高考物理牛顿运动定律技巧(很有用)及练习题
3.高考物理复习专题 牛顿运动定律
高考物理专题复习 力和运动 牛顿运动定律1. 一斜面AB 长为5m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止释放,如图所示.斜面与物体间的动摩擦因数为63,求小物体下滑到斜面底端B 时的速度及所用时间.(g 取10 m/s 2)2. 如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L 1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L 2。
若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( )A .L 2<L 1B .L 2>L 1C .L 2=L 1D .由于A 、B 质量关系未知,故无法确定L 1、L 2的大小关系3.如图所示,在光滑的桌面上叠放着一质量为m A =2.0kg 的薄木板A 和质量为m B =3 kg 的金属块B .A 的长度L =2.0m .B 上有轻线绕过定滑轮与质量为m C =1.0 kg 的物块C 相连.B 与A 之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间t 后 B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g =10m/s 2).4.某人在地面上最多可举起60 kg 的物体,在竖直向上运动的电梯中可举起80 kg 的物体,则此电梯的加速度的大小、方向如何?电梯如何运动?(g =10 m/s 2)四、考点精炼1.手提一根不计质量的、下端挂有物体的弹簧上端,竖直向上作加速运动。
当手突然停止运动后的极短时间内,物体将 ( )A .立即处于静止状态B .向上作加速运动C .向上作匀速运动D .向上作减速运动2.如图所示,质量为m 的木块在推力F 作用下,沿竖直墙壁匀加速向上运动,F 与竖直方向的夹角为θ.已知木块与墙壁间的动摩擦因数为µ,则木块受到的滑动摩擦力大小是 ( )A .µmgB .F cos θ -mgC .F cos θ+mgD .µF sin θ3.倾角为θ的光滑斜面上有一质量为m 的滑块正在加速下滑,如图所示。
高考物理专题力学知识点之牛顿运动定律经典测试题及解析
高考物理专题力学知识点之牛顿运动定律经典测试题及解析一、选择题1.质量为m的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为a=13g,则f的大小是()A.f=13mg B.f=23mgC.f=mg D.f=43 mg2.下列关于超重和失重的说法中,正确的是()A.物体处于超重状态时,其重力增加了B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D.物体处于超重或失重状态时,其质量及受到的重力都没有变化3.下列单位中,不能..表示磁感应强度单位符号的是()A.T B.NA m⋅C.2kgA s⋅D.2N sC m⋅⋅4.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( )A.小球受木板的摩擦力一定沿斜面向上B.弹簧弹力不可能为34 mgC.小球可能受三个力作用D.木板对小球的作用力有可能小于小球的重力mg5.关于一对平衡力、作用力和反作用力,下列叙述正确的是()A.平衡力应是分别作用在两个不同物体上的力B.平衡力可以是同一种性质的力,也可以是不同性质的力C.作用力和反作用力可以不是同一种性质的力D.作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些6.2018 年 11 月 6 日,第十二届珠海航展开幕.如图为某一特技飞机的飞行轨迹,可见该飞机先俯冲再抬升,在空中画出了一个圆形轨迹,飞机飞行轨迹半径约为 200 米,速度约为300km/h.A .若飞机在空中定速巡航,则飞机的机械能保持不变.B .图中飞机飞行时,受到重力,空气作用力和向心力的作用C .图中飞机经过最低点时,驾驶员处于失重状态.D .图中飞机经过最低点时,座椅对驾驶员的支持力约为其重力的 4.5 倍.7.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A .B .C .D .8.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。
高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析
高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。
【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。
历年高考物理力学牛顿运动定律题型总结及解题方法
历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。
各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。
所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。
故选B。
2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。
若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。
高考物理计算题复习《用牛顿运动定律分析连接体问题》(解析版)
《用牛顿运动定律分析连接体问题》一、计算题1.如图所示,轻绳长,能承受最大拉力为10N。
静止在水平面上的A、B两个物体通过该轻绳相连,A的质量,B的质量。
A、B与水平面间的动摩擦因数都为,。
现用一逐渐增大的水平力F作用在B上,使A、B 向右运动,当F增大到某一值时,轻绳刚好被拉断取求绳刚被拉断时F的大小;若绳刚被拉断时,A、B的速度为,保持此时F大小不变,当A的速度恰好减为0时,A、B间距离为多少?2.如图所示,质量分别为2m和m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力与之比为多少?3.如图所示,水平地面有三个质量均为的小物块A、B、C,A、B间用一根轻绳水平相连。
一水平恒力F作用于A,使三物块以相同加速度运动一段时间后撤去F。
已知B与C之间的动摩擦因数,A和C与地面间的动摩擦因数,若最大静摩擦力等于滑动摩擦力,g取。
求:力F的最大值;从撤去F到三物块停止运行的过程中,B受到的摩擦力。
4.如图所示,A、B两个物体间用最大张力为200N的轻绳相连,,,在拉力F的作用下向上加速运动,为使轻绳不被拉断,F 的最大值是多少?取5.如图所示,木板B静止在水平桌面上,大小可以忽略的小物块A静止在B的右端。
已知A和B的质量均为,A与B及B与桌面间的动摩擦因数均为,取。
现给木板B施加一水平向右的恒定拉力F。
要使A、B以相同的加速度向右运动,求拉力的大小需要满足什么条件;若已知B的长度为,厚度不计,要使B相对于A运动,且A在整个过程中相对于地面的总距离超过4cm,求拉力需要满足什么条件。
6.如图所示,水平面上有一固定着轻质定滑轮O的木块A,它的上表面与水平面平行,它的右侧是一个倾角的斜面.放置在A上的物体B和物体C通过一轻质细绳相连,细绳的一部分与水平面平行,另一部分与斜面平行.现对A施加一水平向右的恒力F,使A、B、C恰好保持相对静止.已知A、B、C的质量均为m,重力加速度为g,不计一切摩擦,求恒力F的大小.7.如图所示,A,B两物块的质量分别为,,静止叠放在水平地面上,B间的动摩擦因数为,B与地面间的动摩擦因数为最大静摩擦力等于滑动摩擦力,重力加速度取。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =②物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。
高中物理牛顿运动定律技巧(很有用)及练习题及解析
高中物理牛顿运动定律技巧(很有用)及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
【高考真题】物理试题分项精析:专题07 牛顿第二定律的应用(含解析)
一、单项选择题1.【2015·上海·3】如图,鸟沿虚线斜向上加速飞行,空气对其作用力可能是()A .1FB .2FC .3FD .4F【答案】B【考点定位】牛顿第二定律.2.【2013·海南卷】一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小。
在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v 的变化情况是()A .a 和v 都始终增大B .a 和v 都先增大后减小C .a 先增大后减小,v 始终增大D .a 和v 都先减小后增大 【答案】C【解析】初始状态质点所受合力为零,当其中一个力的大小逐渐减小到零时,质点合力逐渐增大到最大,a 逐渐增大到最大,质点加速;当该力的大小再沿原方向逐渐恢复到原来的大小时,质点合力逐渐减小到零,a 逐渐减小到零,质点仍然加速。
可见,a 先增大后减小,由于a 和速度v 始终同向,质点一直加速,v 始终增大,故C 正确。
【考点定位】考查对牛顿第二定律及对速度时间关系的定性分析的理解。
3.【2011·福建卷】如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为1m 和2m 的物体A 和B 。
若滑轮有一定大小,质量为m 且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。
设细绳对A 和B 的拉力大小分别为1T 和2T ,已知下列四个关于1T 的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是()A.21112(2)2()m m m gTm m m+=++B.12112(2)4()m m m gTm m m+=++C.21112(4)2()m m m gTm m m+=++D.12112(4)4()m m m gTm m m+=++【答案】C【考点定位】牛顿第二定律.4.【2011·天津卷】如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力()A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小【答案】A【解析】A、B两物块叠放在一起共同向右做匀减速直线运动,对A、B整体根据牛顿第二定律有()A BA Bm m ga gm mμμ++==,然后隔离B,根据牛顿第二定律有AB B Bf m a m gμ==大小不变,物体B做速度方向向右的匀减速运动,故而加速度方向向左,摩擦力向左;【考点定位】牛顿第二定律5.【2012·安徽卷】如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一竖直向下的恒力F,则()A.物块可能匀速下滑B.物块仍以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑【答案】C【考点定位】考查力的分解、牛顿运动定律及其相关知识.6.【2011·北京卷】“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动。
高考物理带电粒子在电场中的运动技巧(很有用)及练习题及解析
高考物理带电粒子在电场中的运动技巧(很有用)及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。
已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .【答案】(1)2032W mv = (2)E 1=2034m qd υ E 2=2033m qdυ (3) E kB =20143m υ【解析】 【分析】(1)对粒子应用动能定理可以求出电场力做的功。
(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。
(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。
【详解】(1) 由题知:粒子在O 点动能为E ko =2012mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2032mv ;(2) 以O 为坐标原点,初速v 0方向为x 轴正向,建立直角坐标系xOy ,如图所示设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=21112a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。
高中物理牛顿运动定律的应用试题类型及其解题技巧含解析
【点睛】 本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上 的总时间,不是上滑时间.
2.如图甲所示,一倾角为 37°的传送带以恒定速度运行.现将一质量 m=1 kg 的小物体抛 上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方 向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:
22mgt2 1mgt2 mv mvB ,
可得 t2 0.2s ,v=2.4m/s
在撤掉
F
之前,二者的相对位移
x1
vB 2
t1
vA 2
t1
撤去
F
之后,二者的相对位移
x2
vB 2
v
t2
vA 2
v
t2
木板长度 L x1 x2 1.2m
(3)获得共同速度后,对木块,有
2mgxA
01 2mv2 Nhomakorabea解得:F0= 3 mg 2
(2)设经拉力 F 的最短时间为 t1,再经时间 t2 物块与木板达到共速,再经时间 t3 木板下 端到达 B 点,速度恰好减为零.
对木板,有:F−mgsinθ−μmgcosθ=ma1 mgsinθ+μmgcosθ=ma3 对物块,有:μmgcosθ−mgsinθ=ma2
对木板与物块整体,有 2mgsinθ=2ma4
根据牛顿第二定律得:
mgtanθ=ma 得 a=gtanθ=10×tan37°=7.5m/s2
m 受到支持力 FN
mg cos
20 N=25N cos 37
(2)设物块处于相对斜面向下滑动的临界状态时的推力为 F1,此时物块的受力如下图所示:
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高考物理牛顿运动定律的应用解题技巧及练习题(含答案)含解析
高考物理牛顿运动定律的应用解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.4.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1=mgsin mgcos mθμθ+=gsinθ+μgcosθa 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x 2=vt 1=10×1m=10m则相对位移的大小为:△x 1=x 2-x 1=5m则1-2s 内,物块的位移为:x 3=vt 2+12a 2t 22=10×1+12×2×1m =11m 0-2s 内物块向下的位移:L =x 1+x 3=5+11=16m物块下降的高度:h =L sin37°=16×0.6=9.6m物块机械能的变化量:△E =12m v B 2−mgh =12×2×122−2×10×9.6=-48J 负号表示机械能减小.5.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)23.6m 2v x a==(2)t=1s (3)121x x m +=【解析】 【分析】 【详解】试题分析:(1)225m /s a g μ==20 3.6m 2v x a==(2)对m :2125/a g m s μ==,对M :221()Ma mg m M g μμ=-+,221m /s a =012v a t a t -=t=1s(3)木板共速前先做匀加速运动2110.52x at m == 速度121m /s v a t ==以后木板与物块共同加速度a 3匀减速运动231/a g m s μ==,22310.52x vt a t m =+=X=121x x m +=考点:牛顿定律的综合应用6.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。
牛顿运动定律 匀变速直线运动(解析版)--新高考物理
牛顿运动定律 匀变速直线运动1.本专题是动力学方法的典型题型,包括动力学两类基本问题和应用动力学方法解决多运动过程问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动力学的考查仍然是热点。
2.通过本专题的复习,可以培养同学们的审题能力,分析和推理能力。
提高学生关键物理素养。
3.用到的相关知识有:匀变速直线运动规律,受力分析、牛顿运动定律等。
牛顿第二定律对于整个高中物理的串联作用起到至关重要的效果,是提高学生关键物理素养的重要知识点,因此在近几年的高考命题中动力学问题一直都是以压轴题的形式存在,其中包括对与高种常见的几种运动形式,以及对于图像问题的考查等,所以要求考生了解题型的知识点及要领,对于常考的模型要求有充分的认知。
考向一:有关牛顿第二定律的连接体问题1.处理连接体问题的方法:①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。
②当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。
2.处理连接体问题的步骤:3.特例:加速度不同的连接体的处理方法:①方法一(常用方法):可以采用隔离法,对隔离对象分别做受力分析、列方程。
②方法二(少用方法):可以采用整体法,具体做法如下:此时牛顿第二定律的形式:F 合x =m 1a 1x +m 2a 2x +m 3a 3x +⋯;F 合y =m 1a 1y +m 2a 2y +m 3a 3y +⋯说明:①F 合x 、F 合y 指的是整体在x 轴、y 轴所受的合外力,系统内力不能计算在内;②a 1x 、a 2x 、a 3x 、⋯⋯和a 1y 、a 2y 、a 3y 、⋯⋯指的是系统内每个物体在x 轴和y 轴上相对地面的加速度。
考向二:有关牛顿第二定律的动力学图像问题常见图像v t 图像、a t 图像、F t 图像、F a 图像三种类型(1)已知物体受到的力随时间变化的图线,求解物体的运动情况。
高考物理牛顿运动定律的应用真题汇编(含答案)含解析
高考物理牛顿运动定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ;(3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α= 斜面对木块的最大静摩擦力:13cos 4m f mg mg μα==由于:sin m f mg α>所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a ='由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律技巧(很有用)及练习题一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。
已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。
求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为0.8h m =。
在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不动,而货物继续运动,最后恰好落在光滑轨道上的B 点。
已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。
()1求货物从小车右端滑出时的速度;()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车的长度是多少?【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动,在竖直方向上:212h gt =, 水平方向:AB x l v t = 解得:3/x v m s =()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共,由能量守恒定律得:()2201122Q mgs mv m M v μ==-+共相对, 解得:6s m =相对,当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得:2211'22x mgs mv mv 共μ-=-, 解得:'0.7s m =,车的最小长度:故L ' 6.7s s m =+=相对;5.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '=解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.6.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x at ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.7.如图,光滑固定斜面上有一楔形物体A 。
A 的上表面水平,A 上放置一物块B 。
已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<),最大静擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平推力。
求:(1)物体A 、B 保持静止时,水平推力的大小F 1;(2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ;(3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。
【答案】(1)(2)(3)【解析】 【分析】先以AB 组成的整体为研究的对象,得出共同的加速度,然后以B 为研究的对象,结合牛顿第二定律和运动学公式联合求解,知道加速度是联系力学和运动学的桥梁。
【详解】(1) A 和B 整体处于平衡状态,则解得:; (2) A 和B 整体上滑过程由动能定理有解得:;(3) A 和B 间恰好不滑动时,设推力为F 0,上滑的加速度为a ,A 对B 的弹力为N 对A 和B 整体有对B 有:解得:则为使A 、B 在推力作用下能一起沿斜面上滑,推力应满足的条件8.如图所示,某货场而将质量为m 1="100" kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R="1.8" m .地面上紧靠轨道次排放两声完全相同的木板A 、B ,长度均为l=2m ,质量均为m 2="100" kg ,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g="10" m/s 2)(1)求货物到达圆轨道末端时对轨道的压力.(2)若货物滑上木板4时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件.(3)若μ1=0.5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间. 【答案】(1)3000N F N = (2)0.4<μ1<0.6 (3)t =0.4s 【解析】 【分析】 【详解】(1)设货物滑到圆轨道末端是的速度为V 0,对货物的下滑过程中根据机械能守恒定律得,21012mgR m v =① 设货物在轨道末端所受支持力的大小为F N ,根据牛顿第二定律得2011N v F m g m R-= ②联立以上两式代入数据得3000N F N = ③根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N ,方向竖直向下. (2)若滑上木板A 时,木板不动,由受力分析得μ1m 1g ⩽μ2(m 1+2m 2)g ④ 若滑上木板B 时,木板B 开始滑动,由受力分析得μ1m 1g >μ2(m 1+m 2)g ⑤ 联立④⑤式代入数据得0.4<μ1⩽0.6 ⑥. (3)当μ1=0.5时,由⑥式可知,货物在木板A 上滑动时,木板不动. 设货物在木板A 上做减速运动时的加速度大小为a 1, 由牛顿第二定律得μ1m 1g ⩽m 1a 1 ⑦ 设货物滑到木板A 末端是的速度为V 1,由运动学公式得V 12−V 02=−2a 1L ⑧ 联立①⑦⑧式代入数据得V 1=4m /s ⑨设在木板A 上运动的时间为t ,由运动学公式得V 1=V 0−a 1t ⑩ 联立①⑦⑨⑩式代入数据得t =0.4s9.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -== 汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.10.如图所示,在光滑的水平地面上,相距L=10 m的A、B两个小球均以v0=10 m/s向右运动,随后两球相继滑上倾角为30°的足够长的光滑斜坡,地面与斜坡平滑连接,取g=10 m/s2.求:A球滑上斜坡后经过多长时间两球相遇.【答案】2.5s【解析】试题分析:设A球滑上斜坡后经过t1时间B球再滑上斜坡,则有:1sA球滑上斜坡后加速度m/s2设此时A球向上运动的位移为,则m此时A球速度m/sB球滑上斜坡时,加速度与A相同,以A为参考系,B相对于A以m/s做匀速运动,设再经过时间它们相遇,有:s则相遇时间s考点:本题考查了运动学公式的应用。