醇的使用花生壳为介质的有机生物滤池生物过滤
花生壳中提取白藜芦醇的工艺研究
点, 同时可 提 高收率 和提取 物 的纯度 . 在微 波场 中 , 能使 植物 细胞组 织 吸收 微 波 能 , 温度 迅 速 上升 , 细
胞 膨胀 破裂 , 利 于提 取 植 物 有效 成 分 . 波 辅 助 有 微 提取具 有节 能 、 选择 性 好 、 取 纯 度 高 和 高效 快 速 提
这 4 因素 进行 正交实 验. 个
图 1 白藜 芦 醇 标 准 曲线
F g 1 S a d r u v fr s e a r l i . t n a d c r e o e v r t o
2 6 2 微 波 法正 交 实验 结果 结合 单 因素试 验 的 ..
结果 , 在单 因素实验 的基 础上设 计 了 4因素 3 平 水
即可) 萃 取两 到三次 , 至石 油 醚无 色 [ 萃 取 , 直 】 .
减压 蒸 馏 除 去 石 油 醚. 去 石 油 醚 之 后 , 除 用
液 中含有 白藜芦 醇.
4 乙醇溶 解 , 容. 0 定
2 6 结 果 与 分 析 .
2 6 1微 波 法单 因素 分析 取 花 生壳 5 O , .. . 0 g 在 乙醇浓 度 7 % , 波 辐 射 时 间 3mi, 浴 温 度 0 微 n水 6 0℃ 确 比( 实验设 计 料 液 比 1:5 1:1 , 1 , 2 , , 0 1: 5 1: 0
循 环水 式多 用真空 泵 ( 州长 城科工 贸有 限公 司) 郑 , KQ 6 O 一O E超声 波 清 洗器 ( 山市 超 声 仪 器 有 限公 昆 司) UVmii 2 0紫 外 可 见 分 光 光 度 计 , 兰 仕 , n一 4 1 格 WP5 7 0微 波炉 ( 额定输 入 功 率 2 0V-0HZ 输 出 2 5 ,
化工基础杨荣臻答案
化工基础杨荣臻答案1、没有挥发性也不能升华的是()[单选题] *A香豆素苷类(正确答案)B游离蒽醌类C樟脑D游离香豆素豆素类2、香豆素母核为()[单选题] *A苯骈-A-吡喃酮(正确答案)B对羟基桂皮酸C反式邻羟基桂皮酸D顺式邻羟基桂皮酸3、以下哪种分离方法是利用分子筛的原理的()[单选题] * A吸附色谱法B萃取法C沉淀法D透析法(正确答案)4、适用于队热及化学不稳定的成分、低极性成分的提取()[单选题] *A渗漉法B超声提取法C回流提取法D超临界流体提取法(正确答案)5、木脂素是苯丙素衍生聚合而成的天然化合物,多为()[单选题] *A二聚体(正确答案)B三聚体C四聚体D五聚体6、在溶剂提取法中,更换新鲜溶剂可以创造新的(),从而使有效成分能够继续被提取出来。
()[单选题] *A极性差B压力差C浓度差(正确答案)D体积差7、阿托品的结构类型是()[单选题] *A喹啉类B异喹啉类C莨菪烷类(正确答案)D苄基异喹啉类8、中药丹参中的主要有效成分属于()[单选题] *A苯醌类B萘醌类C蒽醌类D菲醌类(正确答案)9、E何首乌生物碱沉淀反应的条件是()[单选题] *A酸性水溶液(正确答案)B碱性水溶液C中性水溶液D盐水溶液10、可与异羟肟酸铁反应生成紫红色的是()[单选题] * A羟基蒽醌类B查耳酮类C香豆素类(正确答案)D二氢黄酮类11、E易酶解苷类成分关于亲水性有机溶剂,说法正确的有()*A极性大(正确答案)B极性小C水不相溶D与水部分相溶12、乙醇不能提取出的成分类型是()[单选题] *A生物碱B苷C多糖D鞣质(正确答案)13、能提取出中药中的大部分亲水性成分和绝大部分亲脂性成分的溶剂是()[单选题]* A乙醚B乙醇(正确答案)C水D苯14、以下哪种方法是利用成分可以直接由固态加热变为气态的原理()A [单选题] *A升华法(正确答案)B分馏法C沉淀法D透析法15、在简单萃取法中,一般萃取几次即可()[单选题] * A3~4次(正确答案)B1~2次C4~5次D3~7次16、牛蒡子属于()[单选题] *A香豆素类B木脂内酯(正确答案)C苯丙酸类D黄酮类17、下列含香豆素类成分的中药是(多选)()*A秦皮(正确答案)B甘草C补骨脂(正确答案)D五味子18、薄层吸附色谱中的Rf的大小说明了吸附程度的大小,吸附力越大,则Rf()[单选题] *A越大B越小(正确答案)C越接近1D越接近019、具有光化学毒性的中药化学成分类型是()[单选题] *A多糖B无机酸C鞣质D呋喃香豆素(正确答案)20、香豆素与浓度高的碱长时间加热生成的产物是()[单选题] *A脱水化合物B顺式邻羟基桂皮酸(正确答案)C反式邻羟基桂皮酸D醌式结构21、挥发油可析出结晶的温度是()[单选题] *A0~-20℃(正确答案)B0~10℃C0~20℃D0~15℃22、二萜的异戊二烯单位有()[单选题] *A5个B6个C3个(正确答案)D4个23、可沉淀具有羧基或邻二酚羟基成分的沉淀法是()[单选题] * A溶剂沉淀法B醋酸铅沉淀法(正确答案)C酸碱沉淀法D水提醇沉法24、具有挥发性的香豆素成分是()[单选题] *A游离小分子简单香豆素(正确答案)B香豆素苷C呋喃香豆素D双香豆素25、分馏法分离挥发油的主要依据是()[单选题] *A密度的差异B沸点的差异(正确答案)C溶解性的差异D旋光性的差异26、即有一定亲水性,又能与水分层的是()[单选题] * A正丁醇B乙酸乙酯C二者均是(正确答案)D二者均非27、下列生物碱碱性最强的是()[单选题] *APkA=22BPkA=5(正确答案)CPkA=13DPkA=5828、由两个C6-C3单体聚合而成的化合物称()[单选题] *A木质素B香豆素(正确答案)C黄酮D木脂素29、四氢硼钠反应变红的是()[单选题] *A山柰酚B橙皮素(正确答案)C大豆素D红花苷30、以橙皮苷为指标成分进行定性鉴别的中药是()[单选题] * A葛根B黄芩C槐花D陈皮(正确答案)。
天然药物萃取与分离习题答案知识讲解
天然药物萃取与分离习题答案第一章总论习题一、选择题(一)单项选择题1. 高效液相色谱具有较好分离效果的一个主要原因是()A.吸附剂颗粒小B.压力比常规色谱高C•流速更快 D.有自动记录装置2. 纸上分配色谱,固定相是()A.纤维素B.滤纸所含的5~7%的水C展开剂中极性较大的溶剂 D.醇羟基3. 利用较少溶剂提取有效成分,提取较为完全的方法是()A •连续回流法B.加热回流法C.透析法D.浸渍法4. 某化合物用三氯甲烷在缓冲盐纸色谱上展开,其Rf值随pH增大而减少,这说明它可能是()。
A. 酸性化合物B.碱性化合物C.中性化合物D.酸碱两性化合物5. 通常要应用碱性氧化铝色谱分离,而硅胶色谱一般不适合分离的化合物为()。
A.香豆素类化合物B.生物碱类化合物C.酸性化合物D.酯类化合物6. 依次采用不同极性溶剂来提取药效成分应采取的极性顺序是()A. H2O CH3OH ---------------- EtOAC——K CH2Cl 2_P.E.B. CH 2°2 EtOAC CH 3OH H?OC. P.E.―p- H2O ---------- CH3OH _____ EtOAC _____ - C^CI 2D. P.E.——CH 3OH * EtOAC ■ CH2 Cl ? ■ H?O7. 有效成分是指()A •需要提纯的成分B.含量高的成分C.具有某种生物活性的成分 D.无副作用的成分8. 下列溶剂中溶解化学成分范围较广的溶剂是()。
A.水B.乙醇C.乙醚D.苯9. 化合物I的主要生物合成途径为()A. MVA途径B.桂皮酸途径C. AA-MA途径D.氨基酸途径10. 植物的醇提浓缩液中加入水,可沉淀()A •树胶B.蛋白质C.树脂D.氨基酸11. 拟提取挥发性成分宜用()A.回流法B.渗漏法C.水蒸气蒸馏法D.煎煮法12. 超临界流体萃取法适用于提取()A.极性大的成分B.极性小的成分C.离子型化合物D.能气化的成分13. 索氏提取回流法语常用回流提取法相比,其优越性是()。
生物制药题库考点
生物制药题库考点1、判断题基因工程.细胞工程是生物技术产业化及大规模生产的关键环节。
正确答案:错2、单选下列细胞具有无限繁殖能力的是()。
A.原代细胞B.二倍体细胞C.连续细胞D.体细胞(江南博哥)正确答案:C3、单选肌苷发酵过程中需添加氨基酸,其中()是必需的。
A.组氨酸B.谷氨酸C.赖氨酸D.蛋氨酸正确答案:A4、判断题中国科学家参与了“人类基因组计划”。
正确答案:对5、判断题平衡水分能够用一般干燥法去除。
正确答案:错6、问答题工业萃取设备包括哪三部分?正确答案:混合器(如搅拌混合器)、分离器(如碟片式离心机)、溶剂回收装置(如蒸馏塔)。
7、判断题载体不能够自主复制。
本题答案:错8、问答题气流输送流程有几种方式?正确答案:真空输送(吸入式)、压力输送和压力真空输送(混合式)。
吸送式、压送式、混合式、真空式。
9、问答题简述制冷循环流程及其各部件的作用?正确答案:压缩式制冷循环包括压缩、冷凝、膨胀、蒸发四个阶段。
工作过程:系统中的制冷剂饱和蒸汽(通常为氨)被压缩机吸入压缩,再进入冷凝器内被冷凝成液体释放出热量,液体制冷剂经膨胀阀后,压力降低,将小部分液体吸热汽化,使制冷剂温度降低,低温液体进入蒸发器吸收周围介质(载冷剂)热量而汽化为气体,气体再进入压缩机被压缩,完成一个循环。
制冷剂目前常用的制冷剂有氨和几种氟利昂。
载冷剂采用间接冷却方法进行制冷所用的低温介质称为载冷剂,又称为冷媒。
载冷剂在蒸发器中被冷却,然后被送至冷却设备内,吸收热量后,又返回到蒸发器中。
冷却器的作用是使高温高压过热气体冷却,冷凝成高压氨液,并将热量传递给周围介质。
油氨分离器的作用是除去压缩后氨气中携带的油雾。
气液分离器的作用是维持压缩机的干冲程,同时将送入冷却排管(蒸发器)液体内的气体分出,以提高制冷效率。
中间冷却器作用是冷却低压级压缩机所排出的过热蒸汽,使过热蒸汽冷却到中压下的饱和气体状态。
此外,还可借中间冷却器内氨液与盘管的热交换,使去冷却设备的氨液在膨胀阀之前得到过冷。
水处理基础试题及答案
水处理基础试题及答案一、单项选择题(每题2分,共10题)1. 水处理中常用的消毒方法是?A. 紫外线消毒B. 臭氧消毒C. 氯消毒D. 所有以上选项答案:D2. 以下哪种物质不是水处理过程中的污染物?A. 重金属B. 农药残留C. 放射性物质D. 氧气答案:D3. 混凝剂在水处理中的作用是什么?A. 杀菌B. 去除悬浮物C. 调节pH值D. 氧化有机物答案:B4. 反渗透技术主要用于去除水中的哪种物质?A. 悬浮物B. 溶解性固体C. 微生物D. 气体答案:B5. 以下哪种生物处理方法适用于去除水中的有机物?A. 活性炭吸附B. 紫外线消毒C. 曝气生物滤池D. 沉淀答案:C6. 水的硬度主要由哪些离子决定?A. 钙和镁离子B. 钠和钾离子C. 氯和溴离子D. 铁和锰离子答案:A7. 以下哪种方法不是水处理中的预处理方法?A. 格栅B. 沉淀C. 过滤D. 反渗透答案:D8. 以下哪种物质不是水处理中常用的絮凝剂?A. 聚合氯化铝B. 聚丙烯酰胺C. 硫酸亚铁D. 硫酸铜答案:D9. 以下哪种方法不是水处理中的深度处理方法?A. 活性炭吸附B. 臭氧氧化C. 超滤D. 混凝沉淀答案:D10. 水处理中pH值的调节通常使用哪种物质?A. 盐酸B. 氢氧化钠C. 硫酸D. 所有以上选项答案:D二、多项选择题(每题3分,共5题)1. 以下哪些是水处理中常用的消毒方法?A. 氯消毒B. 臭氧消毒C. 紫外线消毒D. 热处理答案:ABC2. 水处理中常用的过滤技术包括哪些?A. 砂滤B. 活性炭过滤C. 膜过滤D. 反渗透答案:ABC3. 以下哪些物质是水处理中需要去除的污染物?A. 悬浮固体B. 有机物C. 病原体D. 放射性物质答案:ABCD4. 以下哪些是水处理中常用的混凝剂?A. 聚合氯化铝B. 硫酸亚铁C. 聚丙烯酰胺D. 硫酸铜答案:ABC5. 水处理中的生物处理方法包括哪些?A. 活性污泥法B. 生物滤池C. 曝气生物滤池D. 反渗透答案:ABC三、判断题(每题1分,共5题)1. 所有消毒方法都能有效去除水中的病毒。
花生壳发酵生产生物乙醇可行性研究
能源 是 当今社 会 赖 以生存 和 发 展 的物 质 基 础 。 随 着石 油 资 源 的不 断 减少 和 环境 问题 的 日益 恶 化 , 能 源 问题 越 来越 受 到人 们 关注 ,人们 开 始不 断 寻找
仅 可 以减轻 农 业废 弃 物 对环 境 造成 的压力 ,同时 , 也 可 以缓解 人 类所 面临 的 能源 危机 、资 源浪 费 、 环
Ab t a t A t o o r d c n ie h n lb x d b ce a t n f r d f r e tb e l u d g u o e w ih sr c : meh d f rp o u i g b o t a o y mi e a tr a some e i r m n a l i i l c s h c q p o u e y s p r r ia t r t e n t h l a t r lw s s d e . h t o d o d c mp e t ia rd c d b u ecic l t wae h p a u e l s ma e a a t id T e me d ma e g o o l x u i z — wi s i u h l
1 我 国 花 生 种 植 分 布 情 况
我 国是 花生 种植 大 国 。 调 查 :0 0 2 1 年 我 具 2 0 — 0 1
成 维半 木 粗 。 鐾 脂 粉灰 其 分 素 质 蛋 水 : 肪淀 分其 纤 系 素 白’ 肪渊 | 化 ?粗 它 苜 。 切
含 % 37 96 47 41 14 量/ 34 . 24 . 07 . 14 . 8 . 1 08 49 15 . 2 5 . . . 7 2 2
国花生 总产 量 基本 稳定 在 10 50万 t 右 , 按 实 际 左 若
食品科学技术:啤酒工艺学试题预测(三)
食品科学技术:啤酒工艺学试题预测(三)1、单选酿造淡色啤酒时,通常采用()处理碳酸盐硬度较高而永久硬度较低的酿造用水。
A.石灰水法B.加石膏C.加酸法D.离子交换法正确答案:A2、判断题深层滤芯适用于无(江南博哥)菌过滤的第一道预过滤;薄膜滤芯适用于无菌过滤的最后一道过滤。
正确答案:对3、填空题发酵过程中()是衡量啤酒是否成熟的指标。
正确答案:双乙酰4、判断题发酵液在后熟期至少在-1~0℃下冷贮存一周以上,以减少成品啤酒中冷浑浊颗粒的析出。
正确答案:对5、单选发芽操作结束得到的麦芽称为绿麦芽()A、白麦芽B、绿麦芽C、黄麦芽D、红麦芽正确答案:B6、问答题简述回收酵泥做菌种的条件?正确答案:(1),镜检细胞大小正常,无异常细胞(细胞拉长是衰退的标志),液泡和颗粒物正常。
(2),肝糖染色有肝糖细胞应大于70%—75%。
(3),死亡率检查用美兰染色,美兰染色率<5%为健壮酵母泥,<10%尚可使用,>15%不能使用。
(4),杂菌检查要求检查的20个视野共一千个酵母细胞周围,含杆菌应≤1个。
(5),其他无异常酸味和酵母自溶味,凝聚性正常(过强或过弱均为异常)。
7、单选二氧化碳能降低酒液PH值,析出部分酒花树脂,使啤酒的苦味更加()A.浓烈B.柔和C.平淡D.模糊正确答案:B8、填空题灌酒温度应严格控制在()℃,过高的酒温易引起CO2逸散而产生冒酒现象。
正确答案:-1~39、填空题贴标机按容器运动分类,可分为直线式和()。
正确答案:回转式10、填空题采用自动化和程序控制过程完成全部清洗过程,以代替传统的手工清洗,此过程系统称为()。
英语原意为CleAning in plACe,简称CIP。
正确答案:原位清洗11、问答题简析影响洗瓶效果的主要因素?正确答案:影响洗瓶效果的主要因素有:①洗瓶温度:洗涤液温度高,啤酒瓶容易洗净,但是啤酒瓶急冷急热差小于39℃,洗瓶机内两个相连接的洗涤槽或喷淋区之间温差不得超过35℃,否则会引起啤酒瓶破裂。
生产乙醇用的工艺是什么
生产乙醇用的工艺是什么乙醇的产生工艺包括传统的乙醇发酵方法和第二代乙醇生产方法。
这两种方法都旨在利用生物质资源来生产乙醇。
传统的乙醇生产方法是利用微生物(通常是酵母菌)来将碳水化合物转化为乙醇。
在这个过程中,生物体将生物质进行分解和利用。
传统方法几乎可以从任何含有淀粉和糖的生物材料中产生乙醇。
在传统的乙醇生产中,使用最广泛的原料是玉米、小麦、大米和甜菜。
这种方法具有简单、稳定、成本低的优点。
第二代乙醇生产方法是一种新兴的替代能源生产方法。
这种方法利用生物质原料来产生乙醇,这些原料通常是废物或农村废弃物。
2007年,美国能源部发布的《生物质生产乙醇世界计划》预测,到2020年,生物质将成为世界上第二重要的能源源,居于石油之后。
在第二代乙醇生产中,生物质通常被预处理以消除杂质,并将其转化成糖类。
第二代乙醇生产过程中通常包括以下几个步骤:1.预处理:目的是消除生物质中的杂质,例如纤维素等,预处理方法通常是机械处理、蒸汽爆破等。
2.水解:将预处理后的生物质加入酸或碱的水溶液中,以将糖分解为单糖。
3.发酵:将糖加入酵母菌中进行发酵,将糖转化为乙醇。
4.蒸馏:使用蒸馏器将乙醇和其他杂质分离,获得纯乙醇。
第二代乙醇生产方法也具有许多优点,如可以利用废物进行生产、减少对食品原材料的需求、可以减少温室气体的排放等。
此外,第二代乙醇方法有望成为未来替代能源的主要来源之一。
总之,生产乙醇的工艺技术逐渐发展,自传统的乙醇发酵方法到利用第二代生产技术进行乙醇生产都已应用于实际应用之中。
随着新能源的逐步普及,生产乙醇的工艺技术也将不断完善,更多利用废物进行生产等方面将得到拓展。
化工生产与环保技术测试 选择题 46题
1. 在化工生产中,下列哪种物质最常用于吸收酸性气体?A. 氢氧化钠B. 氢氧化钙C. 氢氧化钾D. 氢氧化镁2. 化工生产中,催化剂的主要作用是:A. 提高反应速率B. 降低反应温度C. 增加产品纯度D. 减少能耗3. 下列哪种技术不属于废水处理中的生物处理方法?A. 活性污泥法B. 生物滤池法C. 膜分离法D. 人工湿地法4. 在化工生产中,下列哪种设备主要用于混合和搅拌?A. 反应釜B. 蒸馏塔C. 干燥器D. 过滤器5. 化工生产中,下列哪种物质是常见的氧化剂?A. 硫酸B. 氯化钠C. 氧气D. 氢气6. 在化工生产中,下列哪种设备主要用于气体分离?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器7. 化工生产中,下列哪种物质是常见的还原剂?A. 硫酸B. 氯化钠C. 氧气D. 氢气8. 在化工生产中,下列哪种设备主要用于液体分离?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器9. 化工生产中,下列哪种物质是常见的溶剂?A. 水B. 氧气C. 氢气D. 氯化钠10. 在化工生产中,下列哪种设备主要用于固体分离?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器11. 化工生产中,下列哪种物质是常见的酸?A. 硫酸B. 氯化钠C. 氧气D. 氢气12. 在化工生产中,下列哪种设备主要用于气体净化?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器13. 化工生产中,下列哪种物质是常见的碱?A. 氢氧化钠B. 氯化钠C. 氧气D. 氢气14. 在化工生产中,下列哪种设备主要用于液体净化?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器15. 化工生产中,下列哪种物质是常见的盐?A. 硫酸B. 氯化钠C. 氧气D. 氢气16. 在化工生产中,下列哪种设备主要用于固体净化?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器17. 化工生产中,下列哪种物质是常见的气体?A. 水B. 氧气C. 氢气D. 氯化钠18. 在化工生产中,下列哪种设备主要用于气体压缩?A. 吸收塔B. 蒸馏塔C. 干燥器D. 压缩机19. 化工生产中,下列哪种物质是常见的液体?A. 水B. 氧气C. 氢气D. 氯化钠20. 在化工生产中,下列哪种设备主要用于液体压缩?A. 吸收塔B. 蒸馏塔C. 干燥器D. 压缩机21. 化工生产中,下列哪种物质是常见的固体?A. 水B. 氧气C. 氢气D. 氯化钠22. 在化工生产中,下列哪种设备主要用于固体压缩?A. 吸收塔B. 蒸馏塔C. 干燥器D. 压缩机23. 化工生产中,下列哪种物质是常见的催化剂?A. 硫酸B. 氯化钠C. 氧气D. 氢气24. 在化工生产中,下列哪种设备主要用于催化反应?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜25. 化工生产中,下列哪种物质是常见的溶质?A. 水B. 氧气C. 氢气D. 氯化钠26. 在化工生产中,下列哪种设备主要用于溶质分离?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器27. 化工生产中,下列哪种物质是常见的溶剂?A. 水B. 氧气C. 氢气D. 氯化钠28. 在化工生产中,下列哪种设备主要用于溶剂分离?A. 吸收塔B. 蒸馏塔C. 干燥器D. 过滤器29. 化工生产中,下列哪种物质是常见的酸?A. 硫酸B. 氯化钠C. 氧气D. 氢气30. 在化工生产中,下列哪种设备主要用于酸处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜31. 化工生产中,下列哪种物质是常见的碱?A. 氢氧化钠B. 氯化钠C. 氧气D. 氢气32. 在化工生产中,下列哪种设备主要用于碱处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜33. 化工生产中,下列哪种物质是常见的盐?A. 硫酸B. 氯化钠C. 氧气D. 氢气34. 在化工生产中,下列哪种设备主要用于盐处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜35. 化工生产中,下列哪种物质是常见的气体?A. 水B. 氧气C. 氢气D. 氯化钠36. 在化工生产中,下列哪种设备主要用于气体处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜37. 化工生产中,下列哪种物质是常见的液体?A. 水B. 氧气C. 氢气D. 氯化钠38. 在化工生产中,下列哪种设备主要用于液体处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜39. 化工生产中,下列哪种物质是常见的固体?A. 水B. 氧气C. 氢气D. 氯化钠40. 在化工生产中,下列哪种设备主要用于固体处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜41. 化工生产中,下列哪种物质是常见的催化剂?A. 硫酸B. 氯化钠C. 氧气D. 氢气42. 在化工生产中,下列哪种设备主要用于催化剂处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜43. 化工生产中,下列哪种物质是常见的溶质?A. 水B. 氧气C. 氢气D. 氯化钠44. 在化工生产中,下列哪种设备主要用于溶质处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜45. 化工生产中,下列哪种物质是常见的溶剂?A. 水B. 氧气C. 氢气D. 氯化钠46. 在化工生产中,下列哪种设备主要用于溶剂处理?A. 吸收塔B. 蒸馏塔C. 干燥器D. 反应釜答案:1. A2. A3. C4. A5. C6. B7. D8. B9. A10. D11. A12. A13. A14. B15. B16. D17. B18. D19. A20. D21. D22. D23. D24. D25. D26. D27. A28. D29. A30. D31. A32. D33. B34. D35. B36. D37. A38. D39. D40. D41. D42. D43. D44. D45. A46. D。
酿造废水处理与生态环境保护考核试卷
B.硫酸铝
C.氯化铁
D.碳酸钙
5.酿造废水处理中,SBR工艺是指什么?()
A.序批式活性污泥法
B.生物接触氧化法
C.曝气池
D.二沉池
6.以下哪个因素不影响活性污泥的处理效果?()
A.温度
B.溶解氧
C. MLSS
D.酸碱度
7.以下哪种方法适用于酿造废水的高浓度有机物处理?()
A. UASB
1.酿造废水的主要污染物是以下哪一种?()
A.有机物
B.重金属
C.悬浮物
D.病原体
2.以下哪种方法不属于酿造废水的一级处理?()
A.格栅
B.沉砂池
C.气浮
D.生物膜
3.酿造废水中的COD表示什么?()
A.化学需氧量
B.生物需氧量
C.氨氮含量
D.总氮含量
4.以下哪种物质不是废水处理中常用的絮凝剂?()
D.废物最小化
20.以下哪些措施可以减轻酿造废水处理对生态环境的影响?()
A.废水处理后的高标准排放
B.污泥的稳定化和资源化利用
C.噪音和恶臭的控制
D.生态补偿机制的建立
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.酿造废水中,BOD5表示_______。
2.在酿造废水处理中,_______是指生物反应器中的微生物数量。
D.生物降解
17.以下哪个因素会影响酿造废水处理中微生物的生长繁殖?()
A.营养物质
B.水力停留时间
C.温度
D.以上都对
18.以下哪个指标不属于酿造废水处理中的常规监测指标?()
A. COD
B. BOD5
C. TOC
高考生物一轮复习 微讲座 第十二单元 生物技术实践中的几个易错点课件
2.(2017·湖南郴州模拟)根据所学知识回答下列问题: (1)大肠杆菌菌群数是我国通用的食品污染常用指标之一,能够反映食品是否 卫生。牛肉膏蛋白胨培养基可用来分离纯化大肠杆菌,其中牛肉膏可以为微 生物提供的主要营养是:磷酸盐、________和维生素。对新配制的培养基进 行彻底灭菌时,应采取________灭菌法。为了统计样本中大肠杆菌菌群数, 可用________法将样本接种于固体培养基上培养、计数。 (2)桉树油一般从新鲜的桉树叶中提取,过程如下:
目录 CONTENTS
第十二单元 生物技术实 践
微讲座|生物技术实践中 的几个易错点
1.发酵微生物≠细菌。分析:发酵都是利用微生物的呼吸作用,不只是细 菌的呼吸作用,如果酒制作的主要菌种是酵母菌,果醋制作的主要菌种是醋 酸菌,腐乳制作的主要菌种是毛霉,泡菜制作的主要菌种是乳酸菌。 2.不同发酵过程所需的温度不同,不同发酵过程控制的通气量也不同。分 析:(1)果酒、果醋、腐乳制作过程中所需温度分别是 18~25 ℃、30~35 ℃、 15~18 ℃。(2)果酒制作时,葡萄汁装入发酵瓶时,要留 1/3 的空间,目的是 让酵母菌大量繁殖,但发酵时一定要严格密封,否则会产生醋酸;果醋制作 时,应适时地通入空气;泡菜制作时则需封荷叶富含维生素、蛋白质和薄荷油,具有疏散风热、 清利咽喉、消炎镇痛的作用。请回答下列问题: (1)植物芳香油的提取方法有蒸馏法、压榨法和________________等。提取薄 荷油可以用水蒸气蒸馏法,该方法能利用水蒸气将________________的薄荷 油携带出来。 (2)在提取薄荷油的过程中,向得到的油水混合物加入 NaCl 后,薄荷油将分 布于液体的________(填“上层”或“下层”),然后用________将这两层分 开。分离得到的薄荷油油层中含有一定量的水分,可用________吸水。
(完整版)生物工艺学复习题综合测试题
综合测试题(一)一、选择题1.用发酵工程生产的产品,如果是菌体,则进行分离提纯可采用的方法是(B)A.蒸馏过滤C.过滤沉淀C.萃取离子D.沉淀萃取2.下列物质中,不能为异养生物作碳源的是(C)A.蛋白胨B.含碳有机物C.含碳无机物D.石油、花生饼3.培养生产青霉素的高产青霉素菌株的方法是(C)A.细胞工程B.基因工程C.人工诱变D.人工诱变和基因工程4.以下发酵产品中不属于微生物代谢产物的是(C)A.味精B.啤酒C.“人造肉”D.人生长激素5.利用酵母菌发酵生产酒精时,投放的最适原料和产生酒精阶段要控制的必要条件是(C)A.玉米粉和有氧B.大豆粉和有氧C.玉米粉和无氧D.大豆粉和无氧6.关于单细胞蛋白叙述正确的是(B)A.是微生物细胞中提取的蛋白质B.通过发酵生产的微生物菌体C.是微生物细胞分泌的抗生素D.单细胞蛋白不能作为食品7.对谷氨酸发酵的叙述正确的是(D )A.菌体是异养厌氧型微生物B.培养基属于液态的合成培养基C.谷氨酸的形成与搅拌速度无关D.产物可用离子交换法提取8.用于谷氨酸发酵的培养基需添加的生长因子是(D)A.氨基酸B.碱基C.核苷酸D.生物素9.关于菌种的选育不正确的是(C)A.自然选育的菌种不经过人工处理B.诱变育种原理的基础是基因突变C.通过有性杂交可形成工程细胞D.采用基因工程的方法可构建工程菌10.谷氨酸棒状杆菌扩大培养时,培养基应该是(A )A.C:N为4:1 B.C:N为3:1 C.隔绝空气D.加大氮源、碳源的比例11.灭菌的目的是(B )A.杀灭细菌B.杀灭杂菌C.杀灭所有微生物D.杀灭芽孢12.能影响发酵过程中温度变化的因素是(D )A.微生物分解有机物释放的能量B.机械搅拌C.发酵罐散热及水分蒸发D.B、C都对13.在发酵中有关氧的利用正确的是(B )A.微生物可直接利用空气中的氧B.微生物只能利用发酵液中溶解氧C.温度升高,发酵液中溶解氧增多D.需向发酵液中连续补充空气并不断地搅拌14.当培养基pH发生变化时,应该(C )A.加酸B.加碱C.加缓冲液D.加培养基15.大量生产酵母菌时,不正确的措施是(A)A.隔绝空气B.在对数期获得菌种C.过滤沉淀进行分离D.使菌体生长长期处于稳定期16.基因工程培育的“工程菌”通过发酵工程生产的产品有(B)①石油②人生长激素③紫草素④聚乙二醇⑤胰岛素⑥重组乙肝疫苗A.①③⑥ B.②⑤⑥ C.③⑤⑥ D.②③⑤17.连续培养酵母菌的措施中不正确的是(D )A.及时补充营养物质B.以青霉素杀灭细菌C.以缓冲液控制pH在5.0~6.0之间D.以酒精浓度测定生长状况18.不能以糖类作为碳源的细菌是(C )A.假单胞菌B.乳酸菌C.甲基营养菌D.固氮菌19.不能作为异养微生物碳源的是(D )A.牛肉膏B.含碳有机物C.石油D.含碳无机物20.根瘤菌能利用的营养物质的组别是(B )A.NH3,(CH2O),NaCl B.N2,(CH2O),CaCl2C.铵盐,CO2,NaCl D.NO2,CO2,CaCl221.配制培养基的叙述中正确的是(C )A.制作固体培养基必须加入琼脂B.加入青霉素可得到放线菌C.培养自生固氮菌不需要氮源D.发酵工程一般用半固体培养基22.下列属于微生物不可缺少的微量有机物的是(D)①牛肉膏②蛋白胨③氨基酸④维生素⑤碱基⑥生物素A.①②③B.②③④C.②③④⑤D.③④⑤⑥23.有关自养微生物的叙述中正确的是(A )A.NaHCO3可提供两类营养物质B.N2在一般条件下可成为氮源C.含C、H、O、N的物质可提供碳源、氮源和能源D.自养微生物需五类营养物质24.在用伊红-美蓝培养基鉴别大肠杆菌时,培养基中可以不含有(C)A.碳源B.氮源C.生长因子D.水和无机盐25.自养型微生物与异养型微生物的培养基的主要差别是(A )A.碳源B.氮源C.无机盐D.生长因子26.下列各项叙述中正确的是(C )A.微生物的遗传物质都是DNA B.微生物都属于原核生物C.微生物的遗传物质是核酸D.微生物的生殖方式是孢子生殖27.下列关于生长因子的说法中,不正确的一项是(B )A.是微生物生长不可缺少的微量有机物B.是微生物生长不可缺少的微量矿质元素C.主要包括维生素、氨基酸和碱基等D.一般是酶和核酸的组成成分28.酵母菌培养液中常含有一定浓度的葡萄糖,但当葡萄糖浓度过高时,反而会抑制微生物的生长,原因是(B)A.碳源供应太充足B.细胞会发生质壁分离C.改变了酵母菌的pH值D.葡萄糖不是酵母菌的原料29.可用于微生物分离鉴定的培养基是(B )A.固体、天然、选择培养基B.固体、化学、鉴别培养基C.半固体、天然、鉴别培养基D.半固体、天然、选择培养基30.下列营养物质中,不是同时含有碳源、氮源和生长因子的是(C )A.牛肉膏B.蛋白胨C.生物素D.酵母粉31.鉴别培养基是根据微生物的代谢特点在培养基中加入一些物质配制而成,这些物质是(A )A.指示剂或化学药品B.青霉素或琼脂C.高浓度食盐D.维生素或指示剂32.纯培养是其中(A )的培养物。
生物除臭技术在污泥干化工程上的应用
生物除臭技术在污泥干化工程上的应用摘要:在污水污泥脱水过程中,大量恶臭污染物释放到环境空气中,形成恶臭气体,对环境质量、人类健康和经济活动构成严重威胁。
首先,大多数恶臭污染物的毒性或气味阈值较低,可能造成人体不适,严重情况甚至导致中毒。
第二,当恶臭污染物释放到大气中时,它们会与其他物质发生反应,受光照或微粒的影响,造成酸雨、雾霾和光化学烟雾等环境问题。
另外,操作人员长期在充满臭味的环境中工作,职业危害重大,可能导致头痛、眩晕、呼吸困难等。
因此,处理恶臭气体,改善环境管理刻不容缓。
随着环境治理技术的发展,积累了大量成熟的净化恶臭气体技术,可根据处置机制分为物理法(水喷淋)、化学法(化学清洗)、生物法(生物滤池)、光催化氧化等。
这些技术可根据实际工况和排放标准,单独或并联使用。
其中,大量实际应用数据表明:生物除臭技术具有以下优点:操作简单方便、运营成本低、除臭效果好、无二次污染等。
因此,生物脱臭技术在污泥脱水过程中的应用十分重要。
在此基础上,本文研究了生物除臭技术在污泥干燥工程中臭气处理的应用,以供参考。
关键词:生物除臭技术;污泥干化工程;应用分析引言近年来,经济迅速发展,城市化显著改善,市政污水处理厂往往位于居民区或办公室附近,其运行过程中不可避免地产生臭气。
市政污水处理厂的可持续发展要求严格执行《城镇污水处理厂污染物排放标准(GB 18918-2002)》。
市政污水处理厂运行期间产生的恶臭物质,主要来自预处理区(粗细格栅、撇水池、沉砂池)、生物区(主要在缺氧厌氧区)和深度处理区(主要是污泥处理处置)。
市政污水处理厂臭气是伴随H2S、NH3、CH4和微生物、原生动物代谢过程的产物等产生的混合气味,无组织排放到大气中。
臭气的不处理、无组织排放严重影响了室内和室外环境,直接影响到工人的健康和工作效率,甚至影响到周围居民的生活。
1污泥产生污水污泥是在污水处理厂处理工业和城市废水时,通过各种分离方法在溶液中处置固体物质而产生的污泥。
化工生物基础知识试题及答案
化工生物基础知识试题及答案一、选择题1. 什么是化工生物技术?A. 一种生物技术B. 一种化学技术C. 一种结合化学和生物技术的技术D. 一种物理技术答案:C2. 以下哪个不是化工生物技术的应用领域?A. 制药B. 食品工业C. 能源生产D. 建筑设计答案:D3. 化工生物技术中,哪个过程是将生物材料转化为有用的化学品或能源?A. 发酵B. 蒸馏C. 萃取D. 合成答案:A4. 以下哪个是化工生物技术中常用的微生物?A. 酵母菌B. 大肠杆菌C. 乳酸菌D. 所有以上选项答案:D5. 化工生物技术中,哪个术语指的是生物催化剂?A. 酶B. 菌株C. 培养基D. 反应器答案:A二、填空题6. 化工生物技术可以用于生产_________,例如生产生物柴油。
答案:生物燃料7. 在化工生物技术中,_______是一种重要的生物反应器,用于生产各种化学品。
答案:发酵罐8. 化工生物技术在_______领域中,可以用于生产生物塑料。
答案:材料科学9. 利用化工生物技术,可以通过_______过程将农业废弃物转化为能源。
答案:厌氧消化10. 酶在化工生物技术中具有_______作用,能够加速化学反应。
答案:催化三、简答题11. 简述化工生物技术在环境保护中的应用。
答案:化工生物技术在环境保护中的应用包括生物修复、废水处理、废气净化等。
通过使用特定的微生物或酶,可以将污染物转化为无害或易于处理的物质,从而减少环境污染。
12. 描述化工生物技术在医药领域的一个具体应用实例。
答案:在医药领域,化工生物技术可以用于生产抗生素、疫苗和生物药物。
例如,通过发酵过程使用特定的微生物生产抗生素,这些抗生素可以用于治疗细菌感染。
四、论述题13. 论述化工生物技术与传统化工技术相比的优势和局限性。
答案:化工生物技术相比传统化工技术具有环境友好、可再生资源利用、生物兼容性好等优势。
然而,它也存在一些局限性,如生产成本较高、生产效率可能不如传统化工技术、对微生物菌株的依赖性等。
生物燃料——生物乙醇
9
酵母的营养条件
(1) 碳源。酿酒酵母可利用的碳源包括各种有机化合物中的碳,如葡 萄糖、甘露醇、半乳糖和D-型果糖,但不能直接发酵木糖等五碳糖,然 而,如果木糖转化为木酮糖以后,就可被酿酒酵母利用生成乙醇。在缺 乏六碳糖时,也能利用甘油、甘露醇、乙醇或其他醇类,有些有机酸 (乳酸、乙酸、苹果酸、柠檬酸)也可作为后备碳源。 酵母在发酵麦芽 糖和蔗糖为乙醇前,这两种双糖要事先被酵母的相应的酶水解成单糖。 当培养条件从厌氧转换到有氧时,酵母发酵葡萄糖的能力减弱,但发酵 蔗糖的能力提高1.5倍。酵母只有在培养基中没有葡萄糖和果糖时,才发 酵麦芽糖。
生物发酵法是以淀粉质原料、糖蜜原料或纤维素等原料,通
过微生物代谢产生乙醇,该方法生产出的乙醇杂质含量较低,
广泛应用于饮料、食品、香精、调味品、化妆品和医药等工
业。
2021/5/23
3
生物发酵法生产乙醇的基本过程可总结为:
转化
微生物发酵
提取
原料
糖
乙醇醪液
乙醇
我国乙醇年产量为300多万吨,近年有逐渐增加的趋势,仅 次于巴西、美国,列世界第三位。其中,发酵法占绝对优势, 80%左右的乙醇用淀粉质原料生产,约10%的乙醇用废糖蜜 生产,以亚硫酸盐纸浆废液等纤维原料生产的乙醇占2%左右, 化学合成法生产的乙醇仅占3.5%左右。随着生物技术的发展 及现实需求,以纤维素为原料的大规模乙醇发酵生产已经提
生物质生物转化技术———— 燃料乙醇
主讲:由耀辉
2021/5/23
1
乙醇简介
乙醇俗称酒精,是一种传统的基础有机化工原料,广泛应用 于有机化工、日用化工、食品饮料、医药卫生等领域。随着 人类对能源需求的增加,乙醇作为汽车替代燃料越来越受到 重视,全球生物燃料乙醇的发展已经超过任何一种替代燃料。 生物燃料乙醇主要由玉米、小麦、薯类等植物淀粉或糖蜜通 过微生物发酵而来。近年来,用农林废弃物等植物纤维进行 乙醇生产的研究成为全球生物质能研究的热点。燃料乙醇作 为内燃机代用燃料具有独特的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institutionand sharing with colleagues.Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third partywebsites are prohibited.In most cases authors are permitted to post their version of thearticle(e.g.in Word or Tex form)to their personal website orinstitutional repository.Authors requiring further informationregarding Elsevier’s archiving and manuscript policies areencouraged to visit:/copyrightBiofiltration of methanol in an organic biofilter using peanut shells as mediumE.M.Ramirez-Lopez a ,J.Corona-Hernandez a ,F.J.Avelar-Gonzalez b ,F.Omil c ,F.Thalasso a,*aDepartment of Biotechnology and Bioengineering,CINVESTAV,Av.IPN 2508,E-07000Mexico City,MexicobDepartment of Pharmacology and Physiology,University of Aguascalientes,Av.Universidad 940,20100Aguascalientes,Mexico cInstitute of Technology,University of Santiago de Compostela,E-15706Galicia,Spaina r t i c l e i n f o Article history:Received 25October 2006Received in revised form 6October 2008Accepted 11October 2008Available online 22August 2009Keywords:Gas treatmentBiofiltration carrierAgricultural byproducts Methanol degradationa b s t r a c tBiofiltration consists of a filter-bed of organic matter serving both as carrier for the active biomass and as nutrient supply,through which the polluted gas passes.The selection of a suitable medium material is of major importance to ensure optimum biofilter efficiency.Peanut shells are an agricultural byproduct locally available in large quantities at a low price in most tropical and sub-tropical countries.A previous study showed that peanut shells are physically and chemically suitable for biofiltration.This paper pre-sents the results obtained during a six month biofiltration experiment using peanut shells as medium and methanol as air pollutant.It is shown that peanut shells are potentially suitable as biofiltration medium,since degradation rates of up to 30kg MeOH/m 3d with an empty bed residence time of 19s was obtained.The biofilter showed a good resistance to shock load and no operational problems were observed.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionDifferent cleaning technologies of gaseous effluents have been developed.Among these technologies,biological methods are increasingly applied for the treatment of air polluted by a wide variety of pollutants.Biofiltration is certainly the most commonly used biological gas treatment technology.Biofiltration involves naturally occurring microorganisms immobilized in the form of a biofilm on a porous medium such as peat,soil,compost,synthetic substances or their combination.The medium provides to the microorganisms a hospitable environment in terms of oxygen,temperature,moisture,nutrients and pH.As the polluted air stream passes through the filter-bed,pollutants are transferred from the vapour phase to the biofilm developing on the packing particles.Given enough residence time,the microorganisms metabolise the pollutants to their primary components (such as carbon dioxide and water in the case of carbonaceous pollutants)plus additional biomass and innocuous metabolic products (Ott-engraf,1987;Wani et al.,1997).The absorption and/or adsorption capacity of the filter media is thus continuously renewed by the biological oxidation of the sorbed pollutants (Wani et al.,1997;Kennes and Thalasso,1998;Devinny et al.,1999;Pineda et al.,2004).Undoubtedly,biofiltration provides an economic,efficient,simple and versatile treatment method for a wide variety of both organic and inorganic pollutants,including numerous compounds classified as hazardous,odorous and/or toxic.The selection of the medium material is of major importance to ensure biofilter efficiency.A large number of materials have been used (Kennes and Thalasso,1998).Bohn et al.(1996)has listed 13important physical,chemical and biological characteristics for good biofilter media.Additionally,as biofiltration is a low cost technology and because large amounts of medium material are usually needed,low cost materials locally available are preferred.A previous study showed that peanut shells are potentially an interesting biofiltration medium (Ramírez-López et al.,2003).Pea-nut shells are locally available in large quantities at low price in most tropical and sub-tropical countries and have interesting physical and chemical characteristics:large specific surface area,neutral pH,large water holding capacity,nutrients for microbial growth and limited pressure drops when packed into a biofilter.In this context,peanut shells were selected as biofiltration medium material to study the treatment of a gaseous stream polluted with methanol.Methanol is an industrial solvent largely used in inks,resins,adhesives and dyes production,listed as one of the major Air Pollutants included in the EPA list of hazardous air pollutants.This paper presents the main results obtained during a contin-uous six months biofiltration experiment.The study included the stability of the medium and the biofilter response to short-term shock loads.2.MethodsPeanut shells were obtained from a peanuts oil factory located in the Chiapas State (México).The peanut shells were used as wasted without any previous treatment or inoculation.Peanut0960-8524/$-see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2008.10.064*Corresponding author.Tel.:+525557473320;fax:+525557473313.E-mail address:thalasso@cinvestav.mx (F.Thalasso).Bioresource Technology 101(2010)87–91Contents lists available at ScienceDirectBioresource Technologyj o u r n a l ho m e p a g e :w w w.e l s e v i er.com/locate/biortechshells were previously physically and chemically characterized (Table1;Ramírez-López et al.,2003).A stainless steel lab-scale reactor was built(diameter0.25m; height0.86m)with42L of total volume and an operating volume of20L.Air and water/nutrient solution were fed jointly on the top of the reactor using an atomising Venturi type nozzle.The atomis-ing nozzle was the type156.330.30.16from Lechler(Fellbach,Ger-many).This atomiser was previously characterized(Thalasso et al., 1993).The gasflow rate was obtained from a compressed air dis-tribution system and controlled by a valve and aflowmeter(Gil-mon,Barrington,USA).The airflow rate was maintained between1.95and3.90m3/h(98–195m3/m3h)and this stream was polluted with methanol as a model gaseous pollutant.Metha-nol was injected into the compressed air distribution line,through a vaporisation tank using a peristaltic pump(Masterflex pump C/L 6–60rpm;Cole Parmer,Mexico).Methanol concentrations were regulated in order to reach volumetric loading rates from2to 55kg MeOH/m3d.The liquid supply was maintained at approxi-mately0.07–0.13L/d(3.5–6.5L/m3d).Methanol degradation rates were determined from the inlet methanol gas concentration and the outlet gas and liquid concentrations.Prior to the biofiltration experiment and in order to distinguish the biological degradation from the abiotic sorption of methanol, wet peanut shells(41%moisture content)were sterilised at 120°C for30min and placed into the biofilter.The reactor was fed with a specific gas and waterflow rate of100and 3.5Â10À3m3/m3h,respectively.The methanol loading rate was main-tained at2.25kg/m3d.Influent and effluent gas samples were fre-quently analysed.Except during thefirst period of the biofiltration experiment (day0to day30),the liquidflow injected to the biofilter contained buffer and nutrients solution in order to promote a higher biolog-ical activity.The nutrient solution contained(in mg/L):KH2PO4 5120;Na2HPO4Á2H2O2720;(NH4)2SO4876;MgSO4Á7H2O400; EDTA20;FeSO4Á7H2O10;MnCl2Á4H2O 2.4;CoCl2Á6H2O0.9; ZnSO4Á7H2O0.5;CuSO4Á5H2O0.4;CaCl2Á2H2O2.0;Na2MoO4Á2H2O 0.4;Inositol4.0;pyridoxine chloride2.0;thiamine chloride2.0; pH7.0.The water/nutrient solution was injected continuously using a Masterflex pump(model755-05,Masterflex pump C/L Sys-tem;Cole Parmer,México).The experiment was run at ambient temperature.Effluent gas temperature and humidity were fre-quently measured using a thermohygrometer controller(Taylor 5368,Taylor,Mexico).Pressure drops through the column were continuously measured using a water column manometer.pH of the influent and effluent liquid solution were measured using a pH meter(Consort C835,Consort,Belgium).Methanol concentration of the influent and effluent gas phase as well as the liquid effluent was determined by gas chromatogra-phy using a Perkin–Elmer GC chromatograph equipped with a2m Porapak Q column and a FID detector.From time to time,samples of peanut shells were taken for analysis.Apart of visual observation,the moisture content of the medium was measured according to the2.166method(AOAC, 2002)and the water holding capacity(WHC)was measured according to2.181b method(AOAC,2002).At the beginning and the end of the experiment,total nitrogen and total phosphorus content of the peanuts shell were measured according to Jackson’s methods(Jackson,1976).Total potassium was also measured by atomic absorption after ashing the sample at550°C(AOAC, 2002).Total aerobic microorganisms were counted using the plate count technique(Benson,1985).At the beginning and at the end of the biofiltration experiment a drying test of the peanut shells was carried out using a drying com-puterised tower at Celaya Institute of Technology(Celaya,Mexico). Prior to the drying test,the peanut shells were washed three times with tap water in an ultrasonic bath(150T,VWR,USA)for5min and then saturated with water for48h.Peanut shells were then put on a tray(0.18by0.27m and0.015m height)and introduced into the drying tower.An airflow of2m3/h at90°C was main-tained through the peanut samples up to constant weight(4–8h).The influent and effluent air temperature and humidity as well as the sample weight and temperature were continuously monitored.From the results obtained,the drying velocity versus the moisture content was plotted.3.Results and discussionThe biofilter wasfirst loaded with sterilized peanut shells to evaluate the abiotic methanol absorption.At the onset of this experiment,the effluent methanol concentration was close to zero. Twenty-four hours later,the influent and effluent concentrations were close enough to consider that the sorption equilibrium was reached.Considering the complete sorption curve(data not shown),the sorption capacity of thefilter-bed was estimated to about0.5kg MeOH/m3of medium,this value being obviously pro-portional to the influent methanol concentration.After the abiotic methanol sorption experiment,the reactor was filled with fresh,peanut shells(47%moisture content)and the bio-filtration experiment was started.During thefirst period(Table2), water was injected instead of nutrient solution and the gasflow rate and the volumetric loading rate were maintained at100m3/ m3h and2.76kg MeOH/m3d,respectively.As presented in Fig.1, the apparent degradation rate started close to the loading rate, due to the sorption mechanisms,and rapidly decreased to an elim-ination efficiency of45%.After few days,methanol removal effi-ciency increased and remained around80%.At day30,assuming that the removal efficiency was limited by nutrients,the liquid feeding was changed from water to nutrient solution.During the following42days of operation,the removal efficiency increased and reached90%(Fig.1).From day72to104 the inlet methanol concentration was increased to0.66g/m3,while the airflow rate was increased to191m3/m3h,maintaining the loading rate at3kg MeOH/m3d.This caused a continuous increase in the removal efficiency,up to values close to100%(Fig.1).At day 104,the loading rate was duplicated to6kg/m3d.This increase had a direct negative impact on the elimination efficiency,decreas-ing for few days to around85%.Progressively,the degradation rate returned to higher values and stabilised at around95%.At day135, the loading rate was increased to15kg/m3d and the degradation rate increased in the same proportion.Nevertheless,after a few days the elimination efficiency started to decrease.Up to the end of the experiment,the loading rate was increased three times to reach a maximum value of45kg/m3d.During this period,the deg-radation rate increased proportionally to the loading rate applied up to30kg/m3d.Nevertheless,during the same period of time,Table1Physico-chemical characteristics of peanut shells.Water holding capacity(kg/kg dry weight) 2.8±0.03Specific surface area(m2/m3)268±6Dry density0.223±0.022Dry bulk density0.052±0.01Void fraction(%)74.02±0.5Number of particle per m3220Â103pH 6.8±0.04Ash(%dry weight) 3.5±0.21Organic matter(%dry weight)95.7±0.72Total nitrogen(%dry weight) 2.3±0.1Total potassium(%dry weight)0.31±0.01Total phosphorus(%dry weight)0.025±0.001Total aerobic microorganisms(UFC/g)1Â10888 E.M.Ramirez-Lopez et al./Bioresource Technology101(2010)87–91the removal efficiency decreased progressively from90%to60%. During the complete experiment,the cumulative methanol degra-dation reached1400kg MeOH/m3of medium.The volumetric removal rates obtained during the biofiltration experiment indicate the suitability of using peanut shells as a bio-filter medium.The best average removal efficiencies(96%)were obtained with a volumetric loading rate of3kg/m3d and a removal efficiencies of92%were observed with loading rates of6kg/m3d. Table3shows that these values are comparable to those obtained by Shareefdeen et al.(1993),Lee et al.(1996)and by Arulneyam and Swaminathan(2003),using wood wastes,peat based and com-post-polystyrene biofiltration media,respectively.The methanol removal efficiencies observed during thefirst135days of the experiment satisfied gas emissions criteria of most important reg-ulatory agencies.Indeed,the effluent gas methanol concentration was below the time weighted average(TWA)threshold limits established by the American,Australian and European Health Agencies(260mg/m3,OSHA,1998;AIHA,1998;NPI,2008and 270mg/m3,CEC,1988).By increasing the loading rates,maximum methanol degrada-tion rates of about30kg/m3d were obtained during a few days period.Nevertheless,these removal rates were obtained at the ex-pense of an important efficiency decline,namely from100%to60–65%.During the experiment,pressure drops across the biofilter in-creased as a result of biomass growth,as commonly observed in biofilters(Ottengraf,1986;Morgan-Sagastume et al.,2001).While at the beginning of the experiment the pressure drops were about 50Pa/m,by the end of the experiment the pressure drops were about200Pa/m(Fig.2).These pressure drops were within com-monly reported values(Kennes and Thalasso,1998).The relative humidity of the influent gas was steadily around20%.The humid-ity of the effluent gas was not constant.At the beginning of the experiment the effluent gas humidity changed cyclically from 80%to values close to100%.These oscillations progressively de-creased and from the day150onwards,the relative humidity of the effluent gas remained constantly over98%(Fig.2).This obser-vation was not clearly understood but the growth of a biofilm on the medium,the increase of the HWC and of the drying velocityTable2Operational conditions.Periods(d)0–3030–7272–104104–135135–156156–163163–170170–178 Gasflow rate(m3/m3h)10196191187191198191189 Empty bed residence time(s)3736191919181919 Inlet methanol concentration(g/m3) 1.18 1.160.66 1.35 3.69 4.897.9710.64 Specific loading rate(kg/m3d) 2.88 2.67 3.02 6.0516.8723.1836.5048.18 Specific degradation rate(kg/m3d) 2.35 2.35 2.89 5.5914.3217.3323.6434.53 Elimination efficiency(%)8086969284726169 Outlet gas concentration(g/m3)0.1370.1720.0170.0680.3700.686 1.810 1.949Table3Methanol biodegradation reported for different biofilter media.Medium Inlet(g/m3)Eliminationefficiency(%)Removal rates(kg/m3d)Reference1 6.33– 2.71Shareefdeen et al.(1993)2 6.33– 1.25Shareefdeen et al.(1993)3 6.33– 1.74Shareefdeen et al.(1993)4 6.33– 2.10Shareefdeen et al.(1993)5 6.33– 1.80Shareefdeen et al.(1993)60.785–1000.50Lee et al.(1996)7-95 1.68Johnson andDeshusses(1997)8 1.395–98 3.5Mohseni and Allen(2000)9 2.07Arulneyam andSwaminathan(2003)100.3100 3.22Chetpattananondhet al.(2005)110.6696 3.02This study11 1.3592 5.59This study1.Peat/perlite.2.Polyurethane foam/peat.3.Polyurethane foam/perlite/vermiculite.4.Polyurethane foam/peat/perlite.5.Polyurethane foam/peat/vermiculite.6.Wood waste/perlite.post/wood chips.8.Wood chips/compost/perlite.post/polystyrene.10.Palm shells.11.Peanutshells.E.M.Ramirez-Lopez et al./Bioresource Technology101(2010)87–9189of the medium(described below)could be somehow involved, increasing water availability.The biofilter was operated at the ambient temperature.During the experiment,the average effluent gas temperature was21°C while the average daily maximum and minimum were25and 15°C,respectively.The maximum effluent gas temperature ob-served was43°C while the minimum observed value was11°C. The average daily temperature variation was over10°C(maximum 22°C,minimum2°C).These temperature variations were mainly due to the extreme climate of Mexico City,a high altitude city lo-cated at2200m over sea level.No apparent effect of temperature was observed on the pollutant removal efficiencies.The pH of the liquid effluent also changed significantly during the experi-ment.While the influent pH was7.0,for an unknown reason,at the beginning of the experiment,the effluent pH was over8.5 and decreased slowly to reach afinal constant value of6.5±0.2 after day60.Microbial growth was clearly observed in the form of biofilm covering the external part of the peanut shells(Fig.3).Due to the concavity of the peanut shells,part of the medium surface was iso-lated from the liquidflow.On this area a clear fungus growth was observed instead of a wet biofilm.Before the biofiltration experi-ment,bacterial density was1Â108CFU/g of dry peanut shells. At the end of the biofiltration experiment,the total bacteria count gave a result of3Â1011CFU/g of dry peanut shells.Excluding microbial development,the visual observation did not provide any clear evidence of structural nor physical modifica-tion of the peanut shells.Nevertheless,a closer characterization pointed out several changes.On thefirst hand,the WHC of peanut shells increased from74%at the beginning of the experiment to 81%at the end of the experiment.This could be explained by the presence of a hydrophilic biofilm developing on the medium.Be-fore the experiment,total nitrogen,potassium and phosphorus content of peanut shells were2.30%,0.31%and0.025%dry weight, respectively.At the end of the experiment,these values were re-duced to0.65%,0.14%,and0.008%dry weight,showing a clear con-sumption or washing-out of these elements(decreases of72%,55%, and68%,respectively).Moreover,as presented on Fig.4,the drying test carried out showed that used peanut shells permitted a higher drying velocity.Wani et al.(1997)previously reported that behav-iour in a compost biofilter.This higher drying velocity indicates an increased drying vulnerability of the biofilter.At the end of the biofiltration experiment,the loading rate was reduced to3kg/m3d for24h and a fast increase of the loading rate was then applied in order to evaluate the resistance of the biofilter to a shock load.In less than20h,the loading rate was increased from3to57kg/m3d.As presented on Fig.5,the elimination effi-ciency was increasing with the loading rate increase.The biofilter showed a good resistance to shock loads,probably by combination of abiotic and biological mechanisms,which is of major interest for potential full-scale applications where influent pollutant concen-trations are usually unstable.The lower methanol removal effi-ciency observed at the beginning of the short-term experiment can be explained as a result of a desorption mechanism.The reduc-tion of the applied volumetric rate from48(end of previous oper-ation)to3kg/m3d,caused a shift in the adsorption equilibrium to lower values,which implies that a certain amount of the methanol originally adsorbed into the packing material was desorbed into the airstream,thus leading to lower observed removal rates asob-Fig.3.Scanning microscope picture of the peanuts shell before the biofiltration experiment(A)and at the end of the experiment(B).90 E.M.Ramirez-Lopez et al./Bioresource Technology101(2010)87–91served by Baltzis and Androutsopoulou(1994).Afterwards,the high removal rates observed at the end of this experiment can be also attributed to a combination of abiotic and biotic phenomena. The increase of the methanol loading rate caused changes in the sorption equilibrium in the packing material,which resulted in higher apparent methanol removal rates.Since organic biofilter materials provide most of the nutrient supply to the microorganisms involved in biofiltration processes, a natural decay of medium materials is generally observed.In full-scale biofilters,the medium material must be replaced after 3–5years of continuous operation(Kennes and Thalasso,1998). One of the major aspects to be discussed is therefore the long-term behaviour of peanut shells as biofilter medium.Firstly,during the 180days of experiment,no operational problems such as clogging, activity inhibition or bulking have been observed.Secondly,no sig-nificant change of the peanut shells structure was visually ob-served.Nevertheless,a clear increase of the drying velocity (Fig.4)and of the WHC was observed,that indicates a modification of the medium structure.Thirdly,during the same period of time, the cumulative mass of methanol degraded reached1400kg/m3, which is equivalent to the treatment of air polluted by1g/m3of methanol with an average gasflow rate of100m3/m3h(average of polluted air treated in commercial biofilters)during20months. Thus,the long-term operation of peanut shells biofilter can be con-sidered as feasible.Nevertheless,a clear decay of the nitrogen, phosphorous and potassium content of the peanut shells was ob-served,additional long-term experiments should be preferably performed before deciding on the use of peanut shells as biofilter media.4.ConclusionsPeanut shells are locally available in large quantities at low price in most tropical and sub-tropical countries and can be suc-cessfully used as a biofiltration medium.During a continuous oper-ation of6months,treating a methanol polluted airstream in a lab-scale biofilter,peanut shells were able to induce active biomass growth and methanol removal rates of up to30kg/m3d.In parallel to the degradation rates,the major results obtained were:(i)the absence of operation problems such as clogging,bulking or process inhibition,(ii)a cumulative methanol degradation of1400kg/m3, and(iii)a good resistance to shock loads.In addition,a clear decay of the nitrogen,phosphorus and potassium content of the peanut shells was observed.These results confirm the potential of peanut shells as a biofilter medium but point out the need for a long-term experiment and/or other pollutants before deciding on the use of peanut shells as biofilter material.AcknowledgementsThe authors wish to thank Prof.R.Auria from the IRD,France and Prof.S.Revah from the National Autonomous Metropolitan University of Mexico for they active scientific and technical ad-vises,J.Ballinas from the Tuxtla Gutierrez Technological Institute for providing the peanut shells used in this study and Dr.E.Escam-illa from the Celaya Technological Institute for the drying experiments.ReferencesAmerican Industrial Hygiene Association(AIHA),1998.The AIHA1998Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook.Association of Official Agricultural Chemists(AOAC),2002.Methods of Analysis of the Association of Official Analytical Chemists,13th ed.George Banta Company Inc.,Menasha,Wisconsin,USA.Arulneyam,D.,Swaminathan,T.,2003.Biodegradation of methanol vapour in a biofilter.J.Environ.Sci.–China15(5),691–696.Baltzis,B.C.,Androutsopoulou,H.,1994.A study on the response of biofilters to shock-loading.In:87th Annual Meeting and Exhibition.Air and Waste Management Assoc.,Cincinnati,OH(A905).Benson,H.J.,1985.Microbiological Applications:A Laboratory Manual in General Microbiology.Brown,Dubuque,Iowa.Bohn,H.L.,1996.Biofilter media.In:89th Annual Meeting and Exhibition.Air and Waste Management Assoc.,Nashville,Tennessee(96-WP87A.0).CEC,1988.Solvents in common use.In:Health Risks to mission of the European Communities,Cambridge,Royal Society of Chemistry,EUR1155. Chetpattananondh,P.,Nitipavachon,Y.,Bunyacan, C.,2005.Biofiltration of air contaminated with methanol and toluene.Songklanakarin J.Sci.Technol.27(3), 761–773.Devinny,J.S.,Deshusses,M.A.,Webster,T.S.,1999.Biofiltration for Air Pollution Control.CRC-Lewis Publishers,Boca Raton,FL,USA.Jackson,M.L.,1976.Análisis químico de suelos,Tercera edición.Omega,Barcelona, Spain,pp.300–303.Johnson,C.T.,Deshusses,M.A.,1997.Quantitative structure-activity relationships for VOC degradation in biofilters.In:Proceedings of the Fourth In situ On-site Bioremediation Symposium.Columbus,Ohio.Kennes,C.,Thalasso,F.,1998.Waste gas biotreatment technology.J.Chem.Technol.Biotechnol.72,303–319.Lee, B.D.,Appel,W.A.,Walton,M.R.,Cook,L.L.,1996.Treatment of methanol contaminated air stream using biofiltration.In:89th Annual Meeting and Exhibition.Air and Waste Management Assoc.,Nashville,Tennessee(96-RP87C.0).Mohseni,M.,Allen, D.G.,2000.Biofiltration of mixtures of hydropilic and hydrophobic volatile organic compounds.Chem.Eng.Sci.55,1545–1558. Morgan-Sagastume,F.,Sleep,B.E.,Allen,G.,2001.Effects of biomass growth on gas pressure drop in biofilters.J.Environ.Eng.127(5),388–396.National Pollutant Inventory(NPI),2008.Department of the Environment and Water Resource,Australian Government.Available form:<http://www.npi.gov.au/epg/npi/contextual_info/glossary.htm>.Occupational Safety and Helath Administration(OSHA),1998.Occupational Safety and Health Standards,Toxic and Hazardous Substances.Code of Federal Regulations29CFR1910.100.Ottengraf,S.P.P.,1986.Exhaust gas purification.In:Rehm,H.J.,Reed,G.(Eds.), Biotechnology.VCH Verlagsgesellschaft,Weinheim,Germany,pp.425–452 (Chapter12).Ottengraf,S.P.P.,1987.Biological system for waste gas elimination.TIBTECH5,132–136.Pineda,R.,Alba,J.,Thalasso,F.,Ponce-Noyola,T.,2004.Microbial characterization of organic carrier colonization during a model biofiltration experiment.Lett.Appl.Microbiol.38(6),522–526.Ramírez-López,E.,Corona-Hernández,J.,Dendooven,L.,Rangel,P.,Thalasso,F., 2003.Charaterization offive agricultural;by-products as potential biofilter carriers.Biores.Technol.88,259–263.Shareefdeen,Z.,Baltzis,B.C.,Oh,Y.-S.,Bartha,R.,1993.Biofiltration of methanol vapor.Biotechnol.Bioeng.41(5),512–524.Thalasso,F.,Ancia,R.,Willocx,B.,L’Hermite,P.,Naveau,H.,Nyns,E.-J.,1993.The ‘‘Mist-foam”concept:a concept for biological treatment of gaseous organic compounds.In:Vigneron,S.,Hermia,J.,Chaouki,J.(Eds.),Characterisation and Control of Odours and VOC in the Process Industries.Elsevier,Amsterdam,The Netherlands,pp.419–429.Wani,A.H.,Branion,R.M.R.,Lau,A.K.,1997.Biofiltration:a promising and cost-effective control technology for odours,VOC’s and air toxic.J.Environ.Sol.Health A32,2027–2055.E.M.Ramirez-Lopez et al./Bioresource Technology101(2010)87–9191。