2n +1)(2n +3)=92(12n +1-12n +3).则S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92(13-12n +3)=3n 2n +3. 故S n ≥3t 4n 恒成立等价于3n 2n +3≥3t 4n ,即t≤4n 22n +3恒成立.令g (x )=4x 22x +3(x >0),则g ′(x )=8x (x +3)(2x +3)2>0,所以g (x )=4x22x +3(x >0)为单调递增函数.所以当n =1时,4n 22n +3取得最小值,且(4n 22n +3)min =45.所以t≤45,即实数t 的取值范围是(-∞,45].授课提示:对应学生用书第131页一、选择题1.(2018·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 018OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 018等于( )A .1 007B .1 009C .2 016D .2 018解析:∵A ,B ,C 三点共线,∴a 1+a 2 018=1,∴S 2 018=2 018(a 1+a 2 018)2=1 009.答案:B2.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B4.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.答案:B5.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.答案:B6.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D7.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C8.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B9.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032= 4 032(a 1+a 4 032)2= 4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032.答案:C10.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:由已知得2a n +1=a n +a n +2, 即数列{a n }为等差数列. 又f (x )=sin 2x +1+cos x ,a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0, 又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin 2a 1+sin 2a 9=sin 2a 2+sin 2a 8=…=sin 4a 5=0,故数列{y n }的前9项和为9.答案:C11.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D12.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a na n,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.答案:A 二、填空题13.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________.解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a na n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)14.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧ 3,n =1,18(5-3n )(8-3n ),n ≥2.答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥215.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:016.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题17.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n ,其中n ∈N *. (1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn =a n +1a nαnβn =1a n,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n-1.(2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n)1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.18.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d ,即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n=116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.19.(2018·临汾中学模拟)已知数列{a n }的前n 项和为S n ,且S n =12(a 2n +a n ),a n >0.(1)求数列{a n }的通项公式; (2)若b n =a n2n -1,数列{b n }的前n 项和为T n ,则是否存在正整数m ,使得m ≤T n <m +3对任意的正整数n 恒成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)S n =12(a 2n +a n ),即a 2n +a n -2S n =0,①当n ≥2时, S n -1=12(a 2n -1+a n -1),即a 2n -1+a n -1-2S n -1=0,②①-②得(a n -a n -1)(a n +a n -1)+a n -a n -1-2a n =0, (a n +a n -1)(a n -a n -1-1)=0, ∵a n >0, ∴a n -a n -1=1,当n =1时,a 21+a 1-2a 1=0,∵a n >0, ∴a 1=1,∴a n =1+(n -1)=n .(2)由(1)知b n =n2n -1,所以T n =1×(12)0+2×(12)1+…+n (12)n -1,③ 12T n =1×(12)1+2×(12)2+…+n (12)n,④ ③-④得12T n =1+12+…+(12)n -1-n (12)n =2[1-(12)n ]-n (12)n,故T n =4[1-(12)n ]-2n (12)n =4-4×(12)n -2n (12)n =4-(2n +4)(12)n.易知T n <4,∵T n +1-T n =4-(2n +6)(12)n +1-4+(2n +4) ·(12)n =(n +1)(12)n>0,∴T n ≥T 1=1,故存在正整数m =1满足题意.。
2019版文科数学一轮复习高考帮全国版课件微专题3 高考中的数列问题(2019高考帮·数文)精选ppt版本
考向1 等差、等比数列的基本运算
等差、等比数列的基本运算是高考命题的重点与热点,主要有以下命 题角度: (1)等差、等比数列的通项与求和的基本运算,以求解等差(等比)数列中的公 差(比)、某一项或几项的和为主; (2)等差、等比数列基本性质的应用,特别是等差、等比中项的灵活运用; (3)等差、等比数列前n项和的性质与最值的求解.
2019版《高考帮》配套PPT课件
【高考帮·文科数学】微专题3:高考中的数列问题
微专题3 高考中的数列问题
2019版《高S
考向1 等差、等比数列的基本运算 考向2 数列的通项与求和
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
考向1 等差、等比数列的基本运算 考向2 数列的通项与求和
2019版《高考帮》配套PPT课件
再见
2019/11/30
此类问题以解答题为主,属于中档题,分值为12分;也出现在选择题或填 空题中偏后的位置,属于中高档题,分值为5分.
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
此类问题以选择题和填空题为主,属于中低档题,分值为5分.
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
2019版《高考帮》配套PPT课件
文科数学 微专题3:高考中的数列问题
2019版《高考帮》配套PPT课件
考向2 数列的通项与求和
数列的通项与求和是历年高考命题的重点与热点,试题较为综合,主要 有以下命题角度: (1)数列的前n项和Sn与项an之间的关系的应用; (2)简单的等差数列、等比数列求和问题; (3)综合性的数列求和,主要涉及裂项相消法、错位相减法、分组求和法的 应用;(4)数列的综合问题,与函数、不等式、三角以及数学文化等知识相结 合,综合考查考生对数列知识的掌握程度与应用能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数,则
1 a1+
1+
1 a2+
1+,
+
1 a2 017+1 = ________.
解析: 因为 an+1= a2n+ an,
所以
1= an +1 an
1 an+1
= a1n-
1 an+
1,
即 1 = 1- 1 , an+ 1 an an +1
3
于是
a1
1 +
1+
1 a2+
1+
,
+
a2
1 017 +
an 所以数列 n 是首项为- 40、公差为 2 的等差数列,
所以 an=- 40+ (n- 1)× 2= 2n- 42, n
所以 an=2n2 -42n, 对于二次函数 f(x)= 2x2- 42x,
在
x=-
2ba=-
- 42 4=
10.5
时, f(x)取得最小值,
因为 n 取正整数,且 10 和 11 到 10.5 的距离相等,
-a1)2n-1= 2n -1(n≥ 2),又 a2- a1= 1,所以 an- an-1= 2n-2, an-1- an- 2= 2n- 3, , , a2- a1
=1,累加,得 an= 2n-1(n∈N *).
法二: 因为 an+ 1= 3an-2an-1 (n≥ 2),所以 an+ 1- 2an=an- 2an-1,得 an+1- 2an= an- 2an
1 n+ 1
2+
1 n+ 2
2]< 5,
为满足题意,只需
|3λ- 1|≥ 5,∴
λ≥2
或
λ≤
-
4 3.
6
1, n为奇数, 故 an=
n, n为偶数,
于是
S100= 50+
2+100 2
× 50= 2 600.
答案: B 3. (2018 ·海淀二模 )在数列 { an} 中,“ an=2an- 1,n= 2,3,4,, ”是“ { an} 是公比为 2 的 等比数列”的 ( )
A .充分不必要条件
B.必要不充分条件
∴ an= (an- an-1)+ (an-1- an-2) +, + ( a3 - a2)+ (a2- a1)+ a1= 2n-1+ 2n-2+ , + 22+ 2+
4
n
1=
1- 2 1-2
=
2n-
1.
(2)由 (1) 知, bn= log2(2 n- 1+ 1)= n,
∴ cn= n(2n- 1)= n·2n- n.
所以 n 取 10 或 11 时, an 取得最小值.
答案: 10 或 11
三、解答题 13. (2018 ·枣庄模拟 )已知方程 anx2- an+ 1x+ 1= 0(an> 0)有两个根 αn、 βn, a1 = 1,且满
足
(1
-
1 αn )(1
-
1 βn)=
1-
2
n,其中
n∈ N* .
(1)求数列 { an} 的通项公式;
A.4
B.5
C.6
D .7
解析: ∵关于 x 的不等式 dx2+ 2a1x≥ 0 的解集为 [0,9] ,∴ 0,9 是一元二次方程 dx2+ 2a1x
=0 的两个实数根,且
d< 0,∴-
2a d
1=
9
,
a
1=-
9d 2.
∴
an=
a1
+
(
n-
1)
d
=
(n
-
11 2 )d
,可得
a5
=-
1 2d>
0,
a6=
A . 2 016
B . 2 017
C.4 032
D .4 033
解析: 因为 a1> 0,a2 016 +a2 017 > 0,a2 016 ·a2 017 < 0,所以 d<0, a2 016 >0, a2 017< 0,
所以 S4 032=
4
032
a1+ a4 032 2
=
4
032
a2 016+ a2 017 2
=
11 16(12-
1 32)
+
11 16(22-
1 42)
+
1 16(
1 32-
1 52)+
,
+
1 16[
1 n- 1
2-
1
11
n+ 1 2] +16[n2-
1 n+2
2]
=
1 16[1
+
14-
1 n+ 1
2-
1 n+ 2 2]
=
654-
1 16[
1 n+1
2+
1 n+2
2],
∴ 64Tn=5- 4[
-1= an-1-2an- 2=, = a2- 2a1= 0,即 an= 2an- 1(n≥ 2),所以数列 { an} 是以 1 为首项, 2 为公 比的等比数列,所以 an =2n- 1(n∈ N*).
答案: 2n-1(n∈ N*)
10.(2018 ·辽宁五校联考 )设数列 { an} 的前 n 项和为 Sn,若 a1=3 且当 n≥2 时,2an= Sn·Sn
∴ Tn=c1 + c2+, + cn= 1× 2+2× 22+ 3×23+, + n×2n- (1+ 2+ , +n) ,
设 Pn=1× 2+ 2×22+ 3× 23+ , +n× 2n,①
则 2Pn =1× 22+ 2× 23+3× 24+ , + (n- 1)× 2n+ n× 2n+1,②
n
①-②得- Pn= 2+ 22+ 23+ ,
答案: 0
12.已知数列 { an} 满足 a1=- 40,且 nan+1- (n+ 1)an =2n2 +2n,则 an 取最小值时 n 的
值为 ________. 解析: 由 nan+1-( n+ 1)an= 2n2+ 2n=2n(n+ 1),
两边同时除以 n(n+1),得 an+1 - an= 2, n+ 1 n
(2)若 bn= log 2(an+ 1), cn=anbn ,求数列 { cn } 的前 n 项和 T n.
解析: (1)由已知可得,
a n+ 1 αn+ βn= an
,
αnβn=
1 an
又
(1
-
1 αn)(1
-
1 βn)
=1-
2n,∴
1-
αn+ βn αnβn +
αn1βn=
1-
2n,
整理得, an+ 1- an= 2n,其中 n∈N *.
C.充要条件
D .既不充分也不必要条件
2
an+1> 0,
an+1 ≤ 0,
解析: ∵ |an+ 1|> an,∴
或
an+1> an
- an+1> an.
又∵数列 { an} 为递增数列,∴ an+1> an, ∴ “ |an+1|> an” 是 “ 数列 { an} 为递增数列 ” 的既不充分也不必要条件. 答案: D
B . 20
C.33
D .120
解析: a2= 2a1= 2, a3 =a2+ 1= 3,a4=2a3= 6, a5=a4 +1= 7, a6= 2a5= 14,所以前 6 项和 S6= 1+ 2+ 3+ 6+ 7+ 14= 33,故选 C.
答案: C 6.已知等差数列 { an} 的公差为 d,关于 x 的不等式 dx2+ 2a1x≥ 0 的解集为 [0,9] ,则使数 列{ an} 的前 n 项和 Sn 最大的正整数 n 的值是 ( )
1
=
1- 1 a1 a2
+
1-1 a2 a3
+,
+
1- 1 a2 017 a2 018
=
1- a1
1
a2
.
018
因为 a1=1, a2= 2> 1, a3= 6> 1,, ,
可知 1 ∈ (0,1) ,则 1 - 1 ∈ (0,1) ,
a2 018
a1 a2 018
所以
a11-
a
1
2 018
= 0.
)设等差数列
{ an} 的前 n 项和为
Sn,a22
-
3a7
=
2
,且
1, a2
S2- 3,
S3 成等比数列, n∈N *.
(1)求数列 { an} 的通项公式;
4 n+1 (2)令 bn= a2na2n+2 ,数列 { bn} 的前 n 项和为 Tn,若对于任意的
n∈ N*,都有 64Tn< |3λ-
1|成立,求实数 λ的取值范围.
解析: (1)设等差数列 { an} 的公差为 d,
a22- 3a7= 2
由
S2- 3
2=
1
a
·S3
2
得
a1+ 21d - 3 a1+ 6d = 2 ,
2a1+ d-3 ·a1+ d = 3a1+3d
-2a1+ 3d= 2
即
,
a1+ d 2a1+ d- 6 = 0
a1= 2
C.充要条件
D .既不充分也不必要条件
解析: 当 an= 0 时,也有 an= 2an-1,n= 2,3,4, , ,但 { an} 不是等比数列,因此充分性
不成立;当 { an} 是公比为
2
的等比数列时,
有
an an-1
=
2
,n
=
2,3,4,,
,即 an=2an -1,n= 2,3,4,,
,
所以必要性成立.
a
1=-
2 5
解得
或
.
d= 2
2 d=5
当
a