第26章 二次函数 重庆市二十七中学单元试题(含答案)

合集下载

华东师大版2019-2020学年九年级数学第二学期第26章 二次函数单元测试题(含答案)

华东师大版2019-2020学年九年级数学第二学期第26章 二次函数单元测试题(含答案)

第26章二次函数一、选择题(本大题共6小题,每小题4分,共24分)1.下面的函数是二次函数的是( )A.y=3x+1B.y=x2+2xC.y=D.y=2.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式:h=-6(t-2)2+7,则小球距离地面的最大高度是( )A.2米B.5米C.6米D.7米3.下列关于函数y=-x2-1的图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标是(0,0);⑤当x>1时,y随x的增大而减小.其中正确的有( )A.1个B.2个C.3个D.4个4.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位,得到的新图象的顶点坐标是 ( )A.-,-B.,-C.,-D.-,-5.二次函数的图象如图1所示,则其表达式是 ( )A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-36.如图2,在Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系图象为下列选项中的( )图2图3二、填空题(本大题共6小题,每小题4分,共24分)7.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上的两点,该抛物线的顶点坐标是.8.如图4,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.9.已知二次函数y=ax2+bx+c(a,b,c是常数)的x与y的部分对应值如下表,则当x满足的条件是时,y=0;当x满足的条件是时,y>0.10.已知二次函数y=-x2+2x+m的部分图象如图5所示,则关于x的一元二次方程-x2+2x+m=0的解为.图511.某服装店购进单价为15元/件的童装若干件,销售一段时间后发现:当销售价为25元/件时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.12.如图6是抛物线y1=ax2+bx+c的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,有下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是.(只填写序号)图6三、解答题(本大题共4小题,共52分)13.(12分)如图7,已知二次函数y=ax2+bx+c的图象经过点A(-1,-1),B(0,2),C(1,3).(1)求该二次函数的关系式;(2)画出该二次函数的图象.图714.(12分)图8是抛物线形拱桥的剖面图,拱底宽12 m,拱高8 m.(1)请建立适当的平面直角坐标系,求出抛物线对应的函数关系式;(2)若设计警戒水位为6 m,当拱桥内水位达到警戒水位时,拱桥内的水面宽度是多少米?图815.(12分)已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位后,得到的函数的图象与x轴只有一个公共点?16.(16分)如图9所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,连结AD,P是线段AD上的一个动点(不与点A,D重合).经过点P作y轴的垂线,垂足为E,连结AE.(1)求抛物线所对应的函数关系式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连结EF,把△FPE沿直线EF折叠,点P的对应点为点P',求出点P'的坐标,并判断点P'是否在该抛物线上.图91. B2. D3. D4. C5. A6. D7.[答案] (1,4)8.[答案] (1+,2)或(1-,2)9.[答案] x=0或x=2 0<x<210.[答案] x1=-1,x2=311.[答案] 2212.[答案] ②⑤13.解:(1)根据题意,得,--,,解得-, , ,所以该二次函数的关系式为y=-x2+2x+2.(2)略.14.解:(1)答案不唯一,如建立如图所示的平面直角坐标系,则A(6,0),B(0,8).设抛物线的函数关系式为y=ax2+c.由题意,得,,解得-, ,∴抛物线对应的函数关系式为y=-x2+8.(2)将y=6代入y=-x2+8,得6=-x2+8,解得x=±3,∴拱桥内的水面宽度为6 m.答:当拱桥内水位达到警戒水位时,拱桥内的水面宽度是6 m.15.解:(1)证明:证法一:因为--4(m2+3)=-12<0,所以方程x2-2mx+m2+3=0没有实数根,所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.证法二:因为a=1>0,所以该函数的图象开口向上.又因为y=x2-2mx+m2+3=(x-m)2+3≥3,所以该函数的图象在x轴的上方,所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.(2)y=x2-2mx+m2+3=(x-m)2+3.把函数y=(x-m)2+3的图象沿y轴向下平移3个单位后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点.所以把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位后,得到的函数的图象与x轴只有一个公共点.16.解:(1)∵抛物线过点A(-3,0),B(1,0),∴设其函数关系式为y=a(x+3)(x-1).将点C的坐标代入关系式,得a=-1,即抛物线所对应的函数关系式为y=-(x+3)(x-1)=-x2-2x+3,顶点D的坐标为(-1,4).(2)如图①,过点A作AH⊥EP交EP的延长线于点H.∵A(-3,0),D(-1,4),∴直线AD所对应的函数关系式为y=2x+6,∴S=AH ·EP=-xy=-x(x+3)=-x+2+,自变量x 的取值范围是-3<x<-1.当x=-时,S 取得最大值,最大值为.(3)当S 取到最大值时,点P 的坐标为-,3,且点E 与点C 重合. 如图②所示,过点P'作x 轴的垂线交x 轴于点N,交PE 的延长线于点M.∵PE=1.5,PF=3,且△FPE ≌△FP'E, ∴P'F=PF=3,P'E=PE=1.5. 设点P'的坐标为(m,n),可得ME=m,MP'=3-n,NP'=n,NF=m+1.5. 易证△MEP'∽△NP'F,∴ '= ' = ' ' =.,即= -. =,解得m=0.9,n=1.8, ∴P'(0.9,1.8).当x=0.9时,y=-x2-2x+3=-0.81-1.8+3=0.39≠1.8, ∴点P'不在抛物线y=-x2-2x+3上.。

第26章 二次函数数学九年级下册-单元测试卷-华师大版(含答案)

第26章 二次函数数学九年级下册-单元测试卷-华师大版(含答案)

第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、一次函数与二次函数在同一直角坐标系中的图象可能是()A. B. C. D.2、在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2﹣m的图象可能是()A. B. C. D.3、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4 米B.5 米C.2 米D.7米4、将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是( )A.y=6(x-2)2+3B.y=6(x+2)2+3C.y=6(x-2)2-3 D.y=6(x+2)2-35、如图,一次函数与二次函数的图象相交于两点,则函数的图象可能为()A. B. C. D.6、已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的是()A.a>0,b<0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0 D.a<0,b>0,c>07、抛物线y=(x+2)2-1可以由抛物线y=x2平移得到,下列平移方法中正确的是( )A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位 D.先向右平移2个单位,再向下平移1个单位8、把抛物线向下平移个单位长度,再向右平移个单位长度,所得抛物线是()A. B. C. D.9、把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x 2+1B.y=(x+1)2C.y=x 2-1D.y=(x-1)210、抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)11、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<012、次函数y=(x+1)2+2的最小值是()A.1B.-1C.2D.-213、如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间(包含端点).有下列结论:①;②;③;④当时,,⑤.其中正确的有()A.2个B.3个C.4个D.5个14、已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 ……0 1 3 5 …y1x …﹣1 1 3 4 ……0 ﹣4 0 5 …y2当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>415、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图像恰好经过第一、二、四象限的概率为________.17、如图,在平面直角坐标系中,有五个点,将二次函数的图象记为W.下列的判断中①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是________.18、抛物线的顶点坐标为________.19、下列函数(其中n为常数,且n>1)① y=(x>0);② y=(n﹣1)x;③ y=(x>0);④ y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y 的值随 x 的值增大而增大的函数有________个.20、如图是二次函数图象的一部分,其对称轴为,且过点.下列说法:①;②;③;④若是抛物线上两点,则.其中说法正确的是________21、抛物线y=2(x+2)2+4的顶点坐标为________.22、如图,抛物线y=ax2+bx+c(a≠0)过点(-1,0)和点(0,-3),且顶点在第四象限.设m=a+b+c,则m的取值范围是________.23、若函数y=a(x﹣h)2+k的图象经过原点,最大值为8,且形状与抛物线y=2x2﹣2x+3相同,则此函数关系式________.24、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc>0;②a>b;③a ﹣b+c>0;④4ac﹣8a>b2,其中正确的是________(填序号)25、某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.则每周售出商品的利润(单位:元)与每件降价(单位:元)之间的函数关系式为________.(化成一般形式)三、解答题(共5题,共计25分)26、求二次函数y=x2+4x﹣5的最小值.27、已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.28、如图,是某座抛物线型的隧道示意图,已知路面AB宽24米,抛物线最高点C到路面AB的距离为8米,为保护来往车辆的安全,在该抛物线上距路面AB高为6米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(提示:以AB所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系)29、已知函数y=(m﹣2)x +2x﹣1是一个二次函数,求该二次函数的解析式.30、全球葵花籽产量约为4200万吨,比上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每kg的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、B5、B6、D7、B8、B10、C11、B12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

华东师大版九年级数学下册第26章 二次函数 单元测试试题(含答案)

华东师大版九年级数学下册第26章  二次函数   单元测试试题(含答案)

华东师大版九年级数学下册第26章 二次函数 单元测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =(x -2)2+7的顶点坐标是(B)A.(-2,7)B.(2,7)C.(-2,-7)D.(2,-7)2.下列各点不在抛物线y =-x 2+4x -1上的是(B)A.(-2,-13)B.(-1,-4)C.(-1,-6)D.(2,3)3.二次函数y =x 2+bx +c 的图象上有两点(3,4)和(-5,4),则此拋物线的对称轴是直线(A)A.x =-1B.x =1C.x =2D.x =34.顶点为(-5,0),且开口方向、形状与函数y =-13x 2的图象相同的抛物线是(C) A.y =13(x -5)2 B.y =-13x 2-5 C.y =-13(x +5)2 D.y =13(x +5)2 5.已知二次函数y =a(x -1)2+2,当x <1时,y 随x 的增大而增大,则a 的取值范围是(B)A.a >0B.a <0C.a≥0D.a≤06.对于函数y =-2(x -m)2-1的图象,下列说法中不正确的是(D)A.开口方向向下B.对称轴是直线x =mC.最大值是-1D.与y 轴不相交7.若二次函数y =x 2+2x +kb +1的图象与x 轴有两个交点,则一次函数y =kx +b 的大致图象可能是(A)8.如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1.将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…,如此进行下去,得到C n .若点P(2 019,m)在抛物线C n 上,则m 为(A)A.-1B.1C.2D.3二、填空题(每小题5分,共25分)9.二次函数y =x 2-4x +2的最小值为-2.10.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的函数表达式:y =x 2+1(答案不唯一).11.已知抛物线y =ax 2+bx +c(a >0)过A(-2,0),O(0,0),B(-3,y 1),C(3,y 2)四点,则y 1与y 2的大小关系是y 1<y 2.12.如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m ,宽为5 m ,抛物线的最高点C 离路面AA 1的距离为8 m ,过AA 1的中点O 建立如图所示的平面直角坐标系,则该抛物线的函数表达式为y =-112x 2+8.13.在平面直角坐标系xOy 中,若抛物线y =ax 2上的两点A ,B 满足OA =OB ,且tan∠OAB=12,则称线段AB 为该抛物线的通径.那么抛物线y =12x 2的通径长为2.三、解答题(共43分)14.(9分)已知抛物线y =-2x 2-4x +1.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.解:(1)y =-2x 2-4x +1=-2(x 2+2x +1)+2+1=-2(x +1)2+3,∴对称轴是直线x =-1,顶点坐标为(-1,3).(2)∵新顶点坐标为P(2,0),∴新抛物线的表达式为y=-2(x-2)2.∴平移过程为向右平移3个单位长度,向下平移3个单位长度.15.(10分)已知抛物线y=mx2-2mx-3.(1)若抛物线的顶点的纵坐标是-2,求此时m的值;(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标. 解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线的顶点的纵坐标是-2,∴-m-3=-2,解得m=-1,即m的值是-1.(2)∵当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m=1时,y=x2-2x-3;当m=2时,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴这两个定点为(0,-3)与(2,-3).16.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384 m2,求x的值;(3)求菜园的最大面积.解:(1)根据题意知,y =10 000-200x 2×150=-23x +1003. (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x=18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23(x -25)2+1 2503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.17.(12分)如图,抛物线y =ax 2+bx -3a 经过A(-1,0),C(0,-3)两点,与x 轴交于另一点B.(1)求此抛物线的表达式;(2)已知点D(m ,-m -1)在第四象限的抛物线上,求点D 关于直线BC 对称的点D′的坐标;(3)在(2)的条件下,连结BD.问在x 轴上是否存在点P ,使∠PCB=∠CBD?若存在,请求出P 点的坐标;若不存在,请说明理由.解:(1)将A(-1,0),C(0,-3)代入抛物线y =ax 2+bx -3a 中,得⎩⎪⎨⎪⎧a -b -3a =0,-3a =-3.解得⎩⎪⎨⎪⎧a =1,b =-2. ∴y=x 2-2x -3.(2)将点D(m ,-m -1)代入y =x 2-2x -3中,得 m 2-2m -3=-m -1.解得m =2或-1.∵点D(m ,-m -1)在第四象限,∴D(2,-3).∵B(3,0),C(0,-3),∴∠BCD=∠BCO=45°,CD′=CD =2,OD′=3-2=1. ∴点D 关于直线BC 对称的点D′的坐标为(0,-1).(3)存在.满足条件的点P 有两个.①过点C 作CP∥BD,交x 轴于点P ,则∠PCB=∠CBD. ∵直线BD 的表达式为y =3x -9,直线CP 过点C , ∴直线CP 的表达式为y =3x -3.∴点P 的坐标为(1,0);②连结BD′,过点C 作CP′∥BD′,交x 轴于点P′, 则∠P′CB=∠D′BC.根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD.∵直线BD′的表达式为y =13x -1,直线CP′过点C ,∴直线CP′的表达式为y =13x -3. ∴点P′的坐标为(9,0).综上所述,满足条件的点P 的坐标为(1,0)或(9,0).。

2020年春北师大版九年级下册第26章《二次函数》单元测试卷(含答案)精选试题及答案

2020年春北师大版九年级下册第26章《二次函数》单元测试卷(含答案)精选试题及答案

《二次函数》单元测试卷一.选择题1.下列各式中,y是x的二次函数的是()A.y=3x B.y=ax2+bx+c C.y=(x﹣1)2D.y=22.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.3.在平面直角坐标系中,二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0 B.b>0 C.a﹣b+c>0 D.a+b+c<0 4.把抛物线y=2x2+1先向右平移3个单位长度,再向下平移5个单位长度后,所得函数的表达式为()A.y=(2x﹣3)2﹣5 B.y=2(x﹣3)2﹣4C.y=2(x﹣3)2+6 D.y=2(x+3)2﹣45.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值66.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 7.如表格中是二次函数y=ax2+bx+c(a≠0)的自变量x与函数y的一些对应值,可以判断方程ax2+bx+c=﹣3(a≠0)的一个近似根是()x﹣1.1 ﹣1.2 ﹣1.3 ﹣1.4y=ax2+bx+c﹣2.75 ﹣2.86 ﹣3.13 ﹣3.28A.﹣1.1 B.﹣1.2 C.﹣1.3 D.﹣1.48.二次函数y=ax2+bx+c(a≠0)的图象如图所示,A(﹣1,3)是抛物线的顶点,则以下结论中正确的是()A.a<0,b>0,c>0B.2a+b=0C.当x<0时,y随x的增大而减小D.ax2+bx+c﹣3≤0二.填空题9.当m=时,y=(m+2)x m2﹣2是二次函数.10.抛物线y=﹣2x2+4x+1的顶点坐标是.11.点A(2,y1)、B(3,y2)在二次函数y=﹣x2﹣2x+c的图象上,则y1与y2的大小关系为y1y2(填“>”“<”或“=”).12.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为.13.如图,某大桥有一段抛物线型的拱梁,抛物线的表达式是y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.14.二次函数y=x2﹣6x﹣7与x轴的交点坐标是,与y轴的交点坐标是三.解答题15.已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)判断点B(1,4)是否在此抛物线上;(3)求出抛物线上纵坐标为﹣6的点的坐标.16.抛物线y=﹣x2+(m﹣1)x+m与y轴交点坐标是(0,3).(1)求出m的值;(2)求抛物线与x轴的交点;(3)当x取什么值时,y<0?17.已知二次函数y=x2+mx+m﹣2.(1)求证:无论m为任何实数,此函数图象与x轴总有两个交点;(2)若此函数图象与x轴的一个交点为(﹣3,0),求此函数图象与x轴的另一个交点坐标.18.某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示)(I)根据图象,求一次函数y=kx+b的解析式,并写出自变量x的取值范围;(Ⅱ)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?19.如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.参考答案一.选择题1.解:y=3x是一次函数,故A错误;当a=0时y=ax2+bx+c不是二次函数,故B错误;y=(x﹣1)2是二次函数,故C正确;y=2是常数函数,故D错误.故选:C.2.解:在y=(x+1)2﹣2中由a=1>0知抛物线的开口向上,故A错误;其对称轴为直线x=﹣1,在y轴的左侧,故B错误;由y=(x+1)2﹣2=x2+2x﹣1知抛物线与y轴的交点为(0,﹣1),在y轴的负半轴,故D 错误;故选:C.3.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0,∵x=﹣1时,y<0,∴a﹣b+c<0,∵x=1时,y>0,∴a+b+c>0,∴B正确,A,C,D错误,故选:B.4.解:抛物线y=2x2+1的顶点坐标为(0,1),点(0,1)先向右平移3个单位长度,再向下平移5个单位长度后所得对应点坐标为(3,﹣4),所以所得函数的表达式为y=2(x﹣3)2﹣4.故选:B.5.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.6.解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.7.解:由题意,得y=ax2+x+c+3对应的值x=﹣1.1,y=0.25;x=﹣1.2,y=0.14;x=﹣1.3,y=﹣0.13;x=﹣1.4,y=﹣0.28,由此可得x=﹣1.3时,y值更接近0,ax2+bx+c=﹣3(a≠0)的一个近似根是x=﹣1.3,故选:C.8.解:A、抛物线开口向下,则a<0,抛物线的对称轴为直线x=﹣=﹣1,则b=2a <0,抛物线与y轴的交点在x轴上方,则c>0,所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣1,则2a﹣b=0,所以B选项错误;C、当x>﹣1时,y随x的增大而减小,所以C选项错误;D、二次函数的最大值为﹣3,则y≤3,即ax2+bx+c﹣3≤0,所以D选项正确.故选:D.二.填空题(共6小题)9.解:由题意得:m2﹣2=2,且m+2≠0,解得:m=2,故答案为:2.10.解:∵a=﹣2,b=4,c=1,∴﹣=﹣=1,==3,∴顶点坐标(1,3),故答案为(1,3).11.解:当x=2时,y1=﹣x2﹣2x+c=﹣4﹣4+c=﹣8+c,当x=3时,y2=﹣x2﹣2x+c=﹣9﹣6+c=﹣15+c,所以y1>y2.故答案为>.12.解:由题意可得,y=(60﹣x)(300+20x),故答案为:y=(60﹣x)(300+20x).13.解:∵当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,∴其抛物线的对称轴为直线x=(8+28)÷2=18,故CO=36,则小强骑自行车通过拱梁部分的桥面OC共需36秒.故答案为:36.14.解:令y=0时,0=x2﹣6x﹣7解得:x1=7,x2=﹣1∴二次函数y=x2﹣6x﹣7与x轴的交点坐标是(7,0),(﹣1,0)令x=0时,y=﹣7∴二次函数y=x2﹣6x﹣7与y轴的交点坐标是(0,﹣7)故答案为:(7,0),(﹣1,0);(0,﹣7)三.解答题(共5小题)15.解:(1)把A(﹣2,﹣8)代入y=ax2得4a=﹣8,解得a=﹣2,所以此抛物线的函数解析式为y=﹣2x2;(2)当x=1时,y=﹣2x2=﹣2,所以点B(1,4)不在此抛物线上;(3)当y=﹣6时,﹣2x2=﹣6,解得x=±,所以抛物线上纵坐标为﹣6的点的坐标为(﹣,﹣6),(,﹣6).16.解:(1)把(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,即m的值为3;(2)抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以抛物线与x轴的交点坐标为(﹣1,0),(3,0);(3)当x<﹣1或x>3时,y<0.17.(1)证明:△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∵(m﹣2)2,≥0,∴△>0,,∴无论m为任何非零实数,此函数图象与x轴总有两个交点;(2)解:∵二次函数的图象与x轴的一个交点为(﹣3,0),∴(﹣3)2﹣3m+m﹣2=0,解得m=,∵二次函数的解析式为:y=x2+x+;当y=0时,x2+x+=0,解得:x1=﹣3,x2=﹣,∴抛物线与x轴的另一个交点坐标为(﹣,0),18.解:(Ⅰ)由函数的图象得:,解得:,∴所以y=﹣x+100(50≤x≤80);(Ⅱ)设每天获得的利润为W元,由(Ⅰ)得:W=(x﹣50)y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000=﹣(x﹣75)2+625,∵﹣1<0,∴当x=75时,W最大=625即该公司要想第天获得最大利润,应把销售单价为75元/件,最大利润为625元.19.解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.。

华东师大数学九年级下第26章二次函数单元测试题有答案

华东师大数学九年级下第26章二次函数单元测试题有答案

华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-32A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0.其中正确的是( )A .①②B .只有①C .③④D .①④9. 如图,坐标平面上,二次函数y =-x 2+4x -k 的图形与x 轴交于A ,B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1∶4,则k 值为何?( )A .1 B. 12 C. 43 D. 4510.如图,正方形ABCD 的边长为3 cm ,动点P 从B 点出发以3 cm /s 的速度沿着边BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发以1 cm /s 的速度沿着边BA 向A 点运动,到达A 点停止运动,设P 点运动时间为x(s ),△BPQ 的面积为y(cm 2),则y 关于x 的函数图象是( )二、填空题11.已知函数y =(m -1)xm 2+1+4x -3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm 的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________. 13.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是___________. 14.某学习小组为了探究函数y =x 2-|x|的图象和性质,根据以往学习函数的经验,列表x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y…20.75-0.25-0.25m2…15.如图,二次函数y =3x 2-3x 的图象经过△AOB 的三个顶点,其中A(-1,m),B(n ,n),直线AB 与y 轴交于点C ,则△AOB 的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高2.5 m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m <2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的表达式; (2)求二次函数图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况; (3)请直接写出当y 1>y 2时,自变量x 的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x 元,平均每天盈利y 元,试写出y 关于x 的函数表达式; (2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC 中,边BC 长为12,高AD 长为8.如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E ,F 分别在AB ,AC 边上,EF 交AD 于点K.(1)求EFAK的值;(2)设EH =x ,矩形EFGH 的面积为S.求S 与x 的函数表达式,并求S 的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m ,拱顶距离水面4 m . (1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m )时桥下水面的宽度为d(m ),试求d 与h 之间的函数关系式;(3)设正常水位时桥下的水深为2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ 的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC 二、11. (1,-1) 12. 9cm 2 13. k ≤4 14. 0.75 15. 2 16. 能 17. 2.3m 18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m ,0),且1<m <2,∴0<-b 2a<12,∴12+b 2a =a +b 2a>0,∴a +b >0,所以②的结论正确;∵点A(-3,y 1)到对称轴的距离比点B(3,y 2)到对称轴的距离远,∴y 1>y 2,所以③的结论错误;∵抛物线过点(-1,0),(m ,0),∴a -b +c =0,am 2+bm +c =0,∴am 2-a +bm +b =0,a(m +1)(m -1)+b(m+1)=0,∴a(m -1)+b =0,所以④的结论正确;∵4ac -b 24a <c ,而c ≤-1,∴4ac -b 24a<-1,∴b 2-4ac >4a ,所以⑤的结论错误三、19. 解:(1)y =x 2-5x +6 (2)∵抛物线的表达式y =x 2-5x +6,∴A(2,0),B(3,0),C(0,6),∴S △ABC =12×1×6=320. 解:(1)把(2,1)代入y =x 2-2x +c 得4-4+c =1,解得c =1,所以抛物线表达式为y =x 2-2x +1,顶点坐标为(1,0) (2)y =x 2-2x +1=(x -1)2,抛物线的对称轴为直线x =1,而新抛物线与x 轴交于A ,B 两点,AB =2,所以A(0,0),B(2,0),所以新抛物线的表达式为y =x(x -2),即y =x 2-2x21. 解:(1)m =-1,y 2=x 2-2x -3 (2)C(1,-4),当x ≤1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大 (3)-1<x <2 22. 解:(1)根据题意得y =(200+20x)(6-x)=-20x 2-80x +1200 (2)令y =-20x 2-80x +1200中y =960,则有960=-20x 2-80x +1200,即x 2+4x -12=0,解得x =-6(舍去)或x =2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EF AK =BC AD =32 (2)由(1)知EF 8-x =32,∴EF =12-32x ,∴S =EH ·EF =12x -32x 2=-32(x -4)2+24,当x =4时,S max =24 24. 解:(1)设抛物线所对应的表达式为y =ax 2,把(-10,-4)代入得y =-125x 2 (2)由(1)得y =-125x 2,将(d 2,-4+h)代入得-4+h =-125(d 2)2,求得d =104-h (3)当x =9时,y =-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m 时,就会影响船只在桥下顺利航行25. 解:(1)∵m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m|<|n|,∴m =-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。

华东师大版九年级下册数学 第26章二次函数 单元综合检测(含答案)

华东师大版九年级下册数学 第26章二次函数 单元综合检测(含答案)

第26章二次函数一、选择题1.下列函数中,是二次函数的为()A. y=ax3+x2+bx+c(a≠0)B. y=x2+C. y=(x+1)2﹣x2D. y=x(1﹣x)2.抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A. (﹣4,3)B. (﹣4,﹣3)C. (3,﹣4)D. (﹣3,﹣4)3.下列函数中有最小值的是()A. y=2x﹣1B. y=﹣C. y=2x2+3xD. y=﹣x2+14.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B. C. D.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y2>y3>y1D. y3>y1>y26.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( )A. x<2B. x>﹣3C. ﹣3<x<1D. x<﹣3或x>17. 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点8.将抛物线y=x2向左平移5个单位后得到的抛物线对应的函数解析式是()A. y=﹣x2+5B. y=x2﹣5C. y=(x﹣5)2D. y=(x+5)29.若抛物线y=x2-2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是( )A. 抛物线开口向上B. 抛物线的对称轴是x=1C. 当x=1时,y的最大值为﹣4D. 抛物线与x轴的交点为(-1,0),(3,0)10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有()A. ①②③B. ②③④C. ①②④D. ②④11.如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A. ①③B. ②③C. ②④D. ③④12.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…A n+1(x n+1,0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A. 或B. 或C. 或D.二、填空题13.二次函数y=﹣2x2+6x﹣5配成y=a(x﹣h)2+k的形式是________,其最大值是________.14.若函数y=mx2﹣2x+1的图象与x轴只有一个交点,则m=________.15.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是________ .16.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=________.17.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.18.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.19.点Q1(﹣2,q1),Q2(﹣3,q2)都在抛物线y=x2﹣2x+3上,则q1、q2的大小关系是:q1________q2.(用“>”、“<”或“=”)20.两个正方形的周长之和为20cm,其中一个正方形的边长是xcm,则这两个正方形的面积之和y(cm2)与x(cm)的函数关系式为________.21.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y= x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是________.22.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为________.三、解答题23.若y=(m2+m)是二次函数,求m的值.24.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.25.某景区商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了提高销售量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)如果这批旅游纪念品共获利1050元,那么第二周每个旅游纪念品的销售价格为多少元?(2)第二周每个旅游纪念品的销售价格为多少时,这批旅游纪念品利润最大?最大利润是多少?26.已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.参考答案一、选择题D D C A A C D D C B D B二、填空题13.y=﹣2(x﹣)2﹣;﹣14.0或115.(2,5)16.117.m>118.y=x2﹣2x+319.<20.y= 2x2﹣10x+2521.﹣2<k<22.15三、解答题23.解:若y=(m2+m)是二次函数,则m2﹣m=2,且m2+m≠0,故(m﹣2)(m+1)=0,m≠0,m≠﹣1,解得:m1=2,m2=﹣1,∴m=2.24.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.25.(1)解:由题意得:200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=1050,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1050,整理得:x2﹣2x﹣3=0,解得:x1=3,x2=﹣1依题意,0≤x≤6,∴x=310﹣x=10﹣3=7.答:第二周的销售价格为7元(2)解:设这批旅游纪念品的利润为y元,则y=200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=﹣50+100x+1200 (0≤x≤6)∵a=﹣50<0,∴当x=﹣=1(满足0≤x≤6)时,y有最大值,最大值是:=1250.这时,10﹣x=10﹣1=9答:第二周每个旅游纪念品的销售价格为9元时,这批旅游纪念品利润最大,最大利润是1250元26.(1)解:当x=0时,y=﹣3,∴D(0,﹣3).设抛物线的解析式为y=a(x﹣m)(x﹣6m).把点D和点A的坐标代入得:6am2=﹣3①,a(7﹣m)(7﹣6m)=﹣3②,∴a(7﹣m)(7﹣6m)=6am2.∵a≠0,∴(7﹣m)(7﹣6m)=m2.解得:m=1(2)解:∵6am2=﹣3,∴a=﹣=﹣.将a=﹣,m=1代入得:y=﹣x2+ x﹣3.∴抛物线的表达式为y=﹣x2+ x﹣3(3)解:如图所示:过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=﹣a﹣∵∠DQP=90°,∴∠PQO+∠OQD=90°.又∵∠ODQ+∠DQO=90°,∴∠PQE=∠ODQ.又∵∠PEQ=∠DOQ=90°,∴△ODQ∽△EQP.∴= = = ,即= = ,∴QE=6,PE=﹣2a.∴P的坐标为(a+6,﹣2a)将点P的坐标代入抛物线的解析式得:﹣(a+6)2+ (a+6)﹣3=﹣2a,整理得:a2+a=0,解得a=﹣1或a=0.当a=﹣1时,Q(﹣1,0),P(5,2);当a=0时,Q(0,0),P(6,0).综上所述,Q(﹣1,0),P(5,2)或者Q(0,0),P(6,0)。

华东师大版九年级数学下册 第26章 二次函数 单元测试题(有答案)

华东师大版九年级数学下册 第26章  二次函数 单元测试题(有答案)

第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。

九年级第26章《二次函数》测试题(含答案)

九年级第26章《二次函数》测试题(含答案)

第26章《二次函数》检测题(全卷共五个大题,满分150分,考试时间120分钟)抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、 选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷中相应的位置上.1.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大2、k 为任何实数,则抛物线y =2(x +k)2-k 的顶点在( )上A 、直线y=x 上,B 、直线y= -xC 、x 轴D 、y 轴3、0=+q p ,抛物线q px x y ++=2必过点( )A 、(-1,1)B 、(1,-1)C 、(-1,-1)D 、(1,1) 4、已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 15.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6、抛物线234y x x =--+与坐标轴的交点个数是( )A . 0B .1C . 2D . 37、若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =3 8.二次函数c bx ax y ++=2的图象如右上图所示,则abc ,ac b 42-,b a +2,cb a ++这四个式子中,值为正数的有( )A . 4个B .3个C .2个D .1个 9、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5 10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个卷相应位置的横线上.11:抛物线422-+=xxy的对称轴是________,顶点坐标是_________;12.已知二次函数2(0)y ax bx c a=++≠的顶点坐标(1, 3.2)--及部分图象(如图1所示),由图象可知关于x的一元二次方程20ax bx c++=的两个根分别是11.3x=和2x=。

中考数学复习(二次函数) 第27章 二次函数单元同步测试题(含答案)

中考数学复习(二次函数)  第27章 二次函数单元同步测试题(含答案)

第27章 二次函数单元同步测试题一、选择题1.在平面直角坐标系中,先将抛物线22-+=x x y 关于x 轴作轴对称变换,再将所得抛物线关于y 轴作轴对称变换,经过两次变换后所得的新抛物线解析式为( ) A .22+--=x x y B .22-+-=x x y C .22++-=x x y D .22++=x x y 2.若抛物线y =2x 2向左平移1个单位,则所得抛物线是( )A .y =2x 2+1B .y =2x 2-1C .y =2(x +1)2D .y =2(x -1)2 3.某校运动会上,某运动员掷铅球时,他所掷的铅球的高与水平的距离,则该运动员的成绩是( )A. 6mB. 10mC. 8mD. 12m 4.二次函数2y ax bx c =++(0a ≠)的图象如图所示,则正确的是( )A .a <0B .b <0C .c >0D .以答案上都不正确 5.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列条件正确的是( )A .ac <0 B.b 2 -4ac <0 C. b >0 D. a >0、b <0、c >06.抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧; ③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小. 从表中可知,下列说法正确的个数有( )xA .1个B .2个C .3个D .4个7.二次函数y =ax 2+bx +c 的图像如图所示,则关于此二次函数的下列四个结论①a <0②a >0③b 2-4ac >0④0<ab中,正确的结论有( ) A.1个 B.2个 C.3个 D.4个 8.抛物线y =322+-x x 与坐标轴交点为 ( ) A .二个交点 B .一个交点 C .无交点 D .三个交点 9.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 的值为A. 0B. -1C. 1D. 2 10.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。

华师大版九年级下册第26章二次函数单元考试题有答案(数学)

华师大版九年级下册第26章二次函数单元考试题有答案(数学)

华师大版九年级下册26章二次函数单元考试题姓名: ;成绩: ;一、选择题(每题4分,共48分)1、已知函数 y=(m+2)是二次函数,则m 等于( ) A .±2 B .2 C .﹣2 D .±12、图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A . y=﹣2x 2B .y=2x 2C .y=﹣x 2D . y=x 23、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A 、123y y y <<B 、213y y y <<C 、312y y y <<D 、132y y y <<4、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( )A. 0B. -1C. 1D. 2第4题 第6题 第9题5、下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6x <<C .6.18 6.19x << D .6.19 6.20x <<6、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图5所示,有下列4个结论:①0abc >;②b ac <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个7、若函数y=mx 2+(m+2)x+m+1的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣28、下列图形中阴影部分的面积相等的是( )A . ②③B .③④C .①②D . ①④9、如图,已知二次函数y=﹣x 2+2x ,当﹣1<x <a 时,y 随x 的增大而增大,则实数a 的取值范围是( )A . a >1B .﹣1<a ≤1C .a >0D . ﹣1<a <2 10、向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax 2+bx .若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A . 第9.5秒B .第10秒C .第10.5秒D . 第11秒11、如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .12、如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)13、如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为.第13题第14题第15题14、如图,抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.15、如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16、如图,将2个正方形并排组成矩形OABC,OA和OC分别落在x轴和y轴的正半轴上.正方形EFMN 的边EF落在线段CB上,过点M、N的二次函数的图象也过矩形的顶点B、C,若三个正方形边长均为1,则此二次函数的关系式为.17、二次函数y=x2+(2+k)x+2k与x轴交于A,B两点,其中点A是个定点,A,B分别在原点的两侧,且OA+OB=6,则直线y=kx+1与x轴的交点坐标为.18、已知有9张卡片,分别写有1到9这就个数字,将它们的背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,若数a使关于x不等式组有解,且使函数在的范围内y随着x的增大而增大,则这9个数中满足条件的a的值的概率是;三、解答题(6分+8分=14分)19、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标(1)y=x2-4x+5 (2) y=-3x2+2x-120、求下列函数的解析式(1)抛物线y=x2-2x-4向左平移5个单位长度,再向上平移3个单位长度;(2)抛物线经过点(2,0),(0,-2),(-2,3)三点。

新人教版26章 二次函数试题(含参考答案及评析)

新人教版26章 二次函数试题(含参考答案及评析)

新人教版九年级下第26章《二次函数》试题班级姓名得分一.选择题(共10小题)1.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()23.(2013•岳阳)二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c <0.其中正确的个数是()4.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()26.(2013•攀枝花)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( ).C D .7.(2013•南昌)若二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 18.(2013•牡丹江)抛物线y=ax 2+bx+c (a <0)如图所示,则关于x 的不等式ax 2+bx+c >0的解集是( )210.(2012•泰安)设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+a 上的三点,则y 1,y 2,y 3的二.填空题(共10小题)11.(2013•宿迁)若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 _________ .12.(2013•牡丹江)抛物线y=ax 2+bx+c (a ≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c= _________ .13.(2012•扬州)如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 _________ .14.(2012•新疆)当x= _________ 时,二次函数y=x 2+2x ﹣2有最小值.15.(2011•资阳)将抛物线y=2x2﹣1沿x轴向右平移3个单位后,与原抛物线交点的坐标为_________.16.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为_________.17.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为_________.18.(2008•青海)二次函数y=ax2+bx+c图象如图所示,则点A(b2﹣4ac,﹣)在第_________象限.19.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_________.20.(2007•黄石)二次函数y=a(x﹣1)2+bx+c(a≠0)的图象经过原点的条件是_________.三.解答题(共5小题)21.(2010•双鸭山)已知二次函数的图象经过点(0,3),(﹣3,0),(2,﹣5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(﹣2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.22.(2013•泉州)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.24.已知:二次函数的图象与一次函数y=4x﹣8的图象有两个公共点P(2,m)、Q(n,﹣8).如果抛物线的对称轴是x=﹣1,(1)求二次函数的解析式;(2)当x为何值时,y随x增大而增大,当x为何值时,抛物线在x轴上方.25.(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是_________,请说明理由;(2)如图2,已知D(,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?新人教版九年级下第26章《二次函数》试题参考答案与试题解析一.选择题(共10小题)1.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()>﹣23.(2013•岳阳)二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c <0.其中正确的个数是()=1=14.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()=26.(2013•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是().C D.y=(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x17.8.(2013•牡丹江)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()2,在对10.(2012•泰安)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的二.填空题(共10小题)11.(2013•宿迁)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.12.(2013•牡丹江)抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=﹣2.13.(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是1.CE=x(14.(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.15.(2011•资阳)将抛物线y=2x2﹣1沿x轴向右平移3个单位后,与原抛物线交点的坐标为(,).,解得,16.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为4.17.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.,即﹣=1,.18.(2008•青海)二次函数y=ax2+bx+c图象如图所示,则点A(b2﹣4ac,﹣)在第四象限.x=<,﹣)在第四象限.19.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为y=(20﹣2t)2.y=(20.(2007•黄石)二次函数y=a(x﹣1)2+bx+c(a≠0)的图象经过原点的条件是a+c=0.三.解答题(共5小题)21.(2010•双鸭山)已知二次函数的图象经过点(0,3),(﹣3,0),(2,﹣5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(﹣2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.;×22.(2013•泉州)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.,24.已知:二次函数的图象与一次函数y=4x﹣8的图象有两个公共点P(2,m)、Q(n,﹣8).如果抛物线的对称轴是x=﹣1,(1)求二次函数的解析式;(2)当x为何值时,y随x增大而增大,当x为何值时,抛物线在x轴上方.,得到﹣25.(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是正方形,请说明理由;(2)如图2,已知D(,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?,的坐标为(,﹣﹣2或。

华师大版初中数学九年级下册《第26章 二次函数》单元测试卷(含答案解析

华师大版初中数学九年级下册《第26章 二次函数》单元测试卷(含答案解析

华师大新版九年级下学期《第26章二次函数》单元测试卷一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=33.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.34.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y310.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0 11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.515.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2二.填空题(共15小题)16.当m=时,函数y=(m﹣4)x+3x是关于x的二次函数.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=,它的顶点坐标是.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△=.PAB三.解答题(共10小题)31.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?32.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.33.已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.34.已知抛物线y=ax2+bx+c,如图所示,直线x=﹣1是其对称轴,(1)确定a,b,c,△=b2﹣4ac的符号;(2)求证:a﹣b+c>0;(3)当x取何值时,y>0,当x取何值时y<0.35.已知点A(,3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.36.在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.37.某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.38.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.39.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图象;(3)当x为何值时,函数值y<0.40.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.华师大新版九年级下学期《第26章二次函数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.【点评】本题考查二次函数的定义.2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=3【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【解答】解:根据题意,得:a2﹣2a﹣1=2解得a=3或﹣1又因为a2+a≠0即a≠0或a≠﹣1所以a=3.故选:D.【点评】解题关键是掌握二次函数的定义.3.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.4.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个【分析】分别利用二次函数的对称性以及二次函数图象上点的坐标性质进而得出答案.【解答】解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.【点评】本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性,此题难度不大.6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小【分析】A、把m=﹣3代入[2m,1﹣m,﹣1﹣m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.【解答】解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m ≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.【点评】此题考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c >0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣3,y<0时,即9a﹣3b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×3得:12a+4c<0,即4(3a+c)<0又∵a<0,∴3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3【分析】二次函数抛物线向下,且对称轴为x=﹣1.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数y=﹣3x2﹣6x+12=﹣3(x+1)2+15,∴该二次函数的抛物线开口向下,且对称轴为:x=﹣1.∵点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,而三点横坐标离对称轴x=﹣1的距离按由近到远为:(﹣1,y1)、(﹣2,y2)、(2,y3),∴y1>y2>y3.故选:D.【点评】考查二次函数图象上点的坐标特征.10.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令﹣x2+x+2=0,解得(x+1)(﹣x+2)=0,x1=﹣1,x2=2.∵当自变量x取m时对应的值大于0,∴﹣1<m<2,∴m﹣3<﹣1;m+3>2;结合图象可知y1<0、y2<0,故选:B.【点评】此题考查了二次函数的性质,不等式的性质,解一元二次方程.有需要一定分析能力,需要通过解一元二次方程得到二次函数图象与x轴的交点,再结合图象确定m﹣3、m+3的范围从而得到y1、y2的取值范围,需要具备较强的分析能力11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.【点评】考查二次函数图象平移的性质.12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.5【分析】首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值求出即可.【解答】解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,∴m,n,k最小为0,当n=0时,k最大为:,∴0≤k,∵2k2﹣8k+6=2(k﹣2)2﹣2,∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.故选:D.【点评】此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值是解题关键.15.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.二.填空题(共15小题)16.当m=1时,函数y=(m﹣4)x+3x是关于x的二次函数.【分析】根据二次函数的定义即可得.【解答】解:∵函数y=(m﹣4)x+3x是关于x的二次函数,∴m2﹣5m+6=2且m﹣4≠0,解得:m=1,故答案为:1.【点评】本题主要考查二次函数的定义,掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是关键.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为2π.【分析】根据二次函数的对称性得出图中阴影部分的面积为半圆面积,进而求出即可.【解答】解:如图所示:图中阴影部分的面积为半圆面积,∵⊙O的半径为2,∴图中阴影部分的面积为:π×22=2π.故答案为:2π.【点评】此题主要考查了二次函数对称性以及圆的面积公式,正确转化阴影部分面积是解题关键.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为1.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.【点评】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x轴上的两点之间的距离的知识,解答本题的关键是求出点A的坐标,此题难度不大.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y <0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为y1<y2.【分析】分别计算出自变量为﹣4,﹣3时的函数值,然后比较函数值得大小即可.【解答】解:把A(﹣4,y1),B(﹣3,y2)分别代入y=﹣2(x+2)2得y1=﹣2(x+2)2=﹣8,y2=﹣2(x+2)2=﹣2,所以y1<y2.故答案为y1<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣x2﹣4x﹣4.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣(x+2)2,即y=﹣x2﹣4x﹣4.故答案为:y=﹣x2﹣4x﹣4.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2四边形EFGH(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S关于t的函数关系式是解题的关键.四边形EFGH23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为±6.【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解.【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴上,∴顶点的纵坐标为零,即y===0,解得b=±6.【点评】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=(x+3)2﹣5,它的顶点坐标是(﹣3,﹣5).【分析】直接利用配方法求出二次函数顶点坐标即可.【解答】解:y=x2+6x+4=(x2+6x+9)﹣9+4=(x+3)2﹣5,它的顶点坐标是:(﹣3,﹣5).故答案为:(x+3)2﹣5,(﹣3,﹣5).【点评】此题主要考查了配方法求二次函数的顶点坐标,正确进行配方得出是解题关键.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是x1=﹣4,x2=0.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性求出y 值等于﹣2的自变量x的值即可.【解答】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2,∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=﹣2的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是﹣3<x<.【分析】根据1≤m≤3,得出两个不等式:当m=3时,x2+3x﹣6<0;当m=1时,x2+x﹣6=0;根据y<0,分别解不等式x2+3x﹣6<0,x2+x﹣6<0,可求实数x 的取值范围.【解答】解:∵1≤m≤3,y<0,∴当m=3时,x2+3x﹣6<0,由y=x2+3x﹣6<0,得<x<;当m=1时,x2+x﹣6<0,由y=x2+x﹣6<0,得﹣3<x<2.∴实数x的取值范围为:﹣3<x<.故本题答案为:﹣3<x<.【点评】本题考查了用二次函数的方法求自变量x的取值范围.关键是分类列不等式,分别解不等式.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为x<3或x>5.【分析】直接利用函数图象即可得出结论.【解答】解:∵由函数图象可知,当x<1或x>3时,函数图象在x轴的下方,∴函数y=a(x﹣2)2+b(x﹣2)+c的图象与x轴的交点为3,5,∴不等式a(x﹣2)2+b(x﹣2)+c<0<0的解集为x<3或x>5.故答案为:x<3或x>5.【点评】本题考查的是二次函数与不等式组,能根据题意利用数形结合求出不等式的解集是解答此题的关键.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是y=10(x+1)2.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)2【点评】此题考查了根据实际问题列二次函数关系式,弄清题意是解本题的关键.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.【点评】本题涉及二次函数的实际应用,难度中等.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△PAB= 8.【分析】根据函数解析式,可以分别求出与x轴的两个交点,以及顶点坐标,利用三角形面积公式即可解答.【解答】解:将二次函数y=﹣x2+2x+3化为y=﹣(x﹣3)(x+1),已知二次函数与x轴交于A、B两点,故x1=3,x2=﹣1.将一般式化为顶点式为y=﹣(x﹣1)2+4,得出顶点坐标P为(1,4)=×4×4=8.故S△PAB【点评】本题考查的是二次函数的顶点式以及交点式的函数式以及三角形面积的。

华师大九年级下《第26章二次函数》单元检测试卷(含答案解析)

华师大九年级下《第26章二次函数》单元检测试卷(含答案解析)

华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数化为ℎ的形式,结果为( )A. B. C. D.2.把抛物线向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. B. C. D.3.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P 的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. B. C. D.8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。

B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。

C. 圆的面积S与圆的半径r之间的关系。

D. 正方形的周长C与边长a之间的关系。

9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线的对称轴是直线,则的值为________.14.将函数所在的坐标系先向左平移个单位再向下平移个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣x2+x+2,则大力同学投掷标枪的成绩是________m.18.已知点和点是抛物线图象上的两点,则=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数的部分图像如图所示,图像过点,对称轴为直线,下列结论:(1);(2);(3)若点、点、点在该函数图像上,则;(4)若方程的两根为和,且,则.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关系为y=-x2+3x+2.问:小球能达到的最大高度是多少?25.(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE 的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?28.如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当∠∠时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线先向右平移1个单位所得抛物线的解析式为,抛物线再向上平移3个单位所得抛物线的解析式为,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。

中考数学复习(二次函数) 第27章 二次函数单元测试卷(二)及答案

中考数学复习(二次函数)  第27章 二次函数单元测试卷(二)及答案

第27章 二次函数单元测试卷(一)(考试时间:60分钟,满分:100分)班级: 姓名: 成绩:一、精心选一选(每题3分,共21分)1、下列各式中,y 是x 的二次函数的是 ( )A .21xy = B .12+=x y C . 22-+=x x y D . x x y 322+= 2.已知点(2,8)在抛物线2ax y =上,则a 的值为( )A 、±2B 、±22C 、2D 、-23.下抛物线5)3(-22+-=x y 的开口方向、对称轴、顶点坐标分别是( ) A、开口向上;x=-3;(-3,5);B 、开口向下;x=3;(3,5)C 、开口向下;x=3;(-3,-5);D 、开口向下;x=-3;(3,-5)4.对于2)3(22+-=x y 的图象下列叙述正确的是( )A 、顶点坐标为(-3,2)B 、当3≥x 时y 随x 增大而减小C 、当x =3时,y 有最大值2D 、对称轴为直线x =35.抛物线122+-=x x y 的图象与x 轴交点为( )A . 二个交点B . 一个交点C .无交点D . 不能确定 6、若二次函数)2(m 2-++=m m x x y 的图象经过原点,则m 的值必为( )A . 0或2B . 0C . 2D .无法确定7、二次函数y =x 2+4x +a 的最小值是2,则a 的值是( )A 、3B 、4C 、5D 、6二、细心填一填(每题4分,共40分)8、若22)2(--=m x m y 是二次函数,则m = 。

9、抛物线23212-+=x x y 的最低点坐标是 ,当x 时,y 随x 的增大而增大。

10、已知抛物线c x ax y ++=2与x 轴交点的横坐标为 -1,则c a += 。

11、已知抛物线m x x y +-=422的顶点在x 轴上,则m 的值是 。

12、抛物线2x y -=向右平移1个单位,再向上平移2个单位得到 。

13、方程ax 2+bx +c =0的两根为-3,1则抛物线y =ax 2+bx +c 的对称轴是直线_____。

2020-2021学年九年级数学华东师大版下册《第26章 二次函数》单元测试卷(有答案)

2020-2021学年九年级数学华东师大版下册《第26章 二次函数》单元测试卷(有答案)

2020-2021学年华东师大新版九年级下册数学《第26章二次函数》单元测试卷一.选择题1.下列各式中,y是关于x的二次函数的是()A.x2y+x=1B.x2﹣xy=5C.y2=x2+2D.x2+y+2=02.对于二次函数y=3x2,y=﹣3x2和y=x2,下列说法中正确的是()A.开口都向上,且都关于y轴对称B.开口都向上,且都关于x轴对称C.顶点都是原点,且都关于y轴对称D.顶点都是原点,且都关于x轴对称3.在同一坐标系中,作y=2x2+2、y=﹣2x2、y=2x2的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对4.已知二次函数y=x2+kx﹣12的图象向右平移4个单位长度后,所得新的图象过原点,则k的值是()A.4B.3C.2D.15.形状与抛物线y=﹣x2﹣2相同,对称轴是x=﹣2,且过点(0,3)的抛物线是()A.y=x2+4x+3B.y=﹣x2﹣4x+3C.y=﹣x2+4x+3D.y=x2+4x+3或y=﹣x2﹣4x+36.二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)7.一名男同学推铅球时,铅球行进中离地的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+x+,那么铅球推出后落地时距出手地的距离是()A.m B.4 m C.8 m D.10 m8.若二次函数y=ax2+bx+c(a≠0)的图象如图所示.则实数a,b,c的大小关系是()A.b>c>a B.a>b>c C.b>a>c D.a>c>b9.已知函数y=x2﹣2x+k的图象经过点(,y1),(,y2),则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.二次函数y=ax2+(2a﹣1)x+a+的图象与x轴有两个交点,则a应为()A.a>B.a<且a≠0C.0<a<D.以上都不对二.填空题11.二次函数y=ax2+bx+c的函数值恒为负应满足的条件是.12.二次函数y=ax2+bx+c(a>0)的图象是,它的顶点坐标是,对称轴是.13.利用函数图象求得方程x2+x﹣12=0的解是x1=,x2=.14.抛物线y=kx2+2x﹣5与x轴两个交点的横坐标之和为6,则它们的积为.15.将y=(2x﹣1)(x+2)+1化成y=a(x+m)2+n的形式为.16.已知y=n是二次函数,则n的值为.17.已知二次函数y=x2﹣2x﹣8的图象与x轴交于A、B两点,与y轴交于C点,则△ABC 的面积为.18.周长为16cm的矩形的最大面积为.19.已知函数①y=x2+1,②y=﹣2x2+x.函数(填序号)有最小值,当x=时,该函数的最小值是.20.抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.三.解答题21.画出函数y=﹣x2+2x+3的图象,观察图象说明:当x取何值时,y<0,当x取何值时,y>0.22.抛物线y=ax2+bx+c经过点(﹣1,0),(3,0)(0,﹣3),求它的开口方向、对称轴和顶点坐标,并画出草图.23.某商店购进了一种小商品,每件进价为2元.经市场预测,销售定价为3元时,可售出200件;现为了减少库存,商店决定采取适当降价措施.经调查发现,销售定价每降低0.1元时,销售量将增多40件.(1)商店若希望获利224元,则应该降价多少元?(2)商店若要获得最大利润,应降价多少元?最大利润是多少?24.若函数y=(m﹣4)是二次函数,求m的值.25.二次函数y=ax2+bx+c(a≠0)的图象如下图所示,根据图象回答问题:(1)函数值y有最值为2.(2)方程ax2+bx+c=0的两个根是.(3)不等式ax2+bx+c>0的解集是.(4)y随x的增大而减小的自变量x的取值范围是.(5)若自变量x满足:﹣3≤x≤1,则对应的函数值中,最大值为:.26.对于抛物线y=x2+bx+c,给出以下陈述:①它的对称轴为x=2;②它与x轴有两个交点为A、B;③△APB的面积不小于27(P为抛物线的顶点).求①、②、③得以同时成立时,常数b、c的取值范围.27.已知二次函数y=﹣2x2,怎样平移这个函数的图象,才能使它经过(0,1)和(1,3)两点?写出平移后的函数解析式.参考答案与试题解析一.选择题1.解:A、整理后,不符合二次函数的一般形式,错误;B、整理后,不符合二次函数的一般形式,错误;C、这里,y的指数是2,不是函数,错误;D、整理为y=﹣x2﹣2,是二次函数,正确.故选:D.2.解:在函数y=3x2,y=﹣3x2和y=x2,中,a取值范围分别为:a=3>0,a=﹣3<0,a=>0,∴抛物线的开口方向分别为:向上、向下、向上;由函数y=3x2,y=﹣3x2和y=x2,的解析式可知:顶点坐标都为(0,0),对称轴x =0;∴他们共同的特点是都关于y轴对称,抛物线的顶点都是原点.故选:C.3.解:观察三个二次函数解析式可知,一次项系数都为0,故对称轴x=﹣=0,对称轴为y轴,都关于y轴对称.故选:A.4.解:∵y=x2+kx﹣12=(x+k)2﹣12﹣,∴抛物线y=(x+k)2﹣12﹣向右平移4个单位长度后所得的新抛物线的解析式为y=(x+k﹣4)2﹣12﹣,把(0,0)代入得(0+k﹣4)2﹣12﹣=0,解得k=1.故选:D.5.解:设所求抛物线的函数关系式为y=ax2+bx+c,由抛物线过点(0,3),可得:c=3,由抛物线形状与y=﹣x2﹣2相同,分为两种情况:①开口向下,则a<0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b<0,由此可得出B选项符合题意.②开口向下,则a>0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b>0,由此可得出A选项符合题意,综合上述,符合条件的是选项D,故选:D.6.解:根据一元二次方程的一般形式的概念知,应为y=ax2+bx+c(a≠0,a、b、c为常数),故选:B.7.解:当y=0时,﹣x2+x+=0,整理得:x2﹣8x﹣20=0,解得:x=10,x=﹣2(不合题意,舍去),故x=10,即铅球推出后落地时距出手地的距离是10米.故选:D.8.解:∵图象开口向上,经过原点,对称轴在y轴右侧,∴a>0,c=0,﹣=1,∴b=﹣2a<0,∴a>c>b,故选:D.9.解:∵对称轴为x=﹣=1,∴点(,y1)的对称点的横坐标为,即称点坐标为(,y2),∴y1=y2.故选:B.10.解:∵二次函数y=ax2+(2a﹣1)x+a+的图象与x轴有两个交点,∴b2﹣4ac=(2a﹣1)2﹣4×a×(a+)=4a2+1﹣4a﹣4a2﹣6a=1﹣10a>0,∴a<且a≠0,故选:B.二.填空题11.解:根据题意作图如下,从图中可以看出二次函数y=ax2+bx+c的函数值恒为负的条件a<0并且b2﹣4ac<0.故答案为a<0并且b2﹣4ac<0.12.解:二次函数y=ax2+bx+c(a>0)的图象是抛物线,y=ax2+bx+c=a(x+)2+故答案为:抛物线直线x=13.解:∵方程x2+x﹣12=0的解就是函数y=x2+x﹣12的图象与x轴的交点的横坐标,而y=x2+x﹣12的图象如图所示:∴y=x2+x﹣12的图象与x轴的交点坐标为(﹣4,0)、(3,0),∴方程x2+x﹣12=0的解是x1=﹣4,x2=3.14.解:令y=0,得方程=kx2+2x﹣5=0,设方程的根为x1,x2,∵抛物线y=kx2+2x﹣5与x轴两个交点的横坐标之和为6,∴x1+x2=﹣=6,∴k=﹣,∴x1x2==15,故答案为15.15.解:y=(2x﹣1)(x+2)+1,=2x2+3x﹣1,=2(x2+x+)﹣﹣1,=2(x+)2﹣.16.解:根据题意得:,解得n=±2.17.解:根据二次函数y=x2﹣2x﹣8,可得A、B两点的横坐标为﹣2,4;C的纵坐标为﹣8;则△ABC的面积为×8×6=24.18.解:设矩形的一边长为xcm,所以另一边长为(8﹣x)cm,其面积为s=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,∴由以上函数图象得:周长为16cm的矩形的最大面积为16.19.解:①y=x2+1中a=1>0,有最小值,其顶点坐标为(0,1),当x=0时,该函数的最小值是1.②y=﹣2x2+x中a=﹣2<0,有最大值.20.解:由a:b:c=l:2:3,得b=2a,c=3a,根据顶点纵坐标公式,得=6,即=6,解得a=3,故b=2a=6,c=3a=9,∴抛物线解析式为y=3x2+6x+9.三.解答题21.解:∵y=﹣x2+2x+3,=﹣(x﹣1)2+4,∴开口方向向下,对称轴x=1,顶点坐标(1,4),令x=0得:y=3,∴与y轴交点坐标(0,3),令y=0得:﹣x2+2x+3=0,∴x1=1 x2=3,∴与x轴交点坐标(﹣1,0),(3,0),作出函数如图所示的图象,由图象可以看出:当x<﹣1或x>3时,y<0;当﹣1<x<3时,y>0.22.解:解法一:把(﹣1,0),(3,0),(0,﹣3),代入y=ax2+bx+c,得:,解得:,则函数解析式为y=x2﹣2x﹣3,即y=(x﹣1)2﹣4,∴开口向上,对称轴为x=1,顶点坐标为(1,﹣4);解法二:设函数的解析式为y=a(x+1)(x﹣3),把(0,﹣3)代入得函数的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3,写成顶点式y=(x﹣1)2﹣4,∴开口向上,对称轴为x=1,顶点坐标为(1,﹣4).草图为:23.解:(1)设每件小商品应该降价x元,则可售出(200+400x)件,依题意,得:(3﹣2﹣x)(200+400x)=224,整理,得:2x2﹣x+0.12=0,解得:x1=0.3,x2=0.2,∵为了减少库存,∴x=0.3,答:商店若希望获利224元,则应该降价0.3元;(2)设每件应降价y元,利润为w元,w=(3﹣2﹣y)(200+400y)=﹣400y2+200y+200=﹣400(y﹣0.25)2+225,∴当y=0.25时,w取得最大值,此时w=225,即商店若要获得最大利润,应降价0.25元,最大利润是225元.24.解:根据题意得:,解得:,∴m=﹣1或m=.25.解:(1)由图象可得,二次函数的开口向下,则函数值y有最大值;(2)由于图象与x轴有两个交点分别为(1,0)、(3,0),则两个根为x1=1,x2=3;(3)函数图象在x轴上方时x的取值范围即为不等式的解集,则1<x<3;(4)由于对称轴为x=2,且开口方向向下,所以y随x的增大而减小的自变量x的取值范围是x>2;(5)由于﹣3≤x≤1,y随x的增大而增大,则在x=1时取得最大值0.26.解:∵抛物线y=x2+bx+c=(x+)2+,抛物线y=x2+bx+c的对称轴为x=2,∴﹣=2,则b=﹣4,∴P点的纵坐标是=c﹣4,又∵它与x轴有两个交点为A、B,∴△=b2﹣4ac=16﹣4c>0,且AB===2解得c<4,①又△APB的面积不小于27,∴×2×|c﹣4|≥27,即×|c﹣4|≥27②由①②解得c≤﹣5.综上所述,b的值是﹣4,c的取值范围是c≤﹣5.27.解:设y=﹣2x2+bx+c,把(0,1)(1,3)代入,得c=1,﹣2+b+c=3,解得b=4.∴平移后的函数解析式为y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(1,3).∴将原二次函数y=﹣2x2先向右平移1个单位,再向上平移3个单位,可得y=﹣2x2+4x+1的图象.。

2020-2021学年华东师大 版九年级下册《第26章 二次函数》单元测试卷(有答案)

2020-2021学年华东师大 版九年级下册《第26章 二次函数》单元测试卷(有答案)

2020-2021学年华东师大新版九年级下册《第26章二次函数》单元测试卷一.选择题1.下列函数中,是二次函数的是()A.y=B.y=﹣1C.y=﹣2x﹣1D.y=x(x2﹣1)2.与抛物线y=x2﹣3x﹣5的形状、大小、开口方向都相同,只是位置不同的抛物线是()A.y=x2+x﹣B.y=x2﹣7x+8C.y=x2+6x+10D.y=﹣x2+3x﹣53.已知二次函数y=ax2+bx+c(a≠0),给出下列四个判断:(1)a>0;(2)2a+b=0;(3)b2﹣4ac>0;(4)a+b+c<0;以其中三个判断为条件,余下一个判断作结论,其中真命题的个数有()A.1 个B.2 个C.3 个D.4 个4.在二次函数y=x2﹣3x﹣2的图象上的点是()A.(1,1)B.(0,2)C.(2,﹣4)D.(﹣1,3)5.形状与抛物线y=﹣x2﹣2相同,对称轴是x=﹣2,且过点(0,3)的抛物线是()A.y=x2+4x+3B.y=﹣x2﹣4x+3C.y=﹣x2+4x+3D.y=x2+4x+3或y=﹣x2﹣4x+36.二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)7.二次函数y=x2﹣x﹣2的图象如图所示,则不等式x2﹣x﹣2<0的解集是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>2 8.对于抛物线y=x2和y=﹣x2在同一坐标系里的位置,下列说法错误的是()A.两条抛物线关于x轴对称B.两条抛物线关于原点对称C.两条抛物线关于y轴对称D.两条抛物线的交点为原点9.二次函数y=﹣x2+2x+3与x轴交于A、B两点,它的顶点为C,则△ABC的面积为()A.2B.4C.8D.1610.如图所示,在直角坐标系中,函数y=﹣3x与y=x2﹣1的图象大致是()A.B.C.D.二.填空题11.请将函数y=x2+2x+1写成y=a(x﹣h)2+k的形式为.12.某物体从上午7时至下午4时的温度m(℃)是时间t(时)的函数:m=t2﹣5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.13.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象交于点A(﹣1,4),B(6,2)(如图所示),则能使y1>y2成立的x的取值范围是.14.函数y=x2﹣4x+m有最小值为3,则m=.15.将二次函数y=(x﹣2)2+3的图象先向右平移1个单位,再向下平移2个单位,所得二次函数的解析式为.16.抛物线y=x2﹣4x+c的图象上有三点(﹣1,y1),(2,y2),(3,y3),则y1、y2、y3之间用“<”连接为.17.若二次函数y=2x2﹣bx+3的图象的对称轴是过点(1,0),且与y轴平行的直线,则b 的值为.18.已知二次函数y=x2﹣2x﹣8的图象与x轴交于A、B两点,与y轴交于C点,则△ABC 的面积为.19.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数.请你写出满足上述全部特点的一个二次函数表达式.20.若抛物线的对称轴是x=1,函数有最大值为4,且过点(0,3),则其解析式为.三.解答题21.已知二次函数y=﹣x2+x+2.(1)求函数图象的开口方向,顶点坐标及对称轴;(2)画出函数的图象;(3)由图象回答:当x为何值时,y<0;当x为何值时,y>0.22.画出函数y=﹣x2+2x+3的图象,观察图象说明:当x取何值时,y<0,当x取何值时,y>0.23.填表并解答下列问题:x…﹣1012…y1=2x+3…y2=x2…(1)填表后发现:当x从﹣1开始增大时,预测哪一个函数的值先到达16.(2)请你编拟一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编拟的函数表达式是什么?24.某厂要制造能装250mL(1mL=1cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.25.若函数y=(m﹣4)是二次函数,求m的值.26.有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为﹣2,0,1时,相应的输出值分别为5,﹣3,﹣4.1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.参考答案与试题解析一.选择题1.解:A、不是整式的形式,错误;B、是二次函数,正确;C、是一次函数,错误;D、y=x3﹣x不是二次函数,错误.故选:B.2.解:∵抛物线y=﹣x2﹣3x﹣5,∴a=﹣,开口向下,∴与其开口方向相同、形状相同,位置不同只有A.故选:A.3.解:(1)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵③b2﹣4ac>0,∴顶点在第四象限,∴④a+b+c<0正确;(2)∵①a>0,∴开口向上,∵②2a+b=0,∴对称轴为x=1,∵④a+b+c<0,∴顶点在第四象限,∴③b2﹣4ac>0正确;(3)∵①a>0,∴开口向上,∵③b2﹣4ac>0,④a+b+c<0,∴顶点在第三、四象限,∴②2a+b=0错误;(4)∵②2a+b=0,∴对称轴为x=1,∵③b2﹣4ac>0,④a+b+c<0,∴顶点在第四象限,∴与x轴有两个交点,∴①a>0正确.故选:C.4.解:A、x=1时,y=1﹣3﹣2=﹣4,不符合;B、x=0时,y=﹣2,不符合;C、x=2时,y=4﹣6﹣2=﹣4,满足;D、x=﹣1时,y=1+3﹣2=2,不符合;故选:C.5.解:设所求抛物线的函数关系式为y=ax2+bx+c,由抛物线过点(0,3),可得:c=3,由抛物线形状与y=﹣x2﹣2相同,分为两种情况:①开口向下,则a<0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b<0,由此可得出B选项符合题意.②开口向下,则a>0,又∵对称轴x=﹣2,则x=﹣=﹣2.则b>0,由此可得出A选项符合题意,综合上述,符合条件的是选项D,故选:D.6.解:根据一元二次方程的一般形式的概念知,应为y=ax2+bx+c(a≠0,a、b、c为常数),故选:B.7.解:由图可知,抛物线与x轴的交点为(﹣1,0)、(2,0),所以,不等式x2﹣x﹣2<0的解集是﹣1<x<2.故选:C.8.解:两个函数的顶点坐标都是(0,0),二次项的系数互为相反数,说明一个开口向上,一个开口向下.故两条抛物线的交点为原点,两条抛物线关于x轴对称且两条抛物线关于原点对称.故选:C.9.解:二次函数y=﹣x2+2x+3=﹣(x﹣3)(x+1)与x轴交于A、B两点,则可设A(﹣1,0)、B(3,0)根据顶点坐标公式x=﹣=1,则y=4⇒=8.故选:C.10.解:∵一次函数y=﹣3x的比例系数k=﹣3<0,∴图象经过二,四象限,排除B、D;因为二次函数y=x2﹣1的图象开口向上,顶点坐标应该为(0,﹣1),故可排除A;故选:C.二.填空题11.解:y=x2+2x+1=(x2+4x+4)﹣2+1=(x+2)2﹣1,即y=(x+2)2﹣1.故答案为y=(x+2)2﹣1.12.解:根据题意,得上午10时表示t=﹣2,将t=﹣2代入m=t2﹣5t+100中,得m=(﹣2)2﹣5×(﹣2)+100=114℃.13.解:∵两函数图象的交点坐标为A(﹣1,4),B(6,2),∴使y1>y2成立的x的取值范围是x<﹣1或x>6.故答案为:x<﹣1或x>6.14.解:∵y=x2﹣4x+m=(x﹣2)2+m﹣4∴m﹣4=3,解得m=7.15.解:∵y=(x﹣2)2+3的顶点坐标为(2,3),∴把点(2,3)向右平移1个单位,再向下平移2个单位得到(3,1);而平移的过程中,抛物线的开口方向与形状没改变,∴所得的新抛物线的解析式为:y=(x﹣3)2+1.故答案为:y=(x﹣3)2+1.16.解:由于三点(﹣1,y1),(2,y2),(3,y3)在抛物线y=x2﹣4x+c的图象上,则y1=1+4+c=c+5;y2=4﹣8+c=c﹣4;y3=9﹣12+c=c﹣3.故y1、y2、y3之间用“<”连接为y2<y3<y1.17.解:∵二次函数y=2x2﹣bx+3的图象的对称轴是过点(1,0),且与y轴平行的直线,∴对称轴为:x=1,∴x=﹣=1解得:b=4,故答案为:418.解:根据二次函数y=x2﹣2x﹣8,可得A、B两点的横坐标为﹣2,4;C的纵坐标为﹣8;则△ABC的面积为×8×6=24.19.解:根据题意,设y=a(x﹣3)(x﹣5),取抛物线与坐标轴的交点坐标可以为(0,3),∴a(0﹣3)(0﹣5)=3,解得a=,所以,y=(x﹣3)(x﹣5),即y=x2﹣x+3.故答案为:y=x2﹣x+3(本题答案不唯一,只要符合题意即可).20.解:根据题意得:顶点坐标为(1,4),设抛物线解析式为y=a(x﹣1)2+4,将(0,3)代入得:3=a+4,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3.故答案为:﹣x2+2x+3三.解答题21.解:(1)y=﹣x2+x+2=﹣(x2﹣x)+2=﹣(x﹣)2+,∴开口向下,顶点坐标为(,),对称轴为直线x=;(2)图象如图:(3)根据图象可知:x<﹣1或x>2时,y<0;﹣1<x<2时,y>0.22.解:∵y=﹣x2+2x+3,=﹣(x﹣1)2+4,∴开口方向向下,对称轴x=1,顶点坐标(1,4),令x=0得:y=3,∴与y轴交点坐标(0,3),令y=0得:﹣x2+2x+3=0,∴x1=1 x2=3,∴与x轴交点坐标(﹣1,0),(3,0),作出函数如图所示的图象,由图象可以看出:当x<﹣1或x>3时,y<0;当﹣1<x<3时,y>0.23.解:填表.x…﹣1012…y1=2x+3…1357…y2=x2…1014…故答案为:1,3,5,7;1,0,1,4;(1)由于在第一象限内,两个函数都是y随x的增大而增大,当y=16时,函数y1=2x+3中的x=6.5,函数y2=x2中的x=4,故函数y2=x2值先到达16;(2)如:y3=(x﹣4)2+16.24.解:∵底面半径是x cm,∴底面周长为2πx,底面积为πx2,∵易拉罐的体积为250mL,∴高为,∴侧面积为2πx×=,∴y=πx2×0.02+πx2×0.02×3+×0.02=x2+.25.解:根据题意得:,解得:,∴m=﹣1或m=.26.解:(1)设所求二次函数的解析式为y=ax2+bx+c,根据题意得,即,解得,所以所求的解析式为:y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,抛物线的对称轴为直线x=1,顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线与x轴的交点坐标为(﹣1,0),(3,﹣1),如图,当输出值y为正数时,输入值x的取值范围是x<﹣1或x>3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010—2011学年度上期单元检测题
九年级 数学《二次函数》
(检测时间 45分钟 满分 100分)
班级 学号 姓名 得分
一、选择题:(每小题4分,共32分)
1、二次函数247y x x =--的顶点坐标是 ( )
A.(2,-11)
B.(-2,7)
C.(2,11)
D. (2,-3) 2、抛物线2(1)3y x =-+的对称轴是( ) (A )直线1x =
(B )直线3x =
(C )直线1x =-(D )直线3x =-
3、对于抛物线2
1(5)33
y x =--+,下列说法正确的是( )
(A )开口向下,顶点坐标(53),
(B )开口向上,顶点坐标(53), (C )开口向下,顶点坐标(53)-,
(D )开口向上,顶点坐标(53)-,
4、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( ) (A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且
5、抛物线2
3y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)2
3(1)2y x =-- (B)2
3(1)2y x =+- (C )2
3(1)2y x =++ (D )2
3(1)2y x =-+ 6、 函数2
y kx k =-和(0)k
y k x
=≠在同一直角坐标系中图象可能是图中的( )
7、已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,则下列结论:
①a,b 同号; ②当1x =和3x =时,函数值相等; ③40a b +=; ④当2y =-时, x 的值只能取0.其中正确的个数是 ( ) A.1个 B.2个 C. 3个 D. 4个
8、已知二次函数2
(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),
由图
象可知关于x 的一元二次方程2
0ax bx c ++=的两个根分别是121.3x x ==和 ( )
A .-1.3 B.-2.3 C.-0.3 D.-3.3 9、已知二次函数2y ax bx c =++的图象如图,则点(,)ac bc 在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
10、已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC =2.则这条抛物线的解析式是( )
A. 22y x x =--
B. 22y x x =-++
C. 22y x x =--或22y x x =-++
D. 22y x x =---或22y x x =++ 二、填空题:(每题4分,共24分)
11、次函数23y x bx =++的对称轴是2x =,则b =_______.
12、在二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:
13、一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 __________(只写一个即可).
14、抛物线2
2(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 .
15、 二次函数2
241y x x =--的图象是由2
2y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b = ,c = .
16、将(21)(2)1y x x =-++化成()y a x m n 2
=++的形式为 . 三、解答题:(共36分)
17、(8分)已知二次函数图象的对称轴是x =-3,图象经过(1,-6),且与y 轴的交点为(0,5
2
-).求:(1)这个二次函数的解析式;(2)当x 为何值时,这个函数的函数值为0? (3)当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大?
18、(8分)如图,已知二次函数c x ax y +-=42的图像经过点A 和点B .
(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标; (3)点P (m ,m )与点D 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴
对称,求m 的值及点D 到x 轴的距离.
19、(8分)如图,抛物线2
y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此
抛物线与x 轴的另一个交点为C ,抛物线顶点为D. (1)求此抛物线的解析式;
(2)点P 为抛物线上的一个动点,求使
APC S ∆:ACD S ∆=5 :4的点P 的坐标.
20、(12分) 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,
待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该建材店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
参考答案
一、选择题: 1—5:AAACA; 6—10:ABDBC.
二、填空题: 11.4b =-; 12.1m =-; 13.224,24y x y x =-+=+等(答案不唯一14.1; 15.-8, 7; 16.m=3/4,n=-17/8 17、(1)设抛物线的解析式为2bx c y ax ++=,由题意可得
3265
2b
a a
b
c c ⎧-=-⎪⎪++=-⎨⎪⎪=-

解得15,3,22a b c =-=-=- 所以215
322y x x =---
(2)1x =-或-5 ; (2)3x <-.
18、(1)y=x 2
-4x-6 (2)对称轴x=2,顶点坐标(2,-10)(3)6 19、(1)直线3y x =-与坐标轴的交点A (3,0),B (0,-3).
则9303b c c +-=⎧⎨
-=-⎩ 解得2
3b c =-⎧⎨=⎩ 所以此抛物线解析式为223y x x =--.
(2)抛物线的顶点D (1,-4),与x 轴的另一个交点C (-1,0).
设P 2(,23)a a a --,则2
11(423):(44)5:422
a a ⨯⨯--⨯⨯=.
化简得2235a a --=, 当223a a -->0时,2
235a a --=得4,2a a ==-
∴P (4,5)或P (-2,5)
当2
23a a --<0时,2
235a a -++=即2
220a a ++=,此方程无解. 综上所述,满足条件的点的坐标为(4,5)或(-2,5).
20、(1)5.710
240
26045⨯-+=60(吨)
. (2)260(100)(457.5)10
x
y x -=-+⨯,化简
(3)240003154
3
2-+-=x x y 23(210)90754x =--+.
红星经销店要获得最大月利润,材料的售价应定为每吨210元.
(4)我认为,小静说的不对. 理由:方法一:当月利润最大时,x 为210元,
而对于月销售额)5.71026045(⨯-+=x
x W 23(160)192004
x =--+来说,
当x 为160元时,月销售额W 最大.
∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.。

相关文档
最新文档