AD5203AN10中文资料

合集下载

AQV203A;AQV202;AQV204;AQV203;AQV101AZ;中文规格书,Datasheet资料

AQV203A;AQV202;AQV204;AQV203;AQV101AZ;中文规格书,Datasheet资料

Topr
limits
Storage
Tstg
360 mW 410 mW 1,500 V AC –40°C to +85°C –40°F to +185°F –40°C to +100°C –40°F to +212°F
Remarks
f = 100 Hz, Duty factor = 0.1%
A connection: Peak AC, DC B, C connection: DC A connection 100 ms (1 shot) VL = DC
500 V DC
2. AC/DC type 1) Absolute maximum ratings (Ambient temperature: 25°Cf connection
AQV201(A)
Input
LED forward current LED reverse voltage Peak forward current Power dissipation Load voltage (peak AC)
HF 1 Form A (AQV10❍, 20❍)
2) Electrical characteristics (Ambient temperature: 25°C 77°F)
Item
Symbol
Type of connection
LED operate current
Typical
IFon

Maximum
40 V 500 mA
AQV201
AQV201A
AQV201AX
AQV201AZ
AC/DC dual use
60 V 250 V

微雪电子 High-Precision AD DA Board 用户手册说明书

微雪电子 High-Precision AD DA Board 用户手册说明书

High-Precision AD/DA Board用户手册Raspberry Pi的GPIO接口没有AD/DA功能,而High-Precision AD/DA Board可以有效满足Raspberry Pi的高精度AD/DA转换的需求。

该模块支持Raspberry Pi A+/B+/2代B,具有以下特点:●板载ADS1256芯片,8通道24位高精度ADC(4通道差分输入),30ksps采样速率●板载DAC8532芯片,2通道16位高精度DAC●板载排针封装输入接口,可接入模拟信号,兼容微雪传感器接口标准,方便接入各种模拟传感器模块●板载接线端子封装输入输出接口,可接入模拟信号及数字信号,方便在各种场合使用●自带AD/DA检测电路,方便观察实验现象12板载资源[ 扩展接口]1.Raspberry Pi GPIO接口方便接入树莓派2.AD/DA输入输出接口(接线端子)方便在各种场合使用3.AD输入接口(排针)方便接入各种传感器模块(兼容微雪传感器接口标准)[ 器件介绍]4.7.68M晶振5.LM285-2.5提供ADC芯片工作基准电压6.光敏电阻7.LED输出指示灯8.10K电位器9.DAC853216位高精度DAC,2通道输出10.PWR LED电源指示灯11.ADS125624位高精度ADC,8通道(4通道差分输入)[ 跳线设置]12.ADC测试跳线13.DAC测试跳线14.电源配置跳线15.ADC参考地设置AD单端输入时,AINCOM为参考端,可接地或外部参考电平符号说明1)AD/DA输入输出接口(接线端子)(标号2)AD0-AD7:AD输入端AGND:模拟地GND:数字地VCC:工作电压(可通过电源配置跳线控制电压输出3.3V或者5V)DA0-DA1:DA输出端2)AD:AD输入接口(标号3)AD0-AD7:ADS1256模拟输入接口D0-D3:ADS1256的GPIO管脚(参考ADS1256数据手册)P22-P25:树莓派GPIO管脚AGND:模拟地3)LDR:光敏电阻(标号6)通过连接AD1和LDR之间的跳线,MCU可从AD1采集到该光敏电阻的输出电压。

AD5933应用

AD5933应用

阻抗测量芯片AD5933原理及其应用时间:2010-03-04 23:48:25 来源:作者:1 AD5933芯片概述1.1 主要性能AD5933是一款高精度的阻抗测量芯片,内部集成了带有12位,采样率高达1MSPS的AD转换器的频率发生器。

这个频率发生器可以产生特定的频率来激励外部电阻,电阻上得到的响应信号被ADC采样,并通过片上的DSP进行离散的傅立叶变换。

傅立叶变换后返回在这个输出频率下得到的实部值R和虚部值I。

这样就可以很容易的计算出在每个扫描频率下的傅立叶变换的模和电阻的相角。

其中模=,相角=。

AD5933主要具有以下特性:λ可编程的频率发生器,最高频率可达100KHzλ作为设备通过口和主机通讯,实现频率扫面控制λ频率分辨率为27位(<0.1Hz)λ阻抗测量范围为100Ω到10MΩλ内部带有温度传感器,测量误差范围为±2℃λ带有内部时钟λ可以实现相位测量λ系统精度为0.5%λ可供选择的电源范围为2.7V到5Vλ正常工作的温度范围-40℃到+125℃λ 16脚SSOP封装1.2 AD5933的引脚定义图1给出了AD5933的封装图,表1给出了AD5933的引脚定义。

建议在使用时把所有的电源脚9、10、11都连到一起,统一连接到电源上,同样所有的地引脚12、13、14也都连接到一起,统一连接到系统地上图1 AD5933引脚排列表1 AD5933引脚定义1.3 主要应用AD5933可以广泛的应用在电化学分析、生物电极阻抗测量、阻抗谱分析、复杂阻抗测量、腐蚀监视和仪器保护、生物医学和自动控制传感器、无创检测、原材料性能分析以及燃料和电池状态监测等众多领域。

为阻抗的测量提供了很大的方便,单片集成技术大大的减小了仪器的体积,使得仪器使用更加方便。

简单的I2C通讯方式,方便用户操作,减小了用户编程的困难。

由于它给出的直接是变换后阻抗的实部和虚部数据,大大的简化了用户编程过程,节省了开发时间。

模拟量输入(AD)模块功能说明

模拟量输入(AD)模块功能说明

5
举例 请求 模块地址 功能码 设置地址高(字节) 设置地址低(字节) 设置数量高(字节) 设置数量低(字节) 字节计数 设置内容高(字节) 设置内容低(字节) 设置内容高(字节) 设置内容低(字节)
数据(hex) 10 00 01 00 02 04 00 0A 01 02
响应 模块地址 功能码 设置地址高(字节) 设置地址低(字节) 设置数量高(字节) 设置数量低(字节)
报警下限的低 16 位 报警下限的高 16 位 报警上限的低 16 位 报警上限的高 16 位 输出电平状态 显示模式
仅 DAM-3052BD 模块支持 仅 DAM-3052BD 模块支持
40288
校准温度
-12.8~12.7 (只写) 仅 DAM-3052BD 和 DAM-3039 模块支持
2
保留
30259
第 2 路模拟量输入低 16 位
30260
第 2 路模拟量输入高 16 位
30261
第 3 路模拟量输入低 16 位
30262
第 3 路模拟量输入高 16 位
30263
第 4 路模拟量输入低 16 位
30264
第 4 路模拟量输入高 16 位
30265
第 5 路模拟量输入低 16 位
30266
描述 第 01 路开关量输入状态 第 02 路开关量输入状态 第 03 路开关量输入状态 第 04 路开关量输入状态
说明 =0 没有通电 =1 接通电源 =0 没有通电 =1 接通电源 =0 没有通电 =1 接通电源 =0 没有通电 =1 接通电源
1 BYTE 2 BYTE 2 BYTE
0x02 0x0000 TO 0xFFFF 1 TO 2000(0x7D0)

AD5933中文资料

AD5933中文资料

ADI Ӳ Ӳ Lj LjADI փ ă Lj ADI Ӳ ă1 MSPS Ă12AD5933Rev. BInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, N orwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.05 1Պ Lj 100 kHz Պ I2C Ր ǖ27 (<0.1 Hz) ǖ1 kΩ 10 MΩ100 Ω 1 kΩ և (±2°C) և ǖ0.5%ǖ2.7 V 5.5 V ǖ−40°C +125°C 16 SSOPԍ Ԣ/AD5933 ӄLj 12 Ă1 MSPS (ADC)ă և Lj և ADC Lj DSP Վ (DFT) ăDFT և(R) և(I) ăLj ă և և Lj I2C ăADI AD5934Lj 2.7 V 5.5 V Ă250 kSPS Ă12 Lj Ljժ 16 SSOP ăAD5933Rev. B | Page 2 of 44................................................................................................... 1 ................................................................................................... 1 ................................................................................................... 1 ........................................................................................... 1 ........................................................................................... 3 ........................................................................................... 4!I 2C ........................................................... 6 ............................................................................. 7!ESD (7)..................................................................... 8 .................................................................................. 9 ................................................................................................. 12 ........................................................................................ 13! .................................................................................... 14! .............................................................. 15! .................................................................................... 15!DFT ................................................................................ 15! ................................................................................ 16! ............................................................................ 16! ....................................................................... 16! ....................................................................... 16! ....................................................................... 16 . (17)! ................................................................................ 17! ....................................................................... 17! ............................................. 17! Վ ...................................................... 17! ................................................................................ 18! .............................................................. 18! .............................................................. 18! .............................................................. 18! Վ .......................................................... 19! ................................................................................ 19! (21)................................................................................ 23 . (24)! ( 0x 80Ă 0x81) (24)!( 0x82Ă 0x83Ă 0x84) .................................................................. 25! ( 0x85Ă 0x86Ă 0x87) .................................................................. 26! ( 0x88Ă 0x89) ........................................................................................ 26! ( 0x8A Ă 0x8B) ....................................................................................... 26! ( 0x8F) .......................................... 27! (16 — 0x92Ă 0x93) ........................................................................................ 27!(16 — 0x94Ă 0x95Ă 0x96Ă 0x97) .............. 27 .. (28)! I 2C .......................................................................... 28! AD5933 .......................................................................... 29! .................................................................................... 29! .................................................................................... 30 . (31)! ............................................................................ 31! ǖ ........................................ 33! / ............................................................. 33! ................................................................... 34 AD5933 ................................................ 35ք .................................................................................... 36! ................................................................... 36 ӱ (37)! ӱ ............................................................................ 37! ....................................................................... 37! (XO) և .......................................................... 37! .................................................................................... 38! ................................................................................ 42 . (43)! (43)AD5933Rev. B | Page 3 of 442010 2 — ӲA ӲB “ ”և .............................................................................. 12008 5 — Ӳ0 ӲA ք .................................................................................... 1 ............................................................................................. 1 ՗1 ............................................................................................. 4 17 ......................................................................................... 13 “ ”և ................................................................... 13 19 .. (14)24 ......................................................................................... 18 “ ”և ................................................................... 19 “ ”և ........................................................... 21 “ ”և ................................................................... 24 “ ”և ............................................................... 31 ՗18 ......................................................................................... 35 “ ӱ”և ........................................................................ 37 “ ”և ................................................................... 432005 9 — Ӳ0ǖ ӲAD5933Rev. B | Page 4 of 44՗1Y 1 /1 K10 MΩ100 Ω 1 kΩ Lj և0.5 % 2 V Lj30 kHz Lj200 kΩ5 630 ppm/°C21100 kHzՐ 0.1 Hz DDS 0.1 Hz Ր MCLK16.776 MHz և 316.776 MHz ևև 30 ppm/°C141.98 V p-p ք 451.48 V Ǘ5200 Ω T A = 25°C VOUT ±5.8 mA T A = 25°C 24 0.97 V p-p 650.76 V Ǘ72.4 kΩ VOUT ±0.25 mA 340.383 V p-p 8 50.31 V Ǘ91 kΩ VOUT ±0.20 mA 440.198 V p-p 1050.173 V Ǘ11600 Ω VOUT ±0.15 mA Բ60 dB հ −52 dB (0 MHz 1 MHz)−56 dB (±5 kHz)−85 dBLjVDD = 3.3 V LjMCLK = 16.776 MHz Lj2 V Lj30 kHz Lj200 kΩ 5 6 Lj 200 kΩ 4 5 LjPGA = ×1ăAD5933Rev. B | Page 5 of 44Y 1/1 nA VIN 60.01 pF VIN GND (C FB ) 3 pF Ǘժ6Ր 12250 kSPS ADC±2.0 °C −40°C +125°C Ր0.03 °C800(V IH )0.7 × VDD(V IL )0.3 × VDD 7 1 μA T A = 25°C 7 pF T A = 25°CVDD2.7 5.5 VIDD( )10 15 mA VDD = 3.3 V 17 25 mA VDD = 5.5 VIDD( )11 mA VDD = 3.3 V Ǘ( 0X80Ă 0X81)և16 mA VDD = 5.5 V IDD( )0.7 5 μA VDD = 3.3 V 1 8 μA VDD = 5.5 V1 Y −40°C +125°C Lj 25°C ă2AD5933 Lj ă3փ և ք Lj 14Ă 15 16ă4Բ Lj ǖ(V p-p) = [2/3.3] × VDDVDD ՗ ă 5Բ Lj ǖ (V) = [2/3.3] × VDD VDD ՗ ă6՗ ԍ Lj ăVOUT ă78Ă 15 16 ăAD5933Rev. B | Page 6 of 44I 2CLjVDD = 2.7 V 5.5 V Lj T MIN T MAX ă1՗22T MIN ĂT MAXf SCL 400 kHz Lj SCL t 1 2.5 μs Lj SCLt 2 0.6 μs Lj t HIGH LjSCL t 3 1.3 μs Lj t LOW LjSCLt 4 0.6 μs Lj t HD, STA Lj / ԍ t 5 100 μs Lj t SU, DAT Lj t 63 0.9 μs Ljt HD, DAT Lj ԍ 0 μs Ljt HD, DAT Lj ԍ t 7 0.6 μs Lj t SU, STA Lj t 8 0.6 μs Lj t SU, STO Ljt 9 1.3 μs Lj t BUF Lj t 10 300 nsLjt F Lj SDA0 ns Ljt R Lj (CMOS )SCL SDA t 11 300 ns Ljt F Lj SCL SDA0 ns Lj t F Lj (CMOS )SDA 250 ns Lj t F Lj SDA20 + 0.1 C b 4 ns Ljt F Lj SCL SDA C b 400 pF Lj1 2ă2՗ ԍ Lj ă3SDA ( SCL V IH MIN ) SCL Lj Ղ 300 ns ԍ ă4C b ( ǖpF)ă Ljt R t F 0.3 VDD 0.7 VDD ăSCLSDA05324-002START CONDITIONREPEATED START CONDITIONSTOP CONDITION2. I 2CAD5933Rev. B | Page 7 of 44LjT A = 25°C ă՗3DVDD GND −0.3 V +7.0 V AVDD1 GND −0.3 V +7.0 VAVDD2 GND −0.3 V +7.0 VSDA/SCL GND −0.3 V VDD + 0.3 VVOUT GND −0.3 V VDD + 0.3 VVIN GND −0.3 V VDD + 0.3 VMCLK GND −0.3 V VDD + 0.3 V(Y )−40°C +125°C−65°C +160°C 150°C SSOP LjθJA 139°C/W θJC W /C °631 ( )! 260°C 10 40ESDLjă Ljփ՗ Ԩ և Lj ăăESD( ) ă ӱ ă Ԩ ԍ Lj ESD Lj ă LjESD Lj Ն ăAD5933Rev. B | Page 8 of 44NCNC NC RFB VOUT NC MCLK NC = NO CONNECT05324-003IT IS RECOMMENDED TO TIE ALL SUPPLY CONNECTIONS (PIN 9, PIN 10,AND PIN 11)AND RUN FROM A SINGLE SUPPLY BETWEEN 2.7V AND 5.5V. IT IS ALSO RECOMMENDED TO CONNECT ALL GROUND SIGNALS TOGETHER (PIN 12, PIN 13,AND PIN 14).NOTES:1.3.՗4.Պ 1, 2, 3, 7 NC փ ă4 RFB և ă 45 Ljă5 VIN ă VDD/2 ă6 VOUT ă8 MCL Kă9 DVDD ă10 AVDD1 1ă11 AVDD2 2ă12 DGND ă13 AGND1 1ă14 AGND2 2ă15 SDA I 2C ă Lj 10 kΩ VDD ă16 SCL I 2C ă Lj 10 kΩ VDD ăAD5933Rev. B | Page 9 of 44350N U M B E R O F D E V I C E S30252015105 2.06VOLTAGE (V)1.921.94 1.96 1.982.00 2.022.0405324-0040.680.86VOLTAGE (V)0.700.720.740.760.780.800.820.84300N U M B E R O F D E V I C E S25201510505324-0074. 1 քLjVDD = 3.3 V7. 2 քLjVDD = 3.3 V1.30 1.75VOLTAGE (V)1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.700N U M B E R O F D E V I C E S3025201510505324-0053000.3700.400VOLTAGE (V)N U M B E R O F D E VI C E S2520151050.3750.3800.3850.3900.39505324-0085. 1 քLjVDD = 3.3 V8. 3 քLjVDD = 3.3 V300N U M B E R O F D E V I C ES252015105VOLTAGE (V)0.950.960.970.980.99 1.00 1.01 1.0205324-0060.2900.320VOLTAGE (V)0.2950.3000.3050.3100.315300N U M B E R O F D E V I C E S25201510505324-0096. 2 քLjVDD = 3.3 V9. 3 քLjVDD = 3.3 VAD5933Rev. B | Page 10 of 44VOLTAGE (V)0.1920.1940.1960.1980.2000.2020.2040.206300N U M B E R O F D E V I C E S25201510505324-01010. 4 քLjVDD = 3.3 V0.1600.205VOLTAGE (V)0.1650.1700.1750.1800.1850.1900.1950.20030N U M B E R O F D E V I C E S25201510505324-01111. 4 քLjVDD = 3.3 V15.810.8018MCLK FREQUENCY (MHz)I D D (m A )15.314.814.313.813.312.812.311.811.324681012141605324-01212. MCLK–1.00400PHASE (Degrees)P H A S E E R R O R (D e g r e e s )–0.2–0.4–0.6–0.85010015020025030035005324-01313.16.416.616.817.017.2OSCILLATOR FREQUENCY (MHz)C O U N T05324-0142468101216.416.616.817.017.2OSCILLATOR FREQUENCY (MHz)C O U N T05324-0162468101214. −40°C և ք16. 125°C և ք160246810121416.416.616.817.017.2OSCILLATOR FREQUENCY (MHz)C O U N T05324-01515. 25°C և ք2.7 V 5.5 V LjAD5933 Lj 0.5%ă(SFDR)DDS փ Ք Lj հ հ ă Ք հ ă SFDR 0 Hz հ հ Բă SFDR ±200 kHz հ հ ă Բ(SNR)SNR հ ԲLj Ԟ(dB)՗ ăհ (THD)THD հ հ Բ Lj V1 հ LjV2ĂV3ĂV4ĂV5 V6 հ ă AD5933LjTHDV12V3V4V V6VTHD25)Bd(02g o l+2+222+=5324-1717.FREQUENCYIMPEDANCE5324-1818.՗5. 3.3 V1 1.98 V p-p 1.48 V2 0.97 V p-p 0.76 V3 383 mV p-p 0.31 V4 198 mV p-p 0.173 VAD5933 ӄLj12 Ă1 MSPS ADCăև Lj և ADCLj DSP DFT ăDFTև(R) և(I)ă ǖ! =! = tan−1(I/R)՗ Z(ω)Lj Lj18 ă22IR+AD5933 Ă Րă Lj Պհ Lj VOUTVIN և ă՗5 3.3 Vă VDD Բ ă Lj5 V ǖ1 = 1.98 × =3V p-p1 = 1.48 × =2.24V p-p3.30.53.30.5DDS LjSub-Hz Ր ăLj Lj ăDDSMCLK և Ljև ăDDS D3( և 0x81)ăVOUT05324-01919.19 LjAD5933 Ԉ 27 DDS Lj ă ( 0x82Ă 0x83 0x84)ă 27 Ր Lj (MSB) և 0Lj Lj 24 Պ ăAD5933 0.1 Hz Պ Ր ăՊ 24 I 2C ăǖ Ă ă24 LjՊ RAM 0x82Ă 0x83 0x84( և )ă DDS Lj 1 ă !=(1) Lj 30 kHz Ljժ 16 MHz MCLK Lj Պ ǖ!= 0x0F5C28 0x0F Պ 0x82Lj 0x5C Պ 0x83Lj 0x28 Պ 0x84ă24 LjՊ RAM 0x85Ă 0x86 0x87( և )ă DDS Lj 2 ă !=!!!!!! (2) Lj Ր 10 Hz Ljժ 16 MHzMCLK Lj Պ ǖ!= 0x00014F 0x00 Պ 0x85Lj 0x01 Պ 0x86Lj 0x4F Պ 0x87ă9 Lj՗ ă Պ RAM 0x88 0x89( և )ă Պ 511ăLj 150 Lj 0x00 Պ 0x88Lj 0x96 Պ 0x89ăՊ Lj ( 0x80 0x81Lj և ) ă ( 0x8F) D2 ă ă ǖ0x94Ă0x95( և ) 0x96Ă0x97( և )Ǘ ă Lj ă Lj ă Lj D3 1Lj՗ ă 1Lj օ ă2724×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛MCLK ≡⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛16MHz 10Hz ≡×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛272416MHz 30kHz 272×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛MCLK05324-02020.!LjՂ Ӏ ǖ1. ă LjՂ( 0x80 0x81) Lj ă LjVOUT VIN և Lj և փ ă2. ă ӯ Lj Qă Lj Lj ă !Lj ă Lj Պ Lj փ ă Lj Lj ă3. ăă Lj LjADC ă Lj ( )Պ 0x8A 0x8B( 34)ăDDS Պ Lj ՗5 ă D10 D9 ( “ ( 0x80Ă 0x81)”և )Ljժ VOUT ăĂ Պ (PGA)Ă հ ADC ă 20 ă VOUT VIN ă VIN VDD/2 ă VIN Ljժ ă 4(RFB) 5 (VIN) ă Ղ PGA ԍ ADC (0 V VDD) ă PGA 5Ԡ 1ԠLj D8 ( և 0x80)ă հ Lj 12 Ă1 MSPS ADC ăADC ԥ AD5933 DSP Lj DFT ăDFTLj DFT ăAD5933 DFT ՗ ǖǖX(f) f ă x(n) ADC ăcos(n ) sin(n ) DDS f ă 1024 Ԩ Lj 16 Lj ՚ ՗ և ևă ց ă∑−−=10230)))sin())(cos((()(n n j n n x f X՗6.D13…D0−40°C 11, 1011, 0000, 0000 −30°C 11, 1100, 0100, 0000 −25°C 11, 1100, 1110, 0000 −10°C11, 1110, 1100, 0000 −0.03125°C 11, 1111, 1111, 1111 0°C00, 0000, 0000, 0000 +0.03125°C 00, 0000, 0000, 0001 +10°C 00, 0001, 0100, 0000 +25°C 00, 0011, 0010, 0000 +50°C 00, 0110, 0100, 0000 +75°C 00, 1001, 0110, 0000 +100°C 00, 1100, 1000, 0000 +125°C 00, 1111, 1010, 0000 +150°C01, 0010, 1100, 0000D I G I T A L O U T P U T–40°C–0.03125°C –30°C11,1111,1111,111111,1100, 0100, 000011, 1011, 0000, 0000TEMPERATURE (°C)75°C150°C01, 0010,1100, 000000, 1001, 0110, 000000, 0000, 0000, 000105324-02121.AD5933 ă և (MCLK) ă LjAD5933 16.776 MHz և ă( 0x81Lj ՗11) D3Պ Lj ă և ăփ և ք Lj 14Ă 15 16ă13 Lj 14 ă ă −40°C +125°C ă (+150°C) Lj Վ ă ±2°C ăև Lj Ljփ և ă Lj և ăă Lj ( 0x80 0x81) ă ( 800 μs)Lj Lj ă ( 0x8F)Lj Ǘ 0x92 0x93 ( և )ă16 Lj 14 ց ADC ă MSB ăD13 ă և ԍ –40°C Lj +150°C ă Lj 0x92 0x93 ՗6 ă 21 ă! = ADC (D)/32!= (ADC (D) – 16384)/32“ADC ” 14 LjԈ ă != (ADC (D) – 8192)/32“ADC (D)” D13Lj ADC ă101.598.55466FREQUENCY (kHz)I M P E D A N C E (k )101.0100.5100.099.599.0565860626405324-02222.օ DFT ă DFT ǖ != ǖR 0x94 0x95 ă I 0x96 0x97 ă Lj ǖ ! = 0x038B = 907( )! = 0x0204 = 516( )!= =1043.506 LjՂ Բ ă VOUT VIN ăLj VOUT VIN ăLj Lj ǖ ! = 2 V p-p !Z CALIBRATION = 200 kΩPGA = ×1 ! = 200 kΩ != 30 kHzLj ǖ ! = 0xF064 = −3996( )! = 0x227E = +8830( )!= =9692.106 != 22I R +)516907(22+)8830()3996(22+− ⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛1!= =515.819×1012ăԨ Lj = 510 kΩă30 kHz Lj ǖ ! = 0xFA3F = −1473( )! = 0x0DB3 = +3507( )!= =3802.863 ǖ !==ՎAD5933 Lj Վ ă Վ ă 22 ă Lj ă⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛Ω200k 1))3507()1473((22+−×1Ω=Ω××−k 791.509863.380210819273.515112101.598.55466FREQUENCY (kHz)I M P E D A N C E (k )101.0100.5100.099.599.0565860626405324-02323.CURRENT-TO-VOLTAGE 05324-02424.Lj Վ Ljժ Lj ă 23 ăLj Ղ ă Ă PGA ăLj ǖ ! = 2 V (p-p) !Z UNKNOWN = 100.0 kΩPGA = ×1 ! = 3.3 V! = 100 kΩ != 55 kHz 65 kHzǖ ! 55 kHz 1.031224E-09 ! 65 kHz 1.035682E-09!(ΔGF) 1.035682E-09 − 1.031224E-09 = 4.458000E-12 !(ΔF) = 10 kHzLj60 kHz ǖ1.033453E-9ă ă9-10031224.15kHz 10kHz 12-4.458000E ×+⎟⎠⎞⎜⎝⎛× 24 ǖ !×Ԩ Lj ǖ VDD = 3.3 V! = 200 kΩZ UNKNOWN = 200 kΩPGA = ×1ADC 2 V p-p ăփ Lj PGA ×5Lj ADC ԏ ăՎ Lj Ղ ǖ t t t1("PGA Z UNKNOWN×101.598.55466FREQUENCY (kHz)I M P E D A N C E (k )101.0100.5100.099.599.0565860626405324-02525. Վ7010FREQUENCY (kHz)% I M P E D A N C E E R R O R654321356010005324-02626. 1 ӥ Բ2.0010FREQUENCY (kHz)% I M P E D A N C E E R R O R35601001.81.61.41.21.00.80.60.40.205324-02727. 2 ӥ ԲՎՎ 30 ppm/°C ă 25100 kΩ Վ ă2(1 kΩ 10 kΩ)Lj 27 ǖ! = 2 V p-p! ZCALIBRATION = 1 kΩ PGA = ×1! = 3.3 V!= 1 kΩAD5933 ă AD5933 փ ă ă Lj 2 V p-p LjR OUT 200 ΩăLjR OUT ă 26 31 Lj 4 MHz 10 kHz ă1(0.1 kΩ 1 kΩ)Lj 26 ǖ ! = 2 V p-p ! Z CALIBRATION = 100 Ω PGA = ×1! = 3.3 V!= 100 Ω0.3–0.310FREQUENCY (kHz)% I M P E D A N C E E R R O R35601000.20.10–0.1–0.205324-0283–910FREQUENCY (kHz)% I M P E D A N C E E R R O R35601001–1–3–5–705324-03028. 3 ӥ Բ 30. 5 ӥ Բ1.0–3.510FREQUENCY (kHz)% I M P E D A N C E E R R O R35601000.50–0.5–1.0–1.5–2.0–2.5–3.005324-02929. 4 ӥ Բ 4–1010FREQUENCY (kHz)% I M P E D A N C E E R R O R20–2–4–6–8356010005324-03131. 6 ӥ Բ3(10 kΩ 100 kΩ)Lj 28 ǖ ! = 2 V p-p ! Z CALIBRATION = 10 kΩ PGA = ×1 ! = 3.3 V!= 10 kΩ5(1 MΩ 2 MΩ)Lj 30 ǖ ! = 2 V p-p ! Z CALIBRATION = 100 Ω PGA = ×1! = 3.3 V!= 100 kΩ6(9 MΩ 10 MΩ)Lj 31 ǖ ! = 2 V p-p ! Z CALIBRATION = 9 MΩ PGA = ×1! = 3.3 V!= 9 MΩ4(100 kΩ 1 MΩ)Lj 29 ǖ ! = 2 V p-p ! Z CALIBRATION = 100 kΩ PGA = ×1 ! = 3.3 V!= 100 kΩAD5933 և և ă Lj և 0x94 0x95 Lj և 0x96 0x97 ă DFT և ևLj փ ăLj ǖ RC Lj 0x94 0x95 0x96 0x97 ՚ ă Lj փ Lj (|Z|) DFT և և Lj ǖ != Lj ժ ă Lj ǖ !=ǖ != Ղ AD5933Lj Lj ă Lj Ք Lj Ղ (Z UNKNOWN ) ă AD5933 Ljժ ă AD5933 Lj ADC ă AD5933 և և Lj AD5933 ă ǖ !(rads) = tan −1(I/R )(3)3 ǖ DDS AD5933 և հ Lj AD5933 VOUT VIN ă22I R +×1⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛1 (|Z UNKNOWN |) (ZØ)ă (ZØ) օăօ AD5933 Lj AD5933 VOUT VIN Ljժ 3 ă VOUT VIN LjAD5933 Սփ Lj AD5933 և Lj ăLj օՍ AD5933 VIN VOUT Lj (Ԉ )Lj ă (ZØ) ǖ Z Ø = (Φunknown - ∇system )ǖ∇system VIN VOUT ăΦunknown VIN VOUT ăZØ Lj ăLj AD5933 VOUT VIN Lj ժ Lj (ZØ)ăLj −90°ă Lj −90° ăLj (ZØ)Lj Ղ (∇system)Lj VOUT VIN (Φunknown) ă2001801601401201008060402015k30k45k 60k 75k 90k105k120kFREQUENCY (Hz)S Y S T E M P H A S E (D e g r e e s )05324-03232.–100–90–80–70–60–50–40–30–20–1015k30k45k 60k 75k 90k105k120kFREQUENCY (Hz)P H A S E (D e g r e e s )05324-03333.32 220 kΩ (R FB = 220 kΩĂPGA = ×1) AD5933 10 pF ă32 LjՂ ǖ Lj Lj Ղ ă( ZØ) ZØ( 33)ăLj Lj ă Lj Ք Lj Ք ăՔ x ă և Lj և Lj Lj Lj 180° Ք ă Lj և և Lj Lj Lj 180° Ք ă Lj և Lj և Lj Lj Lj 360° ăLj Ք և և Lj ՗7ă(|Z|) )ZØLj * LjՍ և և Lj (Z UNKNOWN ) և) * և) * Ǘ ǖ և ǖ|Z REAL | = |Z | × cos (ZØ)և ǖ|Z IMAG | = |Z | × sin (ZØ)05324-03434.՗80x80D15 D8 / 0x81 D7 D0 / 0x82D23 D16 / 0x83 D15 D8 / 0x84 D7 D0 / 0x85 D23 D16 / 0x86 D15 D8 / 0x87 D7 D0 / 0x88 D15 D8 / 0x89 D7 D0 / 0x8A D15 D8 / 0x8B D7 D0 / 0x8F D7 D0 0x92D15 D8 0x93 D7 D0 0x94D15 D8 0x95 D7 D0 0x96D15 D8 0x97D7 D0՗9. (D15 D12)D15 D14 D13 D12 0 0 0 00 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1՗10. (D10 D9)D10 D9 Պ0 0 1 2.0 V p-p 0 1 4 200 mV p-p 1 0 3 400 mV p-p 1 1 21.0 V p-p( 0x80Ă 0x81)AD5933 16 ( 0x80 0x81)Lj AD5933 ă ǖD15 D0 0xA000ă 4 MSB Lj ǖ Ă ă0x80Lj փ Վ 0x81 ă Lj փ և ă ă փ Պ ( Ă )ă LjՂ Lj ( 34)ă՗11. (D11ĂD8 D0)D11D8 PGA Ǘ0 = ×5Lj1 = ×1D7 ԍ Lj 0D6 ԍ Lj 0D5 ԍ Lj 0D4D3 և Lj 1և Lj 0D2 ԍ Lj 0D1 ԍ Lj 0D0 ԍ Lj 0!!DDSփ Պ ă օ ă Lj Lj Ղ Lj Ս ăLj LjADC ă Lj ( )Պ 0x8A 0x8B( 34)ă!օ ă օ Թժ DSP ă AD5933 Lj Պ Lj ADC ă!Lj ă Lj ăă Lj ă Lj Lj ă 14 ց 0x92 0x93 ăAD5933 ă Ԉ 1010,0000,0000,0000 (0xA000)ă LjVOUT VIN և GNDăӯ ă LjVIN VOUT և ăՊ VOUT ăPGAPGA ADC 5Ԡ 1Ԡăă Ă փ ԥ ă LjՂ ă( 0x82Ă 0x83Ă 0x84)ǖD23 D0 փ ă Lj փ ăԈ 24 ՗ ă Lj 30 kHz ( 16.0 MHz )Lj 0x0F Պ 0x82Lj 0x5C Պ 0x83Lj 0x28 Պ 0x84ă ԍ 30 kHz ăՊ ǖ= 0x0F5C28≡×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛272416MHz30kHz՗12.0x88 D15 D9/D8/ 0x89 D8 D0/՗13.0x8A D15 D11/D10 D9 2D10 D9 0 0 0 1 × 21 0 ԍ1 1× 4D8 MSB0x8B D7 D0/( 0x85Ă 0x86Ă 0x87)ǖD23 D0 փ ă Lj փ ăԈ 24 ՗ ă Lj 16.0 MHz Lj օ 10 Hz Lj 0x00 Պ 0x85Lj 0x01 Պ 0x86Lj 0x4F Պ 0x87ă ǖ= 0x00014F 0x00Պ 0x85Lj 0x01Պ 0x86Lj 0x4F Պ 0x87ă( 0x88Ă 0x89)ǖD8 D0 փ ă Lj փ ă≡×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛27216MHz 10Hz ă 9 D8 D0՗ ăD15 D9 ă ă Պ 511ă( 0x8A Ă 0x8B)ǖD10 D0 փ ă Lj փ ( ՗13)ăĂ Lj ADC Lj ă / / ADC ă 9 D8 D0՗ ăՊ 2Ԡ 4ԠLj D10 D9 ă5 D15 D11 ă Պ 511 × 4 = 2044 ă Lj 30 kHz LjՊ ADC 511 × 4 × 33.33 μs = 68.126 ms ăADC 1024 ԨLj 0x94 0x97 ă 16.777 MHz Lj 1 ms ă՗14. ( 0x8F)0000 0001 0000 0010 / 0000 0100 0000 1000 ԍ 0001 0000 ԍ 0010 0000 ԍ 0100 0000 ԍ 1000 0000ԍ( 0x8F)ă D7 D0 ՗ AD5933 ăD0 D4 D7 Ljփ՗ ă D1 ՗ ă AD5933 Lj 1ă ՗ 0x94 0x97 ă Ă Ă Lj ă ăD2 ՗ Պ ă Պ և Lj 1ă ă/LjD1 1Lj՗ ă / / DDS / / LjD1 ă LjD1 0ăLjD2 1ă Lj ă Lj ă(16 — 0x92Ă 0x93)Ԉ AD5933 ՗ ă 16 ց ăD15 D14 ăD13 ă Lj “ ”և ă(16 — 0x94Ă 0x95Ă 0x96Ă 0x97)ǖփ ă Lj D1 1 Lj Lj՗ ăԈ և և ՗ ă 16 ց ă LjՂ (√(Real2 + Imaginary2)) / ( )Lj Lj ă փ ăLj Lj՗ 0x92 0x93 ă ( 0x80 0x81) Lj Lj ă111R/WD7D6D5D4D3D2D1D0START CONDITIONBY MASTERACKNOWLEDGE BYAD5933SLAVE ADDRESS BYTEACKNOWLEDGE BY MASTER/SLAVESCLSDAREGISTER ADDRESS05324-03535.AD5933 I 2C ă Lj ăAD5933 7 ă Lj 0001101 (0x0D)ăI 2C35 I 2C ӯ ă Ǘ (SDA) Lj (SCL)ԍ ă Lj ă Lj 8 LjԈ 7 (MSB ) R/W Lj Lj (0 = Lj1 = )ăLj 9 ( ) Ljժ ԍ ă Lj ԍ ă R/W 0Lj ă R/W 1Lj ă9 ǖ8 ă Ղ Ljժ ԍ Lj ԥ ă Lj Lj ă Lj Lj Lj ă R/W Lj ă Lj Lj / ăLj ă Lj 10 Lj ă Lj 9 SDA Lj փ Lj փ ă 10 Lj 10 Lj ă05324-036A SA A W PPOINTER COMMAND 1011 0000SLAVE ADDRESSREGISTER ADDRESS TO POINT TO05324-0372՗16.1010 0000RAM Ǘև ă1010 0001RAM/ Ǘ և ă 1011 0000ă Ԉ ă36.37.05324-03838.AD5933փ փ ăԨև AD5933 ăԨև ՗ ՗15 ă ( 37)Lj Ս Lj ăLj ǖ 1. SDA ă2. 7 ( )ă3. SDA ă4. ( ՗16Ǘ = 10110000)ă5. SDA ă6. ( )ă7. SDA ă8. SDA ăLj ( 38)ă Ղ ă AD5933Lj ă 1. SDA ă2. 7 ( )ă3. SDA ă4. 8 (1010 0000)Ljă5. SDA ă6. Ljă7. SDA ă 8. ă9. Lj SDA ă 10. SDA ă!՗16 ăԨև Lj Ս ă /Lj ă Lj ă Lj ( 36)ǖ 1. SDA ă2. 7 ( )ă3. SDA ă4. ă5. SDA ă6. ă7. SDA ă8.SDA ă05324-03939.05324-04040.AD5933 I 2C ǖ ăAD5933 Lj Lj ăLj Lj ( 39)ǖ1. SDA ă2. 7 ( )ă3. SDA ă4. ă5. SDA փ ()ă6. SDA Lj ăLj ( 40)ă Ղ ă 1. SDA ă2. 7 ( )ă3. SDA ă4. (1010 0001)Ljă5. SDA ă6. Ljă7. SDA ă8. SDA ăՂ ă9. 7 ( )ă 10. SDA ă11. ă12. Lj SDA ă 13. Lj փ Lj՗ ă 14. SDA ă05324-0482V p-p41. և՗17. (R OUT )1 2 V p-p 200 Ω 2 1 V p-p 2.4 kΩ 3 0.4 V p-p 1.0 kΩ 4 0.2 V p-p 600 ΩՔ Lj AD5933 10 MΩ ăLj VOUT VIN ( Ք ≤500 Ω)Lj Lj Վ ăVOUT ă I-V ԍ Lj Ӏ “ ”և ă I-V Lj VIN VDD/2ă I-V / փ Lj ă(Z UNKNOWN ) LjՂ VOUT ROUT( 41( Lj (Z UNKNOWN ) ă Lj ( ) R OUT Lj Lj Բ ăVOUT Lj Lj ă ՗17 ă Lj AD5933 LjՂ Lj Lj R OUT Lj ( “ ”և )ă ՗ Lj R OUT VOUT Lj ( ±2 mA)Lj Վ ă I-V ( 1/ ) ă 41 ă և Lj AD5933 ă և (R1 R2) VOUT Lj Ljժ ă41 LjZ UNKNOWN ՚ և Lj 1 ΩLj ( AD820ĂAD8641ĂAD8531 )Ă Ă ăLj VOUT (ROUT) ԲLj 41 և (ZUNKNOWN)ă և ROUTLjժZUNKNOWNăLj ZUNKNOWN30 kHz 32 kHz 90 Ω 110 Ω LjROUTă Lj AD5933 41 և ă Ղ ԍ և Ք Բ ( Lj /opamps)ăADI փ Կ Lj Ք ăǖVDD = 3.3 VVOUT = 2 V p-pR2 = 20 kΩR1 = 4 kΩ= 500 ΩZUNKNOWN= 100 ΩPGA = ×1 R1/R2Բ Lj VOUT ă R1 = 4 kΩ R2 = 20 kΩ Lj 1/5Lj 2 V p-p Lj 400 mVă 400 mV/ 90 Ω = 4.4 mAă100 Ω Ă Lj ă RFB I-V Lj AD5933 ă Lj RFB I-V Lj ADC 400 mV (RFB = 100 Ω) 2 V p-p (RFB = 500 Ω)ă100 Ω VOUT VIN Lj և փ ă41 Lj AD5933 VDD/2ă Lj և ( AD5933 1 ) AD5933 ԏ LjՂ VDD/2 և ă05324-04142. թFREQUENCY (Hz)05324-04243. Վǖթ թ Lj Lj Վă ՗ փ Lj թ ă Lj թ ՗ Lj փ ă Lj փ թ Lj փ ăAD5933 Ԣ27 Lj Sub-Hz ăAD5933 Lj Lj ăAD5933 Lj ă/RLC Վ Lj RLC Վ Lj 43 ă RLC ă LjRLC ă Lj Պ LjAD5933 Ԣ ăă Վ Lj Վ ՗ ă Lj ăAD5933 ă AD5933Lj ăփ LjAD5933 80 kHz 100 kHz ă ă ă Lj Lj Վ Lj AD5933 ă100k 100.1FREQUENCY (Hz)M O D U L U SP H A S E A N G L E100k05324-0431101001k 10k1001k10k44. հAD5933 ă Lj Ă ă փ Lj Lj ă Lj Lj Lj Ԩă Ljփ Lj Ăӆ Lj փ ă ă ԨLj Lj և ă (EIS) ԥ Ljփ ăAD5933 ӄLj և Lj ăRC Lj RC (R S ) ժ (R P C P ) ă ǖR S 10 Ω 10 kΩLjR P 1 kΩ 1 MΩLjC P 5 μF 70 μF ă 44 հ Ă ăLj 0.1 Hz 100 kHz ă ԍ Ԩ փ LjՂ Lj ±20 mV ă ( ADuC702x) 10 0.1 kHz 100 kHz Ljժ ă 0.1 kHz 1 kHz Lj 16.776 MHz Ք 500 kHz ă AD9834 և Lj Պ Lj MCLK Lj ăAD5933՗18. AD5933 ՗(mV Lj ) (V) (ppm/°C Lj )0.1 Hz 10 Hz (μV p-p Lj )ADR433B ±1.5 3. 0 3 3.75ADR433A ±4 3. 0 10 3.75 ADR434B ±1.5 4. 096 3 6.25ADR434A ±5 4. 096 10 6.25 ADR435B ±2 5.0 3 8 ADR435A ±6 5.0 10 8 ADR439B ±2 4.5 3 7.5 ADR439A±5.5 4.5 107.5AD5933 Lj ăAD5933 ǖAVDD1ĂAVDD2 DVDD ă ă Lj ǖ Ăppm Ă ă Lj ă Lj Lj ADR43x Lj Ք Lj Ս ă ăAD5933 Lj ă Lj ADR395Lj 100 μA Lj Lj 0.1 Hz 10 Hz 8 μV p-p ăă ԍ ӄ ԍ ă Lj ăLj ă Ր Lj ăADR433 0.1 Hz 10 Hz ă՗18 AD5933 ăք!Lj ӱ ք ă AD5933 ӱ և և Lj և ӱ ă AD5933 AGND DGND Lj ă AD5933ăAD5933 10 μF 0.1 μF ă Lj0.1 μF ă10 μF ă0.1 μF Ղ (ESR) (ESI)Lj ă և Lj 0.1 μF ăԨ Lj Ljժ ă Ը Lj փ ӱ ă Ն ă ӱ Lj ԍ Ե Lj ӱ ă ӱք Lj ӱ Lj ք ă Lj ӱ Ղ ăӱAD5933 ӱLj փ AD5933ăӱ PC USB Lj USB ӱ ăԈ ժ AD5933 ӱăEVAL-AD5933EB Ҿ CD ăPC ӱ ăMicrosoft® Windows® 2000 Windows XPăӱ 45 46ă ӱAD5933 ӱ AD5933 ă ӱ ӱ Lj Ԉ ӱ ă ăӱ Lj ă Ս ă (XO) ևӱ 16 MHz ăփ Lj Ǘ Lj ևCMOS ă05324-04445. EVAL-AD5933EBZ USB05324-04546. EVAL-AD5933EBZ05324-04647. EVAL-AD5933EB ӱAD593305324-04748. EVAL-AD5933EB ӱAD5933՗19Ք SMD 150 V X7R SMD Lj0.1 μFLj0603FEC 1301804C1, C3, C5 C9, C11,C15, C16, C 18 C22,C24, C26 C28, C32,C34, C36, C37, C39X5R Lj10 μFLj0805FEC 9402136C2, C4, C12 C14, C25,C30, C31, C33, C38, C40C10, C17 50 V X7R SMD Lj22 pFLj0603FEC 722-005C23 6.3 V X5R SMD Lj2.2 μFLj0603FEC 9402101C29, C35 16 V Lj10 μFLjCAP\TAJ_B FEC 498-737C41 (×2)LjCAP-7.5 MMC42 50 V NPO SMD Lj15 pFLj0603FEC 721-980C43 16 V X7R SMD Lj1 μFLj0603FEC 1310220CLK1, CLK2 SMB Lj50 ΩFEC 1111349D4 Lj0805FEC 1318243J1 USB Mini-B (USB-OTG)FEC 9786490J2 J6 / ӱDŽ5 mm DžFEC 151-789LK1 LK14 ӱLj 0.1" SIP-2P FEC 1022247/FEC 150-411 R1 SMD 50 ΩLj0603FEC 11706589341501 R2 Lj Lj200 kΩ R1/8WA2 FECR33 4 kΩ 4R43 20 kΩ 4R5, R6 SMD 100 kΩLj0603FEC 9330402R7 SMD 0 ΩLj0603FEC 9331662R8, R9 SMD 2.2 kΩLj0603FEC 9330810R10 SMD 10 kΩLj0603FEC 9330399R11 SMD 1 kΩLj0805FEC 9332383R12, R13 SMD 20 kΩLj0603FEC 9330771T1 T3, T5 T8 FEC 8731128VIN, VOUT SMB 50 ΩFEC 1111349U1 OP97 SO8NBU2 24LC64 IC EEPROM 64 KB 2.5 V SOIC8 SO8NB FEC 9758070U3 CY7C68013-CSP USB Cypress CY7C68013A-56LFXC LFCSP-56Digi-Key 428-1669-NDU4 ADR435 5 V SOIC-8ADR435ARZU5 ADP3303-3.3 SO-8NB ADP3303ARZ-3.3U6 AD5933/34 SSOP-16AD5933YRSZ/AD5934YRSZ Y1 XTAL-CM309S CM309S SMD crystal 24 MHz, XTAL_CM309S FEC 9509658Y2 3.3 VĂ16 MHz AEL-4313×4FEC 651-813ԈLjӱ Ԉ Ԉ FEC 522-764A Mini-B Digi-Key 167-1011-NDUSB1 FEC = Farnell Electronics.2 Lj ă3 R3 R4 փ ă4 ă。

AD5243资料

AD5243资料

Dual 256-Position I2C CompatibleDigital PotentiometerAD5243/AD5248 Rev.0Information furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for anyinfringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: Fax: 781.326.8703© 2004 Analog Devices, Inc. All rights reserved.FEATURES2-channel, 256-positionEnd-to-end resistance: 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ Compact MSOP-10 (3 mm × 4.9 mm) packageFast settling time: t S = 5 µs typ on power-upFull read/write of wiper registerPower-on preset to midscaleExtra package address decode pins AD0 and AD1 (AD5248 only)Computer software replaces µC in factory programming applicationsSingle supply: 2.7 V to 5.5 VLow temperature coefficient: 35 ppm/°CLow power: I DD = 6 µA maxWide operating temperature: −40°C to +125°C Evaluation board availableAPPLICATIONSSystems calibrationsElectronics level settingsMechanical Trimmers® replacement in new designs Permanent factory PCB settingTransducer adjustment of pressure, temperature, position, chemical, and optical sensorsRF amplifier biasingAutomotive electronics adjustmentGain control and offset adjustmentFUNCTIONAL BLOCK DIAGRAMS V419--1Figure 1. AD5243VFigure 2. AD5248GENERAL DESCRIPTIONThe AD5243 and AD5248 provide a compact 3 mm × 4.9 mm packaged solution for dual 256-position adjustment applica-tions. These devices perform the same electronic adjustment function as a 3-terminal mechanical potentiometer (AD5243) or a 2-terminal variable resistor (AD5248). Available in four different end-to-end resistance values (2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ), these low temperature coefficient devices are ideal for high accuracy and stability variable resistance adjustments. The wiper settings are controllable through the I2C compatible digital interface. The AD5248 has extra package address decode pins AD0 and AD1, allowing multiple parts to share the same I2C 2-wire bus on a PCB. The resistance between the wiper and either endpoint of the fixed resistor varies linearly with respect to the digital code transferred into the RDAC latch.1Operating from a 2.7 V to 5.5 V power supply and consuming less than 6 µA allows for usage in portable battery-operated applications.For applications that program the AD5243/AD5258 at the factory, Analog Devices offers device programming software running on Windows® NT/2000/XP operating systems. This software effectively replaces any external I2C controllers, which in turn enhances users’ systems time-to-market. An AD5243/ AD5248 evaluation kit and software are available. The kit includes a cable and instruction manual.1The terms digital potentiometer, VR, and RDAC are used interchangeably.AD5243/AD5248Rev. 0 | Page 2 of 20TABLE OF CONTENTSElectrical Characteristics—2.5 kΩ Version...................................3 Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions.......4 Timing Characteristics—All Versions...........................................5 Absolute Maximum Ratings............................................................6 ESD Caution..................................................................................6 Pin Configurations and Function Descriptions...........................7 Typical Performance Characteristics.............................................8 Test Circuits.....................................................................................12 Theory of Operation......................................................................13 Programming the Variable Resistor and Voltage....................13 Programming the Potentiometer Divider...............................14 ESD Protection...........................................................................14 Terminal Voltage Operating Range..........................................14 Power-Up Sequence...................................................................14 Layout and Power Supply Bypassing.......................................14 Constant Bias to Retain Resistance Setting.............................15 Evaluation Board........................................................................15 I 2C Interface....................................................................................16 I 2C Compatible 2-Wire Serial Bus...........................................16 Outline Dimensions.......................................................................19 Ordering Guide.. (19)REVISION HISTORYRevision 0: Initial VersionAD5243/AD5248Rev. 0 | Page 3 of 20ELECTRICAL CHARACTERISTICS—2.5 kΩ VERSIONV DD = 5 V ± 10%, or 3 V ± 10%; V A = +V DD ; V B = 0 V; −40°C < T A < +125°C; unless otherwise noted. Table 1.Parameter Symbol Conditions Min Typ 1Max Unit DC CHARACTERISTICS—RHEOSTAT MODEResistor Differential Nonlinearity 2R-DNL R WB , V A = no connect −2 ±0.1 +2 LSBResistor Integral Nonlinearity 2R-INL R WB , V A = no connect −6 ±0.75 +6 LSB Nominal Resistor Tolerance 3∆R ABT A = 25°C −20 +55 % Resistance Temperature Coefficient (∆R AB /R AB )/∆T V AB = V DD , wiper = no connect 35 ppm/°C R WB (Wiper Resistance) R WB Code = 0x00, V DD = 5 V 160 200 Ω DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)Differential Nonlinearity 4DNL −1.5 ±0.1 +1.5 LSB Integral Nonlinearity INL −2 ±0.6 +2 LSBVoltage Divider TemperatureCoefficient (∆V W /V W )/∆T Code = 0x80 15 ppm/°C Full-Scale Error V WFSE Code = 0xFF −10 −2.5 0 LSB Zero-Scale Error V WZSE Code = 0x00 0 2 10 LSB RESISTOR TERMINALS Voltage Range 5V A , V B , V W GND V DD VCapacitance 6A, B C A, C B f = 1 MHz, measured to GND, Code = 0x80 45 pF Capacitance 6 W C W f = 1 MHz, measured to GND, Code = 0x80 60 pFShutdown Supply Current 7I A_SD V DD = 5.5 V 0.01 1 µA Common-Mode Leakage I CM V A = V B = V DD /2 1 nA DIGITAL INPUTS AND OUTPUTS Input Logic High V IH V DD = 5 V 2.4 V Input Logic Low V IL V DD = 5 V 0.8 V Input Logic High V IH V DD = 3 V 2.1 V Input Logic Low V IL V DD = 3 V 0.6 V Input Current I IL V IN = 0 V or 5 V ±1 µAInput Capacitance 6C IL 5 pF POWER SUPPLIES Power Supply Range V DD RANGE 2.7 5.5 V Supply Current I DD V IH = 5 V or V IL = 0 V 3.5 6 µAPower Dissipation 8P DISS V IH = 5 V or V IL = 0 V, V DD = 5 V 30 µW Power Supply Sensitivity PSS V DD = 5 V ± 10%, Code = midscale ±0.02 ±0.08 %/% DYNAMIC CHARACTERISTICS 9 Bandwidth −3 dB BW_2.5 K Code = 0x80 4.8 MHz Total Harmonic Distortion THD W V A = 1 V rms, V B = 0 V, f = 1 kHz 0.1 % V W Settling Time t S V A = 5 V, V B = 0 V, ±1 LSB error band 1 µs Resistor Noise Voltage Density e N_WB R WB = 1.25 kΩ, R S = 0 3.2 nV/√HzAD5243/AD5248Rev. 0 | Page 4 of 20ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONSV DD = 5 V ± 10%, or 3 V ± 10%; V A = V DD ; V B = 0 V; −40°C < T A < 125°C; unless otherwise noted. Table 2.Parameter Symbol Conditions Min Typ 1Max Unit DC CHARACTERISTICS—RHEOSTAT MODEResistor Differential Nonlinearity 2R-DNL R WB , V A = no connect −1 ±0.1 +1 LSBResistor Integral Nonlinearity 2R-INL R WB , V A = no connect −2.5 ±0.25 +2.5 LSB Nominal Resistor Tolerance 3∆R ABT A = 25°C −20 +20 % Resistance Temperature Coefficient (∆R AB /R AB )/∆T V AB = V DD , wiper = no connect 35 ppm/°C R WB (Wiper Resistance) R WB Code = 0x00, V DD =5 V 160 200 Ω DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)Differential Nonlinearity 4DNL −1 ±0.1 +1 LSB Integral Nonlinearity 4INL −1 ±0.3 +1 LSBVoltage Divider TemperatureCoefficient (∆V W /V W )/∆T Code = 0x80 15 ppm/°C Full-Scale Error V WFSE Code = 0xFF −2.5 −1 0 LSB Zero-Scale Error V WZSE Code = 0x00 0 1 2.5 LSB RESISTOR TERMINALS Voltage Range 5V A , V B , V W GND V DD VCapacitance 6A, B C A, C B f = 1 MHz, measured to GND, Code = 0x80 45 pF Capacitance 6 W C W f = 1 MHz, measured to GND, Code = 0x80 60 pFShutdown Supply Current 7I A_SD V DD = 5.5 V 0.01 1 µA Common-Mode Leakage I CM V A = V B = V DD /2 1 nA DIGITAL INPUTS AND OUTPUTS Input Logic High V IH V DD = 5 V 2.4 V Input Logic Low V IL V DD = 5 V 0.8 V Input Logic High V IH V DD = 3 V 2.1 V Input Logic Low V IL V DD = 3 V 0.6 V Input Current I IL V IN = 0 V or 5 V ±1 µA Input Capacitance C IL 5 pF POWER SUPPLIES Power Supply Range V DD RANGE 2.7 5.5 V Supply Current I DD V IH = 5 V or V IL = 0 V 3.5 6 µA Power Dissipation P DISS V IH = 5 V or V IL = 0 V, V DD = 5 V 30 µW Power Supply Sensitivity PSS V DD = 5 V ± 10%, Code = midscale ±0.02 ±0.08%/% DYNAMIC CHARACTERISTICS Bandwidth −3 dB BW R AB = 10 kΩ/50 kΩ/100 kΩ, Code = 0x80 600/100/4kHz Total Harmonic Distortion THD W V A = 1 V rms, V B = 0 V, f = 1 kHz, R AB = 10 kΩ 0.1 %V W Settling Time (10 kΩ/50 kΩ/100kΩ)t S V A = 5 V, V B = 0 V, ±1 LSB error band 2 µs Resistor Noise Voltage Density e N_WB R WB = 5 kΩ, R S = 0 9 nV/√HzSee notes at end of section.AD5243/AD5248Rev. 0 | Page 5 of 20TIMING CHARACTERISTICS—ALL VERSIONSV DD = 5V ± 10%, or 3V ± 10%; V A = V DD ; V B = 0 V; −40°C < T A < +125°C; unless otherwise noted. Table 3.Parameter Symbol Conditions Min Typ 1 Max Unit I 2C INTERFACE TIMING CHARACTERISTICS 10 (Specifications Apply to All Parts)SCL Clock Frequency f SCL 0 400 kHz t BUF Bus Free Time between STOP and START t 1 1.3 µs t HD;STA Hold Time (Repeated START) t 2After this period, the first clock pulse isgenerated.0.6 µst LOW Low Period of SCL Clock t 3 1.3 µs t HIGH High Period of SCL Clock t 4 0.6 µs t SU;STA Setup Time for Repeated START Condition t 5 0.6 µs t HD;DAT Data Hold Time 11t 6 0.9 µs t SU;DAT Data Setup Time t 7 100 ns t F Fall Time of Both SDA and SCL Signals t 8 300 ns t R Rise Time of Both SDA and SCL Signals t 9 300 ns t SU;STO Setup Time for STOP Condition t 100.6 µsNOTES1 Typical specifications represent average readings at 25°C and V DD = 5 V.2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. 3V AB = V DD , wiper (VW) = no connect. 4INL and DNL are measured at V W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = V DD and V B = 0 V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions. 5Resistor terminals A, B, W have no limitations on polarity with respect to each other. 6Guaranteed by design and not subject to production test. 7Measured at the A terminal. The A terminal is open circuited in shutdown mode. 8P DISS is calculated from (I DD × V DD ). CMOS logic level inputs result in minimum power dissipation. 9All dynamic characteristics use V DD = 5 V. 10See timing diagrams for locations of measured values. 11The maximum t HD:DAT must be met only if the device does not stretch the low period (t LOW ) of the SCL signal.AD5243/AD5248Rev. 0 | Page 6 of 20ABSOLUTE MAXIMUM RATINGST A = 25°C, unless otherwise noted.Table 4.Parameter ValueV DD to GND–0.3 V to +7 V V A , V B , V W to GNDV DD Terminal Current, Ax to Bx, Ax to Wx, Bx to Wx 1Pulsed±20 mA Continuous±5 mA Digital Inputs and Output Voltage to GND 0 V to 7 VOperating Temperature Range–40°C to +125°C Maximum Junction Temperature (T JMAX ) 150°CStorage Temperature–65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Thermal Resistance 2 θJA : MSOP-10230°C/W1Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance. 2Package power dissipation = (T JMAX − T A )/θJA .Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.AD5243/AD5248Rev. 0 | Page 7 of 20PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONSB1A1W2W1B2A2SDA GND SCLV DD 04109-0-027Figure 3. AD5243 Pin ConfigurationB1AD0W2GND V DD 04109-0-028Figure 4. AD5248 Pin ConfigurationTable 5. AD5243 Pin Function DescriptionsPin No. Mnemonic Description 1 B1 B1 Terminal. 2 A1 A1 Terminal. 3 W2 W2 Terminal. 4 GND Digital Ground.5 V DD Positive Power Supply.6 SCL Serial Clock Input. Positive edge triggered.7 SDA Serial Data Input/Output. 8 A2 A2 Terminal. 9 B2 B2 Terminal. 10W1W1 Terminal.Table 6. AD5248 Pin Function DescriptionsPin No. M nemonic Description 1 B1 B1 Terminal. 2 AD0 Programmable Address Bit 0 for MultiplePackage Decoding.3 W2 W2 Terminal.4 GND Digital Ground.5 V DD Positive Power Supply.6 SCL Serial Clock Input. Positive edgetriggered.7 SDA Serial Data Input/Output. 8 AD1 Programmable Address Bit 1 for MultiplePackage Decoding.9 B2 B2 Terminal. 10W1 W1 Terminal.AD5243/AD5248Rev. 0 | Page 8 of 20TYPICAL PERFORMANCE CHARACTERISTICS–2.0–1.5–1.0–0.500.5R H E O S T A T M O D E I N L (L S B )1.01.52.01289632640160192224256CODE (DECIMAL)04109-0-030Figure 5. R-INL vs. Code vs. Supply Voltages–0.5–0.4–0.3–0.2–0.100.10.20.30.40.5R H E O S T A T M O D E D N L (L S B )128963264160192224256CODE (DECIMAL)04109-0-031Figure 6. R-DNL vs. Code vs. Supply Voltages–0.5–0.4–0.3–0.2–0.100.10.20.30.40.5P O T E N T I O M E T E R M O D E I N L (L S B )128963264160192224256CODE (DECIMAL)04109-0-032Figure 7. INL vs. Code vs. Temperature –0.5–0.4–0.3–0.2–0.100.10.20.30.40.5P O T E N T I O M E T E R M O D E D N L (L S B )1289632640160192224256CODE (DECIMAL)04109-0-033Figure 8. DNL vs. Code vs. Temperature–1.0–0.8–0.6–0.4–0.200.20.40.60.81.0P O T E N T I O M E T E R M O D E I N L (L S B )128963264160192224256CODE (DECIMAL)04109-0-034Figure 9. INL vs. Code vs. Supply Voltages–0.5–0.4–0.3–0.2–0.100.10.20.30.40.5P O T E N T I O M E T E R M O D E D N L (L S B )1289632640160192224256CODE (DECIMAL)4109-0-035Figure 10. DNL vs. Code vs. Supply VoltagesAD5243/AD5248Rev. 0 | Page 9 of 20–2.0–1.5–1.0–0.500.5R H E O S T A T M O D E I N L (L S B )1.01.52.01289632640160192224256CODE (DECIMAL)04109-0-036Figure 11. R-INL vs. Code vs. Temperature–0.5–0.4–0.3–0.2–0.100.10.20.30.40.5R H E O S T A T M O D E D N L (L S B )128963264160192224256CODE (DECIMAL)04109-0-037Figure 12. R-DNL vs. Code vs. Temperature–2.0–1.5–1.0–0.500.5F S E , F U L L -S C A L E E R R O R (L S B )1.01.52.0TEMPERATURE (°C)–40–25–1052035506580951101254109-0-038Figure 13. Full-Scale Error vs. Temperature00.751.502.253.003.754.50Z S E , Z E R O -S C A L E E R R O R (L S B )TEMPERATURE (°C)–40–25–1052035506580951101254109-0-039Figure 14. Zero-Scale Error vs. TemperatureI D D , S U P P L Y C U R R E N T (µA )0.1110–40–7265992125TEMPERATURE (°C)04109-0-040Figure 15. Supply Current vs. Temperature–20020406080100120R H E O S T A T M O D E T E M P C O (p p m /°C )1289632640160192224256CODE (DECIMAL)04109-0-041Figure 16. Rheostat Mode Tempco ∆R WB /∆T vs. CodeAD5243/AD5248Rev. 0 | Page 10 of 20–30–20–1001020P O T E N T I O M E T E R M O D E T E M P C O (p p m /°C )3040501289632640160192224256CODE (DECIMAL)04109-0-042Figure 17. Potentiometer Mode Tempco ∆V WB /∆T vs. Code–60–54–48–42–36–30–24–18–12–60G A I N (d B )FREQUENCY (Hz)10k1M 100k10M04109-0-043Figure 18. Gain vs. Frequency vs. Code, R AB = 2.5 kΩ–60–54–48–42–36–30–24–18–12–60G A I N(d B )FREQUENCY (Hz)1k100k10k 1M04109-0-044Figure 19. Gain vs. Frequency vs. Code, R AB = 10 kΩ–60–54–48–42–36–30–24–18–12–60G A I N (d B )FREQUENCY (Hz)1k 100k10k 1M04109-0-045Figure 20. Gain vs. Frequency vs. Code, R AB = 50 kΩ–60–54–48–42–36–30–24–18–12–6G A I N(d B )FREQUENCY (Hz)1k100k10k1M04109-0-046Figure 21. Gain vs. Frequency vs. Code, R AB = 100 kΩ–60–54–48–42–36–30–24–18–12–60G A I N (d B )FREQUENCY (Hz)10k1k100k 1M10M04109-0-047Figure 22. –3 dB Bandwidth @ Code = 0x80AD5243/AD5248I D D , S U P P L Y C U R R E N T (m A )0.0110.11000.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0DIGITAL INPUT VOLTAGE (V)04109-0-052Figure 23. I DD vs. Input Voltage04109-0-048SCLV WFigure 24. Digital Feedthrough04109-0-049V W1V W2Figure 25. Digital Crosstalk04109-0-051V W1V W2Figure 26. Analog Crosstalk04109-0-053V WFigure 27. Midscale Glitch, Code 0x80 to 0x7F04109-0-050SCLV WFigure 28. Large Signal Settling TimeAD5243/AD5248TEST CIRCUITSFigure 29 through Figure 35 illustrate the test circuits that define the test conditions used in the product specification tables.04109-0-003V MSDDNFigure 29. Test Circuit for Potentiometer Divider Nonlinearity Error(INL, DNL)Figure 30. Test Circuit for Resistor Position Nonlinearity Error(Rheostat Operation; R-INL, R-DNL)04109-0-005V MS2]/I WFigure 31. Test Circuit for Wiper Resistance04109-0-006∆V MS %( )∆V DD %∆V MS∆V DDMSV+ = V DD ± 10%PSRR (dB) = 20 LOGPSS (%/%) =Figure 32. Test Circuit for Power Supply Sensitivity(PSS, PSSR)04109-0-009V OUTFigure 33. Test Circuit for Gain vs. Frequency04109-0-010R SW =0.1VFigure 34. Test Circuit for Incremental On ResistanceCM04109-0-011Figure 35. Test Circuit for Common-Mode Leakage CurrentAD5243/AD5248THEORY OF OPERATIONThe AD5243/AD5248 are 256-position digitally controlled variable resistor (VR) devices.An internal power-on preset places the wiper at midscaleduring power-on, which simplifies the fault condition recovery at power-up.PROGRAMMING THE VARIABLE RESISTOR AND VOLTAGERheostat OperationThe nominal resistance of the RDAC between Terminals A and B is available in 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The nominal resistance (R AB ) of the VR has 256 contact points accessed by the wiper terminal, plus the B terminal contact. The 8-bit datain the RDAC latch is decoded to select one of the 256 possible settings.04109-0-012Figure 36. Rheostat Mode ConfigurationAssuming that a 10 kΩ part is used, the wiper’s first connection starts at the B terminal for data 0x00. Because there is a 50 Ω wiper contact resistance, such a connection yields a minimum of 100 Ω (2 × 50 Ω) resistance between Terminals W and B. The second connection is the first tap point, which corresponds to 139 Ω (R WB = R AB /256 + 2 × R W = 39 Ω + 2 × 50 Ω) for data 0x01. The third connection is the next tap point, representing 178 Ω (2 × 39 Ω + 2 × 50 Ω) for data 0x02, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at 10,100 Ω (R AB + 2 × R W ).04109-0-013Figure 37. AD5243 Equivalent RDAC CircuitThe general equation determining the digitally programmed output resistance between W and B isW AB WB R R DD R ×+×=2256)((1) where:D is the decimal equivalent of the binary code loaded in the 8-bit RDAC register.R AB is the end-to-end resistance.R W is the wiper resistance contributed by the on resistance of the internal switch.In summary, if R AB = 10 kΩ and the A terminal is open circuited, the following output resistance R WB is set for the indicated RDAC latch codes.Table 7. Codes and Corresponding R WB ResistanceD (Dec) R WB (Ω) Output State255 9,961 Full scale (R AB − 1 LSB + R W ) 128 5,060 Midscale 1 139 1 LSB100Zero scale (wiper contact resistance)Note that, in the zero-scale condition, a finite wiper resistance of 100 Ω is present. Care should be taken to limit the current flow between W and B in this state to a maximum pulse current of no more than 20 mA. Otherwise, degradation or possible destruction of the internal switch contact can occur.Similar to the mechanical potentiometer, the resistance of the RDAC between the Wiper W and Terminal A also produces a digitally controlled complementary resistance, R W A . When these terminals are used, the B terminal can be opened. Setting the resistance value for R W A starts at a maximum value of resistance and decreases as the data loaded in the latch increases in value. The general equation for this operation isW AB WA R R DD R ×+×−=2256256)( (2) For R AB = 10 kΩ and the B terminal open circuited, thefollowing output resistance R W A is set for the indicated RDAC latch codes.Table 8. Codes and Corresponding R WA ResistanceD (Dec) R WA (Ω) Output State 255 139 Full scale 128 5,060 Midscale 1 9,961 1 LSB 010,060 Zero scaleAD5243/AD5248Typical device-to-device matching is process lot dependent and may vary by up to ±30%. Because the resistance element is processed in thin film technology, the change in R AB withtemperature has a very low 35 ppm/°C temperature coefficient.PROGRAMMING THE POTENTIOMETER DIVIDERVoltage Output OperationThe digital potentiometer easily generates a voltage divider at wiper-to-B and wiper-to-A proportional to the input voltage at A to B. Unlike the polarity of V DD to GND, which must be positive, voltage across A to B, W to A, and W to B can be at either polarity.04109-0-014Figure 38. Potentiometer Mode ConfigurationIf ignoring the effect of the wiper resistance for approximation, connecting the A terminal to 5 V and the B terminal to ground produces an output voltage at the wiper-to-B starting at 0 V up to 1 LSB less than 5 V . Each LSB of voltage is equal to the volt-age applied across terminal AB divided by the 256 positions of the potentiometer divider. The general equation defining the output voltage at V W with respect to ground for any valid input voltage applied to terminals A and B isB A W DV D D V 256256256)(−+=(3) A more accurate calculation, which includes the effect of wiper resistance, V W , isB ABWA A AB WB W V R D R V R D R D V )()()(+=(4) Operation of the digital potentiometer in the divider moderesults in a more accurate operation overtemperature. Unlike the rheostat mode, the output voltage is dependent mainly on the ratio of the internal resistors R W A and R WB and not the absolute values. Therefore, the temperature drift reduces to 15 ppm/°C.ESD PROTECTIONAll digital inputs are protected with a series of input resistors and parallel Zener ESD structures, shown in Figure 39 and Figure 40. This applies to the digital input pins SDA, SCL, AD0, and AD1 (AD5248 only).04109-0-015Figure 39. ESD Protection of Digital Pins04109-0-016Figure 40. ESD Protection of Resistor TerminalsTERMINAL VOLTAGE OPERATING RANGEThe AD5243/AD5248 V DD and GND power supply defines the boundary conditions for proper 3-terminal digital potentiome-ter operation. Supply signals present on Terminals A, B, and W that exceed V DD or GND are clamped by the internal forwardbiased diodes (see Figure 41).GNDA W BV DD04109-0-017Figure 41. Maximum Terminal Voltages Set by V DD and GNDPOWER-UP SEQUENCEBecause the ESD protection diodes limit the voltage complianceat Terminals A, B, and W (see Figure 41), it is important topower V DD /GND before applying any voltage to Terminals A, B, and W; otherwise, the diode is forward biased such that V DD is powered unintentionally and may affect the rest of the user’s circuit. The ideal power-up sequence is in the following order: GND, V DD , digital inputs, and then V A , V B , and V W . The relative order of powering V A , V B , V W , and the digital inputs is not important as long as they are powered after V DD /GND.LAYOUT AND POWER SUPPLY BYPASSINGIt is good practice to employ compact, minimum lead length layout design. The leads to the inputs should be as direct as possible with a minimum conductor length. Ground paths should have low resistance and low inductance.Similarly, it is also good practice to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with disk or chip ceramic capacitors of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or electro-lytic capacitors should also be applied at the supplies tominimize any transient disturbance and low frequency ripple (see Figure 42). Note that the digital ground should also be joined remotely to the analog ground at one point to minimize the ground bounce.AD5243/AD5248V 04109-0-018Figure 42. Power Supply BypassingCONSTANT BIAS TO RETAIN RESISTANCE SETTINGFor users who desire nonvolatility but cannot justify the addi-tional cost for the EEMEM, the AD5243/AD5248 may be considered as low cost alternatives by maintaining a constant bias to retain the wiper setting. The AD5243/AD5248 aredesigned specifically with low power in mind, which allows low power consumption even in battery-operated systems. Thegraph in Figure 43 demonstrates the power consumption from a 3.4 V 450 mAhr Li-Ion cell phone battery, which is connected to the AD5243/AD5248. The measurement over time shows that the device draws approximately 1.3 µA and consumes negligible power. Over a course of 30 days, the battery is depleted by less than 2%, the majority of which is due to the intrinsic leakage current of the battery itself.DAYSB A T T E R Y L I F E D E P L E T E D90%92%94%96%5101598%100%20253004109-0-019Figure 43. Battery Operating Life DepletionThis demonstrates that constantly biasing the potentiometer is not an impractical approach. Most portable devices do not require the removal of batteries for the purpose of charging. Although the resistance setting of the AD5243/AD5248 is lost when the battery needs replacement, such events occur rather infrequently such that this inconvenience is justified by the lower cost and smaller size offered by the AD5243/AD5248. If and when total power is lost, the user should be provided with a means to adjust the setting accordingly.EVALUATION BOARDAn evaluation board, along with all necessary software, is avail-able to program the AD5243/AD5248 from any PC running Windows 98/2000/XP . The graphical user interface, as shown in Figure 44, is straightforward and easy to use. More detailed information is available in the user manual, which comes with the board.Figure 44. AD5243 Evaluation Board SoftwareThe AD5243/AD5248 start at midscale upon power-up. To increment or decrement the resistance, the user may simply move the scrollbars on the left. To write any specific value, the user should use the bit pattern in the upper screen and press the Run button. The format of writing data to the device is shown in Table 9. To read the data out from the device, the user can simply press the Read button. The format of the read bits is shown in Table 10.。

ADS5203IPFB;ADS5203IPFBR;ADS5203IPFBRG4;ADS5203IPFBG4;中文规格书,Datasheet资料

ADS5203IPFB;ADS5203IPFBR;ADS5203IPFBRG4;ADS5203IPFBG4;中文规格书,Datasheet资料
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
ADS5203

SBAS258A – JUNE 2002 – REVISED JULY 2002
Dual 10ĆBit 40MSPS LowĆPower ANALOGĆTOĆDIGITAL CONVERTER
FEATURES D 3.3V Single-Supply Operation D Dual Simultaneous Sample-and-Hold Inputs D Differential or Single-Ended Analog Inputs D Single or Dual Parallel Bus Output D 60dB SNR at fIN = 10.5MHz D 73dB SFDR at fIN = 10.5MHz D Low Power: 240mW D 300MHz Analog Input Bandwidth D 3.3V TTL/CMOS-Compatible Digital I/O D Internal or External Reference D Adjustable Reference Input Range D Power-Down (Standby) Mode D TQFP-48 Package APPLICATIONS D Digital Communications (Baseband Sampling) D Video Processing D Portable Instrumentation D Ultrasound DESCRIPTION

DSO5000系列数字存储示波器用户手册(Ver0.9)

DSO5000系列数字存储示波器用户手册(Ver0.9)
O5000 系列数字存储示波器 DS DSO5000 用户................................................................................................................................................. i 版权声明........................................................................................................................................................ iii 第 1 章 安全事项........................................................................................................................................... 1 1.1 常规安全事项概要..............................................................................................................................1 1.2 安全术语和符号..................................................................................................................................1 1.3 产品上的术语...........................

AD9833中文资料

AD9833中文资料

高精度可编程波形发生器AD9833中文材料之杨若古兰创作AD9833是ADI公司生产的一款低功耗,可编程波形发生器,能够发生正弦波、三角波、方波输出.波形发生器广泛利用于各种测量、激励和时域呼应领域,AD9833无需外接元件,输出频率和相位都可通过软件编程,易于调节,频率寄存器是28位的,主频时钟为25MHz时,精度为0.1Hz,主频时钟为1MHz时,精度可以达到0.004Hz.可以通过3个串行接口将数据写入AD9833,这3个串口的最高工作频率可以达到40MHz,易于与DSP和各种主流微控制器兼容.AD9833的工作电压范围为2.3V-5.5V.AD9833还具有休眠功能,可使没被使用的部分休眠,减少该部分的电流损耗,例如,若利用AD9833输出作为时钟源,就可以让DAC休眠,以减小功耗,该电路采取10引脚MSOP型概况贴片封装,体积很小.AD9833的次要特点如下:●频率和相位可数字编程;●工作电压为3V时,功耗仅为20mW;●输出频率范围为0MHz-12.5MHz;●频率寄存器为28位(在25MHz的参考时钟下,精度为0.1Hz);●可选择正弦波、三角波、方波输出;●无需外界元件;●3线SPI接口;●温度范围为-40℃-+105℃.2 AD9833的结构及功能2.1 电路结构AD9833是一块完整集成的DDS(Direct Digital Frequency Synthesis)电路,仅须要1个内部参考时钟、1个低精度电阻器和一个解耦电容器就能发生高达12.5MHz的正弦波.除了发生射频旌旗灯号外,该电路还广泛应外于各种调制解调方案.这些方案全都用在数字领域,采取DSP技术能够把复杂的调制解调算法简化,而且很精确.AD9833的内部电路次要无数控振荡器(NCO)、频率和相位调节器、Sine ROM、数模转换器(DAC)、电压调整器,其功能框图如图1所示.A D933的核心是28位的相位累加器,它由加法器和相位寄存器构成,每来1个时钟,相位寄存器以步长添加,相位寄存器的输出与相位控制字相加后输入到正弦查询表地址中.正弦查询表包含1个周期正弦波的数字幅度信息,每个地址对应正弦波中0°-360°范围内的1个相位点.查询表把输入的地址相位信息映照成正弦波幅度的数字量旌旗灯号,去DAC输出模拟量,相位寄存器每经过228/M个MCLK时钟后回到初始形态,呼应地正弦查询表经过一个轮回回到初始地位,如许就输出了一个正弦波.输出正弦波频率为:fOUT=M(fMCLK/228)(1)其中,M为频率控制字,由内部编程给定,其范围为0≤M≤228-1.VDD引脚为AD9833的模拟部分和数字部分供电,供电电压为2.3V-5.5V.AD9833内部数字电路工作电压为2.5V,其板上的电压调节器可以从VDD发生2.5V波动电压,留意:若VDD小于等于2.7V,引脚CAP/2.5V 应直接连接至VDD.2.2 功能描述AD9833有3根串行接口线,与SPI、QSPI、MI-CROWIRE和DSP接口尺度兼容,在串口时钟SCLK的感化下,数据是以16位的方式加载到设备上,时序图如图3所示,FSYNC引脚是使能引脚,电平触发方式,低电平无效.进行串行数据传输时,FSYNC引脚必须置低,要留意FSYNC无效到SCLK降低沿的建立时间t7的最小值.FSYNC置低后,在16个SCLK的降低沿数据被送到AD9833的输入移位寄存器,在第16个SCLK的降低沿FSYNC 可以被置高,但要留意在SCLK降低沿到FSYNC上升沿的数据坚持时间ts的最小和最大值.当然,也能够在FSYNC为低电平的时候,连续加载多个16位数据,仅在最初一个数据的第16个SCLK的降低沿的时将FSYNC置高,最初要留意的是,写数据时SCLK时钟为高低电平脉冲,但是,在FSYNC刚开始变成低时,(即将开始写数据时),SCLK必须为高电平(留意t11这个参数).当AD9833初始化时,为了防止DAC发生虚伪输出,RESET必须置为1(RESET不会复位频率、相位和控制寄存器),直到配置终了,须要输出时才将RESET置为0;RESET为0后的8-9个MCLK时钟周期可在DAC的输出端观察到波形.AD9833写入数据到输出端得到呼应,两头有必定的呼应时间,每次给频率或相位寄存器加载新的数据,都会有7-8个MCLK时钟周期的延时以后,输出端的波形才会发生改变,有1个MCLK时钟周期的不确定性,由于数据加载到目的寄存器时,MCLK的上升沿地位不确定.3 AD9833的引脚功能及时序AD9833的引脚排列如图2所示,各个引脚的功能描述见表1.AD9833的时序特性如图3、图4和表2所示.4 AD9833的内部寄存器功能AD9833内部有5个可编程寄存器,其中包含3个16位控制寄存器,2个28位频率寄存器和2个12位相位寄存器.4.1 控制寄存器AD9833中的16位控制寄存器供用户设置所需的功能.除模式选择位外,其他所有控制位均在内部时钟MCLK的下沿被AD9833读取并动作,表3给出控制寄存器各位的功能,要更改AD9833控制寄存器的内容,D15和D14位必须均为0.4.2 频率寄存器和相位寄存器AD9833包含2个频率寄存器和2个相位寄存器,其模拟输出为fMCLK/228×FREQEG (2)其中:FREQEG 为所选频率寄存器中的频率字,该旌旗灯号会被移相:2π/4096×PHASEREC (3)其中,PHASEREC为所选相位寄存器中的相位字.频率和相位寄存器的操纵如表4所示.5 利用设计AD9833可利用在L15型飞机控制盒配套的检测盒中,利用AD9833发生频率可调的正弦波,以模拟机轮速度传感器的速度旌旗灯号,从而对控制盒的刹车防滑通道能否正常的刹车防滑进行检测.5.1 AD9833利用电路检测盒设计以TI公司的TMS320LF2407A型DSP作为核心控制器,利用中须要2路速度旌旗灯号,是以须要检测盒给出2路可独立调节的频率,图5示出TMS320LF2407A与AD9833的硬件连接.外接有源晶体振荡器的输出送给2个AD9833作为主频时钟,DSP的SPI口采取自动工作方式,即用SPISIMO口发送数据,为了与AD9833的时序相配合,DSP的接口时钟(SPICLK旌旗灯号)方式选择有延时的降低沿,IOPC3和IOPC5作为电路选通旌旗灯号,IOPC3为低电平时U2被选通,此时对U1写数据无效;同理,IOPC53为低电平时U1被选通,此时对U2写数据无效.5.2 软件程序图6示出了AD9833的软件流程.不管是写控制寄存器、频率寄存器还是相位寄存器、在写数据之前都须要把选通旌旗灯号置为无效形态,如许写入的数据才会无效,否则无效.在DSP发送完1个数据字后将发生SPI间断请求,本设计中未使用间断方式,而且通过查询间断标记来跳出,并虚读DSP的接收缓冲器清除间断标记.。

AD10原理图封装列表

AD10原理图封装列表

AD10原理图封装列表原理图封装列表Name Descri pti on74ACT573T 双向数据传输74HC138 138译码器74HC154 4-16译码器74HC4052 双通道模拟开关74HC595 移位寄存器74HVC32M 双输入或门74LS32M 双输入或门74VHC04M 非门ACS712 电流检测芯片ACT45B 共模电感AD5235 数控电阻AD8251 可控增益运放AD8607AR 双运放AD8667 双运放AD8672AR 双运放ADG836L 双刀双掷数字开AFBR-5803-ATQZ 光以太网AS1015 可调升压芯片ASM1117 3.3V稳压芯片AT24C02 EEROM存储器AT89S52 51系列单片机BC57F687 蓝牙音频模块BCP 68 NPN三极管BCP 69T PNP三极管BEE P 蜂鸣器BMP 闪电符号BTS7970 电机驱动Battery 备份电池Butterfly 功率激光器Butterfly-S 功率激光器CD4052BCM 双通道模拟开关CG103 BOSCH点火芯CHECK 测试点CY7C026AV RAMCY7C1041CV33 RAMCap 无极性电容Cap Pol 极性电解电容D Co nn ector 15 VGAD Co nn ector 9 串口D-Schottky 肖特基二极管DAC8532 数模转换DM9000A 网络芯片DM9000C 网络芯片DP83848I 网络芯片DPY-4CA 共阳4位数码管DPY-4CK 共阴4位数码管DRV411 闭环磁电流DS1307Z 实时时钟DS18B20 温度传感器Diode 二极管Diode-Z 稳压二极管Diode_CRD 恒流二极管EMIF 接插件FIN 散热片FM24CL16 铁电存储器FP C-3 OP FPC排线连接器FP C-40P FPC排线连接器FT232RL USB转串口FZT869 NPN三极管Fuse 2 保险丝G3VM-61 半导体继电器GA240 Freescale16位单片机HFBR-1414 光发送HFBR-2412 光接收HFKC 单刀双掷继电HK4100F 单刀双掷继电器HR911103A 网络接口HR911105A 以太网接口HS0038B 红外接收器Header 10 Header, 10-PinHeader 10X2 Header, 10-PinHeader14X2B 2*14双排插针Header 16 Header16 贴片Header 16X2 接插件Header 2 接插件Header2X2A 接插件Header2X2B 接插件Header 3 接插件Header 32X2 接插件Header 4 接插件Header 40 接插件Header 5X2 接插件Header 6 接插件Header 7X2 Header, 7-PinHeader 8 Header, 8-Pin Header 8X2A 接插件Header_AM P50 控制器接插件IS61LV51216 静态RAMISO7221 隔离芯片In ductor 电感JoyStick 模拟摇杆L298 ST双电桥L5150BN 5V稳压芯片LCD_CON37 LCD 接口LD-6.0mm 5MW激光LD-MOD 激光调制管LED-RGB 三基色LEDLED0 发光二极管LED1 双色LEDLM2577S-ADJ DC升压LM2577T-ADJ DC升压LM2596S-5.0 5V稳压芯片LM2596S-ADJ 可调稳压芯片LM2596T-5.0 5V稳压芯片LM2596T-ADJ 可调稳压芯片LM2940 5V稳压芯片LM2940CT-5.0 1A 5VLM2991S 稳压芯片LM317 稳压芯片LM324 4运放SOP8芯片LM358 双运放LM7171 单运放LM7818CT Series 3-Term inal Pos LM7905CT 稳压芯片LMV951 超低功耗运放LOG114 光电检测LT1678 双运放LTC1044CD Switched-Ca pacitor Vol LTC6652 电压基准M95640MAX11046ECB+ AD转换MAX232 +5V Po wered, Multi MAX3221 串口电平转换MAX4173 高端电流检测MAX6126 电压基准MAX660CSA -5V电源芯片MAX8069 1.2V稳压二极管RS-232Driver/ReceiverMAX8654MC33789 飞思卡尔传感器MC9S12GXX 飞思卡尔单片机MC9S12X 飞思卡尔单片机MOSFET-N N-Cha nnel MOSFETMOSFET -P P-Cha nnel MOSFET MP C5602_6 4P Freescale PowerPCMic2 Micro phonePD 光电二极管PESD1CAN 过压保护PJ-306 立体声耳机插座PR_8 8排直播排电阻P WRCON 直流电源端子RCA RCA Phono JacI RPot 精密可调电阻RUE002N02 低功耗MOSFETRes1 贴片电阻S8050 NPN三极管S8550 PNP三极管S9014 NPN三极管SC040 语音SDCARD SD卡自弹SDCARD-M TF卡槽SMB460 SMB460SMB492 外围加速度传感器SN65HVD230 CAN芯片SN74LVCSN74LVTH245 双向数据传输SN75452 Dual Perip heral Drive SP3485 485总线芯片SP X1117M3-3.3 3.3V稳压芯片SP X1117M3-5.0 5.0V稳压芯片SS8050 NPN贴片三极管SS8550 PNP贴片三极管SS9014 NPN贴片三极管ST188 反射式光电传感器STM32F103C STM32单片机48引脚STM32F103V STM32单片机100引脚STM32F103Z STM32单片机144引脚STM32F105V STM32单片机100引脚STM32F107V STM32单片机100引脚STM32F407V STM32单片机100引脚STM32F407Z STM32单片机144引脚SW DIP-4 编码开关SW-DIP8 8位直插拨码开关SW-D PDT 单刀双掷开关SW-EC11 旋转编码开关SW-PB 微动开关SW-PB4 微动开关SW-S PDT 开关Speaker SpeakerTL082ACD JFET-I nput Op erati(TLP281 光耦TMR 隧道磁电阻TMS320F28335 DSP芯片TOSA 激光器TP4056 锂电池充电管理TP S3305 DSP电源管理TP S6735 负电压芯片TP S70302 DSP电源芯片TQ2SA 单通道继电器TQ2SA-L2 双通道双稳态继电器TSC2046IPW 触摸驱动芯片TVP 5150AM1 视频解码芯片TVS TVS保护ULN2003L 驱动芯片USB USB 接口USB_M MicroUSB 接口VS10XX 音频解码芯片W25QXX SPI FLASH XATLS 贴片有源晶振XTAL 晶振XTA L-3PIN 贴片晶振XTAL_SM 圆柱晶振PCB封装列表Component Name0603-10603-20805-10805-212061210181220102512EC11AFBR-5803AQZ AXIAL-0.8 AXIAL-0.9 Bee p C-RADC-RAD-0603 C-RAD-0805 C-RAD-1825 C-RAD-3528 C-RB-8 C-RB-10 C-RB-12 C-RB-18 C-RB-S6 C-RB-S8 C-RB-S10 CAP-1206 CAP-3216 CAP-3528 CAP-6032 CAP-7343 CHECK-A CHECK-B CR1220 DB9-F DB9-M DB15-F DB15-M DC-002 DC-005 DIODE-1206 DIODE-AXL DIODE-SMA DIODE-SMB DIODE-SMC DIP-40 DIP16DIP 16-KEY DIP24 DW024_N DYP- 4BITFIN-P2FP C0.5-40 P-A EC11。

爱国者数码伴侣王 U悦系列说明书

爱国者数码伴侣王 U悦系列说明书
+
用户手册
公司简介
爱国者电子科技有限公司正式成立于2010年,前身是爱国者存储科技有限公司。公 司集产品研发、营销、服务为一体,提供数字产品与解决方案,其移动存储产品十年内 市场占有率第一。 公司首次提出“移动存储”概念,推出全球首款大容量移动存储产品;旗下录音笔 产品完成了神六、神七录音存储任务,并用于司法、教育等领域;硬盘产品拥有多项核 心技术及自主研发的专利,倍受行业瞩目;又推出国内首款平板电脑aigopad,为市场带 来新活力。此外,还涉及数码相框、多功能存储卡、网络存储、高清网络播放机、教育 电子等新兴产品与技术,被各界赞扬。 爱国者电子以成为业界一流国际化高科技企业为目标,坚持自主创新,必将实现民 族品牌的腾飞!
Version:1.0
2
用户手册
版权声明版权 本说明书的所有版权属于爱国者电子科技有限公司。 本说明书未经过爱国者电子科技有限公司明确的书面许可,任何人不得为任何其他目的、 以 任何形式或手段使用、复制或传播本说明书的任何部分。 本说明书对应产品上预装的操作系统和任何应用软件均受相关著作权法律法规、 国际公约以 及用户许可协议/条款的保护,仅许可您在其预装或所依附的硬件产品上使用,不得复制、 修改、编译、分发、分许可、出租或以其它方式转让或变相非法使用。 商标 爱国者相关标识是爱国者电子科技有限公司的注册商标; 其它公司的公司名称、 产品名称或 者服务名称也可能是其它公司的注册商标,无论是否在产品上或者本说明书中逐一注明 和 ® 标记,均受相关商标法律法规、国际公约的保护。
Version:1.0
3
用户手册
---带电插拔主机电源或其它附属设备 ---自行拆卸、修理、安装 ---自行性能升级 ---使用指定之外的零件、附属品、消耗品

ADI机型主要元器件管脚说明

ADI机型主要元器件管脚说明

ADI机型主要元器件管脚说明手册编制:郑业胜TCL移动通信有限公司各器件实物图(以1018为例)二、各器件管脚详细说明AD8315ARM :50dB GSM 功率放大控制器PIN NO 名称1RFIN 功能射频输入U107:电源管理U102:FLASHU3:VBC A/DU104:充电IC R125/123:充电检测分压电阻J106:SIMJ106:I/O J106:SIM RESETJ106:SIM CLKJ106:GNDU205:零中频ICU213:ADP3330射频供电ICU211:TX VCO FDK-IR007U203:ADP3330给RF VCO 供电U207:双工器HWXP222-1U207:PA PFD8122B C228:钽电容稳定电压330UFU215:13M DAS533U204:不平衡转换器3VSET4FLTR 5COMM 6NC 7VAPC 8VPOS AD8315 PA 控制器内部原理框图注:AD8315不良可造成发射功率不正常、发射功率等级失控、待机时间变短。

ADP3330ART :高精度稳压电源PIN NO 名称1OUT 2IN 3ERR 4GND 5NR 6SDADP3330ART 内部原理框图注:ADP3330ART 为VCO 、发射功控器提供稳定电源,不良可造成无发射、无接收。

AD3402ARU :电源管理IC 电源输入出错指示,输出电压超出调节范围时。

接地脚噪声减小连接脚,如用不到可不连接低电平激活IC 电压输出,接CPU TX-EN 端。

接高电平输出截止。

元件公共端(地)空脚电压输出,控制PA 功率放大等级正极电源电压:2.7~5.5V功能电压输出,旁路电容接0.47∪F 或容量更大的电容电压输入设置,电压范围0.25~1.4V ,由AD6521 TX-RAMP 脚控制,23mV/dB 积分电容器,连接在FLTR 跟COMM 脚之间2VCC3PWROKEY 4ANALOGON 5PWRONIN 6ROWX7CHRON8VRTC9CAP-10SIMBAT11DATAIO12RESETIN13CLKIN14SIMGND15I/O16RST17SIMPROG 18SIMON19CLK20VSIM21CAP+22RESCAP23DGND24VTCXO25RESET 26REFOUT 27VCCA 28AGND 主复位参考输出模拟电压(也指晶体管电源电压)模拟地水平移位SIM时钟SIM电源电容正极复位延时电容数字地温补晶振电压(防止晶振的温度效应和推频效应引起频率的变化)非水平移位时钟SIM地水平移位SIM双向数据口水平移位SIM复位VSIM电压控制,高电平时为5V,低电平时为3VVSIM使能脚充电开关输入实时时钟电源输出电容负极SIM电池电源非水平移位双向数据I/O口非水平移位SIM复位电源电压电源开关VTCXO使能从CPU输出的电源开关信号CPU键盘行输出3402电源管理内部原理框图注:3402电源管理IC 不良,可引起不开机故障。

AX5203手册

AX5203手册

ABSOLUTE MAXIMUM RATINGS (at TA=25°C) Characteristics Symbol VCC Pin Voltage Feedback Pin Voltage ON/OFF Pin Voltage Switch Pin Voltage SS Pin Voltage Power Dissipation Storage Temperature Range Operating Junction Temperature Thermal Resistance from Junction to case Thermal Resistance from Junction to ambient VCC VFB VEN VSW VSS PD TST TOPJ θJC θJA
LБайду номын сангаас
V IN
V OUT V IN I L
V
OUT
f
LX
Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum input current 1.6A, ΔIL=0.24A. Table 2 Inductor select for output voltage setting (VCC=12V) 18V 24V 40V 65V 33uH 47uH 68uH 82uH
深圳明和科技有限公司

常用AD芯片介绍共7页word资料

常用AD芯片介绍共7页word资料

目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI 公司代理权,经营全系列适用各种领域/场合的AD/DA器件。

1. AD公司AD/DA器件AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。

1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705AD7705是AD公司出品的适用于低频测量仪器的AD转换器。

它能将从传感器接收到的很弱的输入信号直接转换成串行数字信号输出,而无需外部仪表放大器。

采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可编程放大器可设置输入信号增益。

通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置数字滤波器的第一个凹口。

在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。

AD7705是基于微控制器(MCU)、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。

应用于微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。

2)3V/5V CMOS信号调节AD转换器:AD7714AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字量。

它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。

输入信号加至位于模拟调制器前端的专用可编程增益放大器。

调制器的输出经片内数字滤波器进行处理。

数字滤波器的第一次陷波通过片内控制寄存器来编程,此寄存器可以调节滤波的截止时间和建立时间。

AD7714有3个差分模拟输入(也可以是5个伪差分模拟输入)和一个差分基准输入。

单电源工作(+3V或+5V)。

鼎阳科技射频产品手册说明书

鼎阳科技射频产品手册说明书

1目 录CONTENTS02 06 08 12 15 19 24 28 32 34 38 41 43 4649 56公司简介.......................................................................................................................................................................................................... 频谱分析仪SSA5000A 系列频谱分析仪................................................................................................................................................................... SSA3000X-R 系列实时频谱分析仪.................................................................................................................................................... SSA3000X PLUS 系列频谱分析仪..................................................................................................................................................... SHA850A 系列手持频谱分析仪.......................................................................................................................................................... 频谱&矢量网络分析仪SVA1000X 系列频谱&矢量网络分析仪........................................................................................................................................ 矢量网络分析仪SNA6000A 系列矢量网络分析仪....................................................................................................................................................... SNA5000A 系列矢量网络分析仪....................................................................................................................................................... SNA5000X 系列矢量网络分析仪....................................................................................................................................................... SHN900A 系列手持矢量网络分析仪.............................................................................................................................................. 射频/微波信号发生器SSG6000A 系列微波信号发生器....................................................................................................................................................... SSG5000A 系列微波信号发生器....................................................................................................................................................... SSG5000X 系列射频模拟/矢量信号发生器............................................................................................................................. SSG3000X 系列射频信号发生器....................................................................................................................................................... 探头及附件 其他探头及配件........................................................................................................................................................................................... 售后承诺........................................................................................................................................................................................................... 2通用电子测试测量仪器领域的行业领军企业公司战略Every Bench. Every Engineer. Every Day.深圳市鼎阳科技股份有限公司(简称“鼎阳科技”,股票代码:688112)是通用电子测试测量仪器领域的行业领军企业,A 股上市公司。

Oxford Cryosystems AD51 干冰器操作说明书

Oxford Cryosystems AD51 干冰器操作说明书

OXFORD CRYOSYSTEMSAD51 Dry Air UnitO p e r a t i o n&I n s t ru c t i o n G u i d eAD51 DRY AIR UNITOperation & Instruction Guide 1.3Oxford Cryosystems Ltd3 Blenheim Office ParkLower RoadLong HanboroughOxford OX29 8LNUnited KingdomPhone +44 1993 883488 • Fax +44 1993 883988Email:******************© 2012 Oxford Cryosystems Ltd. All Rights Reserved.TABLE OF CONTENTSTABLE OF CONTENTS (2)SPECIFICATION (3)INTRODUCTION (4)E VEN Q UIETER R UNNING (4)R EDUCED AND I MPROVED M AINTENANCE (4)BEFORE STARTING (4)MODE OF OPERATION (4)USING THE AD51 (5)MAINTENANCE AND TROUBLE SHOOTING (6)P RECAUTIONS (6)R OUTINE MAINTENANCE (6)Compressor Delivery Filter (6)Compressor (6)C HECKING THE DRY AIR OUTPUT (6)F AULTS (7)FACTORY OVERHAUL/SERVICE (7)LIST OF APPENDICES (8)APPENDIX 1 - GENERAL CIRCUIT DIAGRAM (9) (9)APPENDIX 2 - CONTROL BOARD CIRCUIT DIAGRAM (10) (10)APPENDIX 3 - COMPRESSOR DELIVERY FILTER REPLACEMENT (11)SPECIFICATIOND RY AIR Up to 25 litres / minute at less than -60°C dewpointD IMENSIONS Width: 660mm Depth: 300mm Height: 420mm (incl. feet)W EIGHT41.5 kgP OWER Specified at time of purchase:220-240V ac, 50 Hz, 5Aor100-115V ac, 50/60 Hz, 11AINTRODUCTIONThe AD51 is a development of the AD41 Dry Air Unit that has seen a total service life of millions of hours. The new benefits are:E VEN Q UIETER R UNNINGA brand-new quiet compressor has been fitted to almost eliminate any of the operating noise level from the unit.R EDUCED AND I MPROVED M AINTENANCEThe new compressor has significantly improved maintenance intervals due to the new and better quality lifetime of the compressor components. The new compressor design means that service parts can be changed extremely easily and quickly without the need to remove the compressor.A new internal pipe work design has been fitted to improve the lifetime of some of the components. BEFORE STARTINGMake sure any transit material inside the AD51 has been removed before switching on. It may also be necessary to plug the compressor back in inside the unit.MODE OF OPERATIONThis stand-alone unit draws in atmospheric air and converts it to dry air. The dry air has a dewpoint of better than -60°C and a variable flowrate up to a maximum of 25 litres/minute.The AD51 Flow Scheme (Fig 1) shows the air is compressed to 3.5 bar pressure and passed, via a particle filter, to a factory-sealed, twin-column pressure-swing adsorption dryer. An oil-free compressor is employed to avoid contamination of the molecular sieve drying agent by lubricating oil.At any one time, pressurised air is dried by passing it up one of the columns. Simultaneously, a fraction of this dry air is bled back down the other column at low pressure to purge it of water vapour. After a pre-set time, the action of the two columns is reversed by means of electrically operated change over valves.The pressurised dry air passes through a filter/regulator to remove pressure pulses during column switching and limit the maximum output pressure. The output flowrate is controlled by the user with a built-in needle valve and flowmeter.MAINTENANCE AND TROUBLE SHOOTINGThe AD51 is designed to be a low-maintenance unit. A useful indication that the unit is functioning correctly is that a brief hiss can be heard at regular (one minute) intervals as the air valves switch the action of the columns.When the AD51 is used with the Cryostream Cooler to provide the dry air shroud for the nitrogen gas stream, a deterioration in the dryness of the dry air will show up as frost forming evenly all around the cold nitrogen stream delivery nozzle.P RECAUTIONSIf you have not used the AD51 for some time it may be necessary to run the unit overnight to dry down the columns.R OUTINE MAINTENANCEThe AD51 is designed to run for more than 15,000 hours before needing any maintenance. However, local conditions may accelerate wear of components or clogging of filters. Routine or preventative maintenance may be carried out by users, utilising a qualified technician. The following items may require attention.Compressor Delivery FilterEventually the Compressor Delivery Filter will become clogged with the finer particles of room dirt and the wear products from the compressor. This large capacity filter element is designed to last 15,000 hours and should normally be replaced at the same time as the compressor is serviced. Do not be surprised if the filter element is wet – the compressed air has not been dried at this point.For details of the filter replacement see Appendix 3.CompressorAt some stage (usually longer than 15,000 hours) the carbon impregnated plastic cup seal in the compressor will wear out. The eventual failure of the cup seal is a very sudden process and the dryness of the dry air will deteriorate rapidly, also the maximum flowrate of dry air will drop below 25 litres/minute (perhaps less than 10 litres/minute).This situation requires the compressor to be serviced.C HECKING THE DRY AIR OUTPUTNote: Make sure to run the AD51 overnight before checking the dry air output, this will give the drying columns a chance to dry down.The residual water vapour content of the AD51 dry air output may be measured with a suitable hygrometer calibrated down to -70°C dewpoint. Allow at least 10 minutes for the reading to reach equilibrium.F AULTSNote: If any trips are activated the cause should be determined, preferably by a qualified technician, before restarting the unit.A rear panel fuse (T1A, 220-240V or T2A, 100-115V) protects the transformer that drives the power supply, control board, indicator lamps, cooling fan and solenoid valves.A fuse (T2A) mounted internally on the control board protects the low voltage supply to the control logic circuits.A rear panel circuit breaker operates if the compressor draws excessive current – push the black button in to reset.A manual reset thermal switch operates if the temperature inside the quiet box rises excessively for any reason. If an overheat occurs the HOT! lamp will flash until the thermal switch is reset. The thermal switch is mounted in the compressor compartment (see Fig 4 (M)) - press the red button to reset.FACTORY OVERHAUL/SERVICEAfter extended running you may consider it desirable for the AD51 to have a complete factory service and full recommissioning procedure. Please contact your agent or Oxford Cryosystems to discuss this type of service if required.LIST OF APPENDICESA PPENDIX 1 General Circuit DiagramA PPENDIX 2 Control Board Circuit DiagramA PPENDIX 3 Compressor Delivery Filter ReplacementAPPENDIX 1 - GENERAL CIRCUIT DIAGRAMAPPENDIX 2 - CONTROL BOARD CIRCUIT DIAGRAMAPPENDIX3 - COMPRESSOR DELIVERY FILTER REPLACEMENT1.Switch off the AD51 and disconnect the electrical power.2.Remove the AD51 top cover by lifting the four white plastic plugs and unscrewing the four M5socket caphead screws with the 4mmA/F hexagon balldriver provided.3.The Compressor Delivery Filter (A) is a square grey unit mounted just under the top cover nearthe control panel end of the AD51. Unscrew the four M6 socket caphead screws on the lid of the filter with the 5mmA/F hexagon key provided.4.Lift off the lid and disconnect the 8mm nylon tube if necessary. Lift out the top anodisedaluminium mesh (B), the filter disc (C) and the bottom anodised aluminium mesh (B).5.Discard the dirty filter disc and clean the meshes.6.Clean the sealing 'O' ring on the lid and the part of the body on which it seals.7.Fit one mesh into the filter body, lay a new filter disc on top of the mesh with an equal overlapall round and fit the second mesh on top. Re-connect the 8mm nylon tube, replace the filter lid and tighten down the four M6 socket caphead screws evenly in sequence.8.Run the AD51 overnight to dry down the columns.。

Analog Devices AD22103 数据手册说明书

Analog Devices AD22103 数据手册说明书

Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One T echnology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1995–2017 Analog Devices, Inc. All rights reserved. Technical Support AD22103–SPECIFICATIONS(T A = +25°C and V S = +2.7V to +3.6V unless otherwise noted)AD22103KParameter Min Typ Max Units TRANSFER FUNCTION V OUT = (V S/3.3V) × [0.25V + (28mV/°C) × T A]V TEMPERATURE COEFFICIENT(V S/3.3V) × 28mV/°C TOTAL ERRORInitial ErrorT A = +25°C±0.5±2.0°C Error over TemperatureT A =T MIN to T MAX±0.75±2.5°C NonlinearityT A = T MIN to T MAX0.10.5% FS1 OUTPUT CHARACTERISTICSNominal Output VoltageV S = 3.3V, T A = 0°C0.25V V S = 3.3V, T A = +25°C0.95V V S = 3.3V, T A = +100°C 3.05V POWER SUPPLYOperating Voltage+2.7+3.3+3.6V Quiescent Current350500600µA TEMPERATURE RANGEGuaranteed Temperature Range0+100°COperating Temperature Range0+100°C PACKAGE TO-92SOICNOTES1FS (Full Scale) is defined as that of the operating temperature range, 0°C to +100°C. The listed max specification limit applies to the guaranteed temperature range. For example, the AD22103K has a nonlinearity of (0.5%) × (100°C) = 0.5°C over the guaranteed temperature range of 0°C to +100°C.Specifications subject to change without notice.–2–REV. BAD22103REV. B –3–ABSOLUTE MAXIMUM RATINGS*Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+10V Reversed Continuous Supply Voltage . . . . . . . . . . . . . . .–10V Operating Temperature . . . . . . . . . . . . . . . . . .0°C to +100°C Storage Temperature . . . . . . . . . . . . . . . . . . .–65°C to +160°C Output Short Circuit to V S or Ground . . . . . . . . . . . .Indefinite Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . .+300°C*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ORDERING GUIDEGuaranteed Temperature Package Package Model/Grade 1Range Description Option0°C to +100°C TO-92T -3-10°C to +100°C AD22103K RZ AD22103KR Z-R 7AD22103K TZPIN DESCRIPTIONMnemonic FunctionV S Power Supply Input V O Device OutputGND Ground Pin Must Be Connected to 0 V NCNo ConnectPIN CONFIGURATIONSTO-92AD22103BOTTOM VIEW (Not to Scale)PIN 1PIN 2PIN 3GNDV OV SSOICNC = NO CONNECTV S NCNCNC NCV O NC GND τ – S e cFLOW RATE – CFM18214864121001200400800Figure 2.Thermal Response vs. Air Flow Rate θJ A – °C /WFLOW RATE – CFM2502001501001200400800Figure 3.Thermal Resistance vs. Air Flow RateTypical Performance CurvesCAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection.Although the AD22103 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.SOIC _N R -8SOIC _N R -80°C to +100°C1Z = RoHS Compliant Part.REV. B–4–AD22103THEORY OF OPERATIONThe AD22103 is a ratiometric temperature sensor IC whose output voltage is proportional to power supply voltage. The heart of the sensor is a proprietary temperature-dependent resis-tor, similar to an RTD, which is built into the IC. Figure 4shows a simplified block diagram of the AD22103.+VV OUTFigure 4.Simplified Block DiagramThe temperature-dependent resistor, labeled R T , exhibits a change in resistance that is nearly linearly proportional to tem-perature. This resistor is excited with a current source that is proportional to power supply voltage. The resulting voltage across R T is therefore both supply voltage proportional and lin-early varying with temperature. The remainder of the AD22103consists of an op amp signal conditioning block that takes the voltage across R T and applies the proper gain and offset to achieve the following output voltage function:V OUT = (V S /3.3V ) × [0.25V + (28.0mV /°C ) × T A ]ABSOLUTE ACCURACY AND NONLINEARITY SPECIFICATIONSFigure 5 graphically depicts the guaranteed limits of accuracy for the AD22103 and shows the performance of a typical part.As the output is very linear, the major sources of error are offset,i.e., error at room temperature, and span error, i.e., deviation from the theoretical 28.0mV/°C. Demanding applications can achieve improved performance by calibrating these offset and gain errors so that only the residual nonlinearity remains as a source of error.E R R O R – °CTEMPERATURE – °C2.5–2.52.00–0.5–1.0–2.01.50.5010050–1.51.0V S = 3.6V V S = 3.3V V S = 2.7VFigure 5.Typical AD22103 PerformanceOUTPUT STAGE CONSIDERATIONSAs previously stated, the AD22103 is a voltage output device. A basic understanding of the nature of its output stage is useful for proper application. Note that at the nominal supply voltage of 3.3 V, the output voltage extends from 0.25V at 0°C to +3.05V at +100°C. Furthermore, the AD22103 output pin is capable of withstanding an indefinite short circuit to either ground or the power supply. These characteristics are provided by the output stage structure shown in Figure 6.OUTV SFigure 6.Output Stage StructureThe active portion of the output stage is a PNP transistor with its emitter connected to the V S supply and collector connected to the output node. This PNP transistor sources the required amount of output current. A limited pull-down capability is provided by a fixed current sink of about –100µA. (Here,“fixed” means the current sink is fairly insensitive to either sup-ply voltage or output loading conditions. The current sink ca-pability is a function of temperature, increasing its pull-down capability at lower temperatures.)Due to its limited current sinking ability, the AD22103 is inca-pable of driving loads to the V S power supply and is instead in-tended to drive grounded loads. A typical value for short circuit current limit is 7mA, so devices can reliably source 1mA or 2mA. However, for best output voltage accuracy and minimal internal self-heating, output current should be kept below 1mA.Loads connected to the V S power supply should be avoided as the current sinking capability of the AD22103 is very limited.These considerations are typically not a problem when driving a microcontroller analog to digital converter input pin (see MICROPROCESSOR A/D INTERFACE ISSUES).MOUNTING CONSIDERATIONSIf the AD22103 is thermally attached and properly protected, it can be used in any measuring situation where the maximum range of temperatures encountered is between 0°C and +100°C.Because plastic IC packaging technology is employed, excessive mechanical stress must be avoided when fastening the device with a clamp or screw-on heat tab. Thermally conductive epoxy or glue is recommended for typical mounting conditions. In wet or corrosive environments, an electrically isolated metal or ce-ramic well should be used to shield the AD22103. Because the part has a voltage output (as opposed to current), it offers mod-est immunity to leakage errors, such as those caused by conden-sation at low temperatures.AD22103REV. B –5–THERMAL ENVIRONMENT EFFECTSThe thermal environment in which the AD22103 is used deter-mines two performance traits: the effect of self-heating on accu-racy and the response time of the sensor to rapid changes in temperature. In the first case, a rise in the IC junction tempera-ture above the ambient temperature is a function of two variables;the power consumption of the AD22103 and the thermal resis-tance between the chip and the ambient environment θJA . Self-heating error in degrees Celsius can be derived by multiplying the power dissipation by θJA. Because errors of this type can vary widely for surroundings with different heat sinking capacities, it is necessary to specify θJA under several conditions. Table I shows how the magnitude of self-heating error varies relative to the environment. A typical part will dissipate about 1.5mW at room temperature with a 3.3V supply and negligible output loading. In still air, without a “heat sink,” the table below indi-cates a θJA of 190°C/W, yielding a temperature rise of 0.285°C.Thermal rise will be considerably less in either moving air or with direct physical connection to a solid (or liquid) body.Table I.Thermal Resistance (TO-92)MediumθJA (°C/Watt)τ (sec)*Aluminum Block 602Moving Air**Without Heat Sink 75 3.5Still AirWithout Heat Sink19015*The time constant τ is defined as the time to reach 63.2% of the final temperature change.**1200 CFM.Response of the AD22103 output to abrupt changes in ambient temperature can be modeled by a single time constant τ expo-nential function. Figure 7 shows typical response time plots for a few media of interest.TIME – sec1005009060201080703040010010% O F F I N A L V A L U E S2030405060708090Figure 7.Response TimeThe time constant τ is dependent on θJA and the specific heat capacities of the chip and the package. Table I lists the effec-tive τ (time to reach 63.2% of the final value) for a few different media. Copper printed circuit board connections wereneglected in the analysis; however, they will sink or conduct heat directly through the AD22103’s solder plated copper leads.When faster response is required, a thermally conductive grease or glue between the AD22103 and the surface temperature being measured should be used.MICROPROCESSOR A/D INTERFACE ISSUESThe AD22103 is especially well suited to providing a low cost temperature measurement capability for microprocessor/microcontroller based systems. Many inexpensive 8-bit micro-processors now offer an onboard 8-bit ADC capability at a mod-est cost premium. Total “cost of ownership” then becomes a function of the voltage reference and analog signal conditioning necessary to mate the analog sensor with the microprocessor ADC. The AD22103 can provide an ideal low cost system by eliminating the need for a precision voltage reference and any additional active components. The ratiometric nature of the AD22103 allows the microprocessor to use the same power sup-ply as its ADC reference. Variations of hundreds of millivolts in the supply voltage have little effect as both the AD22103 and the ADC use the supply as their reference. The nominal AD22103 signal range of 0.25 V to 3.05 V (0°C to +100°C)makes good use of the input range of a 0V to 3.3 V ADC. A single resistor and capacitor are recommended to provide im-munity to the high speed charge dump glitches seen at many microprocessor ADC inputs (see Figure 1).An 8-bit ADC with a reference of 3.3 V will have a least signifi-cant bit (LSB) size of 3.3 V/256 = 12.9 mV. This corresponds to a nominal resolution of about 0.46°C/bit.USE WITH A PRECISION REFERENCE AS THE SUPPLY VOLTAGEWhile the ratiometric nature of the AD22103 allows for system operation without a precision voltage reference, it can still be used in such systems. Overall system requirements involving other sensors or signal inputs may dictate the need for a fixed precision ADC reference. The AD22103 can be converted to absolute voltage operation by using a precision reference as the supply voltage. For example, a 3.3V reference can be used to power the AD22103 directly. Supply current will typically be 500µA which is usually within the output capability of the refer-ence. A large number of AD22103s may require an additional op amp buffer, as would scaling down a 10.00V reference that might be found in “instrumentation” ADCs typically operating from ±15V supplies.USING THE AD22103 WITH ALTERNATIVE SUPPLY VOLTAGESBecause of its ratiometric nature the AD22103 can be used at other supply voltages. Its nominal transfer function can be recal-culated based on the new supply voltage. For instance, if using the AD22103 at V S = 5 V the transfer function would be given by:V O =V S 5V 0.25V +28m V °C ×T A5V3.3V V O =V S 5V 0.378V +42.42mV°C×T AREV. B–6–AD22103OUTLINE DIMENSIONS042208-ACONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.COMPLIANT TO JEDEC STANDARDS TO-226-AA3-Pin Plastic Header-Style Package [TO-92](T-3-1)Dimensions shown in inches and (millimeters)0.165 (4.19)0.145 (3.68)0.125 (3.18)BOTTOM VIEW8-Lead Standard Small Outline Package [SOIC_N]Narrow Body(R-8)Dimensions shown in millimeters and (inches)CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.COMPLIANT TO JEDEC STANDARDS MS-012-AA012407-A0.25 (0.0098)0.17 (0.0067)1.27 (0.0500)0.40 (0.0157)PLANE0.25 (0.0098)0.10 (0.0040)COPLANARITY0.10AD22103REVISION HISTORY7/2017—Rev. A to Rev. BDeleted Chip Specifications Table (2)Changes to Ordering Guide (3)8/2016—Rev. 0 to Rev. AChanges to Ordering Guide (3)Updated Outline Dimensions (6)3/1995—Revision 0: Initial Version©1995–2017 Analog Devices, Inc. All rights reserved. Trademarks andregistered trademarks are the property of their respective owners.D09374-0-7/17(B)REV. B–7–。

AD10元件中英文对照

AD10元件中英文对照

AD10元件中英文对照部分分立元件库元件名称及中英对照AND 与门ANTENNA 天线BA TTERY 直流电源BELL 铃,钟BVC 同轴电缆接插件BRIDEG 1 整流桥(二极管) BRIDEG 2 整流桥(集成块) BUFFER 缓冲器BUZZER 蜂鸣器CAP 电容CAPACITOR 电容CAPACITOR POL 有极性电容CAPV AR 可调电容CIRCUIT BREAKER 熔断丝COAX 同轴电缆CON 插口CRYSTAL 晶体整荡器DB 并行插口DIODE 二极管DIODE SCHOTTKY 稳压二极管DIODE VARACTOR 变容二极管DPY_3-SEG 3段LEDDPY_7-SEG 7段LEDDPY_7-SEG_DP 7段LED(带小数点) ELECTRO 电解电容FUSE 熔断器INDUCTOR 电感INDUCTOR IRON 带铁芯电感INDUCTOR3 可调电感JFET N N沟道场效应管JFET P P沟道场效应管LAMP 灯泡LAMP NEDN 起辉器LED 发光二极管METER 仪表MICROPHONE 麦克风MOSFET MOS管MOTOR AC 交流电机MOTOR SERVO 伺服电机NAND 与非门NOR 或非门NOT 非门NPN NPN三极管NPN-PHOTO 感光三极管OPAMP 运放OR 或门PHOTO 感光二极管PNP 三极管NPN DAR NPN三极管PNP DAR PNP三极管POT 滑线变阻器PELAY-DPDT 双刀双掷继电器RES1.2 电阻RES3.4 可变电阻RESISTOR BRIDGE ? 桥式电阻RESPACK ? 电阻SCR 晶闸管PLUG ? 插头PLUG AC FEMALE 三相交流插头SOCKET ? 插座SOURCE CURRENT 电流源SOURCE VOLTAGE 电压源SPEAKER 扬声器SW ? 开关SW-DPDY ? 双刀双掷开关SW-SPST ? 单刀单掷开关SW-PB 按钮THERMISTOR 电热调节器TRANS1 变压器TRANS2 可调变压器TRIAC ? 三端双向可控硅TRIODE ? 三极真空管V ARISTOR 变阻器ZENER ? 齐纳二极管DPY_7-SEG_DP 数码管SW-PB 开关74系列:74LS00 TTL 2输入端四与非门74LS01 TTL 集电极开路2输入端四与非门74LS02 TTL 2输入端四或非门74LS03 TTL 集电极开路2输入端四与非门74LS122 TTL 可再触发单稳态多谐振荡器74LS123 TTL 双可再触发单稳态多谐振荡器74LS125 TTL 三态输出高有效四总线缓冲门74LS126 TTL 三态输出低有效四总线缓冲门74LS13 TTL 4输入端双与非施密特触发器74LS132 TTL 2输入端四与非施密特触发器74LS133 TTL 13输入端与非门74LS136 TTL 四异或门74LS138 TTL 3-8线译码器/复工器74LS139 TTL 双2-4线译码器/复工器74LS14 TTL 六反相施密特触发器74LS145 TTL BCD—十进制译码/驱动器74LS15 TTL 开路输出3输入端三与门74LS150 TTL 16选1数据选择/多路开关74LS151 TTL 8选1数据选择器74LS153 TTL 双4选1数据选择器74LS154 TTL 4线—16线译码器74LS155 TTL 图腾柱输出译码器/分配器74LS156 TTL 开路输出译码器/分配器74LS157 TTL 同相输出四2选1数据选择器74LS158 TTL 反相输出四2选1数据选择器74LS16 TTL 开路输出六反相缓冲/驱动器74LS160 TTL 可预置BCD异步清除计数器74LS161 TTL 可予制四位二进制异步清除计数器74LS162 TTL 可预置BCD同步清除计数器74LS163 TTL 可予制四位二进制同步清除计数器74LS164 TTL 八位串行入/并行输出移位寄存器74LS165 TTL 八位并行入/串行输出移位寄存器74LS166 TTL 八位并入/串出移位寄存器74LS169 TTL 二进制四位加/减同步计数器74LS17 TTL 开路输出六同相缓冲/驱动器74LS170 TTL 开路输出4×4寄存器堆74LS173 TTL 三态输出四位D型寄存器74LS174 TTL 带公共时钟和复位六D触发器74LS175 TTL 带公共时钟和复位四D触发器74LS180 TTL 9位奇数/偶数发生器/校验器74LS181 TTL 算术逻辑单元/函数发生器74LS185 TTL 二进制—BCD代码转换器74LS190 TTL BCD同步加/减计数器74LS191 TTL 二进制同步可逆计数器74LS192 TTL 可预置BCD双时钟可逆计数器74LS193 TTL 可预置四位二进制双时钟可逆计数器74LS194 TTL 四位双向通用移位寄存器74LS195 TTL 四位并行通道移位寄存器74LS196 TTL 十进制/二-十进制可预置计数锁存器74LS197 TTL 二进制可预置锁存器/计数器74LS20 TTL 4输入端双与非门74LS21 TTL 4输入端双与门74LS22 TTL 开路输出4输入端双与非门74LS221 TTL 双/单稳态多谐振荡器74LS240 TTL 八反相三态缓冲器/线驱动器74LS241 TTL 八同相三态缓冲器/线驱动器74LS243 TTL 四同相三态总线收发器74LS244 TTL 八同相三态缓冲器/线驱动器74LS245 TTL 八同相三态总线收发器74LS247 TTL BCD—7段15V输出译码/驱动器74LS248 TTL BCD—7段译码/升压输出驱动器74LS249 TTL BCD—7段译码/开路输出驱动器74LS251 TTL 三态输出8选1数据选择器/复工器74LS253 TTL 三态输出双4选1数据选择器/复工器74LS256 TTL 双四位可寻址锁存器74LS257 TTL 三态原码四2选1数据选择器/复工器74LS258 TTL 三态反码四2选1数据选择器/复工器74LS259 TTL 八位可寻址锁存器/3-8线译码器74LS26 TTL 2输入端高压接口四与非门74LS260 TTL 5输入端双或非门74LS266 TTL 2输入端四异或非门74LS27 TTL 3输入端三或非门74LS273 TTL 带公共时钟复位八D触发器74LS279 TTL 四图腾柱输出S-R锁存器74LS28 TTL 2输入端四或非门缓冲器74LS283 TTL 4位二进制全加器74LS290 TTL 二/五分频十进制计数器74LS293 TTL 二/八分频四位二进制计数器74LS295 TTL 四位双向通用移位寄存器74LS298 TTL 四2输入多路带存贮开关74LS299 TTL 三态输出八位通用移位寄存器74LS30 TTL 8输入端与非门74LS32 TTL 2输入端四或门74LS322 TTL 带符号扩展端八位移位寄存器74LS323 TTL 三态输出八位双向移位/存贮寄存器74LS33 TTL 开路输出2输入端四或非缓冲器74LS347 TTL BCD—7段译码器/驱动器74LS352 TTL 双4选1数据选择器/复工器74LS353 TTL 三态输出双4选1数据选择器/复工器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS366 TTL 门使能输入三态输出六反相线驱动器74LS367 TTL 4/2线使能输入三态六同相线驱动器74LS368 TTL 4/2线使能输入三态六反相线驱动器74LS37 TTL 开路输出2输入端四与非缓冲器74LS373 TTL 三态同相八D锁存器74LS374 TTL 三态反相八D锁存器74LS375 TTL 4位双稳态锁存器74LS377 TTL 单边输出公共使能八D锁存器74LS378 TTL 单边输出公共使能六D锁存器74LS379 TTL 双边输出公共使能四D锁存器74LS38 TTL 开路输出2输入端四与非缓冲器74LS380 TTL 多功能八进制寄存器74LS39 TTL 开路输出2输入端四与非缓冲器74LS390 TTL 双十进制计数器74LS393 TTL 双四位二进制计数器74LS40 TTL 4输入端双与非缓冲器74LS42 TTL BCD—十进制代码转换器74LS352 TTL 双4选1数据选择器/复工器74LS353 TTL 三态输出双4选1数据选择器/复工器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS366 TTL 门使能输入三态输出六反相线驱动器74LS367 TTL 4/2线使能输入三态六同相线驱动器74LS368 TTL 4/2线使能输入三态六反相线驱动器74LS37 TTL 开路输出2输入端四与非缓冲器74LS373 TTL 三态同相八D锁存器74LS374 TTL 三态反相八D锁存器74LS375 TTL 4位双稳态锁存器74LS377 TTL 单边输出公共使能八D锁存器74LS378 TTL 单边输出公共使能六D锁存器74LS379 TTL 双边输出公共使能四D锁存器74LS38 TTL 开路输出2输入端四与非缓冲器74LS380 TTL 多功能八进制寄存器74LS39 TTL 开路输出2输入端四与非缓冲器74LS390 TTL 双十进制计数器74LS393 TTL 双四位二进制计数器74LS40 TTL 4输入端双与非缓冲器74LS42 TTL BCD—十进制代码转换器74LS447 TTL BCD—7段译码器/驱动器74LS45 TTL BCD—十进制代码转换/驱动器74LS450 TTL 16:1多路转接复用器多工器74LS451 TTL 双8:1多路转接复用器多工器74LS453 TTL 四4:1多路转接复用器多工器74LS46 TTL BCD—7段低有效译码/驱动器74LS460 TTL 十位比较器74LS461 TTL 八进制计数器74LS465 TTL 三态同相2与使能端八总线缓冲器74LS466 TTL 三态反相2与使能八总线缓冲器74LS467 TTL 三态同相2使能端八总线缓冲器74LS468 TTL 三态反相2使能端八总线缓冲器74LS469 TTL 八位双向计数器74LS47 TTL BCD—7段高有效译码/驱动器74LS48 TTL BCD—7段译码器/内部上拉输出驱动74LS490 TTL 双十进制计数器74LS491 TTL 十位计数器74LS498 TTL 八进制移位寄存器74LS50 TTL 2-3/2-2输入端双与或非门74LS502 TTL 八位逐次逼近寄存器74LS503 TTL 八位逐次逼近寄存器74LS51 TTL 2-3/2-2输入端双与或非门74LS533 TTL 三态反相八D锁存器74LS534 TTL 三态反相八D锁存器74LS54 TTL 四路输入与或非门74LS540 TTL 八位三态反相输出总线缓冲器74LS55 TTL 4输入端二路输入与或非门74LS563 TTL 八位三态反相输出触发器74LS564 TTL 八位三态反相输出D触发器74LS573 TTL 八位三态输出触发器74LS574 TTL 八位三态输出D触发器74LS645 TTL 三态输出八同相总线传送接收器74LS670 TTL 三态输出4×4寄存器堆74LS73 TTL 带清除负触发双J-K触发器74LS74 TTL 带置位复位正触发双D触发器74LS76 TTL 带预置清除双J-K触发器74LS83 TTL 四位二进制快速进位全加器74LS85 TTL 四位数字比较器74LS86 TTL 2输入端四异或门74LS90 TTL 可二/五分频十进制计数器74LS93 TTL 可二/八分频二进制计数器74LS95 TTL 四位并行输入\\输出移位寄存器74LS97 TTL 6位同步二进制乘法器CD系列::CD4000 双3输入端或非门+单非门TICD4001 四2输入端或非门HIT/NSC/TI/GOLCD4002 双4输入端或非门NSCCD4006 18位串入/串出移位寄存器NSCCD4007 双互补对加反相器NSCCD4008 4位超前进位全加器NSCCD4009 六反相缓冲/变换器NSCCD4010 六同相缓冲/变换器NSCCD4011 四2输入端与非门HIT/TICD4012 双4输入端与非门NSCCD4013 双主-从D型触发器FSC/NSC/TOSCD4014 8位串入/并入-串出移位寄存器NSCCD4015 双4位串入/并出移位寄存器TICD4016 四传输门FSC/TICD4017 十进制计数/分配器FSC/TI/MOTCD4018 可预制1/N计数器NSC/MOTCD4019 四与或选择器PHICD4020 14级串行二进制计数/分频器FSCCD4021 08位串入/并入-串出移位寄存器PHI/NSC CD4022 八进制计数/分配器NSC/MOTCD4023 三3输入端与非门NSC/MOT/TICD4024 7级二进制串行计数/分频器NSC/MOT/TI CD4025 三3输入端或非门NSC/MOT/TICD4026 十进制计数/7段译码器NSC/MOT/TI CD4027 双J-K触发器NSC/MOT/TICD4028 BCD码十进制译码器NSC/MOT/TICD4029 可预置可逆计数器NSC/MOT/TICD4030 四异或门NSC/MOT/TI/GOLCD4031 64位串入/串出移位存储器NSC/MOT/TICD4032 三串行加法器NSC/TICD4033 十进制计数/7段译码器NSC/TICD4034 8位通用总线寄存器NSC/MOT/TICD4035 4位并入/串入-并出/串出移位寄存NSC/MOT/TI CD4038 三串行加法器NSC/TICD4040 12级二进制串行计数/分频器NSC/MOT/TICD4041 四同相/反相缓冲器NSC/MOT/TICD4042 四锁存D型触发器NSC/MOT/TICD4043 4三态R-S锁存触发器("1"触发) NSC/MOT/TI CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI CD4046 锁相环NSC/MOT/TI/PHICD4047 无稳态/单稳态多谐振荡器NSC/MOT/TICD4048 4输入端可扩展多功能门NSC/HIT/TICD4049 六反相缓冲/变换器NSC/HIT/TICD4050 六同相缓冲/变换器NSC/MOT/TICD4051 八选一模拟开关NSC/MOT/TICD4052 双4选1模拟开关NSC/MOT/TICD4053 三组二路模拟开关NSC/MOT/TICD4054 液晶显示驱动器NSC/HIT/TICD4055 BCD-7段译码/液晶驱动器NSC/HIT/TICD4056 液晶显示驱动器NSC/HIT/TICD4059 “N”分频计数器NSC/TICD4060 14级二进制串行计数/分频器NSC/TI/MOTCD4063 四位数字比较器NSC/HIT/TICD4066 四传输门NSC/TI/MOTCD4067 16选1模拟开关NSC/TICD4068 八输入端与非门/与门NSC/HIT/TICD4069 六反相器NSC/HIT/TICD4070 四异或门NSC/HIT/TICD4071 四2输入端或门NSC/TICD4072 双4输入端或门NSC/TICD4073 三3输入端与门NSC/TICD4075 三3输入端或门NSC/TICD4076 四D寄存器CD4077 四2输入端异或非门HITCD4078 8输入端或非门/或门CD4081 四2输入端与门NSC/HIT/TICD4082 双4输入端与门NSC/HIT/TICD4085 双2路2输入端与或非门CD4086 四2输入端可扩展与或非门CD4089 二进制比例乘法器CD4093 四2输入端施密特触发器NSC/MOT/STCD4094 8位移位存储总线寄存器NSC/TI/PHICD4095 3输入端J-K触发器CD4096 3输入端J-K触发器CD4097 双路八选一模拟开关CD4098 双单稳态触发器NSC/MOT/TICD4099 8位可寻址锁存器NSC/MOT/STCD40100 32位左/右移位寄存器CD40101 9位奇偶较验器CD40102 8位可预置同步BCD减法计数器CD40103 8位可预置同步二进制减法计数器CD40104 4位双向移位寄存器CD40105 先入先出FI-FD寄存器CD40106 六施密特触发器NSC\\TICD40107 双2输入端与非缓冲/驱动器HAR\\TICD40108 4字×4位多通道寄存器CD40109 四低-高电平位移器CD4529 双四路/单八路模拟开关CD4530 双5输入端优势逻辑门CD4531 12位奇偶校验器CD4532 8位优先编码器CD4536 可编程定时器CD4538 精密双单稳CD4539 双四路数据选择器CD4541 可编程序振荡/***CD4543 BCD七段锁存译码,驱动器CD4544 BCD七段锁存译码,驱动器CD4547 BCD七段译码/大电流驱动器CD4549 函数近似寄存器CD4551 四2通道模拟开关CD4553 三位BCD计数器CD4555 双二进制四选一译码器/分离器CD4556 双二进制四选一译码器/分离器CD4558 BCD八段译码器CD4560 "N"BCD加法器CD4561 "9"求补器CD4573 四可编程运算放大器CD4574 四可编程电压比较器CD4575 双可编程运放/比较器CD4583 双施密特触发器CD4584 六施密特触发器CD4585 4位数值比较器CD4599 8位可寻址锁存器CD40110 十进制加/减,计数,锁存,译码驱动ST CD40147 10-4线编码器NSC\\MOTCD40160 可预置BCD加计数器NSC\\MOTCD40161 可预置4位二进制加计数器NSC\\MOT CD40162 BCD加法计数器NSC\\MOTCD40163 4位二进制同步计数器NSC\\MOTCD40174 六锁存D型触发器NSC\\TI\\MOTCD40175 四D型触发器NSC\\TI\\MOTCD40181 4位算术逻辑单元/函数发生器CD40182 超前位发生器CD40192 可预置BCD加/减计数器(双时钟) NSC\\TI CD40193 可预置4位二进制加/减计数器NSC\\TICD40194 4位并入/串入-并出/串出移位寄存NSC\\MOT CD40195 4位并入/串入-并出/串出移位寄存NSC\\MOT CD40208 4×4多端口寄存器CD4501 4输入端双与门及2输入端或非门CD4502 可选通三态输出六反相/缓冲器CD4503 六同相三态缓冲器CD4504 六电压转换器CD4506 双二组2输入可扩展或非门CD4508 双4位锁存D型触发器CD4510 可预置BCD码加/减计数器CD4511 BCD锁存,7段译码,驱动器CD4512 八路数据选择器CD4513 BCD锁存,7段译码,驱动器(消隐)CD4514 4位锁存,4线-16线译码器CD4515 4位锁存,4线-16线译码器CD4516 可预置4位二进制加/减计数器CD4517 双64位静态移位寄存器CD4518 双BCD同步加计数器CD4519 四位与或选择器CD4520 双4位二进制同步加计数器CD4521 24级分频器CD4522 可预置BCD同步1/N计数器CD4526 可预置4位二进制同步1/N计数器CD4527 BCD比例乘法器CD4528 双单稳态触发器元件属性对话框中英文对照Lib ref 元件名称Footprint 器件封装Designator 元件称号Part 器件类别或标示值Schematic Tools 主工具栏Writing T ools 连线工具栏Drawing Tools 绘图工具栏Power Objects 电源工具栏Digital Objects 数字器件工具栏Simulation Sources 模拟信号源工具栏PLD Toolbars 映象工具栏。

生产线数据揭示板----简介

生产线数据揭示板----简介

生产线数据揭示板-----待处理事项提醒
点击列表中的时间可 以自动填充方框里的 内容 发生时间:自动填入 当时发生时间 事件:异常事件显示 处理者:填入处理人 员 密码:填入其相应密 码 处理记录:可从下拉 框中选择或自行填入, 用于记录处理操作 确定:最后提交保存 下次提醒:暂时无法 解决,留到下次开启 程序时提醒
液晶电视: 数据、图表显示 ADAM数据采集模块 阵列
数据采集模块: 各开关量转成RS-232与电脑 串口通信
PC主机:
控制、处理、数据记录
设备
O K N G
按键盒
„„„
按键盒
按键盒
部品
按键盒: 由各工程作业者操作,目前 有“OK”、“NG”、“部 品”、“设备”四个按键
生产线数据揭示板-----主界面介绍①
单价(元)
电脑 55寸液晶电视 6000 8000
台数
1 1
总Байду номын сангаас额(元)
6000 8000
研华ADAM 4520
研华ADAM 4053 外观铝盒、电源 按键盒、连接线等 合计
500
800 1500 250
1
5 1 10
500
4000 1500 2500 22500
生产线数据揭示板-----通信原理
为了生产线能实现数据电子化,管理可视化,技术开发中心开展一系列开发工 作。其中生产线揭示板能动态收集各投入/检查工程的产出数、不良数,统计不良率, 并可按需生成各种图表,以便管理人员及时了解各工程的投入产出状况作出相应管理 措施。 该系统较为灵活,稍加设置即可在不同机种中导入,控制端口扩展方便(目前应 用7个端口),采用网线连接,按键部分与主机部分可方便拆卸。 数据记录于ACCESS 数据库,可以快捷地在大量数据中按需查找出相应数据。 ① ②
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Power Supply Range
Supply Current (CMOS) Supply Current (TTL)8 Power Dissipation (CMOS)9
元器件交易网
AD5203–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (VDD = +3 V ؎ 10% or +5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C < TA < +85؇C unless otherwise noted)
GENERAL DESCRIPTION The AD5203 provides a quad channel, 64-position digitallycontrolled variable resistor (VR) device. These parts perform the same electronic adjustment function as a potentiometer or variable resistor. The AD5203 contains four independent variable resistors in a 24-lead SOIC and the compact TSSOP-24 packages. Each part contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the controlling serial input register. The resistance between the wiper and either endpoint of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. Each variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A-to-B terminal resistance of 10 kΩ, or 100 kΩ has a ± 1% channel-tochannel matching tolerance with a nominal temperature coefficient of 700 ppm/°C.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site:
Fax: 781/326-8703
© Analog Devices, Inc., 1998
Parameter
Symbol Conditions
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs
Resistor Differential NL2 Resistor Nonlinearity Error2 Nominal Resistor Tolerance3
R-DNL R-INL ∆RAB
RWB, VA = No Connect RWB, VA = No Connect
Resistance Temperature Coefficient
∆RAB/∆T VAB = VDD, Wiper = No Connect
Wiper Resistance
RW
IW = 1 V/RAB
VA, VB, VW CA, CB CW IA_SD RW_SD
f = 1 MHz, Measured to GND, Code = 20H f = 1 MHz, Measured to GND, Code = 20H VA = VDD, VB = 0 V, SHDN = 0 VA = VDD, VB = 0 V, SHDN = 0, VDD = +5 V
For pin compatible higher resolution applications, see the 256position AD8403 product.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Each VR has its own VR latch which holds its programmed resistance value. These VR latches are updated from an internal serial-to-parallel shift register that is loaded from a standard 3-wire serial-input digital interface. Eight data bits make up the data word clocked into the serial input register. The data word is decoded where the first two bits determine the address of the VR latch to be loaded, the last 6-bits are data. A serial data output pin at the opposite end of the serial register allows simple daisychaining in multiple VR applications without additional external decoding logic.
Code = 20H Code = 3FH Code = 00H
RESISTOR TERMINALS Voltage Range5 Capacitance6 Ax, Bx Capacitance6 Wx Shutdown Supply Current7
Shutdown Wiper Resistance
Nominal Resistance Match
∆R/RO
CH 1 to CH 2, VAB = VDD , TA = +25°C
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications Apply to All VRs
Resolution
FUNCTIONAL BLOCK DIAGRAM
VDD DGND
SDI CLK
CS
AD5203
1
DAC 2 SELECT
3
4 A1, A0
2 8-BIT SERIAL 6 LATCH D CK Q RS
6-BIT LATCH
6
CK RS
DAC 1 SHDN
A1 W1 B1 AGND1
6-BIT LATCH
The AD5203 is available in a narrow body P-DIP-24, the 24-lead surface mount package, and the compact 1.1 mm thin TSSOP-24 package. All parts are guaranteed to operate over the extended industrial temperature range of –40°C to +85°C.
N
Differential Nonlinearity Error4
DNL
Integral Nonlineariห้องสมุดไป่ตู้y Error4
INL
Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error
∆VW/∆T VWFSE VWZSE
6
CK RS
DAC 2 SHDN
A2 W2 B2 AGND2
6-BIT LATCH
6
CK RS
DAC 3 SHDN
A3 W3
B3 AGND3
6-BIT LATCH
6
CK RS
DAC 4 SHDN
A4 W4 B4 AGND4
SDO
RS
SHDN
The reset RS pin forces the wiper to the midscale position by loading 20H into the VR latch. The SHDN pin forces the resistor to an end-to-end open circuit condition on terminal A and shorts the wiper to terminal B, achieving a microwatt power shutdown state. When shutdown is returned to logic-high the previous latch settings put the wiper in the same resistance setting prior to shutdown.
相关文档
最新文档