变频器的调速控制

合集下载

变频调速的基本控制方式ppt课件

变频调速的基本控制方式ppt课件

28
机械特性曲线
n
可见,当频率ω1提高 时,同步转速n1随之提 n1c 高,最大转矩减小,机 n1b
械特性上移;转速降落 n1a
1c 1b 1a
随频率的提高而增大, n1N 1N
1N <1a <1b <1c 恒功率调速
特性斜率稍变大,其它
形状基本相似。如右图
所示。
2024/7/16
O Te
图6-5 基频以上恒压变频调速的机械特性29
2024/7/16
22
结论
➢在恒压频比的条件下改变频率 1 时,机械特性基本上是
平行下移 ➢当转矩增大到最大值以后,转速再降低,特性就折回来 了。而且频率越低时最大转矩值越小
➢最大转矩 Temax 是随着的 1 降低而减小的。频率很
低时,Temax太小将限制电机的带载能力,采用定子压 降补偿,适当地提高电压Us,可以增强带载能力
(U漏—漏磁阻抗压降;Us—每相电压),
当Us很大时,U漏很小;可以认为Us≈Eg 。
m
US f1
C
要改变f1实现调速,则同时应改变Us来保持Φm不变。
—恒压频比控制方式
2024/7/16
12
带定子压降补偿的恒压频比控制特性
但当f1太小时,忽略U漏则误差较大,这时可以人为增 大Us进行补偿,以减小误差。
2024/7/16
30
小结
电压Us与频率1是变频器—异步电动机调速系统的两个独立
的控制变量,在变频调速时需要对这两个控制变量进行协调 控制。 在基频以下,有两种协调控制方式。采用不同的协调控制方 式,得到的系统稳态性能不同。 在基频以上,采用保持电压不变的恒功率弱磁调速方法。
2024/7/16

变频器的工作原理与控制方式

变频器的工作原理与控制方式

变频器的工作原理与控制方式变频器(Variable Frequency Drive,缩写为VFD),又称为交流调速器(AC Drive),是一种用于调节交流电机转速的电子装置。

它通过改变输入电压的频率和幅值来控制电机的转速。

变频器工作原理主要涉及开关技术、PWM调制技术、电机驱动理论等方面内容,下面将详细介绍。

一、变频器的工作原理1.开关技术变频器利用开关电子器件(如晶体管、IGBT等)来实现对输入电源的开关控制。

通过不断开关电路,形成等效于几十千赫兹至几千千赫兹的高频方波,从而形成理想的正弦波输出。

2.PWM调制技术PWM(Pulse Width Modulation)调制技术是指通过改变开关装置的导通时间和关断时间,以一定占空比形式控制开关管工作的方式。

在变频器中,PWM技术可以实现加减压、变频和控制电机的转速。

3.电机驱动理论变频器通过改变输入电压的频率和幅值来调节电机的转速。

在工作过程中,通过改变开关器件导通时间和关断时间,将输入电压的频率调节到所需的频率范围,实现对电机转速的精准控制。

二、变频器的控制方式1.V/f控制方式V/f控制方式(Voltage/frequency ratio control)是一种常用的变频器控制方式。

它通过传感器检测电机当前的转速,并根据转速信号和预设的转速曲线进行比较,计算所需输出频率,并根据预设的V/f比值进行控制,实现对电机速度的调节。

2.向量控制方式向量控制方式(Vector Control)又称矢量控制方式,是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩和位置等信息,并根据这些信息进行精确计算和控制,实现对电机速度、转矩和位置等的准确控制。

3.矢量控制方式矢量控制方式(Direct Torque Control,缩写为DTC)是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩等信息,并根据转速、转矩的变化率进行预测和计算,在每个采样周期内调节电机的转速和转矩,实现对电机的精确控制。

变频调速工作原理

变频调速工作原理

变频调速工作原理
变频调速,即通过改变电机供电频率来调整电机的转速。

其工作原理基于变频器(也称为频率变换器、变频调速器)的控制。

变频器是由整流器、滤波器、逆变器和控制电路组成的电子器件。

它的基本原理是将固定频率的交流电转换为可调频率的交流电,以控制电机的速度。

具体原理如下:
1. 输入电源经过整流器将交流电转换为直流电,并通过滤波器去除波动。

2. 变频器的控制电路通过调整逆变器的开关频率和占空比,将直流电转换为大小可调的交流电。

3. 变频器通过改变交流电的频率,改变电机的转速。

通过控制电路输入不同的频率信号,可以实现电机转速的精细调节。

4. 控制电路还可以根据电机的工作负载情况,自动调整输出频率和电流,以提高电机的效率和节能性。

总之,变频调速工作原理是通过变频器将固定频率的交流电转换为可调频率的交流电,从而控制电机的转速。

通过调整变频器输入的频率信号,可以精确地调节电机的运行速度,达到不同工作要求。

变频器的六大调速方法

变频器的六大调速方法

电动机知识变频器的六大调速方法1.变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。

2.串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

变频器调速原理及调速方法3.绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

变频器的调速原理)

变频器的调速原理)

变频器调速基本原理变频器调速基本原理 1、变频器概述。

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

它的主电路都采用交—直—交电路。

JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz;2、变频原理。

从理论上我们可知,电机的转速N 与供电频率f 有以下关系:)1(*60sPfN其中: p ——电机极数 S——转差率由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。

变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。

3、节能调速原理一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。

因此浪费大量电能,属不经济的调节方式。

从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。

对不同使用频率时的节电率N%可查表。

上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。

变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。

变频器的六大调速方法

变频器的六大调速方法

电动机知识变频器的六大调速方法1.变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。

2.串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

变频器调速原理及调速方法3.绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

变频器的调速控制

变频器的调速控制
和 4 接通 / 断开的组合 , 选择各种速度 。 端子接通断开组合与被选 择的 4 5 。
频率的对应 关系如表二所示。 中“ 为通 ,o” 断开 , 其 ●” “ 为 其中 , 点 动运转是一种与所设置的加减速时间无关的 , 单步的 , 以点动频率 运转的驱动功能。 r 1上 限频率” r2 下限频率” 用P .“ 和P .“ 的组合最多
ReS r s t=M AI NM ENU . S1 I p t M .n u El s e
Go r a To Er De l E d I n f
控 制系统 , 实现了“ 中管理 , 集 分散控制” 经过几年运行 , 。 运行 可靠 、
稳定 、 干扰 能力 强。 抗 参考文献
数控技术
表 二
寸 字术 船 技 l 数
参数号 P r 4 5
6 2 4
段速 1 2
3 4
R H ● o
o o
R M o ●
o ●
RL O o
● ●
JG O o o
o o
RE X o o
o o
2 5 2 6 2 7
4、 结 语
本文对F A 0 变频器外部接线控 制电路端子的功能做 了说 R— 7 O
并介绍 了F A7o R— 0变频器的多级调 速和无级调速的控制方法 , 可 以高定1种速度。 7 当然在 外部操作模 式或P 7= 的组合模式时 明, R.9 4 用 户可 以作为参考 。 有效 。 在变频器 运行期间 , 每种速度 ( 频率 )  ̄0 Hz 在040 范围内设 定。 具 体情 况如表二
E d I n f E d S b n u i =i +1 2 2
Lo p Un i AI o tl M NM E NU . S1 I Bu e Co n >=l M .n f r u t 1 Or i > 1 0 0 2 0 0 I 2 1 0 0 The f i< 0 0 n

变频调速公式范文

变频调速公式范文

变频调速公式范文
变频调速是指通过改变电机的转速,实现对设备的调速控制。

变频调
速具有体积小、重量轻、可靠性高、节能效果显著等优点,广泛应用于工
业生产中。

变频调速的公式主要包括电机转速计算公式和输出转矩计算公式。

1.电机转速计算公式:
电机转速(n)可以通过变频器的输出频率(f)和极数(p)来计算,公式如下:
n=120*f/p
其中,n为电机转速(单位:rpm),f为输出频率(单位:Hz),p
为电机的极数。

2.输出转矩计算公式:
输出转矩(T)与电机转速(n)和电机功率(P)之间的关系可以通
过下面的公式来计算:
T=9.55*P/n
其中,T为输出转矩(单位:N·m),P为电机功率(单位:W),n
为电机转速(单位:rpm)。

需要注意的是,以上公式适用于额定功率和频率下的电机转速计算。

在实际应用中,还需考虑负载变化对电机功率和转速的影响,并结合实际
工作条件进行综合计算。

变频调速技术具有非常广泛的应用领域,包括机械设备调速、泵站调速、通风系统调速、电梯调速、卷绕设备调速等。

通过掌握变频调速公式,可以更好地理解和应用变频调速技术,提高设备的运行效率和稳定性。

变频器调速原理及调速方法

变频器调速原理及调速方法

变频器调速原理及调速方法随着科技的发展和工业的进步,电机的调速需求也越来越高。

变频器作为一种调速装置,被广泛应用于各个领域。

本文将介绍变频器的调速原理以及常用的调速方法。

一、变频器调速原理变频器是一种能够将电源频率转换为可调的电机运行频率的装置。

其主要由整流器、滤波器、逆变器和控制电路组成。

1. 整流器与滤波器:变频器将交流电源转换为直流电源,通过整流器和滤波器将输入的交流电平稳化。

2. 逆变器:逆变器的作用是将直流电压转换为可调的交流电压,用于驱动电机。

逆变器通过控制开关管的开关时间和方式,改变输出电压的频率和幅值,实现电机的调速。

3. 控制电路:控制电路负责监测电机的运行状态和用户的操作指令,通过控制逆变器的工作方式,实现电机的调速。

二、常用的变频器调速方法变频器调速方法多种多样,根据不同的需求和应用场景可以选择不同的方法。

1. 扭矩控制调速:在某些场合需要保持恒定的扭矩输出,可以采用扭矩控制调速方法。

通过改变变频器的输出频率和电压,使得电机的转矩在一定范围内保持恒定。

2. 电压/频率调速:这是最常用的一种调速方法。

通过改变变频器的输出电压和频率,控制电机的转速。

一般情况下,输出电压和频率成正比,通过改变其数值可以实现电机的加速和减速控制。

3. 矢量控制调速:矢量控制调速是一种相对高级的调速方法,它通过对电机的转子位置和速度进行测量和控制,实现对电机的精确调速和定位控制。

矢量控制调速精度较高,适用于对转速要求严格的场合。

4. 模糊控制调速:模糊控制调速是一种基于模糊逻辑的调速方法,它可以根据实际运行状态和用户需求进行实时调整,能够适应不同的工况和负载变化。

5. PLC控制调速:在一些需要自动化控制的场合,可以采用PLC(可编程控制器)控制变频器进行调速。

通过编写PLC程序,实现对变频器的控制和调节。

三、总结变频器调速原理是将电源频率转换为可调的电机运行频率,通过改变输出频率和电压来控制电机的转速。

变频器的调速方法

变频器的调速方法

情境四:变频器的应用与维护项目二变频器的调速方法一、项目训练目的:1.掌握变频器的不同调速控制方式的区别2.掌握变频器不同调速方式的接线方法和参数设置方法。

3.能够熟练操作变频器二、教学建议采用边讲边练的方式进行教学,指导学生利用MM420变频实现三相异步电动机的调速控制。

新授内容:理论知识部分变频器的不同调速方式下的接线与参数设定方法一、外部端子点动控制1)变频器的接线示意图2)需要设定的参数序号变频器参数出厂值设定值功能说明1P0304230380电动机的额定电压(380V)2P0305 3.250.35电动机的额定电流(0.35A)3P03070.750.06电动机的额定功率(60W)4P031050.0050.00电动机的额定频率(50Hz)5P031101430电动机的额定转速(1430 r/min)6P100021用操作面板(BOP)控制频率的升降7P108000电动机的最小频率(0Hz)8P10825050.00电动机的最大频率(50Hz)9P11201010斜坡上升时间(10S)10P11211010斜坡下降时间(10S)11P070022选择命令源(由端子排输入)12P0701110正向点动13P07021211反向点动14P1058 5.0030正向点动频率(30Hz)15P1059 5.0020反向点动频率(20Hz)16P106010.0010点动斜坡上升时间(10S)17P106110.005点动斜坡下降时间(5S)注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(2)设定P0003=2允许访问扩展参数(3)设定电机参数时先设定P0010=1(快速调试),电机参数设置完成设定P0010=0(准备)3)参数的调整(1)改变P1058、P1059的值,观察电机运转状态有什么变化。

(2)改变P1060、P1061的值,观察电机运转状态有什么变化。

二、变频器控制电机正反转1)变频器的接线示意图2)需要设定的参数序号变频器参数出厂值设定值功能说明1P0304230380电动机的额定电压(380V)2P0305 3.250.35电动机的额定电流(0.35A)3P03070.750.06电动机的额定功率(60W)4P031050.0050.00电动机的额定频率(50Hz)5P031101430电动机的额定转速(1430 r/min)6P070022选择命令源(由端子排输入)7P100021用操作面板(BOP)控制频率的升降8P108000电动机的最小频率(0Hz )9P10825050.00电动机的最大频率(50Hz )10P11201010斜坡上升时间(10S )11P11211010斜坡下降时间(10S )12P070111ON/OFF(接通正转/停车命令1)13P07021212反转14P070394OFF3(停车命令3)按斜坡函数曲线快速降速停车注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(2)设定P0003=2允许访问扩展参数(3)设定电机参数时先设定P0010=1(快速调试),电机参数设置完成设定P0010=0(准备)3)参数的调整改变P1120、P1121的值,观察电机运转状态有什么变化。

变频调速的原理及应用

变频调速的原理及应用

变频调速的原理及应用变频调速是一种通过改变电机的输入电压和频率来实现电机转速调节的技术。

它利用可调变频器将电源的交流电通过整流、滤波、逆变等电路转换为直流电,然后经过可调变频器进行变频调节,最后再通过逆变器将调节后的直流电转换为交流电供给电机。

变频调速的原理主要包括四个部分:电源模块、整流滤波模块、逆变模块和控制模块。

电源模块将电网交流电转换为直流电供给整流滤波模块,整流滤波模块将直流电转换为稳定的直流电,逆变模块将直流电转换为交流电,并根据控制信号进行频率和电压的调节,控制模块对逆变模块进行控制,通过处理控制信号和反馈信号实现电机转速的控制。

变频调速技术具有以下几个主要的应用:1.工业生产控制:变频调速技术广泛应用于各种工业生产设备中,如风机、水泵、压缩机等。

通过改变电机的输入电压和频率,实现电机的转速调节,可以满足不同工况下的生产需求,提高生产效率和能源利用率。

2.交通运输领域:变频调速技术在交通运输领域的应用主要体现在电动车辆中。

通过调节电机的转速,实现电动车辆的加速、减速和定速巡航等功能,提高电动车辆的驾驶性能和行驶里程。

3.制冷空调领域:变频调速技术在制冷空调领域的应用主要体现在压缩机的调速上。

通过调节压缩机的转速,实现制冷系统的容量调节,可以根据室内温度和负荷变化进行动态调节,提高能源利用率和舒适度。

4.机器人和自动化设备:变频调速技术在机器人和自动化设备中的应用越来越广泛。

通过调节电机的转速和扭矩,实现机器人和自动化设备的精确操作和运动控制,提高生产效率和产品质量。

总之,变频调速技术通过改变电机的输入电压和频率,实现电机转速的调节,广泛应用于工业生产控制、交通运输、制冷空调、机器人和自动化设备等领域,提高设备性能和能源利用效率,促进工业和社会的可持续发展。

变频器怎么调速度

变频器怎么调速度

变频器怎么调速度调速是指改变设备的工作速度,通常是为了满足不同工作条件或需求。

变频器是一种常用于控制电动机速度的设备,它通过调整电机供电频率来实现速度调节。

以下是关于如何调速的简要说明:首先,您需要了解您的设备和变频器的型号以及相关参数。

不同型号的变频器可能有不同的控制方式和功能,因此在进行调速之前,请查阅设备手册以获取详细的操作说明和安全提示。

下面是一般的调速步骤:1. 连接和配置:确保变频器正确连接到电机,并按照设备手册的说明进行配置。

这包括输入电压和电流规格、输出频率、电机类型等信息。

2. 电源供应:确保变频器和电机都正确连接到电源,并确保电源稳定。

在启动变频器之前,确保所有安全开关和断路器处于关闭状态。

3. 参数设置:使用变频器的控制面板或软件工具,进入参数设置模式。

您需要设置所需的输出频率和电流限制等参数。

通常,您可以选择手动输入这些参数或者使用预设的参数。

4. 启动:在确认所有参数设置正确后,可以启动变频器。

变频器会将电机驱动起来,并根据您设置的参数调整输出频率,从而改变电机的速度。

5. 监测和调整:在变频器运行时,您可以监测电机的运行情况。

如果需要更改速度,可以通过调整输出频率或其他相关参数来实现。

请谨慎调整,以避免过载或损坏设备。

6. 停止和安全措施:在完成工作或需要停止时,确保停用变频器,并遵循设备手册中的安全关闭程序。

同时,确保变频器和电机都已切断电源。

需要注意的是,调速是一个复杂的过程,可能需要一定的经验和技术知识。

如果您不熟悉变频器操作或对设备不确定,最好寻求专业人员的帮助,以确保安全和有效地进行调速操作。

总之,变频器是一种用于调整电动机速度的重要设备,通过调整输出频率来实现。

在进行调速操作时,请仔细阅读设备手册,正确连接设备,设置参数,监测运行情况,并遵循安全程序,以确保设备正常运行并保持安全。

这样,您可以根据不同的需求和工作条件有效地控制电动机的速度。

变频调速的几种控制方式

变频调速的几种控制方式
除此之外,还有一些简化或改进的控制方式,如:有矢量演算的V/f控制、直接矢量控制(其ቤተ መጻሕፍቲ ባይዱ通由测算而不是估算得出)等。
变频调速的几种控制方式
1、V/f协调控制
交流电动机的感应电势E=4.44Nf(N为绕组有效匝数)。忽略定子绕组的阻抗,定子电压U≈E=4.44Nf。当改变频率f调速时,如电压U不变,则会影响磁通。例如,当电机供电频率降低时,若保持电机的端电压不变,那末电机中的匝数将增大。由于电机设计时的磁通选为接近饱和值,匝数的增大将导致电机铁心饱和。铁心饱和后将造成电机中流过很大的励磁电流,增加铜耗和铁耗。而当供电频率增加,电机将出现欠励磁。因为T=CmI2′cosφ2(Cm为电机结构决定的转矩系数,I2′为转子电流折算值,cosφ2为转子功率因数),磁通的减小将会引起电机输出转矩的下降。因此,在改变电机的频率时,应对电机的电压或电势同时进行控制,即变压变频(VVVF)。
矢量控制可以获得和直流电动机相媲美的优异控制性能。
3、直接转矩控制
直接转矩控制也是分别控制异步电动机的转矩和磁链,只是它选择定子磁链作为被控制的对象,而不像矢量控制系统那样选择了转子磁链,因此可以直接在定子坐标上计算与控制交流电动机的转矩。即通过实时检测磁通幅值和转矩值,分别与给定值比较,由磁通和转矩调节器直接输出,共同形成PWM逆变器的空间电压矢量,实现对磁链和转矩的直接闭环控制。它不需要分开的电压控制和频率控制,也不追求单相电压的正弦,而是把逆变器和电机视为整体,以三相波形总体生成为前提,使磁通、转矩跟踪给定值,磁链逼近圆形旋转磁场。
2、矢量控制
众所周知,直流电动机具有优良的调速和起动性能,是因为T=CmIa,励磁绕组和电枢绕组各自独立,空间位置互差90°,因而和电枢电流Ia产生的磁通正交,如忽略电枢反应,它们互不影响;两绕组又分别由不同电源供电,在恒定时,只要控制电枢电流或电枢电压便可以控制转矩。而异步电动机只有定子绕组与电源相接,定子电流中包含励磁电流分量和转子电流分量,两者混在一起(称为耦合),电磁转矩并不与定子电流成比例。矢量控制的思路就是仿照直流电动机的控制原理,将交流电机的动态数学方程式进行坐标变换,包括三相至二相的变换(3/2)和静止坐标与旋转坐标的变换,从而将定子电流分解成励磁分量和转矩分量(解耦),它们可以根据可测定的电动机定子电压、电流的实际值经计算求得,然后分别和设定值一起构成闭环控制,经过调节器的作用,再经过坐标反变换,变成定子电压的设定值,实现对逆变器的PWM控制。

变频调速的应用和原理

变频调速的应用和原理

变频调速的应用和原理介绍变频调速是一种通过改变电机输入电压和频率来调节电机转速的方法。

它广泛应用于各种领域,包括工业生产、交通运输、家用电器等。

本文将介绍变频调速的应用领域和原理。

应用领域1.工业生产–变频调速在工业生产中起到了关键作用。

通过控制电机的转速,可以提高生产效率,并实现对工艺过程的精确控制。

例如,食品加工行业中的搅拌设备、纺织行业中的纺纱机等。

2.交通运输–变频调速在交通运输领域的应用越来越广泛。

例如,电动汽车中的电机控制系统、地铁中的电机驱动系统等。

通过控制电机的输出功率和转速,可以提高交通工具的能源利用效率,并改善行驶性能。

3.家用电器–变频调速技术在家用电器中也得到了广泛应用。

例如,空调、洗衣机、冰箱等。

通过控制电机的转速,可以实现节能、降噪和提高使用舒适性。

原理1.变频器–变频调速的核心设备是变频器,它可以将给定的电源交流电转换为可调的电压和频率输出。

变频器通常由整流器、中间电路和逆变器三部分组成。

整流器将交流电转换为直流电,中间电路对直流电进行滤波和储能,逆变器将中间电路的直流电转换为可调的交流电。

2.控制算法–变频调速的关键在于控制算法。

控制算法可以通过测量电机输出的转速和转矩,以及用户设定的工作要求,对变频器进行控制。

常见的控制算法包括矢量控制、感应电机矢量控制、定子电流控制等。

3.电机–电机是变频调速系统中的关键组件。

不同类型的电机对变频调速的适应性有所差异。

常见的电机包括异步电机、同步电机、直流电机等。

根据不同的应用需求,选择合适的电机类型是实现变频调速的重要因素。

4.输入和输出–输入是指变频器接收的电源交流电,通常为三相电。

变频器可以根据用户设定的输出要求,调节输出电压和频率。

输出是经过变频调速系统处理后的电机驱动信号,用于控制电机的转速和转矩。

5.优势和挑战–变频调速具有许多优势,包括:节能、稳定性好、适应性强、可靠性高、减少机械磨损等。

然而,也存在一些挑战,如系统成本高、调试复杂、对电网质量要求高等。

变频器的调速方法

变频器的调速方法

变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。

在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。

本文将介绍几种常见的变频器调速方法。

一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。

通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。

在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。

二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。

它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。

矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。

三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。

它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。

闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。

四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。

通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。

这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。

五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。

在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。

这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。

综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。

通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。

变频器的调速原理

变频器的调速原理

变频器的调速原理
变频器的调速原理是指利用变频器对电机进行频率和电压的调节,从而实现对电机转速的精确控制。

其工作原理主要包括以下几个方面:
1. 输入电源调整:变频器通过检测输入电源的电压和频率,并将其转化为所需的电压和频率信号。

这些信号经过变频器内部的电路处理后,输出给电机供电。

2. 电压调整:变频器可以根据控制信号的输入调节输出给电机的电压。

通过改变电压的大小,可以控制电机输出的功率和转速。

例如,降低电压可以降低电机的转速,提高电压则可以提高电机的转速。

3. 频率调整:变频器还可以根据控制信号的输入调节输出给电机的频率。

通过改变频率的大小,可以改变电机的转速。

一般来说,提高频率会使电机加速,降低频率则会使电机减速或者反向运转。

4. 控制回路:变频器内部有一个控制回路,用于实时监测电机的转速。

通过与预设的转速进行比较,控制回路可以计算出调整电机电压和频率的偏差,并输出相应的校正信号,实现对转速的闭环控制。

变频器的调速原理通过以上几个方面的控制,可以精确地调节电机的转速,适应不同工况和需求。

这种调速方式具有灵活性
高、能耗低、运行平稳等优点,已广泛应用于各个领域的电机控制系统中。

(完整版)变频器多段速控制的实现与应用

(完整版)变频器多段速控制的实现与应用

(完整版)变频器多段速控制的实现与应用引言变频器是现代控制系统中常用的一种调速设备,通过调节电机的转速来实现对设备运行速度的控制。

变频器的多段速控制功能在很多应用场合中非常重要,可以满足不同工况下的运行需求。

本文将介绍变频器多段速控制的实现与应用。

变频器多段速控制的实现1. 选择合适的变频器:根据设备的需求和性能要求,选择适合的变频器型号。

考虑到多段速控制功能,建议选择那些具备较高控制精度和丰富控制功能的变频器。

选择合适的变频器:根据设备的需求和性能要求,选择适合的变频器型号。

考虑到多段速控制功能,建议选择那些具备较高控制精度和丰富控制功能的变频器。

2. 设定多段速控制参数:根据实际工况需求,设定多段速控制的参数。

这些参数包括转速范围、加减速时间、速度跳变值等。

可以根据设备的运行特点灵活调整这些参数,以实现最佳运行效果。

设定多段速控制参数:根据实际工况需求,设定多段速控制的参数。

这些参数包括转速范围、加减速时间、速度跳变值等。

可以根据设备的运行特点灵活调整这些参数,以实现最佳运行效果。

3. 编写多段速控制程序:根据设定的参数,编写变频器的多段速控制程序。

这个程序可以根据实时的运行状态,自动切换设备的运行速度。

编写多段速控制程序:根据设定的参数,编写变频器的多段速控制程序。

这个程序可以根据实时的运行状态,自动切换设备的运行速度。

4. 测试与优化:在实际应用中,对多段速控制程序进行测试与优化。

根据实际运行效果,适时调整参数和程序,以获得更好的运行性能。

测试与优化:在实际应用中,对多段速控制程序进行测试与优化。

根据实际运行效果,适时调整参数和程序,以获得更好的运行性能。

变频器多段速控制的应用1. 机械设备:变频器多段速控制广泛应用于各类机械设备,如风机、泵站、输送带等。

通过多段速控制,可以满足不同负载条件下的运行需求,提高设备的能效和运行稳定性。

机械设备:变频器多段速控制广泛应用于各类机械设备,如风机、泵站、输送带等。

变频器调速原理简述

变频器调速原理简述

变频器调速原理简述变频器调速的原理主要是通过改变电源的频率来控制电机的转速。

以下是其详细原理简述:一、电机转速与频率的关系电机的转速与电源频率之间存在着紧密的关系,其公式为:(其中是电机转速,是电源频率,是电机的极对数)。

从这个公式可以看出,在电机的极对数不变的情况下,改变电源频率,就可以直接改变电机的转速。

二、变频器的基本构成及作用变频器主要由整流器、滤波器、逆变器和控制器等部分组成。

1.整流器:将交流电源转换为直流电源。

通常采用二极管整流电路,将输入的交流电变为直流电,为后续的逆变环节提供稳定的直流电压。

2.滤波器:对整流后的直流电压进行滤波,去除其中的脉动成分,使直流电压更加平滑稳定。

3.逆变器:将直流电转换为频率和电压均可调的交流电。

逆变器由多个功率开关器件(如 IGBT)组成,通过控制这些开关器件的导通和关断时间,可以改变输出交流电的频率和电压。

4.控制器:是变频器的核心部分,负责根据给定的速度指令和反馈信号,计算出所需的输出频率和电压,并控制逆变器的工作。

控制器通常采用微处理器或数字信号处理器(DSP),可以实现复杂的控制算法和功能。

三、调速过程1.给定速度指令:用户根据实际需求,通过操作面板、外部模拟信号或通信接口等方式给定电机的速度指令。

2.控制器计算:控制器接收到速度指令后,根据当前电机的实际转速反馈信号(通常通过编码器等传感器获得),采用特定的控制算法(如PID控制)计算出所需的输出频率和电压。

3.逆变器输出调整:控制器将计算得到的输出频率和电压信号发送给逆变器,控制逆变器中功率开关器件的导通和关断时间,从而改变输出交流电的频率和电压,使电机的转速逐渐接近给定的速度指令。

4.反馈调节:在电机运行过程中,编码器等传感器不断将电机的实际转速反馈给控制器,控制器根据反馈信号与给定速度指令之间的偏差,实时调整输出频率和电压,实现闭环控制,确保电机的转速稳定在给定值附近。

综上所述,变频器通过改变电源的频率来控制电机的转速,具有调速范围广、精度高、节能等优点,在工业生产和自动化控制等领域得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的调速控制
作者:沈大泉
来源:《数字技术与应用》2011年第12期
摘要:随着现代功率电子技术的高速发展,变频器的性能日新月异:调速范围宽,调速精度高,动态反应快,运行平稳,功率因素高,操作方便且便于跟其他设备接口等一系列优点。

因而变频器的用途越来越广。

下面以FR-A700变频器为例,说明其外部控制端子的功能和PLC对其控制的方法。

关键词:变频器功率电子动态调速控制
中图分类号:TN773 文献标识码:A 文章编号:1007-9416(2011)12-0003-02
1、FR-A700变频器的外部接线图
FR-A700变频器包括4种控制方式:标准V/F控制,带PG反馈的V/F控制,无传感器的磁通矢量控制和带PG反馈的磁通矢量控制。

FR-A700变频器只需简单的参数设置就能广泛的应用到各个领域。

其外部接线图如1所示。

1.1 主电路的接线
(1)主电路电源端子RST经交流接触器MC和自动空气断路器MCCB到三相交流电源,不需考虑相序。

变频器的输出电源必须接到端子UVW上,千万不能接错,否则会损坏变频器。

娈频器的保护功能动作时,相应的继电器线圈得电吸合,其常闭触点断开变频器电源侧主电路接触器的线圈电路,从而切断变频器的主电源。

不能用主电路的通断来进行变频器的运行,停止操作,必须通过控制电路端子STF或STR来操作。

(2)直流电抗器连接端子P1和P/+是连接改善功率因素用电抗器的端子。

这两端子在出厂时接有短路片,对于30KW以上的变频器需配置直流电抗器时,需卸掉短路片再连接。

(3)对于小容量变频器,内设制动电阻接在PX和PR端子上。

对于较大容量变频器,需连接外部制动电阻时接在PX和PR上。

制动电阻配线长度5M以下,且用双绞线。

为了安全及降低哭噪声的需要出发,变频器必须可靠接地。

1.2 控制电路端子的功能说明
(1)变频器的输入信号包括:运行/停止,正转/反转,点动等运行状态进行操作的数字操作信号。

变频器通常利用继电器触点或晶体管集成电极开路形式得到这些运行信号,如PLC的继电器输出电路或PLC的晶体管输出电路,也就是说,PLC的输出端口可以和变频器上述信号端子直接连接,从而实现PLC对变频器的控制。

(2)变频器的监测输出信号通常包括:故障检测,速度检测,频率和电流信号等,它们分为开关量和模拟量检测信号两种,都用来和其他设备配合组成控制系统。

模拟量检测输出信号既可根据需要送给电流表或频率表,也可送给PLC的模拟量输入模块。

如果是后一种情况,必须注意PLC一侧输入阻抗的大小,来保证该输入电路中的电流不能超过电路的额定电流。

另外,由于这些模拟量检测信号和变频器内部并不绝缘,在电线较长或噪声较大的场合,应该在途中设置绝缘放大器。

(3)对于开关量检测信号,由于它们是通过继电器触点或晶体管集电极开路的形式输出,额定值均在24V/50mA之上,完全符合FX系列PLC对输入信号的要求,所以可将变频器的开关量检测信号和FX系列的PLC的输入端直接连接,从而实现信号的反馈控制。

2、FR-A700变频器多级调速的PLC控制
利用PLC的开关量输入,输出模块对变频器的多功能输入端进行控制,实现三相异步电动机的正反转,多速控制。

对大多数控制系统来说,这种多极速度控制方式不仅能满足其工艺要求,而且接线简单,抗干扰能力强,使用也方便,和利用拟信号进行速度给定的方法相比较,成本低,并且不存在由于噪声和漂移带来的各种问题。

PLC的功能输入端子和多功能输出端子的功能为出厂时所设定,用户也可根据需要利用变频器数字操作器FR-DU07对这些端口重新进行功能设定。

设定情况如表一
然后通过端子RH,RM,RL,JOG,REX和公共端子SD之间的接通 /断开的组合,选择各种速度。

端子接通断开组合与被选择的频率的对应关系如表二所示。

其中“●”为通,“○”为断开,其中,点动运转是一种与所设置的加减速时间无关的,单步的,以点动频率运转的驱动功能。

用Pr.1“上限频率”和Pr.2“下限频率”的组合最多可以高定17种速度。

当然在外部操作模式或PR.79=4的组合模式时有效。

在变频器运行期间,每种速度(频率)在0~400Hz范围内设定。

具体情况如表二
3、FR-A700变频器的无级调速
变频器的无级调速是指频率指令信号从变频器的模拟输入端子输入。

变频器可以利用自身的频率设定电源来进行频率指令的设定上。

在生产实际中,频率指令信号一般来自于调节器或者PLC。

如果来自于调节器,其输出一般是标准的4~20mA,此信号直接和变频器的输入端
子2和5连接.如果频率指今令信号来自于PLC,则意味着PLC必须配置模拟量输出模块,将输出的0~10V或4~20mA模拟量信号送给变频器相应的电压或电流输入端子4和5上。

4、结语
本文对FR-A700变频器外部接线控制电路端子的功能做了说明,并介绍了FR-A700变频器的多级调速和无级调速的控制方法,用户可以作为参考。

相关文档
最新文档