自平衡法桩基检测解析

合集下载

自平衡法桩基检测原理

自平衡法桩基检测原理

自平衡法桩基检测原理
自平衡法(Self-Balancing Method)是一种常用的桩基检测方法,它基于桩的静力平衡原理。

自平衡法的基本原理是在桩顶施加一个平衡荷载,使桩与平衡荷载达到静力平衡状态,通过测量平衡荷载与桩顶位移的关系,可以计算得出桩底的承载性能。

具体原理如下:1. 在待检测的桩顶施加一个平衡荷载,使桩与平衡荷载达到静力平衡状态。

平衡荷载的大小与桩的承载能力相关。

2. 在平衡荷载作用下,测量桩顶的位移。

一般使用位移传感器进行测量。

3. 将桩顶位移与平衡荷载的关系制成荷载位移曲线。

根据该曲线,可以求解得出桩底的承载力。

需要注意的是,自平衡法桩基检测原理中的静力平衡状态是一个理想化的状态,在实际检测过程中,往往考虑到桩的动力效应和动力响应,以及结构的非线性等因素,需要进行一系列的修正和校正,以确保测试结果的准确性。

自平衡法检测桩基承载力方法及平衡点选取

自平衡法检测桩基承载力方法及平衡点选取
图2图3
4自平衡法检测平衡点选取
4.1例,某桥梁工程桩基,采用钻孔灌注桩,桩身混凝土采用C30水下混凝土,以提高混凝土的密实性与流动度,总桩数共计20根,桩长24m,桩径1.20m,单桩承载能力设计值2400kN,桩顶标高118.343m,桩底标高94.343m。试验桩采用工程桩,桩基静载荷试验完成后,应对荷载箱部位进行注浆加强,确保该处桩身混凝土的强度,试验后试验桩作为工程桩使用。根据不同地质情况以及桥梁跨径,依据相关规范选取有代表性的2个桩基进行桩基荷载试验。现在我们以其中一组作为参考,简要的介绍一下平衡点选取方法。
自平衡法检测桩基承载力方法及平衡点选取
摘要:随着国民经济的高速发展,大直径的桩基础已在建筑领域、交通工程、道路桥梁等得到广泛应用,本文将以桥梁桩基作为对象,阐述静力载荷试验的另一种新的方法-自平衡法,简要介绍它的概述、一般规定、检测原理及平衡点选取。
关键词:自平衡法检测;桩基承载力;原理及平衡点选取
1自平衡法检测概述
桩基础的特点是稳定性好、变形小,是处理软弱地基的一种有效措施,桩基础施工质量关系到工程结构的质量,特别是大直径混凝土钻孔灌注桩的施工,要有极高的质量标准,才能保证桩基工程质量的安全性,基于这种情况,桩基础质量检测成为桩基工程质量检测控制的重要手段,目前常用的桩基检测方法有许多,例如:静力载荷试验、超声波检测、钻孔取芯法、低应变法检测等。
当前,建筑物向高、重、大方向发展,各种大直径、大吨位基桩应用越来越普遍,确定桩基础承载力最可靠的方法是传统静载试验。传统静载试验测试基桩承载力,成果直观、准确可靠,是其他检测方法的比较依据。然而在狭窄场地、基坑底及超大吨位桩等情况下,传统的静载试验受到场地和加载能力等因素的约束无法进行,以至于许多大吨位和特殊场地的桩基础承载力得不到可靠的数据。

自平衡法在基桩检测中的应用研究

自平衡法在基桩检测中的应用研究

自平衡法在基桩检测中的应用研究摘要:对于工程地质环境复杂和高大建筑工程中常采用大直径超长钻孔灌注桩基础,这类桩承载力大,受现场条件、结构特点等限制,传统的静载试验越来越难以实现,基桩承载力自平衡检测法作为近年来发展非常迅速的基桩承载力检测技术,对环境的要求低、场地的适应性强,加载能力可根据试桩要求进行专门设计。

基桩承载力自平衡试验检测技术的应用,使基桩的承载力能得到有效检验,确保基桩工程的质量。

关键词:基桩承载力自平衡检测适应性有效检验1自平衡法原理桩身自反力平衡静载试验法是接近竖向抗压桩实际工作条件的试验方法,用于确定极限承载力、桩周土层极限摩阻力和桩端土极限端阻力。

成桩时在桩身自反力平衡点放置荷载箱,测试时通过输压管施压,箱盖和箱底被推开,自动调动上段桩侧土向下和下段桩侧土、桩端土向上的阻力。

根据读数绘制Q-s图和s-lgQ图,求得上段桩及下段桩的极限承载力,相加后得到桩周土体的极限承载力。

最后综合确定基桩的单桩竖向抗压极限承载力。

2自平衡法在实际基桩检测中的应用以贵州瓮福团球矿项目为例,该项目位于瓮安县和福泉市结合部,该项目场地由第四系素填土、粘土夹碎石、红粘土、震旦系上统灯影组白云岩,采用机械成孔灌注桩,持力层为中风化白云岩,地基承载力特征值fa=4000kpa,地基基础设计等级为甲级,桩身设计强度为C30。

3试验设备测试采用荷载箱装置施压,荷载箱在进入工地现场前均取得贵州省计量测试研究院出具的检定合格证书。

荷载箱均按设计及规范要求在混凝土浇筑前埋入桩身。

测试基准梁由钢管脚手架组成,采用电动水油泵供压,加载量由压力传感器控制。

桩顶上拔量及桩底沉降量分别采用相对称的4个电子位移传感器测试,试验仪器采用桩基静载荷测试分析仪。

4试验步骤根据实际情况,本次试验依据DBJ52/T079-2016进行。

试验设备安装完毕后,进行系统检查,加载分级,每级为预定检测最大荷载的1/10,第一级按2倍分级荷载加荷。

自平衡检测法在桩基检测中的运用分析

自平衡检测法在桩基检测中的运用分析

3 、 数据 采 集 系统 输道路进行特别的铺设, 节省了场地平整和道路铺设的高额费用。 项 目的 数据 采集 , 采用 电脑读 数 的方式 。记 录 内容 包括 : 油压 , 荷 载 箱上 ( 4 ) 能做大吨位试验 自平衡优势之一在于能做大吨位的试验, 通常大吨 荷载箱下部位移等 。 位 堆载 法 上 面 的配 重 过重 过 高 , 对堆 载 下 面 的场 地 要 求 很 高 , 场 地 局 部沉 降 部位移 , 4 、 数据 传感 装 置 过大会引起堆载配重的倾斜直接对试验人员生命构成威胁 , 因此一般堆载极 a ) 位移传感器 : 传统的位移棒作为位移测量 的装置 , 安装要求高 , 安装效 限 也是 做 到 1 8 0 0 — 2 0 0 0 吨。 自平衡 则 由 于不用 在 桩上 堆 载 配重 , 不 受 场地 影 响 特别是不适应长桩的检测。 此次项 目采用位移丝外套护管的方式 , 以简 可以做上很大吨位 。目前国内试验单桩最大承载力高达2 0 0 0 0 吨 ,最大桩径 率低 , 2 . 8 m, 最 大桩 长 1 2 5 m。


自平衡 试验 原理
自平衡 法 也 称为 通莫 静 载法 ( T — p i l e  ̄) 。 其 试 验原 理 是将 一 种特 制 的加 载装 置一 通 莫荷 载 箱@,在 混凝 土 浇注 之
前和钢笳笼一起埋入桩内相应的位置( 具体位置根据试验的不 同目的而定 ) , 将加载箱的加压管 以及所需的其他测试装置 ( 位移 、 应变等 ) 从桩体引到地 面 。 c 1 先 进 的位移 传 感器 固定结 构 的 面, 然后灌注成桩。 由加压泵在地面向荷载箱加压加载 , 荷载箱产生上下两个 在原理上保证了位移测 方向的力 , 并传递 到桩身。 由于桩体 自成反力, 我们将得到相 当于两个静载检 设计和安装 , 测 的 数据 : 荷 载箱 以上部 分 , 我 们 获得 反 向加 载 时上 部 分 桩 体 的相 应 反 应 系 量值 只 受桩 体 位 移 和 基 准 梁 运 动 的 如右图) 列参数 ; 荷载箱以下部分, 我们获得正向加载时下部分桩体的相应反应参数。 影响 。 ( 通过对加载力与这些参数( 位移、 应变等 ) 之间关系的计算和分析 , 我们不仅 可以获得桩基承载力 , 而且可以获得每层土层 的侧阻系数 、 桩的侧阻、 桩端承 力 等 一 系列数 据 。这 种 方法 可 以用 于为 设 计提 供 数据 依 据 , 也可 用 于工 程 桩 承 载 力 的检验 。

基桩自平衡试验检测方案

基桩自平衡试验检测方案

基桩自平衡试验检测方案一、试验目的1.评估基桩在自平衡状态下的承载能力和变形特性。

2.确定基桩的稳定性和工作范围,为设计提供可靠的依据。

二、试验方法1.自平衡试验应在桩基完全被加载后进行。

2.使用同类型土壤填充桩周围空间,以实现自平衡状态。

3.自平衡状态下,连续监测基桩及周围土体的应力、变形和水平位移。

三、试验步骤1.前期准备(1)确定试验桩型号、布置方案和试验参数。

(2)清理试验场地,确保试验区域干净整洁。

(3)铺设水平标杆,测量标高和水平方向。

(4)安装监测设备,包括应力计、变形计和水平位移计。

2.基桩加载(1)根据设计要求,逐步增加加载荷载,记录每个加载阶段的荷载和变形数据。

(2)观察基桩和桩周围土体的变形情况,包括沉降、侧向位移和土压力的变化。

(3)达到预设的荷载值后,保持荷载不变,观察一段时间,记录稳定平衡时的变形和应力。

3.数据分析与结果(1)对获取的变形和应力数据进行分析和处理,绘制荷载-沉降曲线、变形特征曲线和土压力分布曲线。

(2)根据试验结果,评估基桩的承载能力、变形特性和稳定性,判断是否满足设计要求。

四、安全措施1.试验过程中,应严格遵守安全操作规程,操作人员需佩戴必要的安全防护装备。

2.加载过程中,应控制荷载的增减速度,防止产生过大的应力差和变形。

3.如发现试验中存在安全隐患或异常情况,应及时停止试验并采取相应的应急处理措施。

以上是一个基桩自平衡试验的检测方案,根据具体情况和试验要求,还可以进行进一步的调整和完善。

在实际操作过程中,应根据试验设计和现场条件进行具体的操作和数据采集,并注意及时记录试验数据和观察情况,以确保试验的准确性和可靠性。

“自平衡”法试桩方案

“自平衡”法试桩方案

自平衡法静载试验方案1.1.1.自平衡技术的原理基桩承载力自平衡法,是通过在桩体内部预先埋设一种特制的加载装置——荷载箱,在混凝土浇注之前和钢筋笼一起埋入桩内相应的位置(具体位置根据试验的不同目的和条件而定),将荷载箱的加压管以及所需的其他测试装置(位移杆及护管、应力计等)从桩体引到地面,然后灌注成桩。

到休止龄期后,由加压泵在地面通过预先埋设的管路,对荷载箱进行加压加载,使得荷载箱产生上、下两个方向的力,并传递到桩身。

由于桩体自成反力,将得到相当于两个静载试验的数据:荷载箱以上部分,获得反向加载时上部桩体的相应反应参数;荷载箱以下部分,获得正向加载时下部桩体的相应反应参数。

通过对加载力与参数(位移、应力等)之间关系的计算和分析,可以获得桩基承载力、桩端承载力、侧摩阻力、摩阻力转换系数等一系列数据。

图错误!文档中没有指定样式的文字。

-1 荷载箱工作原理示意图基桩承载力自平衡法可以为设计提供数据依据,也可用于工程桩承载力的验证。

1.1.2.自平衡技术的特点在静载检测中采用自平衡法,与传统的静载检测方法(堆载法或锚桩法)相比具有几下几个特点:1)省时:成桩后待土体稳定后(设计规定成桩28天后)即可2检测,正常情况下1-2天能够检测完毕,省去了反力装置搭建时间。

2)安全:数千吨大吨位堆载加载块层层叠放,一旦暴雨、震动、偏心、地基失稳导致反力架倾覆,十分危险,自平衡检测过程更加方便、安全、环保。

3)综合检测成本低:检测桩完全按工程桩制作,不需到达地面,不需制作桩头。

对有地下室的结构,与常规方法相比,缩短了检测桩长度,且检测桩检测后除经下位移管对荷载箱打开面注浆补强,还可以通过油路实现内部腔体注浆补强压浆处理,仍可作工程桩使用。

4)对于水上试桩、坡地试桩、基坑底试桩、狭窄场地试桩、斜桩、嵌岩桩等设置传统堆载平台或锚桩反力架特别困难或措施费用高昂的该法,更显示其优势。

5)目前部分厂家荷载箱由保险公司承担责任保险,消除使用荷载箱的后顾之忧,为检测工作保驾护航;6)钢筋笼连贯技术:此技术确保桩身钢筋笼在试验后仍处于连贯状态,通过预先安装可伸缩的钢结构组件与上下钢筋笼连接,确保桩身钢筋笼在试验后仍处于连贯状态,不仅提供足够的抗剪切力,还提供100%的抗拔力。

自平衡法静载试验在桩基检测中的应用

自平衡法静载试验在桩基检测中的应用

自平衡法静载试验在桩基检测中的应用1. 引言- 桩基工程的重要性和针对桩基的检测方法的概述- 自平衡法静载试验的介绍和意义2. 自平衡法静载试验的原理- 自平衡法的基本原理和实现方式- 自平衡法静载试验的步骤和注意事项3. 自平衡法静载试验在桩基检测中的应用- 自平衡法静载试验在桩基承载力测定中的应用- 自平衡法静载试验在桩身质量检测中的应用- 自平衡法静载试验在桩身传力机理研究中的应用4. 自平衡法静载试验的优缺点- 自平衡法静载试验相对于其他桩基检测方法的优势和不足- 针对不足之处的改进和优化方向5. 结论- 自平衡法静载试验在桩基检测中的应用前景- 综合比较自平衡法静载试验和其他桩基检测方法的优劣- 未来研究方向和展望引言:桩基工程在建筑、道路、桥梁等工程中扮演着极为重要的作用,因为它能够支撑起整个建筑的重量和承受地下水压力,确保建筑物处于稳定状态。

桩基工程的设计和施工需要严格符合标准,以便确保在不同条件下工程的质量和安全。

为了保证桩基工程的质量,需要利用一系列的非损伤性测试技术来检测基础的承载能力和质量状况。

其中自平衡法静载试验是较为常用的一种。

本文介绍自平衡法静载试验在桩基检测中的应用。

首先,我们将详细介绍自平衡法静载试验的原理和方法,然后概述自平衡法静载试验在桩基检测中的应用;接着,我们将对比一些桩基检测方法的优缺点,并总结自平衡法静载试验在桩基检测中的应用及发展前景。

第二章:自平衡法静载试验的原理自平衡法静载试验是在施加外载荷之后,根据杆件伸长的比率确定杆件应力的一种方法。

自平衡法静载试验包括两个主要部分:施加荷载和测量变形。

在自平衡法中,通过辅助杆使水平台面保持平衡,施加荷载并等待平衡再次形成。

平衡状态下的条件是荷载的反力和支撑力相等。

这意味着当一根被试杆件承受着荷载时,它产生了一定的应变,但其应力尚未达到极限。

这个过程当然是由对被试杆件施加相同的后续荷载来实现的。

测量和记录变形,然后由此计算与被试杆件相关的荷载。

桩基承载力自平衡法检测方案资料

桩基承载力自平衡法检测方案资料

试验桩自平衡法、声波透射法检测方案1 概述1.1 工程概况为了保证施工的顺利进行和结构的安全可靠,根据国家规范和设计有关文件,对该工程指定的试桩采用静载(自平衡法)进行检测,并对试桩采用声波透射法进行桩身完整性检测。

1.2 试验目的1.确定桩身完整性2.确定单桩竖向抗压极限承载力1.3 试验依据1.《建筑桩基技术规范》(JGJ 94-2008)2.《建筑基桩检测技术规范》(JGJ 106-2014)3.《基桩静载试验自平衡法》(JT /T738-2009)4.《基桩承载力自平衡检测技术规程》(山东省工程建设标准)6. 设计图纸7. 地质报告2地质情况依据勘察报告,、各岩土层相关灌注桩桩基参数建议如下表:3桩身完整性检测声波透射法测试原理声波透射法检测仪器设备及现场联接如下图所示。

ZBL-U520非金属超声波检测仪信号输入参数设定数据处理结果输出计算机电缆柱声测管岩土换能器声波透射法试验示意图超声波透射法检测桩身结构完整性的基本原理是:由超声脉冲发射源在砼内激发高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在砼内传播过程中表现的波动特征;当砼内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射能量明显降低;当砼内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特征、频率变化及波形畸变程度等特性,可以获得测区范围内砼的密实度参数。

测试记录不同侧面、不同高度上的超声波动特征,经过处理分析就能判别测区内砼的参考强度和内部存在缺陷的性质、大小及空间位置。

在基桩施工前,根据桩直径的大小预埋一定数量的声测管,作为换能器的通道。

测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器发射出去,在另一根声测管中的声测管接收信号,超声仪测定有关参数并采集记录储存。

换能器由桩底同时往上依次检测,遍及各个截面。

说明:桩身完整性判定见《建筑基桩检测技术规范》JGJ106-2014中表10.5.11。

自平衡基桩静载试验检测

自平衡基桩静载试验检测
位移相对稳定标准:每1小时内的位移增量不超 过0.1mm,并连续出现两次(从分级荷载施加 后的第30min开始,按1.5h连续三次每30min 的位移观测值计算). 单桩承载力不满足设计要 求时,应分析原因,并经工程建设有关方确认后 扩大检测.
对工程桩承载力验收检测,试验完成后必须在荷 载箱处进行高压注浆.
自平衡检测报告
受检桩的检测数据表、结果汇总表和相应 的Q-s、s-lgt等曲线,转换为桩顶加载的 等效转换数据表和等效转换Q-s曲线
检测数据的分析与判定
缓变型Q-s曲线可根据位移量确定: 上段桩极限加载值取对应位移为40mm时
的荷载.当桩长大于40m时,宜考虑桩身的弹 性压缩量.
下段桩极限加载值取位移为40mm对应的 荷载值.
等效转换方法
将基桩自平衡法获得的 荷载箱向上、向下两条Q-s曲线
等效转换
相应传统静载试验的一条Q-s曲线,以确定 桩顶沉降
常见故障
荷载箱打不开;储备不够, 主筋与下端混凝土固结在一起 系统渗油;密封不严. 位移无传导;位移杆(丝)注死. 位移杆(丝)失缺.
实例1
操作有标准 荷载箱有选型 安装有技巧 当极限端阻力大于极限侧摩阻力时,将
荷载箱置于桩端,根据桩长径比、地质 情况采取在桩顶提供一定量的配重等措
施.东北某立交桥基桩检测试验
实例2
操作有标准 荷载箱有选型 安装有技巧 检测桩为抗拔桩时,荷载箱可置于桩端;
向下反力不够维持加载时,可采取加深
桩长等措施。某地铁车站抗抜桩检测试 验
荷载箱检定率为100%,加载分级数不少于五级. 荷载箱宜整体检定. 荷载箱的极限输出推力不应小于额定输出推力的
1.2倍

桩基承载力自平衡测试法

桩基承载力自平衡测试法

五、试验方法
采用慢速维持荷载法, 即逐级加载, 采用慢速维持荷载法, 即逐级加载, 每 级荷载达到相对稳定后方可加下一级荷 载, 直到试桩破坏, 然后分级卸载到零。 直到试桩破坏, 结合实际工程桩的荷载特征, 结合实际工程桩的荷载特征, 可采用多 循环加、卸载法( 循环加、卸载法( 每级荷载达到相对稳 定后卸载到零) 。当要求缩短试验时间, 定后卸载到零) 。当要求缩短试验时间, 对工程桩作检验性试验时, 对工程桩作检验性试验时, 可采用快速 维持荷载法, 维持荷载法, 即一般每隔 1 h 加一级荷 载。
桩基承载力 自平衡测试法
一、概述
随着高层建筑、桥梁工程、海洋工程建设项目的增多,桩 基础的应用量越来越大。不管采用哪一种桩基础,规范规 定必须做一定数量的桩基荷载实验,以确定单桩极限承载 力。 传统的静载试验方法有两种:一是堆载法,二是锚桩法 其存在主要问题是:前者必须解决几百吨甚至上千吨的 荷载堆放及运输问题;后者必须设置很多根锚桩及反力梁, 所需费用昂贵,时间长,还有一定的危险性;而且单桩承 载力越高,试桩困难越大,以致许多大吨位桩得到数据不 准确,桩的潜力不能合理发挥。
四、 荷载箱布置
荷载箱一般布置在桩端附近, 荷载箱一般布置在桩端附近, 由于荷载箱产生 向上和向下的位移, 向上和向下的位移, 同时向上的力仅为传统堆 载的一半, 载的一半, 加载对地面位移的影响远小于传统 堆载法的影响, 堆载法的影响, 因此试桩与基准桩的距离较传 统方法略有减小, 统方法略有减小, 规定试桩和基准桩之间的中 心距离应大于等于3d(d 为试桩直径) 心距离应大于等于3d(d 为试桩直径) 且不小 于 2. 0 m。荷载箱宜在成孔以后、混凝土浇 m。荷载箱宜在成孔以后、混凝土浇 捣前设置; 在施工质量有保证的前提下, 捣前设置; 在施工质量有保证的前提下, 也可 先浇捣荷载箱下的混凝土, 然后安放荷载箱, 先浇捣荷载箱下的混凝土, 然后安放荷载箱, 再浇捣上部混凝土 。护管与钢筋笼焊接成整 体, 荷载箱与钢筋笼焊接在一起, 护管还应与 荷载箱与钢筋笼焊接在一起, 荷载箱顶盖焊接, 焊缝应满足强度要求, 荷载箱顶盖焊接, 焊缝应满足强度要求, 并确 保护管不渗漏水泥浆。荷载箱摆放处一般宜有 加强措施, 加强措施, 可配置加密钢筋网 2 层。

自平衡法的桩基检测

自平衡法的桩基检测

自平衡法桩基检测实例一、前言市某改造工程,全线长918.76m。

主线高架标准宽度为25m。

一座半互通式立交。

高架桥根底采用大直径钻孔灌注桩,桩径为250cm、150cm、120cm、100cm四种,主要桩径为120cm。

受业主委托,我院于于2007年11月1日对整治工程1根试桩进展荷载箱预埋,整个预埋工作都在现场技术人员的指导监视下顺利进展,并于2007年11月28日~11月29日进展了静载荷试验现场测试工作。

试验采用自平衡法,并用慢速维持荷载法加载,按预先制定的试验方案严格遵照测试规程进展,现场测试顺利。

二、工程地质概况根据场地岩土工程勘察报告,场地桩长围主要地层分布参见下表1,岩土主要物理力学特征详见地质勘察报告。

表1: 主要地层分布表(对应Z6孔)层号土层名称层底标高层厚桩周土摩阻桩端土承载三、试桩参数本段试验共进展3根试桩的静载试验。

其中1根采用自平衡深层静载荷试验方法,2根采用堆载法。

本次为1根〔SZ1〕,试验方法采用自平衡法。

有关试桩参数见表2:表2:SZ1试桩主要参数表四、试验方法、检测设备与执行标准〔一〕测试原理基桩自平衡深层静载荷试验是把荷载箱置于桩身预定深度,利用载荷箱上部桩侧摩阻做反力,进展端阻力、单桩竖向极限承载力检测,荷载箱提供向上、向下的力,从而使桩端阻力与桩侧阻力根本相等而到达平衡。

在试验加载过程中,根据规要求,记录逐级荷载及相应的桩身向上和向下的位移,得到荷载与位移关系曲线,根据规评价基桩的极限承载力、端阻力和侧阻力等参数。

〔二〕实验仪器设备本次基桩自平衡试验采用的设备有:荷载箱〔国家一级计量部门标定〕、电动油泵与压力表、百分表等。

加载采用荷载箱,通过高压油泵输油加载,加载力值由压力表测读,试桩的位移量测采用百分表人工测读,荷载箱加载时,共架设5只百分表,其中2只测量荷载箱向下位移,2只测量荷载箱向上位移,1只测量桩顶向上位移。

现场数据经整理分析后绘制成:荷载箱向下位移Q-s曲线和s-lgt曲线,荷载箱向上位移U-δ曲线和δ-lgt曲线,并可根据需要转换为与传统试桩方法等效的桩顶Q-s曲线。

桩基承载力自平衡法检测方案

桩基承载力自平衡法检测方案

试验桩自平衡法、声波透射法检测方案1 概述1.1 工程概况为了保证施工的顺利进行和结构的安全可靠,根据国家规范和设计有关文件,对该工程指定的试桩采用静载(自平衡法)进行检测,并对试桩采用声波透射法进行桩身完整性检测。

1.2 试验目的1.确定桩身完整性2.确定单桩竖向抗压极限承载力1.3 试验依据1.《建筑桩基技术规范》(JGJ 94-2008)2.《建筑基桩检测技术规范》(JGJ 106-2014)3.《基桩静载试验自平衡法》(JT /T738-2009)4.《基桩承载力自平衡检测技术规程》(山东省工程建设标准)6. 设计图纸7. 地质报告2地质情况依据勘察报告,、各岩土层相关灌注桩桩基参数建议如下表:层号土层名称fak(kPa)抗拔系数λ钻孔灌注桩后注浆增强系数qsik(kPa)qpk(kPa)βsiβp2 ②粉质粘土120 0.70 45 1.43 ③粘土130 0.70 45 1.44 ④粘土140 0.70 50 1.45 ⑤粉质粘土140 0.70 50 1.4 ⑤1粉土150 0.70 40 1.46 ⑥粉质粘土150 0.70 50 1.4 ⑥1中粗砂160 0.60 45 1.77 ⑦粉质粘土150 0.70 55 1.4 ⑦1粘土160 0.70 60 1.4 ⑦2细砂160 0.60 45 1.6层号土层名称fak(kPa)抗拔系数λ钻孔灌注桩后注浆增强系数qsik(kPa)qpk(kPa)βsiβp8⑧粘土190 0.75 70 1.4 ⑧1粉质粘土170 0.70 65 1.4 ⑧2砾岩260 0.50 130 2.09 ⑨粉质粘土200 0.70 70 1.4 ⑨1粘土220 0.75 75 1.410 ⑩辉长岩残积土220 65 1.411 ⑪全风化辉长岩300 80 1.412⑫强风化辉长岩500 140 1800 1.4 2.0⑫1强风化辉长岩600 160 2200 1.4 2.03桩身完整性检测声波透射法测试原理声波透射法检测仪器设备及现场联接如下图所示。

桩基静载自平衡试验原理

桩基静载自平衡试验原理

桩基静载自平衡试验原理自平衡测桩法是在桩身平衡点位置安设荷载箱,沿垂直方向加载,即可同时测得荷载箱上、下部各自承载力。

图1 桩承载力自平衡试验示意图自平衡测桩法的主要装置是一种经特别设计可用于加载的荷载箱。

它主要由活塞、顶盖、底盖及箱壁四部分组成。

顶、底盖的外径略小于桩的外径,在顶、底盖上布置位移棒。

将荷载箱与钢筋笼焊接成一体放入桩体后,即可浇捣混凝土成桩。

试验时,在地面上通过油泵加压,随着压力增加,荷载箱将同时向上、向下发生变位,促使桩侧阻力及桩端阻力的发挥,见图2。

由于加载装置简单,多根桩可同时进行测试。

东南大学土木工程学院开发了测桩软件,可同时对多根桩测试数据进行处理。

3.3 方法特点自平衡试桩法相对于传统试桩法(堆载法和锚桩法)具有以下几个特点:(1) 装置较简单,不占用场地,不需运入数百吨或数千吨物料,不需构筑笨重的反力架,试桩准备工作省时省力;(2) 该法利用桩的侧阻与端阻互为反力,因而可测得侧阻力与端阻力和各自的数据采集应变计传感线P P荷载箱荷载~位移曲线;(3)试验费用省。

尽管荷载箱为一次性投入器件,但与传统方法相比可节省试验总费用的30%~60%,具体比例视桩与地质条件而定,吨位越大越明显;(4)试验后试桩仍可作为工程桩使用,可利用预埋管对荷载箱进行压力灌浆;(5)方便的重复试验。

可在不同的桩端深度(双荷载箱或多荷载箱技术)和同一桩端深度的不同的时间(后压浆试桩效果对比)在同一根桩上方便的进行试验;(6)可得到土阻力的静蠕变和恢复效果。

试验荷载可保留所需的任意长时间段,因此可实测桩侧和桩端阻力的蠕变行为的数据;(7)在下列情况下或当设置传统的堆载平台或锚桩反力架特别困难或特别花钱时,该法更显示其优势,例如:水上试桩,坡场试桩,基坑底试桩,狭窄场地试桩,斜桩,嵌岩桩,抗拔桩等。

这些都是传统试桩法难以做到的。

3.4 测试仪器设备3.4.1 加载设备(1)每根试桩采用一个环形荷载箱,如图2所示;(2)高压油泵:最大加压值为60MPa,加压精度为每小格0.5MPa,其压力表亦由计量部门标定。

自平衡法的桩基检测

自平衡法的桩基检测

自平衡法桩基检测实例一、前言杭州市某改造工程,全线长918.76m。

主线高架标准宽度为25m。

一座半互通式立交。

高架桥基础采用大直径钻孔灌注桩,桩径为250cm、150cm、120cm、100cm 四种,主要桩径为120cm。

受业主委托,我院于于2007 年11 月1 日对整治工程 1 根试桩进行荷载箱预埋,整个预埋工作都在现场技术人员的指导监督下顺利进行,并于2007 年11 月28 日~11 月29 日进行了静载荷试验现场测试工作。

试验采用自平衡法,并用慢速维持荷载法加载,按预先制定的试验方案严格遵照测试规程进行,现场测试顺利。

二、工程地质概况根据场地岩土工程勘察报告,场地桩长范围内主要地层分布参见下表1,岩土主要物理力学特征详见地质勘察报告。

表1: 主要地层分布表(对应Z6 孔)桩周土摩阻 桩端土承载⒁ -1全风化粉砂-19.45 1.1 50.0岩 强风化粉砂⒁ -2-34.35 14.9 80.0岩4.5(桩端进弱风化粉砂⒁ -3/入持力层深140.08000.0岩度层号土层名称层底标高 层厚力极限标准力极限标准(m)(m) 值(KPa)值(KPa)① 填土 3.95 1.1 / ② -1 亚粘土 2.15 1.8 22.0 ② -2 亚砂土 -7.45 9.6 30.0 ⑦ -1亚粘土 -18.3510.924.0三、试桩参数本段试验共进行 3 根试桩的静载试验。

其中 1 根采用自平衡深层静载荷试验方法, 2 根采用堆载法。

本次为 1 根( SZ1),试验方法采用自平衡法。

有关试桩参数见表 2:表 2: SZ1 试桩主要参数表试桩编号SZ1 备注3mH25 墩中心桩号以北试桩位置以西2m 处试验方法自平衡参考钻孔Z6桩径(mm)1200荷载箱外径(mm)1050砼标号C25试桩砼浇至地表,标高约桩顶标高(m)4m桩底标高(m)-38.85桩长(m)42.85荷载箱埋设位置桩端持力层14-3 弱风化粉砂岩持力层顶标高(m)-34.35进入持力层深度(m) 4.5设计计算容许承载力(kN) 6850荷载箱额定荷载(kN) 8000设计要求试验荷载(kN) 13700荷载分级15 级1)试桩钢筋笼延伸至桩底备注2)试桩不作为工程桩用四、试验方法、检测设备与执行标准(一)测试原理基桩自平衡深层静载荷试验是把荷载箱置于桩身预定深度,利用载荷箱上部桩侧摩阻做反力,进行端阻力、单桩竖向极限承载力检测,荷载箱提供向上、向下的内力,从而使桩端阻力与桩侧阻力基本相等而达到平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自平衡法荷载试验抗压极限承载力的确定 ⑴根据实测荷载箱上、下位移计算确定承载力:
⑵Q-S 曲线确定承载力和等效转换曲线。 通过自平衡法检测可获得的向上、向下两条Q-S 曲线 (S+ 和S- 曲线)。对于陡降型Q-s 曲线,取陡降起始 点对应的荷载。对缓变形Q-S 曲线,按位移值确定极限 值,极限侧阻取对应于向上位移S+=40~60mm 对应的 荷载;极限端阻取S-=40~60mm 对应荷载,或大直径 桩的S-=(0.03~0.06)D(D 为桩端直径,大直径桩取 低值,小直径桩取高值)的对应荷载。如果根据位移随 时间的变化特征确定极限承载力,下段桩取S-lgt 曲线 尾部出现明显向下弯曲的前一级荷载值,上段桩取S-lgt 曲线尾部出现明显向上弯曲的前一级荷载值。
由高压油泵在地面(平台)向荷载箱充油加载,荷载箱 将力传递到桩身,其上部桩极限侧摩阻力及自重与下部 桩极限侧摩阻力及极限端阻力相平衡来维持加载,从而 获得桩的承载力。这种试验方法的最大特点是在桩基自 身内部寻求反力进行加载,不同于传统方法那样借助于 外部反力加载。
囊式荷载箱安装应用实例图片 /hzx/shili.htm 自平衡法测桩技术资料下载 /hzx/dl.htm 自平衡法技术优劣势分析 /hzx/qa_zph.htm

优点: 堆载反力梁装置使用比较广泛,其承重平台搭建简单, 适合于不同荷载量试验,及不配筋或少配筋的桩,可对 工程桩进行随机抽样检测。在千斤顶配合下,该装置可 以将力比较均匀缓慢地施加到桩上,能明显改善电动油 泵加载中的过冲现象,从而使荷载量的大小比较容易控 制。

缺点: 由于开始试验前 ,堆重物的重量由支撑墩传递到地 面,使桩周土受到了一定的影响,有报道称,当荷载大 于20000kN 时,影响深度将达到45m。而且大吨位试验 时,若用袋装砂石或场地土等作为堆重物,由于上部荷 载较大,造成安装时间较长,而且需要进行技术处理, 以防鼓凸倒塌。在广东地区,许多单位使用混凝土预制 块堆重,大大减少了安装时间,但需运输车辆及吊车配 合,试验成本较高;使用水箱配重,试验结束后,由于 要放水,会影响试验场地的整洁。
目前,桩基静荷载试验主要有以下几类加载方法: 堆载法、锚固法和自反力法。 1.1 堆载法: 堆载反力梁装置就是在桩顶使用钢梁设置一承重平台, 上堆重物,依靠放在桩头上的千斤顶将平台逐步顶起, 从而将力施加到桩身。反力装置的主梁可以选用型钢, 也可用自行加工的箱梁。平台形状可以根据需要设置为 方形或矩形,堆载用的重物可以选用砂袋、混凝土预制 块、钢锭、甚至就地取土装袋,也有的用水箱。
优点: 锚桩反力梁装置是通过邻近工程桩或预设锚桩提供反力, 安装快捷,特别对于大吨位试桩,节约成本明显。 缺点: 安装时荷载对中不易控制,试验的开始阶段容易产生过 冲,当使用工程桩做锚桩时,会对工程桩的承载力产生 一定的影响,如果为试验桩设置专用的锚桩,则会大大 增加相关成本。锚桩在试验过程中受到上拔力的作用, 其桩周土的扰动同样会影响到试桩。《建筑桩基技术规 范》(JGJ94 - 94)提出的试桩与锚桩之间的中心位 置应≥ 4d 且≤ 2.0m 就是为了减小这种影响(d :试桩 或锚桩的设计直径)。对于桩身承载力较大的钻孔灌注 桩锚桩反力梁装置无法进行随机抽样检测。
1.2 锚桩法: 锚桩反力梁装置在具体的应用中又可根据反力锚的不 同分为两种:将反力架与锚桩连接在一起提供反力的, 俗称锚桩反力梁装置;将几只螺旋钻钻入地下使用地锚 提供反力,俗称锚杆反力梁装置。锚桩反力梁装置就是 将被测桩周围对称的几根锚桩用锚筋与反力架连接起来, 依靠桩顶的千斤顶将反力架顶起,由被连接的锚桩提供 反力。提供反力的大小由锚桩数量、反力架强度和被连 接锚桩的抗拔力决定。锚桩反力梁装置一般不会受现场 条件和加载吨位数的限制,当条件允许时采用工程桩作 锚桩是最经济的,但在试验过程中需要观测锚桩的上拔 量,以免拔断,造成工程损失。
1 桩基检测方法---静荷载实验法
基桩工程质量的好坏主要取决于两个因素,即承载能力 与桩身质量,而承载力是二者中的主要因素。单桩承载 力的准确测试对于各类建筑物基础设计乃至上部结构的 设计都起着举足轻重的作用。长期以来,国内外确定单 桩承载力的方法很多,总的可分为两大类: 第一类是对工程现场试桩进行静载荷试验和动力检测; 第二类是通过其它手段,分别得出桩端阻力和桩身的侧 阻力后计算求得。基桩检测的主要目的之一是确定单桩 承载力,而单桩竖向静载荷试验是公认的检测单桩竖向 承载力最直观、最可靠的方法。
静载试验法:该法被认为是目前检测基桩竖向抗压承载力 最直接和最可靠的试验方法。它所获得的Q—s 曲线的 形态由桩侧和桩端土的分布和性质、成桩工艺、桩的形 状尺寸等诸多因素而变化。当其陡降段明显时,可取相 应于陡降段起点的荷载值;对于缓变型曲线则一般取 s=40~60mm 对应的荷载,对于摩擦型灌注桩,取 s=logQ 曲线陡降直线段的起点所对应的荷载值。当曲 线特征不明确时,极限承载力的确定受人为因素的影响 较大。在工程实践中,基准梁和基准桩的问题常会被检 测人员所忽视,容易出现下列问题: ①基准桩打入深度不足,在试验过程中产生位移; ②基准梁长度不符合规范要求; ③基准梁刚度不足,产生较大的挠曲变形。
另外也可以通过转换等效为相应的传统静载方法获得的 一条Q-S 曲线,将荷载箱作用力转换为桩顶荷载值,上 下段桩位移转换为桩顶位移,参考竖向抗压静载的极限 承载力取值方法确定极限荷载。
优点: 自平衡测试法通过桩自身阻力作反力,避免了庞大的反 力装置,其装置简单,准备工作省时省力,并且可以节 省大量试验费用。 缺点: 当使用工程桩进行检测,荷载箱位置在加载后形成断桩, 不宜处理,荷载箱平衡点位置需要预估,上部桩身的摩 擦力与下部桩身的摩擦力及端阻力不易平衡,另外测试 时,荷载箱上部测读的是负摩擦力,与实际情况不相同, 需要根据经验进行调整。
检测成果和分析: 当第9 级荷载加载完成后,继续通过油泵加油,但油泵 压力表读数始终无法上升到第10 级的对应读数,而荷 载箱上部桩整体不断被顶出,持续7 小时后,荷载箱体 顶位移增大了51mm,对应的桩顶位移为54mm,已经 达到了停止加载的条件,随后开始分级卸载。
根据试验数据,荷载箱上部桩位移已经达到极限破坏的 数值,因此向下极限摩阻力取Q +u =18189kN。 而下部桩未发生破坏,Q-u≥18189kN,从位移记录显 示荷载箱下部桩的变形量比较小,表明桩端无沉渣或沉 渣较小,桩端混凝土与岩层结合较好。 根据公式 =36000kN (荷载箱上部桩侧 向上阻力换算向下修正系数通过对图层分布的加权平均 计算取γ=0.9)。

பைடு நூலகம்
1.4自平衡法与传统加载方法比较

相同点 试验对象: 相对于其他测桩方法(高、低应变等)而 言,自反力法与传统加载方法一样,同属于对桩体直接 施载的方法,且试验结果为勘探、设计、施工的综合结 果。 试验原理: 自反力(自平衡)测桩法,并不是一种全 新的桩基静载试验,其代表的仅仅是在桩基内部寻求反 力的一类加载方法(或技巧),与传统的试验方法以及 现在普遍执行的试验规范并不矛盾。将自反力法(自平 衡法)视为对桩基上、下部同时进行传统方法加载,加 载设备、载荷分级方法、加载速度、稳定判别条件等, 与传统加载方法基本一致,完全可以在现有的传统试验 规范的框架内完成。
加载位置: 传统试验法,加载点一般都是在桩顶;而自 反力法的加载点,一般都是安排在桩基内部,传力点桩头的概念发生了变化。因此,自反力法实施过程中, 需要采取一系列特殊措施,保证加载点的局部桩体的完 整。典型的措施有:桩体强度局部加强、降低桩截面载 荷集中程度、采用中低压的专业荷载箱等。
2.自平衡法荷载试验在工程试验桩的应用

1.3 自平衡法
自平衡法在国外上世纪80 年代中期已经研究应用,我国 从90 年代中期起开始实用性的应用。通过多年的科研 应用,目前在交通桥梁和码头工程领域的使用较为广泛, 经过不断的实践累积,逐步从科研转变为工程的检测的 常规应用,部分行业和地区已经制定了相关的检测规程。 自平衡试桩法的基本原理是接近于竖向抗压(拔)桩的实 际工作条件的试验方法。首先把一种特制的加载装置— 荷载箱放置在桩身指定位置,将荷载箱的高压油管和位 移杆引到地面(平台)。

不同点 反力方式 :自反力法加载时,反力来自于桩基内部,这 也正是自反力法技术优势的根本原因。而传统方法加载 时,反力来自于桩基外部,比如堆载配重反力、锚桩反 力等。 加载方向: 传统方法试验时,桩基一般总是整体受载荷, 且加载方向与传统试验规程的约定一致;自反力法试验 时,桩基经常是被分段加载,而且,经常有上部桩体受 载方向与传统试验规程的约定相反。因此,自反力法加 载完成后,往往不能加载结果直接套用传统试验规程进 行类比,得出安全性结论,而是将加载结果间接转换以 后,才能套用传统试验规程进行类比,得出安全性结论。
桩基检测方法—自平衡法
桩基检测方法---静荷载实验法 1.1 堆载法 1.2 锚桩法 1.3 自平衡法 1.4自平衡法与传统加载方法比较 2.自平衡法荷载试验在工程试验桩的应用 3. 结论
1.
桩基础是现代建筑中应用较普遍的一种地基处理技术。 但桩基础施工存在隐蔽性高,施工地形复杂,施工机械 性能不稳,人员素质参差不齐等因素,影响桩基的质量。 桩基质量不仅关系到建筑物的成败,更关系到人民群众 的生命财产的安全,所以国家强制规定桩基础施工必须 进行桩基检测。在工程实践中,由于对检测方法了解不 多或使用不当,或者因不重视而使用存在着随意性,造 成桩基工程质量检测的可靠性不高,给工程留下了隐患, 甚至造成质量事故。
在小吨位基桩和复合地基试验中,小巧易用的地锚就显 示出了工程上的便捷性。地锚根据螺旋钻受力方向的不 同可分为斜拉式(也即伞式)和竖直式,斜拉式中的螺 旋钻受土的竖向阻力和水平阻力,竖直式中的螺旋钻只 受土的竖向阻力。地锚提供反力的大小由螺旋钻叶片大 小和地层土质有关。虽然有不少单位使用地锚进行复合 地基试验,但由于试验过程中,地锚会对复合地基土产 生扰动,这一点需要引起足够重视。另外,还有一些反 力装置比如锚桩与堆重平台联合装置,以及利用现有建 筑物或特殊地形提供反力的。
相关文档
最新文档