高考物理牛顿运动定律的应用各地方试卷集合汇编及解析

合集下载

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理高考物理牛顿运动定律的应用各地方试卷集合汇编一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-= 0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ=解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L = 解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=2.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J .【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。

木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。

t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反。

运动过程中小物块第一次减速为零时恰好从木板上掉下。

已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。

求: (1)t=0时刻木板的速度; (2)木板的长度。

【答案】(1)05/v m s =(2)163l m = 【解析】 【详解】(1)对木板和物块:()()11M m g M m a μ+=+ 令初始时刻木板速度为0v 由运动学公式:101v v a t =+ 代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ=对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112vx t =对木板,由牛顿第二定律:()213mg M m g Ma μμ++= 对木板,经历时间t ,发生位移x 2221312x v t a t =-木板长度12l x x =+代入数据,16=m 3l2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.4.如图所示,一个质量为3kg 的物体静止在光滑水平面上.现沿水平方向对物体施加30N 的拉力,(g 取10m/s 2).求:(1)物体运动时加速度的大小; (2)物体运动3s 时速度的大小;(3)物体从开始运动到位移为20m 时经历的时间. 【答案】(1)10m/s 2(2)30m/s (3)2s 【解析】 【详解】(1)根据牛顿第二定律得:2230m/s 10m/s 3F a m ===; (2)物体运动3s 时速度的大小为 :103m/s 30m/s v at ==⨯=;(3)由位移与时间关系:212x at =则:2120m 102t =⨯⨯,则:2s t =. 【点睛】本题是属性动力学中第一类问题,知道受力情况来确定运动情况,关键求解加速度,它是联系力与运动的纽带.5.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.6.一质量为0.25 kg 的物块静止在水平地面上,从t =0 s 时刻开始受到一个竖直向上的力F 的作用,F 随时间t 的变化规律如图乙所示,重力加速度g 取10 m/s 2.求: (1)t =2 s 时,物块速度的大小:(2)t =0到t =3 s 的过程中,物块上升的高度.【答案】(1)2 m/s (2)6 m 【解析】 【分析】在0-1s 内拉力小于重力,物块静止不动,根据牛顿第二定律求出1-2s 内的加速度,结合速度时间公式求出t=2s 时,物块速度的大小;根据牛顿第二定律求出2-3s 内的加速度,根据位移时间公式分别求出1-2s 内和2-3s 内的位移,从而求出物块上升的高度; 【详解】解:(1) 01s -内,1F mg <,物块静止12s s -物块做匀加速直线运动,根据牛顿第二定律得:21F mg ma -=解得:2212/F mga m s m-== 则t =2 s 时,物块的速度:21/2/v m s m s =⨯= (2) 12s s -物块匀加速运动:21111?2x a t m == 23s s -物块匀加速运动,根据牛顿第二定律得:32F mg ma -=解得:2326/F mga m s m-== 则有:222215?2x vt a t m =+= 则物块上升的高度:12156h x x m m m =+=+=7.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间. 【答案】(1)0.5;(2)225s +() 【解析】 【分析】 【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有 Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°) 代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112vt s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2, 得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225xt s a ==故 t=t 1+t 2=(2+25)s 【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.8.上海中心总高为632米,是中国最高楼,也是世界第二高楼。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。

已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。

求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。

【答案】(1)1.65m (2)0.928m 【解析】 【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ=从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=3.如图甲所示,光滑水平面上有一质量为M = 1kg 的足够长木板。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度.(2)小物块离开传送带时的速度大小.【答案】(1)1.25m;6m (2)55/5m s 【解析】【分析】【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o ,在传送带方向,对小物块根据牛顿第二定律有: cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a= 解得:1 1.25x m =,12L x <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m = 小物块向下滑动的时间为11=v t a传送带运动的距离101s v t =联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ;(2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭ 解得:255/v m s = 20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ?(2)木板与挡板碰撞后滑块的位移s ?(3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m【解析】【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=-解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量.【答案】(1) 3m (2) 2.410/m s (3) 5.4J【解析】【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ=A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+=由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -= 联立解得 2.410/B v m s =(3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ;(2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A :水平方向:N 1F F =竖直方向:A A A m g f m a -=且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t =对B 由位移公式得:212B B x a t = 由位移关系得:B A x h x =-由速度公式得B 的速度:B B v a t =对B 由牛顿第二定律得:2B B B F m g m a -=恒力F 2的功率:2B P F v =联立解得:P =50W5.如图甲所示,光滑水平面上有一质量为M = 1kg 的足够长木板。

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25sA 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.3.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。

高考物理牛顿运动定律各地方试卷集合汇编含解析

高考物理牛顿运动定律各地方试卷集合汇编含解析

高考物理牛顿运动定律各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==>则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at =解得 1t s = 【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m6.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ʹμ1m A gx A =12m A v A ʹ2 解得:v A ʹ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ʹ=0-12m A v A 2 解得 x A ʹ=0.08m x A ʹ=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.7.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=8.在水平力F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为6m ,随即撤掉F ,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求: (1)物块运动的最大速度; (2)F 的大小;(3)撤去F 后,物块克服摩擦力做的功 【答案】(1)6m/s (2)3.2N (3)7.2J 【解析】 【分析】(1)物块做匀加速直线运动,运动2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求F 的大小. (3)撤去F 后,根据动能定理求物块克服摩擦力做的功. 【详解】(1)物块运动2s 时速度最大.由运动学公式有:x= 2v t 可得物块运动的最大速度为:2266/2x v m s t ⨯=== (2)物块匀加速直线运动的加速度为:a=62vt==3m/s 2. 设物块所受的支持力为N ,摩擦力为f ,根据牛顿第二定律得:F-f=maN-mg=0,又 f=μN 联立解得:F=3.2N(3)撤去F 后,根据动能定理得:-W f=0-12mv 2 可得物块克服摩擦力做的功为:W f =7.2J 【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去F 前后摩擦力的大小是变化的,但动摩擦因数不变.9.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间. 【答案】(1)0.5;(2)225s +() 【解析】 【分析】 【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有 Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°) 代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112v t s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2, 得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225xt s a ==故 t=t 1+t 2=(2+5s 【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.10.如图所示,质量为M=8kg的小车停放在光滑水平面上,在小车右端施加一水平恒力F,当小车向右运动速度达到时,在小车的右端轻轻放置一质量m=2kg的小物块,经过t1=2s的时间,小物块与小车保持相对静止。

高考物理牛顿运动定律各地方试卷集合汇编含解析

高考物理牛顿运动定律各地方试卷集合汇编含解析

高考物理牛顿运动定律各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小; (3)s 内物体运动位移的大小.【答案】(1)0.2;(2)5.6N ;(3)56m 。

高考物理牛顿运动定律的应用各地方试卷集合汇编及解析

高考物理牛顿运动定律的应用各地方试卷集合汇编及解析

高考物理牛顿运动定律的应用各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L1=2.5m、L2=2 m.传送带始终保持以速度v匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m=2 kg,g取10 m/s2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小;(2)若v=6 m/s,求滑块离开平板时的速度大小.【答案】(1)4/m s(2)3.5/m s【解析】【详解】(1)滑块在平板上做匀减速运动,加速度大小:a1=1mgmμ=3 m/s2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a2=122mg mgmμμ-⨯=1 m/s2设滑块滑至平板右端用时为t,共同速度为v′,平板位移为x,对滑块:v′=v-a1t(1分)L2+x=vt-12a1t2对平板:v′=a2tx=12a2t2联立以上各式代入数据解得:t=1 s,v=4 m/s.(2)滑块在传送带上的加速度:a3=mgmμ=5 m/s2若滑块在传送带上一直加速,则获得的速度为:v1112a L 5 m/s<6 m/s即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2 联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.3.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E =(3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆= 【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.4.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力 ① 解得:②(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程 由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则 滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫5.水平面上有一木板,质量为M=2kg ,板左端放有质量为m=1kg 的物块(视为质点),已知物块与木板间动摩擦因数为μ1=0.2,木板与水平面间的动摩擦因数为μ2=0.4.设最大静摩擦力等于滑动摩擦力,取210/g m s .(1)现用水平力F 拉动木板,为使物块与木板一起运动而不相对滑动,求拉力F 的大小范围?(2)若拉动木板的水平力F=15N ,由静止经时间t 1=4s 立即撤去拉力F ,再经t 2=1s 物块恰好到达板右端,求板长L=?【答案】(1)12N <F≤18N (2)1.4m【解析】 【分析】(1)物块与木块一起运动,拉力F 必须大于木板与地面之间的最大静摩擦力,当m 与M 之间的摩擦力达到最大静摩擦力时,拉力F 达到最大值;(2)拉动木板的水平力F=15N ,在第(1)问拉力的范围内,整体先做匀加速运动,撤去F 后,m 向右匀减速,M 向右匀减速,当M 静止后,m 继续向右匀减速到木板右端,求出木板静止前的相对位移和木板静止后物块的位移,即可求出木板的长度; 【详解】(1)M 与地面之间的最大静摩擦力f 1=μ2(M +m )g =0.4×(2+1)×10=12N当M 、m 整体一起向右匀加速运动时,当m 与M 的静摩擦力达到最大静摩擦力时,拉力F 最大;对m :μ1mg =ma ① 得a =μ1g =0.2×10m /s 2=2m /s 2 对整体:F −μ2(M +m )g =(M +m )a ② 代入数据:F-12=(2+1)×2 解得:F=18N所以拉力F 大小范围是12N <F≤18N(2)拉动木板的水平力F=15N ,M 、m 一起匀加速运动 根据牛顿第二定律:()2221512/1/21F M m ga m s m s M mμ-+-++===t 1=4s 时速度v 1=a t 1=1×4m /s =4m /s 撤去F 后,物块加速度a 1=μ1g =2m /s 2 对木板:μ1mg −μ2(M +m )g =Ma 2, 代入数据:0.2×10−12=2 a 2 解得:a 2=−5m /s 2木板向右速度减为0的时间;根据题意t 2=1s 物块恰好到达板右端1120040.85v t s s a --=== 在t 1时间内物块的位移:22111111140.8208 2.5622x v t a t m =.=-=⨯-⨯⨯ 木板的位移:12140.8 1.622v x t m ⨯=== 物块相对木板的位移△x =x 1-x 2=2.56−1.6=0.96m 根据题意撤去力F 后,再经t 2=1s 物块恰好到达板右端 所以木板静止后,木块继续运动0.2st 1=0.8s 时物块的速度v 2=v 1-a 1t 1=4−2×0.8=2.4m /s22221211' 2.40.22020.4422x v t a t m m -=⨯-⨯⨯V =.=木板长:L=△x+△x′=0.96+0.44=1.4m6.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2 运动时间为22 3.7517.5s t s s a ⨯===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.7.如图所示,在倾角θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住,已知人的质量m=60kg ,小车的质量M=10kg ,绳及滑轮的质量,滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为小车总重的0.1倍,斜面足够长,当人以280N 的力拉绳时,求:(1)人与车一起运动的加速度的大小;(2)人所受的摩擦力的大小和方向;(3)某时刻人和车沿斜面向上的速度大小为3m/s,此时人松手,则人和车一起滑到最高点时所用的时间.【答案】(1)2m/s2(2)140N(3)0.5s【解析】【详解】(1)将人和车看做整体,受拉力为280×2=560N,总重为(60+10)×10=700N,受阻力为700×0.1=70N,重力平行于斜面的分力为 700×sin30°=350N,则合外力为F=560-70-350=140N则根据牛顿第二定律,加速度为a==2m/s2即人与车一起运动的加速度的大小为2m/s2。

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析

高考物理牛顿运动定律的应用各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止(2) 求3s 内煤块前进的位移(3)煤块最终在小车上留下的痕迹长度【答案】(1) 2s (2) 8.4m (3) 2.8m【解析】【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移.【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t == 2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+= 所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t == 小车前进的位移为:2111 6.8m 2x v t a t '=+= 两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m .【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.2..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型(1)落到水面时速度v 的大小;(2)在水中能到达的最大深度H ;(3)从开始下落到返回水面所需时间t .【答案】(1)4m/s (2)0.5m (3)1.15s【解析】【分析】【详解】(1)模型人入水时的速度记为v ,自由下落的阶段加速度记为a 1,则a 1=g ;v 2=2a 1h 解得v=4m/s ;(2)模型人入水后向下运动时,设向下为正,其加速度记为a 2,则:mg-F f -F=ma 2 解得a 2=-16m/s 2 所以最大深度:2200.52v H m a -== (3)自由落体阶段:1t 0.4v s g == 在水中下降2200.25v t s a -== 在水中上升:F-mg-F f =ma 3解得a 3=4.0m/s 2所以:3320.5H t s a == 总时间:t=t 1+t 2+t 3=1.15s3.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?(3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少?【答案】(1)8m/s (2)6.4m (3)1.8m【解析】【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可.【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv = 解得:2210 3.28m/s v gh ==⨯⨯=(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=- 解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.4.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析

高考物理牛顿运动定律各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2;(2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t =【解析】【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ=解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-=其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小;(2)刚撤去F 时,小物块离长木板右端的距离s ;(3)撒去F 后,系统能损失的最大机械能△E .【答案】(1)2m/s 2(2)0.5m (3)0.4J【解析】【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E .【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用,由牛顿第二定律得,F-µmg=Ma 2,解得:a 2= 3m/s 2.小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+'解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.3.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ;(2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A :水平方向:N 1F F =竖直方向:A A A m g f m a -=且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t =对B 由位移公式得:212B B x a t = 由位移关系得:B A x h x =-由速度公式得B 的速度:B B v a t =对B 由牛顿第二定律得:2B B B F m g m a -=恒力F 2的功率:2B P F v =联立解得:P =50W4.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向.【答案】(1)8m/s (2)12N【解析】【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v = 小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N B v mg F m R-= 解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.5.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力.【答案】(1)2.5m ;(2)20.8N【解析】【详解】(1)无人机匀速上升的高度:h 2=vt 2无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma联立解得:F =20.8 N6.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++=可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s = 滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁3.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件;(2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又:011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.4.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

物理牛顿运动定律的应用各地方试卷集合含解析

物理牛顿运动定律的应用各地方试卷集合含解析

物理牛顿运动定律的应用各地方试卷集合含解析一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX +=物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .5.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大? (3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可.【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv = 解得:2210 3.28m/s v gh ==⨯⨯=(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带 得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.6.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出. 【答案】(1) ,(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得 对滑块,有 , 解得对平板车,有,解得.设经过t 时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有 解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出. 答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L 时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.7.如图所示,在足够高的光滑水平台面上静置一质量为m 的长木板A ,木板A 右端用轻绳绕过光滑的轻质定滑轮与质量也为m 的物体C 连接.当C 从静止开始下落距离h 时,在木板A 的最右端轻放一质量为4m 的小铁块B (初速度为0,可视为质点),最终B 恰好未从A 上滑落,A 、B 间的动摩擦因数μ=0.25.最大静摩擦力等于滑动摩擦力,重力加速度为g .计算:(1)C 由静止下落距离h 时,木板A 的速度大小v A ; (2)木板A 的长度L ;(3)若当铁块B 轻放在木板A 最右端的同时,对B 加一水平向右的恒力F =7mg ,其他条件不变,计算B 滑出A 时B 的速度大小v B .【答案】(1gh (2)2h (352gh 【解析】 【详解】(1)对A 、C 分析,有mg =2ma 1212A v a h =解得A v gh =(2)B 放在A 上后,设A 、C 仍一起加速,则mg -4μmg =2ma 2解得a 2=0即B 放在A 上后,A 、C 以速度v A 匀速运动.此时,B 匀加速运动,加速度a B 1=444mg gm μ= 设经过时间t 1,B 的速度达到v A ,且B 刚好运动至木板A 的左端 则有v A =a B 1t 1木板A 的长度L =S AC -S B =v A t 1-112A v t 解得L =2h(3)加上力F 后,B 的速度达到v A 前,A 和C 仍匀速,B 仍加速,此时 B 的加速度a B 2=424F mgg mμ+= 加速时间22A B v t a == B 相对A 的位移22124A B A A hS S S v t v t ∆=-=-=A 、B 共速后都向右加速,设经时间t 3,B 滑出A .有 对B 有a B 3=4342F mg g m μ-= 对A 有a AC =42mg mgg mμ+=B 相对A 的位移223333311()()22B A A B A AC S S S v t a t v t a t '∆==+-+'-解得3t == B 滑出A 时的速度v B =v A +a B 3·t 38.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2m/s的恒定速率顺时针转动,一包货物以v0=12m/s 的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(sin37°=0.6,cos37°=0.8,g取10m/s2)求:(1)货物刚滑上传送带时加速度的大小和方向;(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?【答案】(1)10m/s2,方向沿传送带向下;(2)1s;7m.(3)(2+22)s.【解析】【分析】(1)货物刚滑上传送带时,受到重力、传送带的支持力和沿传送带向下的滑动摩擦力,根据牛顿第二定律求解加速度;(2)货物向上做匀减速运动,根据运动学公式求出货物的速度和传送带的速度相同经历的时间和上滑的位移;(3)货物的速度和传送带的速度相同后,继续向上做匀减速运动,滑动摩擦力方向沿传送带向上,由牛顿第二定律求出加速度,由运动学公式求出速度减至零的时间和位移,再求出上滑的总位移,货物到达最高点后将沿传送带匀加速下滑,由下滑位移大小与上滑总位移大小相等,求出下滑的时间,最后求出总时间;【详解】(1)设货物刚滑上传送带时加速度为1a,货物受力如图所示:沿传送带方向:1fmgsin F maθ+=垂直传送带方向:Nmgcos Fθ=,又f NF Fμ=故货物刚滑上传送带时加速度大小2110/a m s=,方向沿传送带向下;(2)货物速度从v减至传送带速度v所用时间设为1t,位移设为1x,则根据速度与时间关系有:011212110v vt s sa--===--根据平均速度公式可以得到位移为:01172v vx t m +== (3)当货物速度与传送带速度相等时,由于0.5tan μθ=<,即mgsin mgcos θμθ>,此后货物所受摩擦力沿传送带向上,设货物加速度大小为2a ,则有2mgsin mgcos ma θμθ-= 设货物再经时间2t ,速度减为零,则:2201vt s a -==- 沿传送带向上滑的位移:22012v x t m +== 则货物上滑的总距离为:128x x x m =+=货物到达最高点后将沿传送带匀加速下滑,下滑加速度等于2a ,设下滑时间为3t , 则22312x a t =,代入解得:322t s =. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为:123222s t t t t =++=+(). 【点睛】本题考查了倾斜传送带上物体相对运动问题,分析判断物体的运动情况是难点.9.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编

高考物理牛顿运动定律的应用各地方试卷集合汇编一、高中物理精讲专题测试牛顿运动定律的应用1.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s(2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.2.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A (可视为质点)。

高中物理牛顿运动定律各地方试卷集合汇编含解析

高中物理牛顿运动定律各地方试卷集合汇编含解析

高中物理牛顿运动定律各地方试卷集合汇编含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。

某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。

重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。

【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。

高考物理牛顿运动定律各地方试卷集合汇编及解析(1)

高考物理牛顿运动定律各地方试卷集合汇编及解析(1)

高考物理牛顿运动定律各地方试卷集合汇编及解析(1)一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A 由静止开始自由下滑,滑至坡底B (B 处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C 处,如图所示.不计空气阻力,坡长为l =26 m ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪地上运动的最大距离. 【答案】1s 99.2m【解析】 【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间. 【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a 1==4m/s 2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s (2)由静止到动摩擦因素发生变化的位移:x 1=a 1t 2=2m 动摩擦因数变化后,由牛顿第二定律得加速度:a 2==5m/s 2 由v B 2-v 2=2a 2(L-x 1)解得滑雪者到达B 处时的速度:v B =16m/s(3)设滑雪者速度由v B =16m/s 减速到v 1=4m/s 期间运动的位移为x 3,则由动能定理有:;解得x 3=96m速度由v 1=4m/s 减速到零期间运动的位移为x 4,则由动能定理有:;解得 x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x 3+x 4=96+ 3.2=99.2m4.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.5.质量m =2kg 的物块自斜面底端A 以初速度v 0=16m/s 沿足够长的固定斜面向上滑行,经时间t =2s 速度减为零.已知斜面的倾角θ=37°,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小; (2)物块滑动过程摩擦力大小; (3)物块下滑所用时间.【答案】(1)8m/s 2;(2)4N ;(3)s【解析】 【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得 由,解得=s6.如图所示,一段平直的马路上,一辆校车从一个红绿灯口由静止开始做匀加速直线运动,经36 m 速度达到43.2 km/h ;随后保持这一速度做匀速直线运动,经过20 s ,行驶到下一个路口时,司机发现前方信号灯为红灯便立即刹车,校车匀减速直线行驶36 m 后恰好停止.(1)求校车匀加速运动的加速度大小a 1;(2)若校车总质量为4 500 kg ,求校车刹车时所受的阻力大小; (3)若校车内坐有一质量为30 kg 的学生,求该学生在校车加速过程中座椅对学生的作用力F 的大小.(取g =10 m/s 2,结果可用根式表示)【答案】(1)22/m s (2)9000N (3)26N 【解析】 【分析】(1)根据匀加速运动的速度位移关系可求加速度;(2)根据匀减速运动的速度位移关系可求加速度;根据牛顿第二定律可求阻力; (3)座椅对学生的作用力的水平分力等于mg ,F 的竖直分力的竖直分力等于重力,水平分力提供加速度.根据力的合成可求. 【详解】(1)由匀加速直线运动公式可知v 2=2a 1x 1, 得加速度a 1=2 m/s 2(2)由匀减速直线运动公式得:0-v 2=-2a 2x 3 解得a 2=2 m/s 2 F 阻=Ma 2=9000 N.(3)匀加速运动过程中,座椅对学生的作用力为F ,F 的竖直分力等于mg ,F 的水平分力由牛顿第二定律可得F 水平=ma 1 F ()()221mg ma +得F =26 N.7.在水平力F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为6m ,随即撤掉F ,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求: (1)物块运动的最大速度; (2)F 的大小;(3)撤去F 后,物块克服摩擦力做的功 【答案】(1)6m/s (2)3.2N (3)7.2J 【解析】 【分析】(1)物块做匀加速直线运动,运动2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求F 的大小. (3)撤去F 后,根据动能定理求物块克服摩擦力做的功. 【详解】(1)物块运动2s 时速度最大.由运动学公式有:x= 2v t 可得物块运动的最大速度为:2266/2x v m s t ⨯=== (2)物块匀加速直线运动的加速度为:a=62vt==3m/s 2. 设物块所受的支持力为N ,摩擦力为f ,根据牛顿第二定律得:F-f=ma N-mg=0,又 f=μN 联立解得:F=3.2N(3)撤去F 后,根据动能定理得:-W f =0-12mv 2 可得物块克服摩擦力做的功为:W f =7.2J 【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去F 前后摩擦力的大小是变化的,但动摩擦因数不变.8.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==-所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x xt s v -== 汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322vv t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.9.如图所示,小孩子与冰车的总质量为20m kg =.大人用大小为20N ,方向与水平面的夹角37o θ=的恒力F 使冰车由静止开始沿水平冰面运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理牛顿运动定律的应用各地方试卷集合汇编及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ;(2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】【分析】【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中小球上升高度h 1=3l sin53°,物块下降高度h 2=2l机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T牛顿运动定律T ′–mg cos53°=ma 解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送带逆时针转动,运行速度v=1.0m/s。

已知木板与物块间动摩擦因数μ1=32,木板与传送带间的动摩擦因数μ2=3,取g=10m/s2,最大静摩擦力等于滑动摩擦力。

(1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m;(3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。

【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin2 mg mgα=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα==由于:sin m f mg α>所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a ='由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。

3.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离.【答案】(1)0.4(2)4kg ,0.1(3)8.125m【解析】【分析】【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N ,当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g F a M M Mμμμμ--+--+==+ 乙图知 114M = 12()94mg M m g M μμ--+=- 解得M = 4 kgμ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则 0111s v t a == 位移 21011112m 2x v t a t =-= M 的加速度大小2122()5m /s F mg M m g a Mμμ--+== 方向向左,M 的位移大小 22211 2.5m 2x a t == 此时M 的速度 2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离 2321311()()8.125m 2x v t t a t t =-+-=.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ;(3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间;(4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v =解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5v a t ∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m(3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为 24/2v v v m s +== 设滑块m 2的传送时间为t ,则有 6.5BC L t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .5.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。

一包货物以012m/s υ=的初速度从A 端滑上倾斜传送带,货物与传送带之间的动摩擦因数0.5μ=,且可将货物视为质点。

(g 取210m/s ,已知sin370.6︒=,cos370.8︒=)(1)货物刚滑上传送带时加速度为多大?(2)当货物的速度和传送带的速度相同时用了多少时间?这时货物相对于地面沿传送带方向运动了多远?(3)从货物滑上传送带开始计时,到货物再次滑回A 端共用了多少时间?【答案】(1)210m/s (2)1s 7m (3)()222s +【解析】【分析】由题意可知考查牛顿第二定律的应用,根据牛顿第二定律、运动学公式分析计算可得。

【详解】(1)设货物刚滑上传送带时加速度大小为1a ,货物相对传送带向上运动,所以货物受到的摩擦力沿传送带向下,货物受力如图所示。

根据牛顿第二定律得1sin f mg F ma θ+=cos 0N F mg θ-=又f N F F μ=,解得()21sin cos 10m/s a g θμθ=+=。

(2)货物速度从0υ减至与传送带速度υ相同所用时间0111t s a υυ-==-位移大小 220117m 2x a υυ-==-。

相关文档
最新文档