高中物理必修2模块测试(全册) (修复的)

合集下载

高中物理必修2 模块检测(附答案)

高中物理必修2 模块检测(附答案)

必修二模块检测(时间:60分钟满分:100分)一、选择题(共9小题,第1~4题为单项选择题,第5~9题为多项选择题,每小题6分,共54分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中正确的是( B )A.日心说的代表人物是托勒密B.英国物理学家卡文迪许利用“扭秤”首先较准确地测定了引力常量C.伽利略用“月—地检验”证实了万有引力定律的正确性D.第谷得出了行星运动定律解析:日心说的代表人物是哥白尼,A错;根据物理学史可知B正确;伽利略年代还没有出现万有引力定律,C错;开普勒得出了行星运动定律,D错误.2.斜面上有P,R,S,T四个点,如图所示,PR=RS=ST,从P点正上方的Q 点以速度v水平抛出一个物体,物体落于R点,若从Q点以速度2v水平抛出一个物体,不计空气阻力,则物体落在斜面上的( A )A.R与S间的某一点B.S点C.S与T间某一点D.T点解析:平抛运动的时间由下落的高度决定,下落的高度越高,运动时间越长.如果没有斜面,增加速度后物体下落至与R等高时,其位置恰位于S点的正下方的一点,但实际当中斜面阻碍了物体的下落,物体会落在R与S点之间斜面上的某个位置,A项正确.3.竖直向上的恒力F作用在质量为m的物体上,使物体从静止开始运动升高h,速度达到v,在这个过程中,设阻力恒为f,则下列表述正确的是( D )A.F对物体做的功等于物体动能的增量,即Fh=mv2B.F对物体做的功等于物体机械能的增量,即Fh=mv2+mghC.F与f对物体做的功等于物体动能的增量,即(F-f)h=mv2D.物体所受合力的功等于物体动能的增量,即(F-f-mg)h=mv2解析:加速运动过程终结时,物体的动能、重力势能均得到增加.除此之外,在所述过程中,因为有阻力的存在,还将有内能产生,其值为fh,可见Fh>mv2,同时,Fh>mv2+mgh,Fh=mgh+mv2+fh,经变形后,可得A,B,C错误,D正确.4.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知引力常量G,若由于天体自转使物体对天体表面的压力恰好为零,则天体自转周期为( D )A.()B.()C.()D.()解析:由万有引力提供向心力得G=mr()2,而M=ρ·πR3,r=R,解得T=(),故D正确.5.已知月球上没有空气,重力加速度为地球的,假如你登上月球,你能够实现的愿望是( AC )A.轻易将100 kg物体举过头顶B.放飞风筝C.做一个同地面上一样的标准篮球场,在此打球,发现自己成为扣篮高手D.推铅球的水平距离变为原来的6倍解析:因为g月=g地,所以在月球上举100 kg的物体,相当于在地球上举16.7 kg的物体,故A正确;在月球上弹跳高度是地球上的6倍,故C正确;根据平抛运动x=v0,知D错;月球上没有空气,故不能放飞风筝,B错.6.物体在运动过程中,克服重力做功50 J,则以下说法中正确的是( BD )A.物体的高度一定降低了B.物体的高度一定升高了C.物体的重力势能一定是50 JD.物体的重力势能一定增加50 J解析:克服重力做功,即重力做负功,重力势能增加,高度升高,克服重力做多少功,重力势能就增加多少,但重力势能的大小是相对的,对不同参考平面,重力势能的大小不确定.故选项A,C错误,B,D正确. 7.如图所示,恒力F通过光滑定滑轮将质量为m的物体P提升,物体P 向上的加速度为a,在P上升h的过程中,力F做功为( BD )A.mghB.FhC.(F+ma)hD.m(g+a)h解析:根据牛顿第二定律有F-mg=ma,所以F=m(g+a),则恒力F做功为W=Fh=m(g+a)h,故B,D正确.8.如图所示,M,N是两块挡板,挡板M高h′=10 m,挡板N的下边缘高h=11.8 m.从高H=15 m的A点以速度v0水平抛出一小球,A点与两挡板的水平距离分别为d1=10 m,d2=20 m.N板的上边缘高于A点,若能使小球直接进入挡板M的右边区域,则小球水平抛出的初速度v0的大小是下列给出数据中的哪个(g取10 m/s2)( BC )A.8 m/sB.14 m/sC.20 m/sD.26 m/s解析:要让小球落到挡板M的右边区域,下落的最大高度为Δh1=5 m,由t1=得出t1=1 s,由d1=v01t1,得出v01=10 m/s;要让小球落到挡板M的右边区域,下落的最小高度为Δh2=3.2 m,由t2=得出t2=0.8 s,由d2=v02t2,得出v02=25 m/s.所以v0的范围为10 m/s≤v0≤25 m/s,故B,C正确.9.如图所示是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若小车在平直的公路上以初速度v0开始加速行驶,经过时间t,前进了距离l,达到最大速度v max,设此过程中电动机功率恒为额定功率P,受到的阻力恒为f,则此过程中电动机所做的功为( ABD )A.fv max tB.PtC.ftD.m +fl-m解析:由于功率恒定,则W=Pt,故B对;又由于达到最大速度时,P=Fv max=fv max,则W=Pt=fv max t,故A对,C错;又由动能定理W-fl=m -m,则W=m -m+fl,故D对.二、非选择题(共46分)10.(8分)某同学用如图(甲)所示的装置验证动能定理.为了提高实验精度,该同学多次改变小滑块下落高度H的值,测出对应的平抛运动水平位移x,并算出x2如下表所示,进而画出x2H图线如图(乙)所示.滑块下落高度H平抛水平位移x/cm平抛水平位移的平方x2/cm2h 5.5 30.252h 9.1 82.813h 11.7 136.894h 14.2 201.645h 15.9 252.816h 17.6 309.767h 19.0 361.008h 20.6 424.369h 21.7 470.89(1)原理分析:若滑块在下滑过程中所受阻力很小,则只要满足,便可验证动能定理.(2)实验结果分析:实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是 .解析:(1)若滑块在下滑过程中所受阻力很小,由动能定理,mgH=m,根据平抛运动规律,x=v0t,H=gt2,显然x2与H成正比,即只要满足x2与H成正比,便可验证动能定理.(2)实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是滑块需要克服阻力做功.答案:(1)x2与H成正比(2)滑块需要克服阻力做功11.(11分)某同学利用重物自由下落来“验证机械能守恒定律”的实验装置如图(甲)所示.(1)请指出实验装置中存在的明显错误.(2)进行实验时,为保证重物下落时初速度为零,应(选填“A”或“B”).A.先接通电源,再释放纸带B.先释放纸带,再接通电源(3)根据打出的纸带,选取纸带上连续打出的1,2,3,4四个点如图(乙)所示.已测出1,2,3,4到打出的第一个点O的距离分别为h1,h2,h3,h4,打点计时器的打点周期为T.若代入所测数据能满足表达式gh3= (用题目中已测出的物理量表示),则可验证重物下落过程机械能守恒.解析:(1)从题图(甲)中的实验装置中发现,打点计时器接在了“直流电源”上,打点计时器的工作电源是“交流电源”.因此,明显的错误是打点计时器接在“直流电源”上.(2)为了使纸带上打下的第1个点是速度为零的初始点,应该先接通电源,让打点计时器正常工作后,再释放纸带.若先释放纸带,再接通电源,当打点计时器打点时,纸带已经下落,打下的第1个点的速度不为零.因此,为保证重物下落的初速度为零,应先接通电源,再释放纸带.(3)根据实验原理,只要验证gh n=即可验证机械能守恒定律.因此需求解v3.根据匀变速直线运动规律关系式可得,v3=,则有=,故只要在误差允许范围内验证gh3=成立,就可验证重物下落过程中机械能守恒.答案:(1)打点计时器接“直流电源”(或打点计时器应接“交流电源”)(2)A (3)12.(12分)不可伸长的轻绳长l=1.2 m,一端固定在O点,另一端系一质量为m=2 kg的小球.开始时,将小球拉至绳与竖直方向夹角θ=37°的A处,无初速度释放,如图所示,取cos 37°=0.8,g=10 m/s2.求:(1)小球运动到最低点B时绳对球的拉力大小;(2)若小球运动到B点时,对小球施加一沿速度方向的瞬时作用力F,让小球在竖直面内做完整的圆周运动,F做功的最小值.解析:(1)小球从A到B过程中,有mgl(1-cos 37°)=mv2在B点,有F T-mg=m解得F T=28 N.(2)小球通过最高点的速度为v C,由牛顿第二定律得mg=m从A到C的过程W-mgl(1+cos 37°)=m-0解得W=55.2 J.答案:(1)28 N (2)55.2 J13.(15分)如图所示,长为l的绳子下端连着质量为m的小球,上端悬于天花板上,当把绳子拉直时,绳子与竖直方向的夹角为60°,此时小球静止于光滑水平桌面上.重力加速度为g.(1)当小球以角速度ω1=做圆锥摆运动时,桌面对小球的支持力为多大?(2)当小球以角速度ω2=做圆锥摆运动时,绳子的张力为多大?解析:当支持力N恰好为0时,有mgtan 60°=m lsin 60°解得ω0=.(1)因为ω0>,所以桌面对小球有支持力,设N1为桌面对小球的支持力,F1为绳的张力,则N1+F1cos 60°=mgF1sin 60°=m lsin 60°解得N1=.(2)因为>ω0,所以小球离开桌面,设此时绳的张力为F2,则F2sin θ=m lsin θ解得F2=4mg.答案:(1)mg (2)4mg。

2024_2025年新教材高中物理模块检测含解析新人教版选择性必修第二册

2024_2025年新教材高中物理模块检测含解析新人教版选择性必修第二册

模块达标验收(时间:90分钟满分:100分)一、选择题(本题共12小题,共40分。

第1~8小题,在每小题给出的四个选项中,只有一个正确选项,每小题3分;第9~12小题有多个正确选项,全选对的得4分,选对但不全的得2分,有选错的得0分)1.在物理学发展过程中,观测、试验、假说和逻辑推理等方法都起到了重要作用。

下列叙述不符合史实的是( )A.奥斯特在试验中视察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培依据通电螺线管的磁场和条形磁铁的磁场的相像性,提出了分子电流假说C.法拉第在试验中视察到,在通有恒定电流的静止导线旁边的固定闭合导线圈中,会出现感应电流D.楞次在分析了很多试验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变更解析:选C 通有恒定电流的静止导线旁边产生的磁场是不变的,在其旁边的固定闭合导线圈中没有磁通量的变更,因此,不会出现感应电流,选项C错误。

2.电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N极朝下,如图所示。

现使磁铁起先自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电状况是( )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电解析:选D 磁铁自由下落,在N极接近线圈上端的过程中,通过线圈的磁通量方向向下且在增大,依据楞次定律可推断出线圈中感应电流的磁场方向向上,利用安培定则可推断出线圈中感应电流方向为逆时针绕向(由上向下看),流过R的电流方向从b到a,电容器下极板带正电。

选项D正确。

3.压敏电阻的阻值随所受压力的增大而减小,有位同学设计了利用压敏电阻推断升降机运动状态的装置,其工作原理如图所示。

将压敏电阻固定在升降机底板上,其上放置一个物块,在升降机运动过程的某一段时间内,发觉电流表的示数I不变,且I大于升降机静止时电流表的示数I0,在这段时间内( )A.升降机可能匀速上升B.升降机肯定匀减速上升C.升降机肯定处于失重状态D.通过压敏电阻的电流肯定比电梯静止时大解析:选C 在升降机运动过程的某一段时间内,电流表示数I 不变,且有I >I 0,则说明电源的路端电压增大了,从而分析出是压敏电阻的阻值增大了,压敏电阻受的压力减小了,由牛顿其次定律可知,物块具有向下的加速度,处于失重状态,升降机可能向下匀加速运动,也可能向上匀减速运动,故C 正确,A 、B 错误;因压敏电阻的阻值增大,电源总电流减小,电流表示数变大,故通过压敏电阻的电流肯定比电梯静止时小,D 错误。

高中物理必修二模块水平综合检测(全册最新整理含答案)

高中物理必修二模块水平综合检测(全册最新整理含答案)

高中物理必修二模块水平综合检测(最新整理)(时间:90分钟 满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是( )A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ2.关于摩擦力做功,以下说法正确的是( )A .滑动摩擦力阻碍物体的相对运动,所以一定做负功B .静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C .静摩擦力和滑动摩擦力不一定都做负功D .一对相互作用力,若作用力做正功,则反作用力一定做负功3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4 D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1 4.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-15.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R27.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50 m 盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .08.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh 9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为()A.n3k2T B.n3k T C.n2k T D.nk T10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B 即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点14.(全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O 的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p =__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1 kg的小球A,另一端连接质量M=4 kg的物体B.当A球沿半径r=0.1 m的圆周做匀速圆周运动时,要使物体B不离开地面,A球做圆周运动的角速度有何限制(g取10 m/s2)?17.(14分)据报道,人们最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50 kg 的人在这个行星表面的重量约为800 N,地球表面处的重力加速度为10 m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2 m高处,以10 m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.18.(16分)如图所示,一长度L AB =4.98 m 、倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度L BC =0.4 m ,离地面高度H =1.4 m ,在C 处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A 处由静止释放质量为m =2 kg 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因数μ=0.1,g 取10 m/s 2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r =0.75 m ,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin 53°=45,cos 53°=35)?高中物理必修二模块水平综合检测(最新整理)参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是()A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ解析:小球落地时竖直方向上的速度v y =gt ,因为落地时速度方向与水平方向的夹角为θ,则tan θ=gt v 0,可知若小球初速度增大,则θ减小,故A 正确;小球落地时位移方向与水平方向夹角的正切值tanα=y x =12gt 2v 0t =gt 2v 0,tan θ=2tan α,但α≠θ2,故B 错误;平抛运动的落地时间由高度决定,与初速度无关,故C 错误;速度方向与水平方向夹角的正切值tan θ=v y v 0=gt v 0,小球的初速度v 0=gt tan θ,故D 错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A、B、D错误,C正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1解析:由题意知,A轮通过链条分别与C、D连接,自行车可有两种速度,B轮分别与C、D连接,又可有两种速度,所以该车可变换四种挡位;当A与D组合时,两轮边缘线速度大小相等,A转一圈,D 转4圈,即ωAωD=14,选项C 对. 答案:C4.已知靠近地面运转的人造卫星,每天转n 圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为( )A .nB .n 2 C.n 3-1 D.3n 2-1 解析:设同步卫星离地面的高度为h ,地球半径为R .近地卫星的周期为T 1=24 h n ,同步卫星的周期为T 2=24 h ,则T 1∶T 2=1∶n ,对于近地卫星有G Mm R 2=m 4π2T 21R , 对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ), 联立解得h =(3n 2-1)R ,故D 正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点远B .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点近C .这三滴油依次落在OA 间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50 m 盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50 m B.0.25 mC.0.10 m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,得到s=hμ=0.30.1m=3 m,d=0.50 m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点.故选D.答案:D8.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh解析:重力做功W G =-mgh ,故重力势能增加了mgh ,A 错.物体所受合力F =ma =34mg ,合力做功W 合=-F h sin 30°=-34mg ×2h =-32mgh ,由动能定理知,动能损失了32mgh ,B 、C 错,D 正确. 答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2k T D.nk T解析:设两颗星的质量分别为m 1、m 2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3k T,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度v y相等,根据瞬时功率P=F v cos α,落地瞬间重力的即时功率P=mg v y.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A .B 球在最低点较A 球在最低点更易脱离轨道B .若B 球在最低点与杆间的作用力为3mg ,则A 球在最高点受杆的拉力C .若某一周A 球在最高点和B 球在最高点受杆的力大小相等,则A 球受杆的支持力,B 球受杆的拉力D .若每一周做匀速圆周运动的角速度都增大,则同一周B 球在最高点受杆的力一定大于A 球在最高点受杆的力解析:两球的角速度相同,由向心力公式F n =mω2r 可知,由于B 的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B 球更容易做离心运动,更容易脱离轨道,故A 正确.若B 球在最低点与杆间的作用力为3mg ,设B 球的速度为v B .则根据牛顿第二定律,得N B -mg =m v 2B 2L ,且N B =3mg ,得v B =2gL ,由v =ωr ,ω相等,A 的半径是B 的一半,则得此时A 的速度为v A =12v B =gL .对A 球,设杆的作用力大小为N A ,方向向下,则有mg +N A =m v 2A L ,解得N A =0,说明杆对A 球没有作用力,故B 错误.若某一周A 球在最高点和B 球在最高点受杆的力大小相等,设为F ,假设在最高点杆对A 、B 球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-F B=mω2·2L,得F B=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-F A=mω2L,得F A=mg-mω2L,可得F A>F B,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=m v 2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D 正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A、C错误,B正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg=m v 2R,解得:v=gR,故B正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C正确;过山车在斜面h=2R高处由静止滑下到最高点的过程中,根据动能定理得:12m v ′2=mg (h -2R )=0.解得;v ′=0,所以不能通过最高点,故D 错误.故选B 、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地mR 2地=mg 地,在月球表面附近有G M 月m R 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G Mm R 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O。

新版人教版高中物理必修第二册全册测试题(附答案)

新版人教版高中物理必修第二册全册测试题(附答案)

A.小球运动的线速度越来越大 B.小球运动的角速度不变 C.小球运动的加速度越来越大 D.小球所受的合外力不变 5.船在河中行驶,设船受到的阻力与速度大小成正比。当船以速度 v 匀速时,发动机功率为
第1页共7页
P,当船以 3v 匀速时,发动机的功率为( ) A.P B.6P C.9P D.3P
6.质量为 的物体,以初速度 由固定的光滑斜面的底端沿斜面向上滑动,在滑动过程中,
第3页共7页
A.卫星在三个轨道运动的周期关系是:T1< T3< T2 B.卫星在三个轨道运动的周期关系是:T1< T2< T3 C.卫星在轨道 1 上经过 Q 点时的速度小于它在轨道 2 上经过 P 点时的速度 D.卫星在三个轨道运动的机械能关系是:E1< E2 < E 3 13.关于平抛运动,下列说法正确的是( ) A.平抛运动是匀变速运动 B.平抛运动是变加速运动 C.任意两个时刻的加速度相同 D.任意两段相等时间内的位移变化量相同 14.两质量均为 1kg 的小球 1、2(均视为质点)用长为 1m 的水平轻质杆相连,置于光滑水平 面上,且小球 1 恰好与光滑竖直墙壁接触,如图所示。现用向上的力 F 拉动小球 1,使小球 1 贴着竖直墙壁上升,小球 2 沿水平面向左运动,直到杆与水平面的夹角θ=53°,此时小球 2 的 速度大小为 m/s。取 sin53°=0.8,cos53°=0.6,重加速度大小 g=10m/s2。下列分析正确的是( )
A.n B.n2 C. -1 D. -1
10.如图所示,有一固定的且内壁光滑的半球面,球心为 ,最低点为 ,有两个可视为质点
且质量相同的小球 和 ,在球面内壁两个高度不同的水平面内做匀速圆周运动, 球的轨迹
平面高于 球的轨迹平面, 、 两球与 点的连线与竖直线 间的夹角分别为

高中物理必修二全册综合检测模块综合测试题(最新整理精品含答案)

高中物理必修二全册综合检测模块综合测试题(最新整理精品含答案)

高中物理必修二模块综合测试题(全册精品)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小2.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上. 若不计空气阻力,则A、B两个小球的运动时间之比为()A.1∶1B.4∶3C.16∶9 D.9∶163.如图所示,河水流动的速度为v,且处处相同,河宽度为a,在船下水点A的下游距离为b处是瀑布,为了使小船安全渡河(不掉到瀑布里去),本题中小船速度均指静水中的速度,则下列说法正确的是()A.小船船头垂直于河岸渡河时间最短,最短时间为t=bv,此时小船速度最大,最大速度为v max =a v bB .小船沿y 轴方向渡河,位移最小,速度最大,最大速度为v max =a v bC .小船沿轨迹AB 运动,位移最大,时间最长,速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动,位移最大,速度最小,最小速度v min =a v a 2+b 24.汽车在平直公路上行驶,前一段时间内发动机的功率为P 1,后一段时间内的功率为P 2,已知在两段时间内发动机做的功相等,则在全部时间内发动机的平均功率为( )A.P 1+P 22B.P 1P 2C.P 1P 2P 1+P 2D.2P 1P 2P 1+P 25.以一定速度竖直上抛一个小球,小球上升的最大高度为h ,空气阻力的大小恒为F f ,则从抛出至落回到原出发点的过程中,空气阻力对小球做的功为( )A .0B .-F f hC .-2F f hD .-4F f h6.质量为2×103 kg 、发动机的额定功率为80 kW 的汽车在平直公路上行驶.若该汽车所受阻力大小恒为4×103 N ,则下列判断中正确的有( )A .汽车的最大速度是10 m/sB .汽车以2 m/s 2的加速度匀加速启动,启动后第2 s 末时发动机的实际功率是32 kWC .汽车以2 m/s 2的加速度匀加速启动,匀加速运动所能维持的时间为10 sD .若汽车保持额定功率启动,则当其速度为5 m/s 时,加速度为8 m/s 27.质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( )A .μmgB .μm v 2RC .μm ⎝ ⎛⎭⎪⎫g +v 2RD .μm ⎝ ⎛⎭⎪⎫v 2R -g 8.一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图所示.下列判断正确的是( )A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶59.长为0.5 m 的轻杆,其一端固定于O 点,另一端连有质量m =2 kg 的小球,它绕O 点在竖直平面内做圆周运动,如图所示,当通过最高点时,v =1 m/s ,小球受到杆的力是(g 取10 m/s 2)( )A .16 N 推力B .16 N 拉力C .4 N 推力D .4 N 拉力10.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.我国已发射了“嫦娥三号”卫星,该卫星在距月球表面H 处的环月轨道Ⅰ上做匀速圆周运动,其运行的周期为T ,随后“嫦娥三号”在该轨道上A 点采取措施,降至近月点高度为h 的椭圆轨道Ⅱ上,如图所示.若以R 表示月球的半径,忽略月球自转及地球对卫星的影响.则下述判断正确的是( )A .“嫦娥三号”在环月轨道Ⅰ上需加速才能降至椭圆轨道ⅡB .“嫦娥三号”在图中椭圆轨道Ⅱ上的周期为 (2R +H +h )38(R +H )3T C .月球的质量为4π2(R +H )3GT 2 D .月球的第一宇宙速度为 2πR (R +H )3TR 12.如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则( )A .物块始终受到三个力作用B .只有在a 、b 、c 、d 四点,物块受到合外力才指向圆心C .从a 到b ,物体所受的摩擦力先减小后增大D .从b 到a ,物块处于超重状态13.如图所示,在“嫦娥”探月工程中,设月球半径为R ,月球表面的重力加速度为g .飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入半径约为R 的近月轨道Ⅲ绕月做圆周运动,则( )A .飞船在轨道Ⅰ上的运行速率等于12g 0RB .飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率C .飞船在轨道Ⅰ上的加速度大于在轨道Ⅱ上B 处的加速度D .飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶114.将一物体从地面以一定的初速度竖直上抛,从抛出到落回原地的过程中,空气阻力恒定.以地面为零势能面,则下列反映物体的机械能E 、动能E k 、重力势能E p 及克服阻力所做的功W 随距地面高度h 变化的四个图象中,可能正确的是( )三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)在做“研究平抛运动”的实验中,为了确定小球不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,在一块平整的木板表面钉上白纸和复写纸.将该木板竖直立于水平地面上,使小球从斜槽上紧靠挡板处由静止释放,小球撞到木板并在白纸上留下痕迹A;将木板向远离槽口的方向平移距离x,再使小球从斜槽上紧靠挡板处由静止释放,小球撞在木板上得到痕迹B;将木板再向远离槽口的方向平移距离x,小球再从斜槽上紧靠挡板处由静止释放,再得到痕迹C.若测得木板每次移动距离x=10.00 cm.A、B间距离y1=5.02 cm,B、C间距离y2=14.82 cm(g=9.80 m/s2).(1)为什么每次都要使小球从斜槽上紧靠挡板处由静止释放?______________________________________________________.(2)根据以上直接测量的物理量来求得小球初速度的表达式为v0=________________(用题中所给字母表示).(3)小球初速度的值为v0=________ m/s.16.(8分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.17.(14分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W =-1 530 J,取g=10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.18.(16分)如图所示,一轻质弹簧左端固定在足够长的水平轨道左侧,水平轨道的PQ段粗糙,调节其初始长度为l0=1.5 m,水平轨道右侧连接半径为R=0.4 m的竖直圆形光滑轨道,可视为质点的滑块将弹簧压缩至A点后由静止释放,经过水平轨道PQ后,恰好能通过圆形轨道的最高点B.已知滑块质量m=1 kg,与PQ段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g取10 m/s2,求:(1)弹簧压缩至A点时弹簧的弹性势能E p;(2)若每次均从A点由静止释放滑块,同时调节PQ段的长度,为使滑块在进入圆形轨道后能够不脱离轨道而运动,PQ段的长度l应满足什么条件?高中物理必修二(全册)模块综合测试题参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析:小球做匀变速曲线运动,所以加速度不变,故选项C错误.由于在D 点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,即C点速率比D点大,故选项A正确.在A 点速度方向与加速度方向的夹角也为钝角,故选项B错误.而从B到E的过程中速度方向与加速度的方向间的夹角越来越小,故选项D错误.答案:A2.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上. 若不计空气阻力,则A、B两个小球的运动时间之比为()A.1∶1B.4∶3C.16∶9 D.9∶16解析:两小球均做平抛运动,且均落在斜面上,则对于A球有tan 37°=yx=12gt 2A v 0t A =gt A 2v 0,解得t A =2v 0tan 37°g ,同理对于B 球有t B =2v 0tan 53°g ,则t A t B =tan 37°tan 53°=916,故D 正确.答案:D3.如图所示,河水流动的速度为v ,且处处相同,河宽度为a ,在船下水点A 的下游距离为b 处是瀑布,为了使小船安全渡河(不掉到瀑布里去),本题中小船速度均指静水中的速度,则下列说法正确的是( )A .小船船头垂直于河岸渡河时间最短,最短时间为t =b v ,此时小船速度最大,最大速度为v max =a v bB .小船沿y 轴方向渡河,位移最小,速度最大,最大速度为v max =a v bC .小船沿轨迹AB 运动,位移最大,时间最长,速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动,位移最大,速度最小,最小速度v min =a va 2+b 2 解析:小船船头垂直于河岸渡河时间最短,最短时间t =a v 船,A 错误;小船沿y 轴方向渡河,位移最小,此时船头与河岸有一定夹角,指向上游,即小船的两个分速度夹角为钝角,合速度比两分速度夹角为锐角时小,故不是最大速度,B 错误;小船沿轨迹AB 运动位移最大,但渡河的时间由船速的大小和方向共同决定,此时船速有最小值,即当船速方向与AB 垂直时,船速最小,由相似三角形,得av min =a 2+b 2v ,解得v min =a v a 2+b 2,C 错误,D 正确. 答案:D4.汽车在平直公路上行驶,前一段时间内发动机的功率为P 1,后一段时间内的功率为P2,已知在两段时间内发动机做的功相等,则在全部时间内发动机的平均功率为()A.P1+P22 B.P1P2C.P1P2P1+P2D.2P1P2P1+P2解析:平均功率P=2Wt1+t2,又t1=WP1,t2=WP2,故P=2P1P2P1+P2,故选项D正确.答案:D5.以一定速度竖直上抛一个小球,小球上升的最大高度为h,空气阻力的大小恒为F f,则从抛出至落回到原出发点的过程中,空气阻力对小球做的功为()A.0 B.-F f hC.-2F f h D.-4F f h解析:上升阶段,空气阻力做功W1=-F f h.下落阶段空气阻力做功W2=-F f h,整个过程中空气阻力做功W=W1+W2=-2F f h,故C选项正确.答案:C6.质量为2×103kg、发动机的额定功率为80 kW的汽车在平直公路上行驶.若该汽车所受阻力大小恒为4×103 N,则下列判断中正确的有() A.汽车的最大速度是10 m/sB.汽车以2 m/s2的加速度匀加速启动,启动后第2 s末时发动机的实际功率是32 kWC.汽车以2 m/s2的加速度匀加速启动,匀加速运动所能维持的时间为10 s D.若汽车保持额定功率启动,则当其速度为5 m/s时,加速度为8 m/s2解析:当牵引力大小等于阻力时速度最大,根据P=f v m得,汽车的最大速度v m=Pf=80 0004 000m/s=20 m/s,故A错误;根据牛顿第二定律,得F-f=ma,解得F=f+ma=4 000 N+2 000×2 N=8 000 N,第2 s末的速度v=at=2×2 m/s =4 m/s,第2 s末发动机的实际功率P=F v=8 000×4 W=32 kW,故B正确;匀加速直线运动的末速度v=PF=80 0008 000m/s=10 m/s,做匀加速直线运动的时间t =v a =102 s =5 s ,故C 错误;当汽车速度为5 m/s 时,牵引力F =P v =80 0005 N=16 000 N ,根据牛顿第二定律,得汽车的加速度a =F -f m =16 000-4 0002 000m/s 2=6 m/s 2,故D 错误.选B.答案:B7.质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( )A .μmgB .μm v 2RC .μm ⎝ ⎛⎭⎪⎫g +v 2RD .μm ⎝ ⎛⎭⎪⎫v 2R -g 解析:滑块经过碗底时,由重力和支持力的合力提供向心力.根据牛顿第二定律得F N -mg =m v 2R ,则碗底对球支持力F N =mg +m v 2R .所以在过碗底时滑块受到摩擦力的大小f =μF N =μ⎝ ⎛⎭⎪⎫mg +m v 2R =μm ⎝ ⎛⎭⎪⎫g +v 2R ,故选C. 答案:C8.一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图所示.下列判断正确的是( )A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶5解析:0~1 s 内,质点的加速度a 1=F 1m =31 m/s 2=3 m/s 2,则质点在0~1 s内的位移x 1=12a 1t 21=12×3×1 m =1.5 m ,1 s 末的速度v 1=a 1t 1=3×1 m/s =3 m/s ,第2 s 内质点的加速度a 2=F 2m =11 m/s 2=1 m/s 2,第2 s 内的位移x 2=v 1t 2+12a 2t 22=3×1 m +12×1×1 m =3.5 m ,在0~2 s 内外力F 做功的大小W =F 1x 1+F 2x 2=3×1.5 J +1×3.5 J =8 J ,可知0~2 s 内外力的平均功率P =W t =82 W =4 W ,故A正确;第2 s 内外力做功W 2=F 2x 2=1×3.5 J =3.5 J ,故B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W =9 W ,第2 s 末的速度v 2=v 1+a 2t 2=3 m/s +1×1 m/s =4 m/s ,则外力的瞬时功率P 2=F 2v 2=1×4 W =4 W ,可知第2 s 末外力的瞬时功率不是最大,第1 s 末和第2 s 末外力的瞬时功率之比为9∶4,故C 、D 错误.答案:A9.长为0.5 m 的轻杆,其一端固定于O 点,另一端连有质量m =2 kg 的小球,它绕O 点在竖直平面内做圆周运动,如图所示,当通过最高点时,v =1 m/s ,小球受到杆的力是(g 取10 m/s 2)( )A .16 N 推力B .16 N 拉力C .4 N 推力D .4 N 拉力解析:小球受重力和杆的弹力作用,设杆的弹力竖直向上.由牛顿第二定律得mg -F N =m v 2L ,解得F N =mg -m v 2L =2×10 N -2×120.5N =16 N ,故球受到杆竖直向上的推力作用,大小为16 N ,选项A 正确.答案:A10.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L解析:根据F 万=F 向,对m 1得G m 1m 2L 2=m 1v 21r 1=m 1r 1ω2,对m 2得G m 1m 2L 2=m 2v 22r 2=m 2r 2ω2,又r 1+r 2=L ,由以上各式得v 1v 2=r 1r 2=m 2m 1=23,A 错误.由于T 1=T 2,故ω=2πT 相同,B 错误.r 1=25L ,r 2=35L ,C 正确,D 错误.答案:C二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.我国已发射了“嫦娥三号”卫星,该卫星在距月球表面H 处的环月轨道Ⅰ上做匀速圆周运动,其运行的周期为T ,随后“嫦娥三号”在该轨道上A 点采取措施,降至近月点高度为h 的椭圆轨道Ⅱ上,如图所示.若以R 表示月球的半径,忽略月球自转及地球对卫星的影响.则下述判断正确的是( )A .“嫦娥三号”在环月轨道Ⅰ上需加速才能降至椭圆轨道ⅡB .“嫦娥三号”在图中椭圆轨道Ⅱ上的周期为 (2R +H +h )38(R +H )3T C .月球的质量为4π2(R +H )3GT 2 D .月球的第一宇宙速度为 2πR (R +H )3TR 解析:“嫦娥三号”在轨道Ⅰ上运动,要使其沿椭圆轨道运动,“嫦娥三号”需做近心运动,故在轨道Ⅰ上需要对“嫦娥三号”减速,“嫦娥三号”才可以沿轨道Ⅱ运动,故A 错误;根据开普勒第三定律a 3T 2=k ,得“嫦娥三号”在轨道Ⅰ和轨道Ⅱ上的周期应满足TⅠTⅡ=(R+H)3⎣⎢⎡⎦⎥⎤12(2R+H+h)3,TⅠ=T,解得TⅡ=(2R+H+h)38(R+H)3T,故B正确;“嫦娥三号”在图中轨道Ⅰ上运动时,根据万有引力提供它做圆周运动的向心力,有G Mm(R+H)2=m4π2T2(R+H),解得月球的质量为M=4π2(R+H)3GT2,故C正确;据GMmR2=mv2R,得月球的第一宇宙速度为v=GMR=2πR(R+H)3TR,故D正确.答案:BCD12.如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则()A.物块始终受到三个力作用B.只有在a、b、c、d四点,物块受到合外力才指向圆心C.从a到b,物体所受的摩擦力先减小后增大D.从b到a,物块处于超重状态解析:在cd两点处,只受重力和支持力,在其他位置处物体受到重力,支持力、静摩擦力三个作用,故A错误;物体作匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B错误;从a运动到b,物体的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律可得,物体所受木板的摩擦力先减小后增大.故C正确.从b运动到a,向心加速度有向上的分量,所以物体处于超重状态,故D正确.答案:CD13.如图所示,在“嫦娥”探月工程中,设月球半径为R,月球表面的重力加速度为g .飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入半径约为R 的近月轨道Ⅲ绕月做圆周运动,则( )A .飞船在轨道Ⅰ上的运行速率等于12g 0RB .飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率C .飞船在轨道Ⅰ上的加速度大于在轨道Ⅱ上B 处的加速度D .飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1解析:根据G Mm (4R )2=m v 214R ,得飞船在轨道Ⅰ上的运行速率v 1=GM 4R ,又GM =g 0R 2,解得v 1=g 0R 4=12g 0R ,故A 正确;根据G Mm r 2=m v 2r ,解得v = GMr ,飞船在轨道Ⅰ和轨道Ⅲ上的速率关系为v Ⅲ>v Ⅰ,飞船在轨道Ⅱ上的B 处减速进入轨道Ⅲ,则飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率,故B 正确;根据牛顿第二定律,得a =G Mm r 2m =GM r 2,飞船在轨道Ⅰ上的加速度小于在轨道Ⅱ上B 处的加速度,故C 错误;根据G Mm r 2=mr 4π2T 2,得T =4π2r 3GM ,飞船在轨道Ⅰ、轨道Ⅲ上运行的轨道半径之比为4∶1,则周期之比为8∶1,故D 错误.答案:AB14.将一物体从地面以一定的初速度竖直上抛,从抛出到落回原地的过程中,空气阻力恒定.以地面为零势能面,则下列反映物体的机械能E 、动能E k 、重力势能E p 及克服阻力所做的功W 随距地面高度h 变化的四个图象中,可能正确的是( )解析:物体运动过程中受重力和阻力,除重力外其余力做的功等于机械能的变化量,上升过程和下降过程中物体一直克服阻力做功,故机械能不断减小,但落回原地时有速度,机械能不可能为零,故A错误;物体运动过程中受重力和阻力,合力做功等于动能的变化量,上升过程动能不断减小,表达式为-(mg+f)h=E k-E k0,下降过程动能不断增大,表达式为(mg-f)(H-h)=E k,故B正确;重力做功等于重力势能的减少量,以地面为零势能面,故E p=mgh,故C正确;上升过程中克服阻力所做的功W=fh,下降过程中克服阻力做的功为W=f(H-h)=fH-fh,故D正确.答案:BCD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 15.(8分)在做“研究平抛运动”的实验中,为了确定小球不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,在一块平整的木板表面钉上白纸和复写纸.将该木板竖直立于水平地面上,使小球从斜槽上紧靠挡板处由静止释放,小球撞到木板并在白纸上留下痕迹A;将木板向远离槽口的方向平移距离x,再使小球从斜槽上紧靠挡板处由静止释放,小球撞在木板上得到痕迹B;将木板再向远离槽口的方向平移距离x,小球再从斜槽上紧靠挡板处由静止释放,再得到痕迹C.若测得木板每次移动距离x=10.00 cm.A、B间距离y1=5.02 cm,B、C间距离y2=14.82 cm(g=9.80 m/s2).(1)为什么每次都要使小球从斜槽上紧靠挡板处由静止释放?______________________________________________________.(2)根据以上直接测量的物理量来求得小球初速度的表达式为v0=________________(用题中所给字母表示).(3)小球初速度的值为v0=________ m/s.解析:(1)每次从斜槽上紧靠挡板处由静止释放小球,是为了使小球离开斜槽末端时有相同的初速度.(2)根据平抛运动在水平方向上为匀速直线运动,则小球从A到B和从B到C运动时间相等,设为T;竖直方向由匀变速直线运动推论有y2-y1=gT2,且v0T=x.解以上两式得:v0=xgy2-y1.(3)代入数据解得v0=1.00 m/s.答案:(1)为了保证小球每次做平抛运动的初速度相同(2)xgy2-y1(3)1.0016.(8分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.解析:(1)当小物块受到的摩擦力为零,支持力和重力的合力提供向心力,有mg tan θ=mω20R sin θ,解得ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下时摩擦力达到最大值,设此时最大角速度为ω1,由牛顿第二定律,得f cos θ+F N sin θ=mω21R sin θ,f sin θ+mg=F N cos θ,联立以上三式,解得ω1=32g 2R.当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2,由牛顿第二定律,得F N sin θ-f cos θ=mω22R sin θ,mg=F N cos θ+f sin θ,联立解得ω2=2g 2R.答案:(1) 2gR(2)32g2R2g2R17.(14分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W =-1 530 J,取g=10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.解析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,则有v2B=2ax,①由牛顿第二定律,有mg Hx-F f=ma,②联立①②式,代入数据,解得F f =144 N .③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理,有mgh +W =12m v 2C -12m v 2B ,④设运动员在C 点所受的支持力为F N ,由牛顿第二定律,有F N -mg =m v 2C R ,⑤由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R =12.5 m.答案:(1)144 N (2)12.5 m18.(16分)如图所示,一轻质弹簧左端固定在足够长的水平轨道左侧,水平轨道的PQ 段粗糙,调节其初始长度为l 0=1.5 m ,水平轨道右侧连接半径为R =0.4 m 的竖直圆形光滑轨道,可视为质点的滑块将弹簧压缩至A 点后由静止释放,经过水平轨道PQ 后,恰好能通过圆形轨道的最高点B .已知滑块质量m =1 kg ,与PQ 段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g 取10 m/s 2,求:(1)弹簧压缩至A 点时弹簧的弹性势能E p ;(2)若每次均从A 点由静止释放滑块,同时调节PQ 段的长度,为使滑块在进入圆形轨道后能够不脱离轨道而运动,PQ 段的长度l 应满足什么条件?解析:(1)设滑块冲上圆形轨道最高点B 时速度为v ,由能量守恒定律,得E p =12m v 2+2mgR +μmgl 0,①滑块在B 点时,重力提供向心力,由牛顿第二定律,得mg =m v 2R ,②联立①②式并代入数据,解得E p =16 J.(2)若要使滑块不脱离轨道,分两种情况讨论:①滑块能够通过B 点而不脱离轨道,则应满足l ≤1.5 m ,③②滑块能够到达圆形轨道,则应满足E p ≥μmgl ,解得l ≤4 m ,④。

高中物理人教版必修2练习:模块检测 Word版含解析

高中物理人教版必修2练习:模块检测 Word版含解析

模块检测[时间:90分钟满分:100分]一、单项选择题(本题共6小题,每小题4分,共24分)1.对做平抛运动的物体,若g已知,再给出下列哪组条件,可确定其初速度大小()A.物体的水平位移B.物体下落的高度C.物体落地时速度的大小D.物体运动位移的大小和方向2.一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m的河,河水流速为5 m/s,则以下说法正确的是() A.该船可以沿垂直于河岸方向的航线过河B.水流的速度越大,船渡河的时间就越长C.船头正指对岸渡河,渡河时间最短D.船头方向斜向上游,船渡河的时间才会最短3.如图1所示,小球A质量为m,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动,如果小球经过最高位置时速度为34gL,则此时杆对球的作用力为()图1A.支持力,14mg B.支持力,34mgC.拉力,14mg D.拉力,34mg4.物体做自由落体运动,E p表示重力势能,h表示下落的距离,以水平地面为零势能面,下列所示图象中,能正确反映E p和h之间关系的是()5.研究表明:地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在相比()A.距地面的高度不变B.距地面的高度变大C.线速度变大D.向心加速度变大6.如图2所示,小球从静止开始沿光滑曲面轨道AB滑下,从B端水平飞出,撞击到一个与地面成θ=37°的斜面上,撞击点为C.已知斜面上端与曲面末端B相连,若AB的高度差为h,BC间的高度差为H,则h与H的比值hH等于(不计空气阻力,sin 37°=0.6,cos 37°=0.8)()图2A.34B.94C.43D.49二、多项选择题(本题共4小题,每小题6分,共24分)7.如图3所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环,从大环的最高处由静止滑下,滑到大环的最低点的过程中(重力加速度大小为g )( )图3A .小环滑到大圆环的最低点时处于失重状态B .小环滑到大圆环的最低点时处于超重状态C .此过程中小环的机械能守恒D .小环滑到大环最低点时,大环对杆的拉力大于(m +M )g8.神舟十号飞船于2013年6月11日顺利发射升空,它是中国“神舟”号系列飞船之一,是中国第五艘载人飞船.升空后和目标飞行器天宫一号对接.任务是对“神九”载人交会对接技术的“拾遗补缺”.如图4所示,已知神舟十号飞船的发射初始轨道为近地点距地表200 km 、远地点距地表330 km 的椭圆轨道,对接轨道是距地表343 km 的圆轨道.下列关于神舟十号飞船的说法中正确的是( )图4A .发射速度必须大于7.9 km/sB .在对接轨道上运行速度小于7.9 km/sC .在初始轨道上的近地点速度大于在远地点的速度D .在初始轨道上的周期大于在对接轨道上的周期9.假设质量为m 的跳伞运动员,由静止开始下落,在打开伞之前受恒定阻力作用,下落的加速度为45g ,在运动员下落h 的过程中,下列说法正确的是( ) A .运动员的重力势能减小了45mghB .运动员克服阻力所做的功为45mghC .运动员的动能增加了45mghD .运动员的机械能减少了15mgh10.两颗距离较近的天体,以天体中心连线上的某点为圆心,做匀速圆周运动,这两个天体称为双星系统.以下关于双星的说法正确的是( )A .它们做圆周运动的角速度与其质量成反比B .它们做圆周运动的线速度与其质量成反比C .它们所受向心力与其质量成反比D .它们做圆周运动的半径与其质量成反比三、实验题(本题2小题,共12分)11.(5分)某同学把附有滑轮的长木板平放在实验桌面上,将细绳一端拴在小车上,另一端绕过定滑轮,挂上适当的钩码使小车在钩码的牵引下运动,以此定量研究绳拉力做功与小车动能变化的关系.此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、小木块等.组装的实验装置如图5所示.图5(1)若要完成该实验,必须的实验器材还有___________________________________;(2)实验开始前,他先通过调节长木板的倾斜程度来平衡小车所受摩擦力,再调节木板一端定滑轮的高度,使牵引小车的细绳与木板平行.实验中将钩码重力做的功当作细绳拉力做的功.经多次实验发现拉力做的功总是要比小车动能增量大一些,这一情况可能是下列哪些原因造成的__________(填字母代号).A.释放小车的位置离打点计时器太近B.小车的质量比钩码的质量大了许多C.摩擦阻力未完全被小车重力沿木板方向的分力平衡掉D.钩码做匀加速运动,钩码重力大于细绳拉力12.(7分)如图6所示,在“验证机械能守恒定律”的实验中,电火花计时器接在220 V、50 Hz的交流电源上,自由下落的重物质量为1 kg,打下一条理想的纸带如图7所示,取g=9.8 m/s2,O为下落起始点,A、B、C为纸带上打出的连续点迹,则:图6图7(1)打点计时器打B点时,重物下落的速度v B=________m/s;从起始点O到打B点的过程中,重物的重力势能减少量ΔE p=________J,动能的增加量ΔE k=________J.(结果均保留3位有效数字)(2)分析ΔE kΔE p的原因是________________________________________________.三、计算题(共4小题,共40分)13.(8分)宇航员站在某星球表面,从高h处以初速度v0水平抛出一个小球,小球落到星球表面时,与抛出点的水平距离是x,已知该星球的半径为R,引力常量为G,求:(1)该星球的质量M;(2)该星球的第一宇宙速度.14.(8分)如图8所示,轨道ABC被竖直地固定在水平桌面上,A距水平地面高H=0.75 m,C距水平地面高h =0.45 m.一质量m=0.10 kg的小物块自A点从静止开始下滑,从C点以水平速度飞出后落在地面上的D点.现测得C、D两点的水平距离为x=0.60 m.不计空气阻力,取g=10 m/s2.求:图8(1)小物块从C 点飞出时速度的大小v C ;(2)小物块从A 点运动到C 点的过程中克服摩擦力做的功W f .15.(12分)如图9所示,水平传送带AB 的右端与在竖直面内的用内径光滑的钢管弯成的“9”形固定轨道相接,钢管内径很小.传送带的运行速度v 0=4.0 m/s ,将质量m =1 kg 的可看做质点的滑块无初速度地放在传送带的A 端.已知传送带长度L =4.0 m ,离地高度h =0.4 m ,“9”字全高H =0.6 m ,“9”字上半部分34圆弧的半径R =0.1 m ,滑块与传送带间的动摩擦因数μ=0.2,重力加速度g =10 m/s 2,试求:图9(1)滑块从传送带A 端运动到B 端所需要的时间; (2)滑块滑到轨道最高点C 时对轨道的作用力;(3)滑块从D 点抛出后的水平射程.(结果保留三位有效数字)16.(12分)如图10所示,AB 与CD 为两个对称斜面,其上部都足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为106°,半径R =2.0 m .一个质量为2 kg 的物体从A 点由静止释放后沿斜面向下运动,AB 长度为L =5 m ,物体与两斜面的动摩擦因数均为μ=0.2.(g =10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:图10(1)物体第一次到达弧底时,对E 点的作用力; (2)物体在整个运动过程中系统产生的热量;(3)物体在整个运动过程中,对弧底E 点最小作用力的大小.答案精析模块检测1.D 2.C 3.A 4.B 5.B6.D [由A 到B ,由机械能守恒得mgh =12m v 2,由B 到C 小球做平抛运动,则H =12gt 2,Htan 37°=v t ,联立三式解得h H =49,选项D 正确.]7.BCD8.ABC [第一宇宙速度是指发射地球卫星所需的最小发射速度,离地越高的卫星所需的发射速度越大,但在轨道上运行速度越小,即第一宇宙速度也是地球卫星最大绕行速度,其值为7.9 km/s ,故A 、B 正确;根据开普勒第二定律,则近地点速度大于在远地点的速度,故C 正确;根据开普勒第三定律,在初始轨道上的周期小于在对接轨道上的周期,故D 错.]9.CD 10.BD11.(1)刻度尺、天平 (2)CD 12.(1)0.775 0.308 0.300(2)由于纸带和打点计时器之间摩擦有阻力以及重物受到空气阻力 13. (1)2h v 20R 2Gx 2 (2)v 0x2hR解析 (1)设星球表面的重力加速度为g ,则由平抛运动规律: x =v 0t ,h =12gt 2再由mg =G MmR 2,解得:M =2h v 20R 2Gx 2(2)设该星球的近地卫星质量为m 0,则 m 0g =m 0v 2R解得v =v 0x2hR14.(1)2.0 m/s (2)0.10 J解析 (1)从C 到D ,根据平抛运动规律得 竖直方向:h =12gt 2水平方向:x =v C ·t解得小物块从C 点飞出时速度的大小:v C =2.0 m/s (2)小物块从A 到C ,根据动能定理得 mg (H -h )-W f =12m v 2C求得克服摩擦力做功W f =0.10 J15.(1)2 s (2)30 N ,方向竖直向上 (3)1.13 m解析 (1)滑块在传送带上加速运动时,由牛顿第二定律得知μmg =ma ,得a =2 m/s 2加速到与传送带速度相同所需时间为t =v 0a =2 s此过程位移x =12at 2=4 m此时滑块恰好到达B 端,所以滑块从A 端运动到B 端的时间为t =2 s. (2)滑块由B 运动到C 的过程中机械能守恒,则有 mgH +12m v 2C =12m v 20,解得v C =2 m/s滑块滑到轨道最高点C 时,由牛顿第二定律得F N +mg =m v 2CR解得F N =30 N根据牛顿第三定律得到,滑块对轨道作用力的大小F N ′=F N =30 N ,方向竖直向上.(3)滑块从C 运动到D 的过程中机械能守恒,得:mg ·2R +12m v 2C =12m v 2D ,解得v D =2 2 m/sD 点到水平地面的高度H D =h +(H -2R )=0.8 m 由H D =12gt ′2得,t ′=2H Dg=0.4 s 所以水平射程为x ′=v D t ′≈1.13 m 16.(1)104 N (2)80 J (3)36 N解释 (1)物体从A 点第一次运动到E 点的过程中,由动能定理 mgL sin 53°+mgR (1-cos 53°)-μmgL cos 53°=12m v 2-0F N -mg =m v 2R得F N =104 N由牛顿第三定律知,物体第一次到达弧底时,对E 点为竖直向下的压力,大小为104 N.(2)物体最终将在BC 圆弧中做往复运动,从A 点开始运动至最终运动状态的B 点,由能量转化关系得mgL sin 53°=Q 解得Q =80 J(3)据题意可得,物体最终在BC 圆弧中做往复运动,由动能定理有mgR (1-cos 53°)=12m v 22-0F N ′-mg =m v 22R,得:F N ′=36 N由牛顿第三定律知物体在弧底对E 点的压力最小为36 N.。

高中物理必修二全册综合检测模块综合测试题(最新整理含答案)

高中物理必修二全册综合检测模块综合测试题(最新整理含答案)

高中物理必修二(全册)必修二模块综合测试题(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()A.若小球初速度增大,则θ减小B.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.小球水平抛出时的初速度大小为gt tan θ2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶14.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-15.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R27.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50 m盆边缘的高度为h =0.30 m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50 m B.0.25 mC .0.10 mD .08.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mgh C .动能损失了mgh D .动能损失了32mgh9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2k T D.nk T10.以相同的动能从同一点水平抛出两个物体a 和b ,落地点的水平位移为s 1和s 2,自抛出到落地的过程中,重力做的功分别为W 1、W 2,落地瞬间重力的即时功率为P 1和P 2( )A .若s 1<s 2,则W 1>W 2,P 1>P 2B .若s 1<s 2,则W 1>W 2,P 1<P 2C .若s 1=s 2,则W 1>W 2,P 1>P 2D .若s 1=s 2,则W 1<W 2,P 1<P 2二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点14.(课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面 4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器() A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p=__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1 kg的小球A,另一端连接质量M=4 kg的物体B.当A球沿半径r=0.1 m的圆周做匀速圆周运动时,要使物体B不离开地面,A 球做圆周运动的角速度有何限制(g取10 m/s2)?17.(14分)据报道,人们最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50 kg的人在这个行星表面的重量约为800 N,地球表面处的重力加速度为10 m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2 m高处,以10 m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.18.(16分)如图所示,一长度L AB=4.98 m、倾角θ=30°的光滑斜面AB和一固定粗糙水平台BC平滑连接,水平台长度L BC=0.4 m,离地面高度H=1.4 m,在C处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A处由静止释放质量为m=2 kg 的小物块(可视为质点),忽略空气阻力,小物块与BC间的动摩擦因数μ=0.1,g 取10 m/s2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B点多少次停下来,在BC上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D点,已知半球体半径r=0.75 m,OD与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin 53°=45,cos 53°=35)?高中物理必修二(全册)必修二模块综合测试题参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()A.若小球初速度增大,则θ减小B.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.小球水平抛出时的初速度大小为gt tan θ解析:小球落地时竖直方向上的速度v y=gt,因为落地时速度方向与水平方向的夹角为θ,则tan θ=gtv0,可知若小球初速度增大,则θ减小,故A正确;小球落地时位移方向与水平方向夹角的正切值tan α=yx=12gt2v0t=gt2v0,tan θ=2tanα,但α≠θ2,故B错误;平抛运动的落地时间由高度决定,与初速度无关,故C错误;速度方向与水平方向夹角的正切值tan θ=v yv0=gtv0,小球的初速度v0=gttan θ,故D错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A 、B 、D 错误,C 正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A .该车可变换两种不同挡位B .该车可变换五种不同挡位C .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =1∶4D .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =4∶1解析:由题意知,A 轮通过链条分别与C 、D 连接,自行车可有两种速度,B 轮分别与C 、D 连接,又可有两种速度,所以该车可变换四种挡位;当A 与D 组合时,两轮边缘线速度大小相等,A 转一圈,D 转4圈,即ωA ωD =14,选项C 对. 答案:C4.已知靠近地面运转的人造卫星,每天转n 圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为( )A .nB .n 2 C.n 3-1 D.3n 2-1 解析:设同步卫星离地面的高度为h ,地球半径为R .近地卫星的周期为T 1=24 h n ,同步卫星的周期为T 2=24 h ,则T 1∶T 2=1∶n ,对于近地卫星有G Mm R 2=m 4π2T 21R , 对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ), 联立解得h =(3n 2-1)R ,故D 正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50 m 盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0解析:设小物块在BC 面上运动的总路程为s .物块在BC 面上所受的滑动摩擦力大小始终为f =μmg ,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh -μmgs =0,得到s =h μ=0.30.1 m =3 m ,d =0.50 m ,则s =6d ,所以小物块在BC 面上来回运动共6次,最后停在B 点.故选D.答案:D8.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC.动能损失了mghD.动能损失了32mgh解析:重力做功W G=-mgh,故重力势能增加了mgh,A错.物体所受合力F=ma=34mg,合力做功W合=-Fhsin 30°=-34mg×2h=-32mgh,由动能定理知,动能损失了32mgh,B、C错,D正确.答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T解析:设两颗星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T 2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3k T,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度v y相等,根据瞬时功率P=F v cos α,落地瞬间重力的即时功率P=mg v y.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A 和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力解析:两球的角速度相同,由向心力公式F n=mω2r可知,由于B的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B球更容易做离心运动,更容易脱离轨道,故A正确.若B球在最低点与杆间的作用力为3mg,设B球的速度为v B.则根据牛顿第二定律,得N B-mg=m v2B2L,且N B=3mg,得v B=2gL,由v=ωr,ω相等,A的半径是B的一半,则得此时A的速度为v A=12v B=gL.对A球,设杆的作用力大小为N A,方向向下,则有mg+N A=m v2AL,解得N A=0,说明杆对A球没有作用力,故B错误.若某一周A球在最高点和B球在最高点受杆的力大小相等,设为F,假设在最高点杆对A、B球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B 球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-F B=mω2·2L,得F B=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-F A=mω2L,得F A=mg-mω2L,可得F A>F B,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=mv2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B 物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A 、C 错误,B 正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是( )A .过山车在圆轨道上做匀速圆周运动B .过山车在圆轨道最高点时的速度应不小于gRC .过山车在圆轨道最低点时乘客处于超重状态D .过山车在斜面h =2R 高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A 错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg =m v 2R ,解得:v =gR ,故B 正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C 正确;过山车在斜面h =2R 高处由静止滑下到最高点的过程中,根据动能定理得:12m v ′2=mg (h -2R )=0.解得;v ′=0,所以不能通过最高点,故D 错误.故选B 、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地m R 2地=mg 地,在月球表面附近有G M 月m R 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G Mm R 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D 正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A .动能变化量与势能变化量B .速度变化量与势能变化量C .速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A .交流电源B .刻度尺C .天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、。

高中物理必修二:模块综合测评(解析版)

高中物理必修二:模块综合测评(解析版)

必修二模块综合测评一、选择题(共8小题,共48分,在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得零分)1.自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分(如图),行驶时( )A. 大齿轮边缘点比小齿轮边缘点的线速度大B. 后轮边缘点比小齿轮边缘点的角速度大C. 大齿轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比D. 后轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比【答案】D【解析】【详解】大齿轮边缘点与小齿轮边缘点的线速度相等,A错;后轮与小齿轮的角速度相等,B错;根据a n=知大齿轮边缘点与小齿轮边缘点的向心加速度与它们的半径成反比,C错误;根据a n=ω2r知后轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比,D正确.故选D.【点睛】本题考查圆周运动的规律的应用,知道同缘转动线速度相等,同轴转动角速度相同;同时考查了灵活选择物理规律的能力.对于圆周运动,公式较多,要根据不同的条件灵活选择公式.2.“嫦娥一号”绕月卫星成功发射之后,我国又成功发射了“嫦娥二号”,其飞行高度距月球表面100 km,所探测到的有关月球的数据比飞行高度为200 km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示,则有( )【导学号:22852129】A. “嫦娥二号”线速度比“嫦娥一号”小B. “嫦娥二号”周期比“嫦娥一号”小C. “嫦娥二号”角速度比“嫦娥一号”小D. “嫦娥二号”加速度比“嫦娥一号”小【答案】B【解析】根据万有引力提供向心力,得,,.可知r越大,向心加速度越小,线速度越小,角速度越小,周期越大.而“嫦娥一号”轨道半径比“嫦娥二号”大,故ACD错误,B正确.答案选B.3.有一水平恒力F先后两次作用在同一物体上,使物体由静止开始沿水平面前进s,第一次是沿光滑水平面运动,第二次是沿粗糙水平面运动,设第一次力对物体做的功为W1,平均功率为P1;第二次力对物体做的功为W2,平均功率为P2,则有( )A. W1=W2,P1=P2B. W1=W2,P1>P2C. W1<W2,P1=P2D. W1<W2,P1<P2【答案】B【解析】【详解】由W=Fs知道,两种情况下的力F和位移s均相等,则W1=W2;根据牛顿第二定律可知,因为a1>a2由s=at2知t1<t2,由P=知P1>P2,故B项正确.【点睛】本题就是对功的公式和功率公式的直接考查,在计算功率时要注意,求平均功率的大小,要注意公式的选择.4.如图,一个电影替身演员准备跑过一个屋顶,然后水平跳跃并离开屋顶,在下一个建筑物的屋顶上着地。

人教高中物理必修2-- 模块综合测评--(附解析答案)

人教高中物理必修2-- 模块综合测评--(附解析答案)

模块综合测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于力和运动的说法中,正确的是( )A.物体在变力作用下不可能做直线运动B.物体做曲线运动,其所受的外力不可能是恒力C.不管外力是恒力还是变力,物体都有可能做直线运动D.不管外力是恒力还是变力,物体都有可能做匀速圆周运动【解析】物体做曲线运动的条件是合力与速度不在同一条直线上,若受到的变力和速度方向相同,则做直线运动,A错误;平抛运动是曲线运动,过程中受到的合力恒定,等于重力大小,B错误;匀速圆周运动过程中,物体受到的加速度时时刻刻指向圆心,根据牛顿第二定律可知受到的合力时时刻刻指向圆心,为变力,D错误.【答案】 C2.在飞船进入圆形轨道环绕地球飞行时,它的线速度大小( )A.等于7.9 km/sB.介于7.9 km/s和11.2 km/s之间C.小于7.9 km/sD.介于7.9 km/s和16.7 km/s之间【解析】卫星在圆形轨道上运动的速度v=G Mr.由于r>R,所以v<G MR=7.9 km/s,C正确.【答案】 C3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】根据动能定理得韩晓鹏动能的变化ΔE=W G+W f=1 900 J-100 J=1 800 J>0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系W G=-ΔE p,所以ΔE p=-W G=-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J,选项C正确,。

高中物理必修二模块学业测评(附答案)

高中物理必修二模块学业测评(附答案)

必修二模块学业测评一一、单项选择题(本大题共8小题,每小题3分,共24分)1.在物理学建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是()A.牛顿最早指出力不是维持物体运动的原因并提出了惯性定律B.伽利略创造了把实验和逻辑推理结合起来的科学研究方法C.开普勒认为,在高山上水平抛出一物体,只要速度足够大就不会再落在地球上D.卡文迪许发现了万有引力定律,并通过实验测出了引力常量2.下列说法正确的是()A.曲线运动一定是变速运动,一定有加速度,做曲线运动的物体一定处于非平衡状态B.做匀速直线运动的物体机械能一定守恒C.世界上某些发达国家发射的人造地球卫星运行时周期可以为80 minD.经典力学理论普遍成立,大到天体,小到微观粒子均适用3.如图M1-1所示,设想从某一天起,地球的引力减小一半,那么,对于漂浮在水面上的船来说,下列说法正确的是()图M1-1A.船受到的重力将减小,但船吃水的深度h将不变B.船受到的重力将减小,且船吃水的深度h也减小C.船受到的重力将不变,且船吃水的深度h也不变D.船受到的重力将不变,但船吃水的深度h将减小4.如图M1-2所示,两个质量相等的物体分别从两个高度相等而倾角不同的光滑斜面顶部由静止开始下滑到底部,则下列说法不正确的是()图M1-2A.到达底部时重力的功率相等B.到达底部时速度大小相等,但方向不同C.下滑过程中重力做的功相等D.到达底部时动能相等5.图M1-3为厦门胡里山炮台的一门大炮.假设炮弹水平射出,以海平面为零势能面,炮弹射出时的动能恰好为重力势能的3倍,不计空气阻力,则炮弹落到海平面时速度方向与海平面的夹角为()图M1-3A.30°B.45°C.60°D.75°6.如图M1-4所示,A、B叠放着,A用绳系在固定的墙上,用力F拉着B使其向右移动,以F'、f AB和f BA分别表示绳对A的拉力、A对B的摩擦力和B对A的摩擦力,则()图M1-4A .F 做正功,f AB 做负功,f BA 做正功,F'不做功 B .F 和f BA 做正功,f AB 和F'做负功C .F 做正功,其他力都不做功D .F 做正功,f AB 做负功,f BA 和F'不做功7.如图M1-5所示,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g ) ( )图M1-5A .v 216g B .v 28g C .v 24g D .v 22g8.将质量为m 的小物块以初速度v 0竖直向上抛出,假定物块所受的空气阻力f 大小不变,已知重力加速度大小为g ,则物块上升的最大高度和返回到原抛出点时的速度分别为 ( ) A .v 022g(1+f mg )和v 0√mg-fmg+fB .v 022g(1+fmg )和v 0√mgmg+f C .v 022g(1+2fmg )和v 0√mg-fmg+f D .v 022g(1+2f mg )和v 0√mgmg+f二、多项选择题(本大题共4小题,每小题4分,共16分,每小题给出的四个选项中至少有两个选项正确,全部选对的得4分,选对但不全的得3分,有选错的得0分)9.某同学为体会与向心力相关的因素,做了个小实验:手通过细绳使小球在光滑水平桌面上做匀速圆周运动,细绳保持水平.下列说法正确的是 ( )A .若保持小球运动的周期不变,减小绳长,则绳的拉力将增大B .若保持小球运动的周期不变,增大绳长,则绳的拉力将增大C .若保持绳长不变,增大小球运动的角速度,则绳的拉力将增大D .若保持绳长不变,增大小球运动的周期,则绳的拉力将增大10.[2018·江西赣州期中] 2017年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图M1-6所示.关于航天飞机的运动,下列说法中正确的是 ( )图M1-6A .在轨道Ⅱ上经过A 点的速度小于经过B 点的速度B .在轨道Ⅱ上经过A 点的速度等于在轨道Ⅰ上经过A 点的速度C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 点的加速度小于在轨道Ⅰ上经过A 点的加速度11.质量为m 的汽车在平直路面上由静止启动,运动过程的v-t 图像如图M1-7所示,已知t 1时刻汽车达到额定功率,之后保持额定功率运动,整个过程中汽车受到的阻力恒定,由图可知 ( )图M1-7A .在0~t 1时间内,汽车的牵引力大小为mv 1t 1B .在0~t 1时间内,汽车的瞬时功率与时间t 成正比C .汽车受到的阻力为mv 12t 1(v 2-v 1)D .在t 1~t 2时间内,汽车牵引力做的功为12m (v 22-v 12)12.如图M1-8所示,质量都为m 的a 、b 两球固定在轻杆的两端,轻杆可绕过O 点的水平轴在竖直面内无摩擦转动,已知两球到O 点的距离L 1>L 2.在图示的水平位置由静止释放两球至a 到达最低点的过程中 ( )图M1-8A .杆对a 球做正功B .杆对b 球做负功C .杆对a 球做负功D .杆对b 球做正功三、填空与实验题(第13小题6分,第14小题10分,共16分)13.[2018·湖北省重点高中联考] (1)研究平抛运动,下面做法可以减小实验误差的是 (填选项前的字母).A .尽量减小钢球与斜槽间的摩擦B .使用密度大、体积小的钢球C .实验时,让小球每次都从同一位置由静止开始滚下D .使斜槽末端切线保持水平 (2)某同学在做“研究平抛运动”的实验时,忘记记下小球做平抛运动的起点位置O ,A 为小球运动一段时间后的位置,以A 为坐标原点建立的坐标系如图M1-9所示,由图可求出小球做平抛运动的初速度为 m/s,小球做平抛运动的抛出点的坐标是 .(g 取10 m/s 2,计算结果均保留两位有效数字)图M1-914.某实验小组利用如图M1-10所示的装置做“验证机械能守恒定律”的实验.图M1-10(1)在做该实验时,除了铁架台、夹子、纸带、打点计时器、重锤、学生电源外,还需要下列器材中的(填选项前的字母).A.天平B.毫米刻度尺C.弹簧测力计D.秒表(2)以下关于实验操作过程的说法正确的是(填选项前的字母).A.将打点计时器接到学生电源的直流输出端上B.先接通电源后释放纸带C.实验前,应用夹子夹住纸带的上端,使纸带竖直,重锤应远离打点计时器D.重锤下落的高度既可以用刻度尺直接测量,又可以用公式h n=12g t n2计算得到(3)如图M1-11所示为该实验小组得到的一条纸带,打点计时器的打点周期为T,在计算纸带上N点对应的重锤速度时,小组内的几位同学采用了以下几种方法进行计算,其中正确的是(填选项前的字母).图M1-11A.v N=ngTB.v N=(n-1)gTC.v N=x n+x n+12T D.v N=d n+1-d n-12T(4)取打下O点时重锤的重力势能为零,计算出该重锤下落不同高度h时所对应的动能E k和重力势能E p,建立坐标系,横轴表示h,纵轴表示E k和E p,根据测量数据在图中绘出图线Ⅰ和图线Ⅱ,如图M1-12所示.已求得图线Ⅰ的斜率的绝对值k1=2.89 J/m,则图线Ⅱ的斜率k2= (结果保留三位有效数字)J/m.重锤和纸带在下落过程中所受到的平均阻力f与重锤所受重力G的比值为fG= (用字母k1和k2表示).图M1-12四、计算题(本大题共4小题,共44分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(10分)[2018·河北冀州中学月考]图M1-13为中国月球探测工程的标志,它以中国书法的笔触,勾勒出一轮明月和一双踏在其上的脚印,象征着月球探测的终极梦想.一位勤于思考的同学为探月宇航员设计了如下实验:在距月球表面高h处以初速度v0水平抛出一个物体,然后测量该物体的水平位移为x.通过查阅资料知道月球的半径为R,引力常量为G,若物体只受月球引力的作用,请你求出:(1)月球表面的重力加速度;(2)月球的质量;(3)环绕月球表面运行的宇宙飞船的速率.图M1-1316.(10分)[2018·新疆兵团第二师华山中学月考]如图M1-14所示,用内壁光滑的薄壁细圆管弯成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径R=1.0 m,BC段长L=1.5 m.弹射装置将一个质量为0.1 kg的小球(可视为质点)以v0=3 m/s的水平初速度从A点射入轨道,小球从C点离开轨道随即水平飞出,桌子的高度h=0.8 m,不计空气阻力,g取10 m/s2.求:(1)小球在半圆轨道上运动时的角速度ω、向心加速度a的大小及圆管在水平方向上对小球的作用力大小;(2)小球从A点运动到B点的时间t;(3)小球在空中做平抛运动的时间及落到地面D点时的速度大小.图M1-1417.(12分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图M1-15所示,质量m=60 kg 的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?图M1-1518.(12分)某电视台的娱乐节目在策划一个射击项目,如图M1-16所示,他们制作了一个大型圆盘射击靶,半径R=0.8 m,沿半径方向等间距画有10个同心圆(包括边缘处,两同心圆所夹区域由外向内分别标注1,2,3,…,10环),圆盘射击靶固定于水平地面上,C点位于靶心正上方圆盘边缘处,BC与地面平行且与圆盘垂直,BC=1.2 m.平台上处于原长的弹簧右端固定,左端A点处有一小球与弹簧接触但不粘连,小球质量m=0.02 kg.现用水平向右的推力将小球从A点缓慢推到D点(弹簧仍在弹性限度内),推力所做的功W=0.25 J,当撤去推力后,小球沿平台向左运动,从B点飞出,最后刚好击中靶心.小球在A点右侧不受摩擦力,小球与AB段平台间的动摩擦因数为0.2,不计空气阻力,g取10 m/s2.(1)求小球在B点的速度大小.(2)求小球在AB段的运动时间.(3)若用水平向右的力将小球从A点缓慢推至某点(弹簧仍在弹性限度内),推力所做的功W'=0.32 J,当撤去推力后,小球沿平台向左运动,最后击中靶上的第几环?图M1-16模块学业测评(一)1.B [解析] 伽利略最早指出力不是维持物体运动的原因,牛顿提出了惯性定律,故A 错误.伽利略创造了把实验和逻辑推理结合起来的科学研究方法,故B 正确.牛顿设想了卫星模型,认为在高山上水平抛出一物体,只要速度足够大就不会再落在地球上,故C 错误.牛顿发现了万有引力定律,卡文迪许通过实验测出了引力常量,故D 错误.2.A [解析] 做曲线运动的物体速度方向沿轨迹的切线方向,所以速度方向时刻在改变,而速度是矢量,所以速度一定变化,曲线运动是变速运动,变速运动则一定有加速度,做曲线运动的物体一定处于非平衡状态,选项A 正确;做匀速直线运动的物体可能有除重力以外的力对物体做功,机械能可能不守恒,如竖直方向上做匀速直线运动的物体的机械能不守恒,选项B 错误;根据开普勒第三定律R 3T 2=k 知,卫星的轨道半径越大,其运行周期越大,近地卫星的周期约为84.5 min,即卫星运行的最短周期约为84.5 min,所以卫星运行的周期不可能为80 min,选项C 错误;经典力学理论对微观粒子不适用,选项D 错误.3.A [解析] 船受到的重力来源于地球的引力,故船受到的重力随地球引力的减小而减小;当船平衡时,重力等于浮力,即mg=ρ水gV 排,则V 排=mρ水,可见船吃水的深度h 将不变,选项A 正确.4.A [解析] 物体由顶部到底部的过程,由动能定理得mgh=12mv 2-0,所以两种情况下的末速度大小相等,而倾角θ不等,根据P G =mgv sin θ可知,两个物体到达底端时重力的功率不相等,A 错误;物体由顶部到底部的过程,由动能定理得mgh=12mv 2-0,所以物体的末动能相同,到达底部时速度大小相等,但方向不同,B 、D 正确;下滑过程中重力做的功相等,都为mgh ,C 正确.5.A [解析] 设射出时炮弹的初速度为v 0,高度为h ,炮弹落到海平面上时的速度大小为v ,方向与水平方向的夹角为α.根据机械能守恒定律得12m v 02+mgh=12mv 2,据题意有12m v 02=3mgh ,联立解得v=2√33v 0,则cos α=v 0v =√32,可得α=30°,选项A 正确.6.D [解析] 求恒力做的功时,定义式W=Fl cos α中的l 应是力F 的作用点发生的位移,F'、f BA 的作用点即A 物体没有发生位移,所以它们做的功均为零;而F 、f AB 的作用点即B 物体发生了位移,所以它们做的功均不为零,F 做正功,f AB 做负功.选项D 正确.7.B [解析] 物块上升到最高点的过程,机械能守恒,有12mv 2=2mgr+12m v 12,由平抛运动规律,水平方向,有x=v 1t ,竖直方向,有2r=12gt 2,解得x=√4v 2gr-16r 2,当r=v 28g时,x 最大,B 正确.8.A [解析] 设物块上升的最大高度为h ,返回到原抛出点时的速度为v ,则上升过程中根据动能定理有-(mg+f )h=0-12m v 02,整个过程中根据动能定理有-2fh=12mv 2-12m v 02,联立解得h=v 022g(1+fmg),v=v 0√mg-fmg+f ,所以选项A 正确.9.BC10.AC [解析] 航天飞机在轨道Ⅱ上运动过程中机械能守恒,航天飞机由A 到B 过程,万有引力做正功,航天飞机的动能增大,速度变大,因此在轨道Ⅱ上经过A 点的速度小于经过B 点的速度,故A 正确;航天飞机由轨道Ⅰ变轨到轨道Ⅱ,要做近心运动,要在A 点减速,因此在轨道Ⅱ上经过A 点的速度小于在轨道Ⅰ上经过A 点的速度,故B 错误;根据开普勒第三定律a 3T 2=k ,由于轨道Ⅱ的半长轴小于轨道Ⅰ的半径,则在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,故C 正确;由牛顿第二定律得G Mmr 2=ma ,解得a=GMr 2,则在轨道Ⅱ上经过A 点的加速度等于在轨道Ⅰ上经过A 点的加速度,故D 错误.11.BC [解析] 在0~t 1时间内,汽车做匀加速运动,有F 1-f=ma=mv 1t 1,牵引力F 1=f+mv 1t 1,汽车的瞬时功率P=F 1at 与时间t 成正比,选项A 错误,选项B 正确;在t 1时刻,功率P m =F 1v 1,在t 2时刻,功率P m =F 2v 2=fv 2,联立得阻力f=mv 12t 1(v 2-v 1),选项C 正确;在t 1~t 2时间内,由动能定理有W 牵-W f =12m (v 22-v 12),可见汽车牵引力做的功W 牵≠12m (v 22-v 12),选项D 错误.12.CD [解析] 对b ,由动能定理得-mgL 2+W 2=E k b ,可得W 2>0,选项D 正确;a 、b 组成的系统机械能守恒,杆对系统做功的代数和为0,则杆对a 球做负功,选项C 正确. 13.(1)BCD (2)1.0 (-10 cm,-5 cm)[解析] (1)钢球与斜槽间的摩擦对实验无影响,只要到达斜槽末端的速度相等即可,选项A 错误;使用密度大、体积小的钢球可减小相对的阻力,从而减小误差,选项B 正确;实验时,让小球每次都从同一位置由静止开始滚下,以保证初速度相同,选项C 正确;使斜槽末端切线保持水平,以保证抛出时的初速度水平,选项D 正确.(2)由于小球在竖直方向做自由落体运动,故在竖直方向有Δh=gT 2,由图可知Δh=h 2-h 1=(40cm -15 cm)-15 cm =10 cm =0.1 m;将Δh=0.1 m,g=10 m/s 2代入Δh=gT 2,解得T=0.1 s .小球在水平方向上做匀速直线运动,故x=v 0T ,将x=10 cm =0.1 m 代入,解得v 0=0.10.1 m/s =1.0 m/s;因竖直方向上两段相等时间的位移之比为15∶25=3∶5,则根据初速度为零的匀变速直线运动的规律可知,抛出点到原点的竖直位移为5 cm;水平位移是10 cm,则抛出点的坐标是(-10 cm,-5 cm).14.(1)B (2)B (3)CD (4)2.75(2.69~2.84均正确)k 1-k 2k 1[解析] (1)在做“验证机械能守恒定律”的实验时,需要用毫米刻度尺测量纸带上点间的距离.(2)实验操作过程中应使用交流电源,先接通电源后释放纸带,选项A 错误,B 正确;实验前,重锤应靠近打点计时器,重锤下落的高度用刻度尺直接测量,不能用公式h n =12g t n 2计算得到,选项C 、D 错误.(3)N 点对应的重锤速度为以该点为中间时刻的一段位移的平均速度,则v N =x n +x n+12T或v N =d n+1-d n-12T.(4)由图线Ⅱ得其斜率k 2=ΔE kℎ=2.75 J/m;由功能关系得-fh=ΔE k +ΔE p ,又知k 1=-ΔE pℎ=G ,则f G=k 1-k 2k 1.15.(1)2ℎv 02x 2(2)2ℎR 2v 02Gx 2(3)v0x √2R ℎ[解析] (1)物体在月球表面做平抛运动,在水平方向上有x=v 0t ,在竖直方向上有h=12g 月t 2, 联立可得月球表面的重力加速度g 月=2ℎv 02x 2.(2)设月球的质量为M 月,对月球表面上质量为m 的物体,有G M 月m R 2=mg 月,解得M 月=2ℎR 2v 02Gx 2.(3)设环绕月球表面飞行的宇宙飞船的速率为v ,则有m'g 月=m'v 2R,解得v=v0x√2R ℎ.16.(1)3 rad/s 9 m/s 20.9 N (2)1.05 s (3)0.4 s 5 m/s [解析] (1)小球做匀速圆周运动的角速度ω=v0R =3 rad/s向心加速度a=v 02R=9 m/s 2圆管对球的作用力F=ma=0.9 N(2)小球从A 到B 的时间t 1=12T=πω=1.05 s(3)小球在竖直方向上做自由落体运动,由h=12gt 2解得 t=0.4 s 落地时竖直方向上的速度v y =gt=4 m/s落地的速度大小 v=√v 02+v y2=5 m/s 17.(1)144 N (2)12.5 m[解析] (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax 由牛顿第二定律有mg Hx -f=ma联立以上两式,代入数据解得f=144 N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有mgh+W=12m v C 2-12m v B 2设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg=m v C2R由运动员能够承受的最大压力为其所受重力的6倍,联立以上两式,代入数据解得R=12.5 m . 18.(1)3 m/s (2)1 s (3)第六环[解析] (1)设小球运动到B 点时速度大小为v B ,由平抛运动规律可知v B =√2Rg=3 m/s .(2)设小球运动到A 点时速度为v A ,由功能关系得W=E p =12m v A 2解得v A=5 m/s从A运动到B的过程,加速度大小为a=μg=2 m/s2=1 s.从A运动到B的时间为t=v A-v Bat=4 m(3)设A、B间的距离为L,则L=v A+v B2当推力所做的功W'=0.32 J时,设小球运动到B点时速度为v'B,则由能量守恒定律得E'p-μmv'B2mgL=12E'p=W'解得v'B=4 m/s=0.3 s小球做平抛运动的时间为t'=BCv'Bgt'2=0.45 m下落的高度为H=12每环间距为0.08 m,所以击中靶上的第六环.。

高一物理(必修模块2)全部参考答案 (修正稿)

高一物理(必修模块2)全部参考答案 (修正稿)

第五章曲线运动第一节 曲线运动 p871、A ,2、AD ,3、B ,4、A ,5、ABC ,6、C第二节 质点在平面内的运动p901、B ,2、C ,3、CD ,4、150m ,5、3V6、位置(1m 2m ) 速度22m/s 方向与x 、y 轴均成45度7、C8、(1)匀速直线运动和初速度为零的匀加速直线运动; (2)匀速直线运动 (3)不一定 两个分运动速度方向共线,合运动为直线运动;两个分运动速度方向不共线,合运动为曲线运动;9、ACD 10、C 11、BC 12、A第三节 抛体运动的规律 第四节研究平抛运动 p931、ACD2、BD3、C4、11.55 m/s5、750 m6、22.4 m/s ,28.3 m/s, 10 m/s, 10 m/s ;7、gh θcos ; 8、(1)根据子弹做平抛运动,测出子弹的水平位移x 和竖直位移y ;(2)原理同上测出s,H ,根据平抛运动规律计算;9、20 , 10、B , 11、(1)A 枪子弹速度大,因为两颗子弹发生相同的竖直位移时,A 的水平位移较大 ; (2) 447 m/s第五节 圆周运动 p951、AC ,2、AC ,3、 1.256 m/s , 3.14m , 0.57m ;4、7.27×10-5rad/s \ 7.27×10-5rad/s , 465 m/s \ 395.3 m/s5、60 3600 ;6、D7、2:175第六节 向心加速度 p971、BC ,2、B D ,3、1.57 m/s 0.041 m/s 2 (或:22s /m 240 ; s /m 120ππ),4、1︰1︰2 , 1︰2︰2 , 1︰2︰4 ;5、0.66 m/s 2 , 6.6×10-27 N ;6、AD第七节 向心力 p991、15 m/s ,2、3.163、BC4、C ,5、AD6、压力:18.4 N 拉力:19.4 N7、3mw 2L , 2mw 2L ; 8、b 先发生相对运动第八节 生活中的圆周运动 p1021、ABC ;2、B ;3、C ;4、ma 2πaR ; 5、80, 202 6、(原题删除), 7、A 8、22w g Rw - 9、D ; 10、ACD 11、B 12、 静摩擦力 大于 离心运动 ; 13、张力为0, 3mg14、BD 15、453.5 16、 C第六章 万有引力定律第一节 行星的运动 p1111、CD ,2、BD ,3、ba v a , 4、5.11R :5.12R ; 5、A ; 6、B 7. B ; 8. T R R a 5.15.12)2(- 第二节 太阳与行星间的引力 第三节万有引力定律p1141. (原题删除)2. A ,3. AD4. BD5. (原题删除)6. D;7. 9:18、 9 ; 9、D ; 10、3第四节 万有引力理论的成就 p1161、 D ;2、A ;3、A ;4、3322RGT m r π ; 5、 (1) mR 2: Mr 2 , (2) r 1.5:R 1.5 6、(略) ;7、D; 8、A; 9、A10、Gt R L 22232; 11.(1) 不正确,应将h 换成h+R ……; (2) 还有三种表达方法(从略)第五节 宇宙航行 p1191、D ,2、BD ,3、 AD ;4、(原题删除);5、A ;6、D ;7、g R ω2- R第七章 机械能及其守恒定律第一节 追寻守恒量 第二节 功p1271、D ,2、B ,3、AD ,4、C ;5、D ;6、D; 7. A ; 8. D ; 9.BC第三节 功率 p1301. D;2. D;3. B;4. BCD ;5. B;6. C ;7. 21mg 2 t 2 , mg 2 t 8、 1 ; 9、D ; 10、12.5J, 2W第四节 重力势能 第五节 探究弹力势能的表达式p1331、 ABC ;2、C ;3、A ;4、BD ;5、 21Mg (a b a -+22) ; 6、20 ; 7、400; 8、C; 9、1:5,1:1 第六节探索功与物体速度变化的关系第七节 动能和动能定理 p1361、D ,2、A ,3、ACD;4、D;5、(原题删除) ;6、AD;7、C8、B ; 9、ABC ; 10、6000J第八节 机械能守恒定律p1381、BC ;2、C ;3、CD ;4、B ;5、C;6、BCD ,7、2.5R第九节 实验:验证机械能守恒定律p1401、ABD ;2、BC , D ;3、(原题删除);4、7.78, 7.52 ;第十节 机械能守恒定律与能源 p 1411、BD ;2、A ;3、0.5 ;4、2g, g ;5、 ACD;第五章 动量 (选修)第一节 冲量和动量 p1491、B ,2、CD ,3、D ,4、1:2 ,5、C,6、CD;7、20, 16, -4第二节 动量定理p1511、BD ,2、B,3、C ;4、D ;5、-10kg.m/s, 40N.s,方向与初速度方向相反;6、8.45;7、 1.0N.s ;8、 2mgv 0/g ;9、700N; 10、6×1013 N.s, 1.8×1015J第三节 动量守恒定律 p1531、CD ;2、BC ;3、-0.667,负号表示其方向与原方向相反 ;4、14个 ;5、mg+m(M m m )2 L v2; 6、2v; 7、 m g Mv, m Mv;第四节 动量守恒定律的应用 p1551、B ;2、AB ;3、 ABC;4、31mv 02 ; 5、D;6、7:8;7、(1) 2.1m/s, (2) 4m/s第五节 反冲运动 p1571、C ;2、C ,3、A ;4、A;5、R 328。

高中物理新教材同步 必修第二册 模块综合试卷(一)

高中物理新教材同步 必修第二册  模块综合试卷(一)

模块综合试卷(一)(满分:100分)一、单项选择题:本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2022·渭南市高一期末)如图所示实例中均不考虑空气阻力,系统机械能守恒的是()答案 D解析人上楼过程中,人体的化学能转化为机械能,人和地球组成的系统机械能不守恒,A 不符合题意;跳绳的过程中,人体的化学能转化为机械能,人和绳组成的系统机械能不守恒,B不符合题意;水滴石穿过程中,水滴的机械能转变为内能,水滴和石头组成的系统机械能不守恒,C不符合题意;箭射出后,箭、弓、地球组成的系统只有动能、弹性势能、重力势能相互转化,箭、弓、地球组成的系统机械能守恒,D符合题意。

2.(2023·温州市高一期中)以下关于圆周运动描述正确的是()A .如图甲所示,手握绳子能使小球在该水平面内做匀速圆周运动B .如图乙所示,小朋友在秋千的最低点时处于超重状态C .如图丙所示,旋转拖把桶的脱水原理是水滴受到了离心力,从而沿半径方向甩出D .如图丁所示,摩托车在水平赛道上匀速转弯时,为了安全经过弯道,人和摩托车整体会向弯道内侧倾斜,人和摩托车整体受到重力、支持力、摩擦力和向心力四个力作用 答案 B解析 对小球受力分析,小球受竖直向下的重力和沿绳子方向的拉力,合力不可能沿水平方向,故手握绳子不可能使小球在该水平面内做匀速圆周运动,A 错误;小朋友在秋千的最低点具有向上的加速度,处于超重状态,B 正确;水滴与拖把间的摩擦力不足以提供其做圆周运动的向心力,水滴做离心运动,沿切线方向甩出,C 错误;摩托车在水平赛道上匀速转弯时,为了安全经过弯道,人和摩托车整体会向弯道内侧倾斜,人和摩托车整体受到重力、支持力、摩擦力三个力作用,D 错误。

3.(2023·西安铁一中学高一期末)天启星座,我国第一个实现组网运行的物联网星座,由38颗低轨道、低倾角小卫星组成。

2020年1月,忻州号(天启5号)成功进入高度为500 km 、通过地球两极上空的太阳同步轨道运行;7月25日,天启10号进入高度为900 km 、轨道平面与地轴夹角为45°的倾斜轨道运行。

新教材2024_2025学年高中物理模块综合测评新人教版选择性必修第二册

新教材2024_2025学年高中物理模块综合测评新人教版选择性必修第二册

模块综合测评一、单项选择题:本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2024浙江温州模拟)厂商通过在手机背面安装感应线圈来实现无线充电,如图是一种结构紧凑的双层感应线圈设计图,a、b为线圈的两端。

当线圈处在向上增加的磁场中时,下列说法正确的是()A.感应电流从a端流出,两层线圈相互排斥B.感应电流从a端流出,两层线圈相互吸引C.感应电流从b端流出,两层线圈相互排斥D.感应电流从b端流出,两层线圈相互吸引2.(2024山东潍坊期末)将许多质量为m、电荷量为+q、可视为质点的绝缘小球,匀称穿在由绝缘材料制成的半径为r的光滑圆轨道上并处于静止状态,轨道平面水平,空间内有分布匀称的磁场,磁场方向竖直向上,如图甲所示。

磁感应强度B随时间t变更的规律如图乙所示,其中B0是已知量。

已知在磁感应强度增大或减小的过程中,将产生涡旋电场,其电场线是在水平面内一系列沿顺时针或逆时针方向的同心圆,同一条电场线上各点的电场强度大小相等。

关于绝缘小球的运动状况,下列说法正确的是()A.在t=0到t=T0时间内,绝缘小球均做匀速圆周运动B.在t=T0到t=2T0时间内,绝缘小球均沿顺时针方向做速率匀称增加的圆周运动C.在t=2T0到t=3T0时间内,绝缘小球均沿顺时针方向做加速圆周运动D.在t=3T0到t=5T0时间内涡旋电场沿顺时针方向3.(2024辽宁沈阳期末)关于生活中遇到的各种波,下列说法正确的是()A.电磁波能传递信息,声波不能传递信息B.手机在通话时涉及的波既有电磁波又有声波C.太阳光中的可见光和医院“B超”中的超声波传播速度相同D.遥控器发出的红外线波长和医院“CT”中的X射线波长相同4.(2024江苏镇江期末)如图所示,沟通发电机线圈电阻r=1 Ω,用电器电阻R=9 Ω,电压表示数为9 V,那么该沟通发电机()A.电动势的峰值为10 VB.电动势的有效值为9 VC.线圈通过中性面时电动势的瞬时值为10 VD.线圈自中性面转过90°的过程中的平均感应电动势为 V5.(2024浙江嘉兴期末)如图所示,志向变压器原、副线圈的匝数比n1∶n2=1∶3,副线圈所在回路中接入三个均标有“36 V 40 W”的灯泡,且均正常发光,那么,标有“36 V 40 W”的灯泡A()A.也正常发光B.将被烧毁C.比另三个灯泡暗D.无法确定6.(2024河北石家庄期末)如图所示,电路中L是一电阻可忽视不计的电感线圈,a、b为L的左、右两端点,A、B、C为完全相同的三盏灯泡,原来开关S是闭合的,三盏灯泡均发光。

高中物理 模块测试2 新人教必修2

高中物理 模块测试2 新人教必修2

图图2 高中物理 模块测试2 新人教必修2一、选择题(每题4分,共40分) 1.下面关于力的说法中,不正确的是( )A .力的作用可以使物体发生形变B .力的作用可以改变物体的运动状态C .物体在受到力作用的同时一定会对其它物体施力D .物体受到力的作用,一定会发生转动 2.关于运动的合成和分解,下述说法中正确的是( )A .合运动的速度大小等于分运动的速度大小之和B .物体的两个分运动若是直线运动,则它的合运动一定是直线运动C .合运动和分运动具有同时性D .若合运动是曲线运动,则其分运动中至少有一个是曲线运动 3.下列说法正确的是( )A .运动物体在某一时刻的速度可能很大而加速度不可能为零B .运动物体在某一时刻的速度可能为零而加速度可能不为零C .在初速度为正、加速度为负的匀变速直线运动中,速度不可能增大D .初速度为正、加速度为正的匀变速直线运动中,当加速度减小时,它的速度也减小 4.如图1所示,在水平拉力F 作用下,物体B 向右缓缓运动中,A 物体匀速上升。

地面对B 物体的支持力、摩擦力和绳对B 物体的拉力分别用 F N 、F f 和T 表示,那么运动过程中F N 、F f 和T 的变化情况是( )A . F N 、F f 和T 都增大B .F N 、F f 增大,T 不变C . F N 、F f 和T 都减小D .F N 增大,F f 减小,T 不变 5.如图2,在光滑水平面上放着紧靠在一起的AB 两物体,B 的质量是A 的2倍,B 受到向右的恒力FB =2N ,A 受到的水平力FA =(9-2t )N 。

从t =0开始计时,则下列说法中不.正确的是 ( ) A .A 物体在3秒末时刻的加速度是初始时刻的5/11倍 B .t >4秒后,B 物体做匀加速直线运动 C .t = 4.5秒时, A 物体的速度为零D .t >4.5秒后, AB 的加速度方向相反6.一物体以初速度v 由地面竖直向上抛出。

物理必修二模块测试

物理必修二模块测试

物理必修二模块测试一、单项选择题(每题5分,共50分)1.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步。

下列说法符合物理学史实的是( ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律C .卡文迪许第一次在实验室里测出了万有引力常量D .牛顿发现了海王星和冥王星2.关于曲线运动,下列说法正确的是( )A .曲线运动加速度可以为零B .曲线运动可以是匀变速运动C .曲线运动不一定是变速运动D .曲线运动速度大小一定变化 3.当重力对物体做正功时,物体的( )A .重力势能一定增加,动能一定减小B .重力势能一定增加,动能一定增加C .重力势能一定减小,动能不一定增加D .重力势能不一定减小,动能一定增加 4.放在光滑水平面上的物体,仅在两个互相垂直的水平力的共同作用下开始运动,若这两个力分别做了6J 和8J 的功,则该物体的动能增加了( )A .14JB .48JC .10JD .2J5.如图所示,一根10m 长的梭镖以光速穿过一根10m 长的管子,它们的长度都是在静止状态下测量的。

以下叙述中最好地描述了梭镖穿过管子的情况的是( )A .梭镖收缩变短,因此在某些位置上,管子能完全遮住它B .梭镖收缩变短,因此在某些位置上,梭镖从管子的两端伸出来C .两者都收缩,且收缩量相等,因此在某个位置,管子恰好遮住梭镖D .所有这些都与观察者的运动情况有关 6.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动。

图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h ,下列说法中正确的是( )A .h 越高,摩托车对侧壁的压力将越大B .h 越高,摩托车做圆周运动的线速度将越大C .h 越高,摩托车做圆周运动的周期将越小D .h 越高,摩托车做圆周运动的向心力将越大7.质量为M 的木块置于光滑水平面上,一质量为m 的子弹以水平速度v 0打入木块并停在木块中,如图所示,此过程中木块向前运动位移为s ,子弹打入木块深度为d ,则下列判断正确的是( ) A .木块对子弹做功2012mv B .子弹对木块做功2012Mv C .子弹动能的减少等于木块动能的增加 D .木块、子弹的机械能一定减少8.在倾角为θ的斜面上某点,先后将同一小球以不同速度水平抛出,小球都能落在斜面上,当抛出速度为v 1时,小球到达斜面时速度方向与斜面夹角α1,当抛出速度为v 2时,小球到达斜面时速度方向与斜面夹角为α2,则( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .无论v 1、v 2大小如何,均有α1=α2D .α1与α2的关系与斜面倾角有关9.如图所示,质量为m 的小球用轻质的细线悬挂,绳BC 水平,绳子AB 与竖直方向成α角,剪断绳BC 前后瞬间,AB 绳上张力之比为( ) A .1:cos 2α B .1:1C .cos 2α:1D .无法确定10.太阳系中的八大行星的轨道均可以近似看成圆轨道。

模块突破测试-高中物理必修2全册

模块突破测试-高中物理必修2全册

模块突破测试(适用于高中物理教科版必修2复习)(时间:60分钟 满分:110分)命题人:任会常第Ⅰ卷一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分.★1.下列有关万有引力的几种说法中,你认为正确的是( )A .万有引力定律是开普勒研究天体的运动后总结出来的B .万有引力定律是开普勒和卡文迪许在实验室中发现的C .由于苹果的质量很小,所以它受的万有引力几乎可以忽略D .对于相距很远、可以看成质点的两个物体,万有引力定律F =G Mm r 2中的r 是两质点间的距离★2.科罗拉多大峡谷是美国闻名的旅游胜地,为了便于游客参观,政府在大峡谷的西侧谷壁上建成U 字形观景台,离谷底h 高,取名为“人行天桥”, 如图A-1所示。

如果在建造过程中有一块质量为m 千克的石子从观景台掉落谷底,则石子落至谷底时重力的瞬时功率为 ( )A .mg ghB .mg gh 2C .mg 2gh D .2mg gh ★3.2014年3月8日,“马航MH370”客机失联后,我国已紧急调动多颗卫星,利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持.把地球看作质量分布均匀的球体,关于环绕地球运动的低轨卫星(环绕地球运动的半径比地球同步卫星的环绕半径小得多)和同步卫星,下列说法正确的是( )A .低轨卫星和地球同步卫星的轨道平面一定重合B .低轨卫星的环绕速率可能大于 7.9km/sC .低轨卫星和地球同步卫星,可能具有相同的角速度D .地球同步卫星比低轨卫星的转动周期大图A-1★★4.如图A-2所示,一玻璃筒中注满清水,水中放一软木做成的小圆柱体R(圆柱体的直径略小于玻璃管的直径,轻重大小适宜,使它在水中能匀速上浮).将玻璃管的开口端用胶塞塞紧(图A-2甲).现将玻璃管倒置(图A-2乙),在软木塞上升的同时,将玻璃管水平向右加速移动,观察软木塞的运动,将会看到它斜向右上方运动,经过一段时间,玻璃管移至图3丙中右图所示位置,软木塞恰好运动到玻璃管的顶端,在图A-2丁四个图中,能正确反映软木塞运动轨迹的是()图A-2★★5.环球时报2014年3月5日报道,中国自行研制的第二款第四代战斗机“歼-31”于2月3日再次进行了试飞(见图A-3甲)。

人教版高中物理选择性必修第2册 模块综合检测

人教版高中物理选择性必修第2册 模块综合检测

模块综合检测(时间:90分钟满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于电磁感应现象的有关说法中,正确的是( )A.穿过闭合电路中的磁通量变化越快,闭合电路中感应电动势越大B.穿过闭合电路中的磁通量减小,则电路中感应电流就减小C.穿过闭合电路中的磁通量越大,闭合电路中的感应电动势越大D.只要穿过闭合电路中的磁通量不为零,闭合电路中就一定有感应电流产生解析:选A 穿过闭合电路中的磁通量变化越快,闭合电路中感应电动势越大,选项A正确;穿过闭合电路中的磁通量减小,但如果磁通量均匀减小,即磁通量的变化率恒定,则电路中感应电流就不变,选项B错误;磁通量很大,但变化较慢,则感应电动势也可能很小,故C错误;只有闭合回路中磁通量发生变化时,闭合回路中才会产生感应电流,故D错误。

2.LC振荡电路中,某时刻磁场方向如图所示,则下列说法错误的是( )A.若磁场正在减弱,则电容器上极板带正电B.若电容器正在放电,则电容器上极板带负电C.若电容器上极板带正电,则线圈中电流正在增大D.若电容器正在放电,则自感电动势正在阻碍电流增大解析:选C 题图中标明了电流的磁场方向,由安培定则可判断出电流在线圈中为逆时针(俯视)流动。

若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流正在减小,A选项正确,C选项错误;若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增大,B选项正确;由楞次定律知,D选项正确。

3.传感器是一种采集信息的重要器件,如图所示是一种测定压力的电容式传感器,当待测压力F作用于可动膜片的电极上时,以下说法正确的是( )①若F向上压膜片电极,电路中有从a到b的电流②若F向上压膜片电极,电路中有从b到a的电流③若F向上压膜片电极,电路中不会出现电流④若电流表有示数,则说明压力F发生变化⑤若电流表有示数,则说明压力F不发生变化A.②④B.①④C.③⑤D.①⑤解析:选A 当F向上压膜片电极时,由C=εS4πkd,知C增大,又Q =CU,故可知电容器充电,有充电电流,电流方向从b到a。

人教版高中物理必修2模块综合测试卷【解析版】

人教版高中物理必修2模块综合测试卷【解析版】

高中物理必修2模块综合练习题(限时:90分钟总分:100分)一、选择题 每小题 分,共 分.某物体在一足够大的光滑水平面上向西运动,当它受到一个向南的恒定外力作用时,物体的运动将是.直线运动且是匀变速直线运动.曲线运动但加速度方向不变、大小不变,是匀变速曲线运动.曲线运动但加速度方向改变、大小不变,是非匀速曲线运动.曲线运动但加速度方向和大小均改变,是非匀变速曲线运动.某物体的运动由水平方向和竖直方向两个分运动合成,已知水平方向的运动加速度为 ,竖直方向的加速度为 ,则该物体实际运动的加速度大小为. .. .在 ~ 之间,具体大小不确定.某人以一定的速率乘小船垂直河岸向对岸划去,在平时水流缓慢时,渡河所用时间为 分钟,某次由于降雨,河里的水流速度加快,若这个人仍以这一速率垂直渡河,则这次渡河的时间.比 分钟时间长 .比 分钟的时间短.时间仍等于 分钟 .由于水速不清,故时间不能确定.质量为 的物体随水平传送带一起匀速运动, 为传送带的终端皮带轮.如图 所示,皮带轮半径为 ,要使物体通过终端时能水平抛出,皮带轮的转速至少为图.如图 所示,质量为 的小球固定在长为 的细轻杆的一端,绕细杆的另一端 在竖直平面内做圆周运动.球转到最高点 时,线速度的大小为,此时图.杆受到 的拉力 .杆受到 的压力.杆受到 的拉力 .杆受到 的压力. 山东卷 甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是.甲的周期大于乙的周期 .乙的速度大于第一宇宙速度.甲的加速度小于乙的加速度 .甲在运行时能经过北极的正上方.木星至少有 颗卫星, 年 月 日伽利略用望远镜发现了其中的 颗.这 颗卫星被命名为木卫 、木卫 、木卫 和木卫 他的这个发现对于打破 地心说 提供了重要的依据.若将木卫 、木卫 绕木星的运动看做匀速圆周运动,已知木卫 的轨道半径大于木卫 的轨道半径,则它们绕木星运行时.木卫 的周期大于木卫 的周期.木卫 的线速度大于木卫 的线速度.木卫 的角速度大于木卫 的角速度.木卫 的向心加速度大于木卫 的向心加速度.星球上的物体在星球表面附近绕星球做匀速圆周运动所必须具备的速度 叫做第一宇宙速度,物体脱离星球引力所需要的最小速度 叫做第二宇宙速度, 与 的关系是 = 已知某星球的半径为 ,它表面的重力加速度是地球表面重力加速度 的 若不计其他星球的影响,则该星球的第一宇宙速度 和第二宇宙速度 分别是. .. ..中国人自己制造的第一颗直播通信卫星 鑫诺二号 在西昌卫星发射中心发射成功,定点于东经 度的上空 拉萨和唐古拉山口即在东经 度附近 , 鑫诺二号 载有 个大功率转发器,如果正常工作,可同时支持 余套标准清晰度的电视节目,它将给中国带来 亿元人民币的国际市场和几万人的就业机会,它还承担着 村村通 的使命,即满足中国偏远山区民众能看上电视的愿望.关于 鑫诺二号 通信卫星的说法正确的是.它一定定点在赤道上空.它可以定点在拉萨或唐古拉山口附近的上空.它绕地球运转,有可能经过北京的上空.与 神舟六号 载人飞船相比, 鑫诺二号 的轨道半径大,环绕速度小.有一宇宙飞船到了某行星上 该行星没有自转运动 ,以速度 接近行星赤道表面匀速飞行,测出运动的周期为 ,已知万有引力常量为 ,则可得.该行星的半径为 .该行星的平均密度为.无法测出该行星的质量 .该行星表面的重力加速度为二、填空题 每题 分,共 分.在 探究平抛运动的运动规律 的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:.让小球多次从 位置上滚下,在一张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位置,如图 中的 、 、 、 所示..按图安装好器材,注意斜槽末端 ,记下平抛初位置 点和过 点的竖直线. .取下白纸以 为原点,以竖直线为 轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.图 图完成上述步骤,将正确的答案填在横线上.上述实验步骤的合理顺序是 .已知图 中小方格的边长 = ,则小球平抛的初速度为 = ,小球在 点的速率为 取 = .小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间 内踏脚板转动的圈数为 ,那么脚踏板转动的角速度 = ;要推算自行车的骑行速度,还需要测量的物理量有 ;自行车骑行速度的计算公式 =图.我国在 年 月 日成功发射了第一颗试验地球同步通信卫星, 年 月 日又成功发射了一颗地球同步通信卫星,它们进入预定轨道后,这两颗人造卫星的运行周期之比 ∶ = ,轨道半径之比 ∶ = ,绕地球公转的角速度之比 ∶ =. 年 月 日,美国宇航员阿姆斯特朗在月球上烙下了人类第一只脚印,迈出了人类征服月球的一大步.在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤称量出质量为 的仪器的重力为 ;而另一位宇航员科林斯驾驶指令舱,在月球表面附近飞行一周,记下时间为 ,根据这些数据写出月球质量的表达式 .三、计算题 每题 分,共 分. 分 水平抛出的一个石子,经过 落到地面,落地时的速度方向跟水平方向的夹角是 , 取 , = , = 求:石子的抛出点距地面的高度;石子抛出的水平初速度;石子的落地点与抛出点的水平距离.. 分 如图 所示,一过山车在半径为 的轨道内运动,过山车的质量为 ,里面人的质量为 ,运动过程中人与过山车始终保持相对静止.求:当过山车以多大的速度经过最高点时,人对座椅的压力大小刚好等于人的重力?此时过山车对轨道的压力为多大?当过山车以 的速度经过最低点时,人对座椅的压力为多大?图分 如图 所示,在倾角为 = 的光滑斜面顶点处固定一原长 = 的轻弹簧,弹簧另一端与放在光滑斜面体上质量 = 的物体 相连后,弹簧长度变为 = .当斜面连同物体 一起绕竖直轴 转动时,求:图转速 = 时弹簧的长度是多少?转速为多少时,物体 对斜面无压力? 取. 分天文学家们通过观测的数据确认了银河系中央的黑洞 人马座 的质量与太阳质量的倍数关系.研究发现,有一星体 绕人马座 做椭圆运动,其轨道半长轴为 天文单位 地球公转轨道的半径为一个天文单位 ,人马座 就处在该椭圆的一个焦点上.观测得到 星的运行周期为 年.若将 星的运行轨道视为半径 = 天文单位的圆轨道,试估算人马座 的质量 是太阳质量 的多少倍 结果保留一位有效数字 ;黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为 的粒子具有的势能为 = 设粒子在离黑洞无限远处的势能为零 ,式中 、 分别表示黑洞的质量和半径.已知引力常量 = - ,光速 = ,太阳质量 = ,太阳半径 = ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座 的半径 与太阳半径 之比应小于多少 结果按四舍五入保留整数 .人教版高中物理必修 模块综合测试卷参考答案 解析:由于物体后来受到的是一个向南的恒力作用,因而物体将做匀变速运动,又由于物体所受的这个力向南,与物体原来的运动方向不在一直线上,因而物体一定做曲线运动,一定要注意加速度是由物体所受的外力和质量决定的,且加速度方向总和合外力方向一致.答案:解析:有的人可能会错选 ,造成错误的主要原因是对两个分运动的确定性没有把握好,因为两个分运动一个水平方向另一个竖直方向,大小也都确定了,当然合运动也是一个定值,而不是一个范围,由平行四边形定则很容易可以求出合运动的加速度 = 若两个分运动是确定的,则合运动就一定是确定的,因而做题前,一定要看清题目,避免画蛇添足.答案:解析:造成错解的主要原因是对运动的独立性没有理解透彻,认为水流加快时,船的速度增大,渡河时间减少,而实际上,船的速度增大了,但是船的位移也增大了,而船在垂直河岸的分速度大小并没有改变,河的宽度是一定的,由于渡河时间等于垂直河岸的位移与垂直河岸的渡河速度即小船速度的比值,而以上两个量都不变,故时间不变,仍为 分钟.答案:解析:如果物体的速度为 ,则在圆周最高点,即对轨道无压力,物体做平抛运动.答案:解析:假设球受杆的拉力,则,负号说明球受杆的力应向上,故杆受球的压力大小为答案:解析:本题考查万有引力与航天中的卫星问题,意在考查考生对天体运动规律、第一宇宙速度的理解和同步卫星的认识.对同一个中心天体而言,根据开普勒第三定律可知,卫星的轨道半径越大,周期就越长, 正确.第一宇宙速度是环绕地球运行的最大线速度, 错.由可得轨道的半径大的天体加速度小, 正确.同步卫星只能在赤道的正上空,不可能经过北极的正上方, 错.答案:解析:木卫 和木卫 做匀速圆周运动所需要的向心力由万有引力提供,即解得,,;由题设条件知 ,所以 , , , ,选项 正确.答案:解析:对于贴着星球表面的卫星,解得:,又由,可求出答案:解析:“鑫诺二号”通讯卫星是同步卫星,必位于赤道上空, 正确.由地理知识,拉萨、唐古拉山、北京均不在赤道, 、 错误.同步卫星 = ,大于“神舟六号”飞船的周期,根据,,知 大, 大,则 小, 正确.答案:解析:由可得:, 正确;又可得:, 错误;由,得:, 正确,又,得:, 正确.答案:解析:由表格可以看出, 、 、 、 四点水平方向之间的距离都是 个方格边长,所以它们相邻两点之间的时间间隔相等,根据 - = 得 = = = = =平抛运动的初速度等于水平方向匀速运动的速度,即,点的竖直分速度 == , 故 点的速率 ==答案: 同一 .切线水平解析:依据角速度的定义式 =,得 =;要求自行车的骑行速度,还要知道牙盘的齿轮数 半径 、飞轮的齿轮数 半径 、自行车后轮的半径 ;由 = = = ,又齿轮数与轮子的半径成正比,则有 = ,且 = 后, = 后 ,联立以上各式解得 = = 或 = =答案: 牙盘的齿轮数 、飞轮的齿轮数 、自行车后轮的半径 牙盘的半径 、飞轮的半径 、自行车后轮的半径 或.解析:所有同步卫星除与质量有关的物理量不同外,其他所有物理量的大小都是相同的. 答案: ∶ ∶ ∶解析:在月球表面质量为 的物体重力近似等于万有引力.设月球的半径为 ,则由 =,得 = ①;设指令舱的质量为 ′,指令舱靠近月球表面飞行,其轨道半径约等于月球半径,做圆周运动的向心力等于万有引力,则有 ②,则由①②式得答案: 解析: 由得 = 解得 == =答案:解析: 在最高点时,人的重力和座椅对人的压力的合力提供向心力,根据牛顿第二定律, = ,解得 =将过山车和人作为一个整体,向心力由整体的总重力和轨道的压力的合力提供,设此时轨道对整体的压力为 ,根据牛顿第二定律,解得 = +根据牛顿第三定律,过山车对轨道的压力为 + ,方向向上.在最低点时,以人为研究对象 ′- =,解得 ′= 根据牛顿第三定律可知,人对座椅的压力为 ,方向向下.答案: +解析:图物体在斜面上受到三个力作用: 、 和 ,如图 所示.设弹簧劲度系数为 ,物体放在斜面上平衡时 = ,由胡克定律得 = - ,所以 - = , = - =设斜面体和物体 以 = = 转动时弹簧的长度为 ,此时,物体所受的力在竖直方向上平衡,即 + - = ,在水平方向上合力为向心力,即 - - = ,由以上两式解得 =设转速为 ′时,物体对斜面无压力,此时弹簧的长度为 由 - = , - = ′ ,得 =+ = ,所以 ′=≈ =绿色圃中小学教育网答案:解析: 星绕人马座 做圆周运动的向心力由人马座 对 星的万有引力提供,设 星的质量为 ,角速度为 ,周期为 ,则,,设地球质量为 ,公转轨道半径为 ,周期为 ,则,综合上述三式得 式中= 年, = 天文单位,代入数据可得引力对粒子作用不到的地方即为无限远,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有,依题意可知 = , = ,可得,代入数据得 ×答案: ×。

新教材人教版高中物理选择性必修第二册模块综合检测(期末试卷)

新教材人教版高中物理选择性必修第二册模块综合检测(期末试卷)

高中物理选择性必修第二册综合测评第一套 (1)第二套 (12)一、单项选择题(本题共8 小题,每小题3 分,共24 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于电磁波,下列说法正确的是( )A.所有电磁波的频率相同B. 电磁波只能在真空中传播C. 电磁波在任何介质中的传播速度相同D. 电磁波在真空中的传播速度是3×108 m/sγ 射线、X 射线、紫外线、可见光、红外线、微波、短波、中波和长波,其波长不同,则频率不同,故A 错误; 电磁波可以在真空中传播,速度为光速,在介质中的传播速度由介质决定, 即在不同介质中传播速度不一样,故B 、C 错误,D 正确。

2.有一种在光照或温度升高时排气扇都能启动的自动控制装置,下列说法正确的是( ) A.两个传感器都是光电传感器B.两个传感器分别是光电传感器和温度传感器C.两个传感器可能分别是温度传感器、电容式传感器D.只有光照和温度都适合时排气扇才能工作, 由此可见两个传感器一个是光电传感器,一个是温度传感器, 而且排气扇自动工作只需光照或温度一个满足条件即可,A、C 、D 错,B 对。

3.下列关于无线电广播的叙述,错误的是( )A.发射无线电广播信号必须采用调频方式B.发射无线电广播信号必须进行调制C.接收无线电广播信号必须进行调谐D.接收到无线电广播信号必须进行解调才能由扬声器播放,可以采用调频,也可以采用调幅,所以A 错误,B 正确。

接收无线电广播信号必须经过调谐也就是选台,C 正确。

由于无线电波中有高频信号,所以要经过解调将低频信号检出来, 才能由扬声器播放,D 正确。

4.如图所示,一水平放置的圆形通电线圈a 固定,另一较小的圆形线圈b 从a 的正上方下落,在下落过程中两线圈始终保持平行且共轴。

则线圈b 从线圈a 的正上方下落过程中, 从上往下看线圈b 应是( )A.有逆时针方向的感应电流B.有顺时针方向的感应电流C.先有顺时针方向的感应电流,后有逆时针方向的感应电流D.先有逆时针方向的感应电流,后有顺时针方向的感应电流,穿过b 环的磁通量先增大后减少;在a 环上方时,穿过b 环的磁通量增大, 由楞次定律知,感应电流的磁场与原磁场方向相反,根据安培定则得感应电流方向为顺时针方向; 同理可得b 穿过a 后,磁通量减少,感应电流的方向应该是逆时针方向,选C 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版必修2 综合测试一、单项选择题1.关于曲线运动,下列说法正确的是( )A .曲线运动加速度可以为零B .曲线运动可以是匀变速运动C .曲线运动不一定是变速运动D .曲线运动速度大小一定变化2.关于匀速圆周运动的说法正确的是( )A .匀速圆周运动一定是匀速运动B .匀速圆周运动是变加速运动C .匀速圆周运动是匀加速运动D .做匀速圆周运动的物体所受的合外力可能为恒力( )3.同步卫星是指相对于地面不动的人造卫星( )A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同的值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同的值D.它只能在赤道的正上方,且离地心的距离是一定的4.下列说法中正确的是( )A .质点做曲线运动时受的合力一定是变力B .质点做曲线运动时所受的合力方向与速度方向一定不在同一条直线上C .曲线运动是变速运动,加速度也一定是变化的D .匀速直线运动与匀变速直线运动的合运动可以是直线运动5.物体以初速度0v 水平抛出,当抛出后竖直位移是水平位移的2倍肘,则物体抛出的时间是( )A .g v 0B .g 2v 0C .g 4v 0D .g8v 0 6.某星球质量为地球质量的9倍,半径为地球的一半,在地球表面从某一高度平抛一物体,其水平射程为60m ,则在该星球上,从同样高度,以同样的水平速度抛同一物体,其水平射程为( )A.360mB.90mC.15mD.10m7.如下图所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是( )A .重力势能和动能之和总保持不变。

B .重力势能和弹性势能之和总保持不变。

C .动能和弹性势能之和总保持不变。

D .重力势能、弹性势能和动能之和总保持不变。

8.一根木棒沿水平桌面从A 运动到B ,如图所示,若棒与桌面间的摩擦力为F ,则棒对桌面的摩擦力和桌面对棒的摩擦力做的功各为( )A .-F s ,-F sB .F s ,-F sC .0,-F sD .-F s ,09.一个内壁光滑的圆锥筒的轴线是竖直的,圆锥固定,有质量相同的两个小球A和B 贴着筒的内壁在水平面内做匀速圆周运动,如图所示,A 的运动半径较大,则( )A .A 球的角速度必小于B 球的角速度B .A 球的线速度必小于B 球的线速度C .A 球运动的向心加速度必大于B 球的向心加速度D .A 球对筒壁的压力必大于B 球对筒壁的压力10.静止在粗糙水平面上的物块A 受方向始终水平向右的拉力作用下做直线运动,t=4s 时停下,其速度—时间图象如图所示,已知物块A与水平面间的动摩擦因数处处相同,下列判断正确的是( )A .全过程中拉力做的功等于物块克服摩擦力做的功B .全过程拉力做的功等于零C .从t=1s 到t=3s 这段时间内拉力的功率保持不变,该功率为整个过程的最大值D .可从t=1s 到t=3s 这段时间内拉力不做功二、多项选择题11.某同学设想驾驶一辆“陆地-太空”两用汽车,沿地球赤道行驶并且汽车相对于地球速度可以增加到足够大。

当汽车速度增加到某一值时,它将成为脱离地面绕地球做圆周运动的“航天汽车”。

不计空气阻力,已知地球的半径R =6400km 。

下列正确的是( )A .汽车在地面上速度减小时,它对地面的压力减小B .当汽车速度增加到7.9km/s 时,将离开地面绕地球做圆周运动C .此“航天汽车”环绕地球做圆周运动的最小周期为1hD .在此“航天汽车”上可以用弹簧测力计测量物体的重力12.有关曲线运动,以下说法正确的是A .做曲线运动的物体,它的加速度定不为零B .做曲线运动的物体,它的加速度可能为零C .平抛运动是非匀变速运动D .平抛运动是匀变速运动13.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍看作均匀球体,月球仍沿开采前的圆周轨道运动,则与开采前相比A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将变小C.月球绕地球运动的周期将变长D.月球绕地球运动的周期将变短 14.如图所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是A .b 、c 的线速度大小相等,且小于a 的线速度;B .b 、c 的向心加速度大小相等,且小于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于阻力,轨道半径缓慢减小,其线901F 度将增大,机 械能不变。

15. “黑洞”是近代引力理论所预言的宇宙中的一种特殊天体,研究认为,黑洞可能是由于超中子星发生塌缩而形成的。

欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞并将它命名为:MCG6-30-15r ,假设银河系中心仅此一个黑洞。

已知太阳系绕银河系中心做匀速圆周运动,则根据下列哪一组数据可以估算出该黑洞的质量A .太阳的质量和运行速度B .太阳绕黑洞公转的周期和太阳到“MCG6-30-15r”的距离C .太阳质量和太阳到“MCG6-30-15r”的距离D .太阳绕黑洞公转的运行速度和太阳到“MCG6-30-15r”的距离16.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率。

如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动。

由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的小自转周期T 。

则最小自转周期T 的下列表达式中正确的是A .T=2GM R 3π B.T=2GM R 33π C. T=ρπG D.T=ρπG 317.如图所示,一个质量为 m 的物体(可视为质点),以某一初速度由 A 点冲上倾角为30°的固定斜面,其加速度大小为 g ,物体在斜面上运动的最高点为B ,B 点与 A 点的高度差为h .则从 A 点到B 点的过程中,下列说法正确的是( )A .物体动能损失了2mgh B .物体动能损失了 2mgh C .系统机械能损失了 mgh D .系统机械能损失了2mgh 18.如图,质量为M 、长度为l 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为F f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )A.物块到达小车最右端时,小车具有的动能为F f sB.物块到达小车最右端时具有的动能为F (l+s ) C.物块克服摩擦力所做的功为F f (l+s) D.物块和小车增加的机械能为F f s 三、填空实验题19. (1)某同学用斜槽做研究平抛物体运动实验,下列操作正确的是A .斜槽末端槽口的切线保持水平B .固定后的斜槽要竖直C .使小球多次从斜槽的同一高度由静止释放D .使小球每次从斜槽的不同高度由静止释放(2)该同学在做研究平抛物体运动实验时,用一张印有小方格的纸记录轨迹,小方格的边长l =0.80cm ,若小球在平抛运动途中的几个位置如图中的a 、b 、c 所示,a 点为平抛运动的初始位置,则小球在。

点的速度大小是 m /s ,在b 点的速度大小为 。

(取g=10m /s 2)20.某研究性学习小组用如图(a )所示装置验证机械能守恒定律.让一个摆球由静止开始从A 位置摆到B 位置,若不考虑空气阻力,小球的机械能应该守恒,即21mv 2 = mgh .直接测量摆球到达B 点的速度v 比较困难.现让小球在B 点处脱离悬线做平抛运动,利用平抛的特性来间接地测出v .如图(a )中,悬点正下方P 点处放有水平放置炽热的电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出作平抛运动.在地面上放上白纸,上面覆盖着复写纸,当小球落在复写纸上时,会在下面白纸上留下痕迹.用重锤线确定出A 、B 点的投影点N 、M .重复实验10次(小球每一次都从同一点由静止释放),球的落点痕迹如图(b )所示,图中米尺水平放置,零刻度线与M 点对齐.用米尺量出AN 的高度h 1、BM 的高度h 2,算出A 、B 两点的竖直距离,再量出M 、C 之间的距离x ,即可验证机械能守恒定律.已知重力加速度为g ,小球的质量为m .(1)根据图(b )可以确定小球平抛时的水平射程为 cm .(2)用题中所给字母表示出小球平抛时的初速度v 0 = .(3)用测出的物理量表示出小球从A 到B 过程中,重力势能的减少量ΔE P = ,动能的增加量ΔE K = .四、计算论述题21.(7分)如图所示,左右两个倾角不同的固定斜面,中间有一水平面相接,连接处有光滑的小圆弧,使物体经过时不至于撞击接触面。

物体从左边斜面离水平面高h1=1m处静止下滑,到达右边斜面离水平面高h2=0.8m处时速度恰好为零,这一过程物体在水平方向上通过的距离为s=1m。

如果物体与水平面及两斜面之间的动摩擦因数μ均相同。

求:动摩擦因数μ是多少?22.某战士在倾角为300山坡上进行投掷手榴弹训练。

他从A点以某一初速度v0沿水平方向投出手榴弹,正好落在B点,测得AB=90m。

若空气阻力不计,求:(1)该型号手榴弹从拉动弹弦到爆炸需要5s的时间,若要求手榴弹正好在落地时爆炸,问战士从拉动弹弦到投出所用的时间是多少?(2)手榴弹抛出的速度是多大?(3)从抛出开始经多长时间手榴弹与山坡间的距离最大?(g=10m/s2)23.一种氢气燃料的汽车,质量为m=2.0×103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍。

若汽车从静止开始先匀加速启动,加速度的大小为a=1.0m/s2。

达到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶。

试求:(1)汽车的最大行驶速度;(2)当汽车的速度为32m/s时的加速度;(3)汽车从静止到获得最大行驶速度所用的总时间。

24.我国探月工程实施“绕”“落”“回”的发展战略。

“绕”即环绕月球进行月表探测;“落”是着月探测;“回”是在月球表面着陆,并采样返回。

第一步“绕”已于2007年11月17日成功实现,“嫦娥一号”成功实施第三次近月制动,进入周期为T圆形越极轨道。

经过调整后的该圆形越极轨道将是嫦娥一号的最终工作轨道,这条轨道距离月球表面为h0,经过月球的南北极上空。

已知月球半径为R,万有引力恒量G ,(1)求月球的质量M(2)第二步“落”计划于2012年实现,当飞船在月球表面着陆后,如果宇航员将一小球举高到距月球表面高h处自由释放,求落地时间t。

相关文档
最新文档