高等数学极限计算方法总结

合集下载

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。

设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。

极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。

要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。

常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。

二、解决极限的方法如下:1.等价无穷小代换。

只能在乘除时候使用。

2.XXX(L'Hospital)法则。

它的使用有严格的使用前提。

首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。

另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。

洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

通分之后,就能变成(1)中的形式了。

即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。

高等数学极限求法总结

高等数学极限求法总结

04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限

高等数学求极限的14种方法(完整资料).doc

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((3) A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件。

是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下: 1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。

首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。

另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用(2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

高等数学极限求法总结

高等数学极限求法总结

高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。

下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。

掌握这类证明对初学者深刻理解运用极限定义大有裨益。

限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。

1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。

方能利用极限四则运算法则进行求之。

不满足条件者,不能直接利用极限四则运算法则求之。

但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。

例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

一般用在求导后为零比零或无穷比无穷的类型。

利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。

函数极限的求法及技巧总结

函数极限的求法及技巧总结

函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。

在计算函数极限时,需要掌握一些求法和技巧。

本篇文章将对此进行总结。

1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。

例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。

因此,f(x)在x = 1处的极限为6。

2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。

3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。

夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。

4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。

例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。

因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。

5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。

泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。

极限的公式总结

极限的公式总结

极限的公式总结极限是高等数学中的重要概念,它在数学、物理和工程等领域中都有着广泛的应用。

极限的公式可以帮助我们求解一些复杂的问题和优化计算。

在本文中,我们将总结一些常见的极限公式,包括函数极限、无穷极限和级数极限等。

一、函数极限公式1. 一次函数极限:若 f(x) = ax + b(a≠0),则当x→a 时,f(x) 的极限为f(a)=a*a+b。

2. 二次函数极限:若 f(x) = ax² + bx + c(a≠0),则当x→a 时,f(x) 的极限为f(a)=a*a²+b*a+c。

3. 幂函数极限:若 f(x) = x^a(a为实数),则当x→∞ 或x→-∞ 时,f(x) 的极限为:- 若 a > 0,则极限为∞ 或 -∞,具体取决于 x 的正负;- 若 a = 0,则极限为 1;- 若 a < 0,则极限为 0。

4. 指数函数极限:α 为常数,若f(x) = α^x,则当x→∞ 或x→-∞ 时,f(x) 的极限为:- 若α > 1,则极限为∞ 或 0,具体取决于 x 的正负;- 若0 < α < 1,则极限为 0 或∞,具体取决于 x 的正负; - 若α = 1,则极限为 1。

5. 对数函数极限:若f(x) = logₐ(x)(a>0 且a≠1),则当x→0 或x→∞ 时,f(x) 的极限为:- 当 a > 1 时,极限为 -∞ 或∞,具体取决于 x 的趋势;- 当 0 < a < 1 时,极限为∞ 或 -∞,具体取决于 x 的趋势。

6. 三角函数极限:- sin(x) 的极限为 1,当x→0 时;- cos(x) 的极限为 1,当x→0 时;- tan(x) 的极限为∞ 或 -∞,当x→(nπ/2)(n为整数) 时;- cot(x) 的极限为∞ 或 -∞,当x→nπ(n为整数) 时;- sec(x) 的极限为∞ 或 -∞,当x→(2n+1)(π/2)(n为整数) 时; - csc(x) 的极限为∞ 或 -∞,当x→nπ(n为整数) 时。

高等数学 求极限方法小结及举例

高等数学 求极限方法小结及举例
+ ⋯⋯ + ( x − a )n −1ϕ ( n −1) ( x ) = n ! ϕ (a ) .
11
x = f ′( t ) d2y 例 12 . f ′′( t ) ≠ 0 求 . 2 dx y = t f ′( t ) − f ( t ) d y y′( t ) f ′( t ) + t f ′′( t ) − f ′( t ) 解. = = =t d x x′( t ) f ′′( t )
2
t =π − x −1 2 t ========= lim t →0 cot t
tan t = − lim = −1 . t →0 t
"∞" ∞
例 7 . lim ( x ⋅ cot x )
x →0
x = lim =1. x →0 tan x
( 有界量乘无穷小 )
"0⋅ ∞"
lim x cos 1 = 0 . x x →0
4 . "∞ ± ∞" 型 ,
1 ± 1 = f ( x ) ± g( x ) . f ( x ) g( x ) f ( x ) ⋅ g( x )
5 . " ( 1 ± 0 ) ∞ " 型 , 0 " "0 型, u( x ) v ( x ) = e v ( x )⋅ln u( x ) 6. (指数型) " ∞0 " 型 , 7. lim [v ( x )⋅ln u( x ) ] v( x )
n x n −1 sin 1 − x n − 2 cos 1 x>0 x x f ′( x ) = 0 x=0 n x n −1 x<0 ′( x ) = lim n x n −1 sin 1 − x n − 2 cos 1 lim f x x x → +0 x →+0

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

高等数学中求极限方法总结

高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。

一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。

故在这里总结了10种常用的求极限的方法并举例说明。

1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。

解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。

2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。

罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。

高等数学极限求法总结

高等数学极限求法总结

高等数学极限求法总结在高等数学中,极限是一个至关重要的概念,它在微积分、数学分析等领域中扮演着重要角色。

极限求法是数学学习中的一个关键技能,通过正确的方法和技巧能够更快地求解各种极限问题。

本文将系统总结常见的极限求法,包括极限的基本性质、洛必达法则、泰勒展开等内容,帮助读者更好地掌握和运用极限求法。

一、极限的基本性质1. 有界性如果一个函数在某点的一个邻域内有界,那么该函数在该点的极限存在且有限。

2. 夹逼准则如果函数f(x)在点a的某个邻域内除a点以外都满足0≤g(x)≤f(x)≤h(x),并且lim[g(x)]=lim[h(x)]=L,则由夹逼准则可得lim[f(x)]=L。

二、洛必达法则洛必达法则常用来解决0/0型或∞/∞型的极限。

若lim[f(x)]=0, lim[g(x)]=0,并且lim[f’(x)/g’(x)]存在,则lim[f(x)/g(x)]=lim[f’(x)/g’(x)]。

三、泰勒展开泰勒展开是在某一点附近用多项式逼近一个函数的方法。

简单来说,就是用一个多项式不断逼近原函数,使得在该点附近它们的表现尽量接近。

泰勒展开的公式如下:f(x)≈f(a)+f’(a)(x-a)+f’’(a)(x-a)2/2!+⋯+f n(a)(x-a)^n/n!+Rn(x)其中,f(x)是原函数,a是展开的点,f^(n)(a)表示f(x)在点a处的n阶导数,Rn(x)是泰勒余项,即多项式逼近的误差。

通过以上总结,我们可以看到,极限求法涉及到多方面的知识和技巧,需要结合具体问题选择合适的方法进行求解。

掌握极限求法不仅可以帮助我们更好地理解函数的性质,还可以在数学建模、物理学等领域中发挥重要作用。

希望通过本文的总结,读者能够更加熟练地运用各种极限求法,提升自己的数学水平。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。

本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。

一、直接代入法直接代入法是求极限的最基本方法之一。

当函数在某一点连续时,可以直接将该点代入函数中来求极限。

例题1:求函数f(x) = x^2在x=2处的极限。

解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。

因此,f(x)在x=2处的极限为4。

二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。

它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。

例题2:求极限lim(x→∞) [(x+1)/x]。

解:我们可以用夹逼法来求解这个极限。

首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。

因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。

根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。

三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。

该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。

例题3:求极限lim(x→0) (sinx/x)。

解:我们可以利用极限的四则运算法则来求解这个极限。

首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。

根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。

大学数学如何求极限

大学数学如何求极限

高数求极限的方法⒈利用函数极限的四则运算法则来求极限定理1①:假设极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又假设0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。

例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。

高等数学求极限的各种方法

高等数学求极限的各种方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,就是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。

高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)

⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。

常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。

只能在乘除..时候使⽤。

例题略。

2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。

⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。

另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件。

是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。

首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。

另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

16种求极限的方法

16种求极限的方法

16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

高等数学求极限的方法

高等数学求极限的方法

对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小00001+tan 1sin lim(1cos )(1+tan 1sin )(1+tan 1sin )lim(1cos )(1+tan 1sin )tan lim(1cos )(1+tan 1sin )tan (1cos )lim(x x x x x xx x x x x x x x x x x sinxx x x x x x x →→→→-+--+++-++- =-++- =例1 求极限【解】 原式=01cos )(1+tan 1sin )1lim 2(1010)x x x x x x →-++ ==+++4230021cos ()112(I)lim ()limln(12)1cos(1cos )xx x x x e w II w x x x →→ +--= =+--例求下列极限(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.001lim 1cos 0,lim sin 0x x x x x→→-= ∴= 【解】为有界量,原式【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限00100sin sin lim lim 1lim 0lim sin sin 1ln(1)lim(1)lim(1)lim 1x x x x x x x x x x x x x x x x xx x e x x →→→∞→∞→∞→→== = ++=+= =极限不存在n n lim 1lim 1n n n C →∞→∞= =11lim(2)xx x x →∞ +例4求w=(4)极限存在的两个准则(1){},{}{}:(1)(1,2,3,...);(2)lim lim ,{}lim .(2).n n n n n n n n n n n n n x y z y x z n y z a x x a →∞→∞→∞≤≤= ===夹逼准则如果数列及满足下列条件那么数列的极限存在,且单调有界准则单调有界数列必有极限(5)极限的定义(6)洛必达法则【解】(7)变量替换1011/0001ln 212lim(2)1(21)lim(21)lim lim(12ln 2)1ln 2,2x A x x tx t t x x t t w e xt A x t w e e →∞=→∞→→+ =+=+-=+-−−−→−−→+=+==方法,而故(8)泰勒公式。

高等数学经典求极限方法

高等数学经典求极限方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限计算方法总结
《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。

求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。

下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。

一、极限定义、运算法则和一些结果
1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。

说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可
以用上面的极限严格定义证明,例如:
)0,(0lim
≠=∞→a b a an
b
n 为常数且;
5
)13(lim 2
=-→x x ;
⎩⎨⎧≥<=∞→时当不存在,

当,1||1||0lim q q q n
n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运
用,而不需再用极限严格定义证明。

2.极限运算法则
定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[
(2)B A x g x f ⋅=⋅)()(lim (3))0(,)()(lim
成立此时需≠=B B
A
x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条
件不满足时,不能用。

3.两个重要极限 (1) 1sin lim
0=→x
x
x
(2) e x x
x =+→10
)
1(lim ; e x x
x =+∞
→)11(lim
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,
作者简介:靳一东,男,(1964—),副教授。

例如:133sin lim
0=→x
x
x ,e x x
x =--→21
0)
21(lim ,e
x
x
x =+

→3
)31(lim ;等等。

4.等价无穷小
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:
x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x
e 。

说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的
等价
关系成立,例如:当0→x 时,
13-x e ~ x 3 ;)1ln(2x - ~ 2x -。

定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且
)(x f ~)(1x f ,)(x g ~)(1x g ,则当)
()(lim 110
x g x f x
x →存在时,)()
(lim 0x g x f x x →也存在且等于)(x f )()(lim 110
x g x f x
x →,即)()
(lim 0x g x f x x →=)
()(lim 110x g x f x x →。

5.洛比达法则
定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满
足:(1))(x f 和)(x g 的极限都是0或都是无穷大;
(2))(x f 和)(x g 都可导,且)(x g 的导数不为0;
(3))
()
(lim x g x f ''存在(或是无穷大);
则极限)()(lim x g x f 也一定存在,且等于)()(lim x g x f '',即)()(lim x g x f =)
()
(lim x g x f '' 。

说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只
要有一条不满足,洛比达法则就不能应用。

特别要注意条件(1)是否满足,即验证所求极限是否为“
00”型或“∞

”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。

另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。

6.连续性
定理6 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的
定义去间内的一点,则有)()(lim 00
x f x f x x =→ 。

7.极限存在准则
定理7(准则1) 单调有界数列必有极限。

定理8(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:
(1) ),3,2,1(,Λ=≤≤n z x y n n n
(2) a y n n =∞
→lim ,a z n n =∞
→lim
则极限∞
→n n x lim 一定存在,且极限值也是a ,即a x n n =∞
→lim 。

二、求极限方法举例
1. 用初等方法变形后,再利用极限运算法则求极限 例1 1
2
13lim 1
--+→x x x
解:原式=4
3
)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。

例2 )12(lim --+∞
→n n n n
解:


=2
3
11213lim
1
2)]1()2[(lim
=
-++
=
-++--+∞
→∞
→n
n n n n n n n n
n 分子分母同除以。

例3 n
n n
n n 323)1(lim ++-∞→
解:原式
11)3
2(1)31
(lim 3
=++-=
∞→n
n n n
上下同除以 。

2. 利用函数的连续性(定理6)求极限 例4
x
x e x 122
lim → 解:因为20=x 是函数x
e x x
f 12
)(=的一个连续点,
所以 原式=e e 422
12
= 。

3. 利用两个重要极限求极限 例5 2
03cos 1lim
x x
x -→
解:原式=61
)
2
(122sin 2lim 32sin 2lim 22
02
2
=⋅=→→x x
x x x x 。

注:本题也可以用洛比达法则。

例6 x
x x 20
)sin 31(lim -→
解:原式=6sin 6sin 31
sin 6sin 310
]
)
sin 31[(lim )
sin 31(lim ---→-⋅
-→=-=-e x x x
x x
x x
x
x x 。

例7 n
n n n )1
2(
lim +-∞
→ 解:原式=31
331
1
331])1
31[(lim )1
31(lim -+--+∞→+-⋅
-+∞→=+-+=+-+e n n n n
n n n n
n n 。

4. 利用定理2求极限
例8 x
x x 1sin
lim 2
→ 解:原式=0 (定理2的结果)。

5. 利用等价无穷小代换(定理4)求极限 例9 )
arctan()
31ln(lim
20
x x x x +→
解:)31ln(0x x +→时,Θ~x 3,)arctan(2x ~2x ,
∴ 原式=33lim
2
=⋅→x
x
x x 。

例10 x
x e e x
x x sin lim sin 0--→
解:原式=1sin )
sin (lim sin )1(lim sin 0sin sin 0=--=--→-→x
x x x e x x e e x x x x x x 。

注:下面的解法是错误的:
原式=1sin sin lim sin )1()1(lim 0sin 0=--=----→→x x x
x x x e e x x x x 。

正如下面例题解法错误一样: 0lim sin tan lim 3030
=-=-→→x
x
x x x x x x 。

例11 x
x
x x sin )
1
sin tan(lim 20→
解:等价与是无穷小,时,当x
x x x x x x 1
sin )1sin tan(1sin
0222∴→Θ, 所以, 原式=01sin lim 1
sin
lim
020
==→→x
x x x x x x 。

(最后一步用到定理2)
6. 利用洛比达法则求极限
说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。

同时,洛比达法则还可以连续使用。

例12 203cos 1lim
x
x
x -→(例4)。

相关文档
最新文档