高电压技术复习资料模板

合集下载

高电压技术复习资料

高电压技术复习资料

⾼电压技术复习资料⾼电压技术复习资料⼀、填空题1、__________的⼤⼩可⽤来衡量原⼦捕获⼀个电⼦的难易,该能量越⼤越容易形成__________ 。

(电⼦亲合能、负离⼦)2、⾃持放电的形式随⽓压与外回路阻抗的不同⽽异。

低⽓压下称为__________ ,常压或⾼⽓压下当外回路阻抗较⼤时称为⽕花放电,外回路阻抗很⼩时称为__________ 。

(辉光放电、电弧放电)3、⾃持放电条件为__________ 。

(γ(-1)=1或γ=1)4、汤逊放电理论适⽤于__________ 、__________ 条件下。

(低⽓压、pd较⼩)5、流注的特点是电离强度__________ ,传播速度__________ 。

(很⼤、很快)6、棒—板间隙中棒为正极性时电晕起始电压⽐负极性时__________ 。

(略⾼)7、长间隙的放电⼤致可分为先导放电和__________ 两个阶段,在先导放电阶段中包括__________ 和流注的形成及发展过程。

(主放电、电⼦崩)8、在稍不均匀场中,⾼场强电极为正电极时,间隙击穿电压⽐⾼场强电极为负时__________ 。

在极不均匀场中,⾼场强电极为负时,间隙击穿电压⽐⾼场强电极为正时__________ 。

(稍⾼、⾼)9、电晕放电产⽣的空间电荷可以改善__________ 分布,以提⾼击穿电压。

(极不均匀的电场)10、电⼦碰撞电离系数代表⼀个电⼦沿电场线⽅向⾏径__________ cm时平均发⽣的碰撞电离次数。

(1)11、提⾼⽓体击穿电压的两个途径:改善电场分布,使之尽量均匀,削弱⽓体中的电离过程。

12、我国采⽤等值盐密法划分外绝缘污秽等级。

13、沿整个固体绝缘表⾯发⽣的放电称为闪络。

14、在电⽓设备上希望尽量采⽤棒—棒类对称型的电极结构,⽽避免棒—板类不对称型的电极结构。

15、对于不同极性的标准雷电波形可表⽰为±1.2/50us 。

16、我国采⽤ 250/2500us 的操作冲击电压标准电压。

高电压技术-复习要点-超全总结-涵盖习题

高电压技术-复习要点-超全总结-涵盖习题

作业(第一部分)简答题:第2、3、4章1.简述气体电离的4种方式。

P102.什么是电子崩及电子崩的条件P15-P173.汤逊放电理论与流柱理论的共同点和不同点,以及各自的适用范围。

P17-P19。

4.巴申定律的公式表达及巴申曲线的两个结论。

P17-P185.提高气体间隙抗电强度的方法。

P42-P446.简述防绝缘子污闪的4种方法。

P56-P57第5章1.简述电介质极化的5种基本形式。

P59+空间电荷极化、夹层极化2.介质的介电常数和相对介电常数的概念。

P58-593.什么是固体介质的热击穿。

P664.什么是固体介质的电击穿。

P655.影响固体击穿的4个主要因素。

P65-P69(电压、电场均匀程度、受潮、累积效应)6.什么是固体介质的热老化。

P73第6、7章1.简述绝缘缺陷的两种类型。

P752.简述绝缘试验中的非破坏性试验和耐压试验。

P753.简述绝缘电阻的吸收比及其测量结果对判断绝缘状态的作用。

P75-P774.简述局部放电测量的作用。

P845.简述工频交流耐压试验的作用。

P92-97(作用是:能够有效地发现导致绝缘电气强度降低的各种缺陷,尤其对局部性缺陷的发现更为有效。

)6.简述直流耐压试验与交流耐压试验比较的优点。

P1007.简述直流高压测量的两种方法。

P106-P1118.简述冲击电压试验的作用。

P1019.简述测量冲击电压的三种方法。

P111-P116论述题:第2、4章1.借助作图,阐述汤逊自持放电及条件。

P14-P182.借助作图,阐述气体放电的极性效应(以棒-板间隙为例)。

P23-P253.阐述污闪放电过程。

P53-544.借助画图,阐述介质损耗角正切测量原理。

P80-81第5、6章1.借助公式推导,阐述绝缘的吸收现象。

P75-P772.借助公式推导,阐述介质损耗角正切。

P613.借助电路图阐述局部放电的脉冲电流法测量。

P84(三种基本回路及原理)作业(第二部分)简答题:第8章1.简述单根均匀无损传输线的波阻抗与波速表达式,以及物理量意义。

高电压技术复习资料

高电压技术复习资料

1、极化类型;电子位移极化,离子位移极化,转向极化,空间电荷极化2、导体电导与电介质电导的区别导体属于电子性电导。

具有负温度系数。

电介质属于离子性电导(正离子、负离子、自由电子)。

具有正温度系数。

3、雷电放电过程先导放电,主放电,余光放电4、沿着气体与固体(液体)介质分界面上发展的气体放电现象称为气隙的沿面放电。

沿面放电发展到贯穿两极,使整个气隙沿面击穿,称为闪络。

气隙的击穿总是沿着固体介质表面闪络形式完成的,沿面闪络电压低于纯气隙的击穿电压。

5、电晕放电(电子崩性质)--刷行放电(流注性质)--滑闪放电6、完成气隙击穿的三个必备条件:1、足够大的电场强度或足够高的电压;2、在气隙中存在能引起电子崩并导致注和主放电的有效电子;3、需要有一定的时间,让放电得以逐步发展并完成击穿。

7、气隙击穿时间由升压时间统计时延放电发展时间组成8、统计时延t s 电极材料外施电压短波光照射电场情况9、伏秒特性定义对非持续作用的电压来说,气隙的击穿电压就不能简单地用单一的击穿电压值来表示了,对于某一定的电压波形,必须用电压峰值和延续时间两者来共同表示,这就是该气隙在该电压波形下的伏秒特性10、标准大气条件:气压:p0—101.3kPa;温度:θ0—20℃;绝对湿度:h0—llg/m3。

11、提高气体间隙绝缘强度的方法1.改善电场分布2.采用高度真空3.增高气压4..采用高耐电强度气体12、怎么防止污闪:调整爬距增大泄漏距离,定期或不定期的清扫,喷涂涂料,采用半导体釉绝缘子13、绝缘子的污闪机理:污秽绝缘子受潮后,含在污秽层中的可溶性物质便逐渐溶于水中成为电解质,在绝缘子表面形成一层薄薄的导电薄膜。

污层的表面电导比干燥时可能增大几个数量级,绝缘子的泄漏电流相应剧增。

在铁脚附近,因直径很小,故电流密度很大,发热最甚。

先是在靠近铁脚的某处形成局部烘干区,由于被烘干,该区域表面电阻率大增,迫使原来流经该区的电流转移到该区两侧的湿模上去,使流经该区电流密度增大,加快了湿模的烘干过程,这样发展下去,在铁脚的四周很快形成一个环形烘干带。

高电压技术期末复习资料

高电压技术期末复习资料

高电压技术期末复习资料第一章(一)1、平均自由行程长度影响因素:半径、温度、气压2、电离(需满足外界能量大于电离能)碰撞电离:受λ的影响,进而受半径、温度、气压影响自由电子是碰撞电离的主导因素光电离热电离阴极表面电离正离子碰撞阴极表面(动能大于2倍逸出功)3、负离子的形成附着过程:有时电子和气体分子碰撞非但没有电离出新电子,反而是碰撞电子附着分子,形成了负离子负离子作用:负离子的形成并没有使气体中带电粒子数改变,但却能使自由电子数减少,因此对气体放电的发展起抑制作用为什么SF 6比空气易电离空气中的氧气和水汽分子对电子都有一定的亲合性,但还不是太强;而SF6对电子具有很强的亲合力,其电气强度远大于一般气体,被称为高电气强度气体 4、带电质点的复合正离子和负离子或电子相遇,发生电荷的传递而互相中和、还原为分子的pr k Te 2πλ=过程在带电质点的复合过程中会发生光辐射,这种光辐射在一定条件下又可能成为导致电离的因素正、负离子间的复合概率要比离子和电子间的复合概率大得多。

通常放电过程中离子间的复合更为重要一定空间内带电质点由于复合而减少的速度决定于其浓度(二)1、电子崩及其过程中带电粒子分布的特点电子崩:设外界电力因子在阴极附近产生了一个初始电子,如果空间的电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生出一个新电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生出更多的电子,依此类推,电子数目不断增加,像雪崩似地发展,这种急剧增大的空间电子流称为电子崩电子崩崩尾为正离子,崩尾有大量的自由电子和少量的正离子2、电离碰撞电离系数的影响因素(公式1-11)气体温度不变时,碰撞电离系数:结论:(1)电场强度E 增大时,α急剧增大(2)在气压p 较大或较小时,α都较小原因:e λ很小(高气压)时,单位长度上的碰撞次数很多,但能引起电离的概率很小;反之,当e λ很大(低气压或真空)时,虽然电子很易积累到足够的动EBp Ape-=α能,但总的碰撞次数很少,因而α也不大。

高电压技术 复习资料

高电压技术 复习资料

1.带电质点的产生原因:①气体中电子与正离子的产生;②电极表面的电子逸出;③气体中负离子的形成。

2.为什么在气隙的电极间施加电压时,可检测到微小的电流?答:一方面,宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面,负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

3.电子崩的形成过程?答:假定由于外电离因素的作用,在阴极附近出现一个初始电子,这一电子在向阳极运动时,如电场强度足够大,则会发生碰撞电离,产生一个新电子。

新电子与初始电子在向阳极的行进过程中还会发生碰撞电离,产生两个新电子,电子总数增加到4个。

第三次电离后电子书将增至8个,即按几何级数不断增加。

由于电子书如雪崩式地增加,因此将这一剧增的电子流成为电子崩4.汤逊理论认为二次电子的来源是正离子撞击阴极,使阴极表面发生电子逸出。

5.电晕:在极不均匀场中,当电压升高到一定程度后,在空气间隙完全击穿之前,小曲率电极(高场强电极)附近会有薄薄的发光层,有点像“月晕”,在黑暗中看的较为真切。

6.电晕放电是极不均匀电场所特有的一种自持放电形式7.根据电晕层放电的特点,可分为2种形式:电子崩形式和流注形式8.电晕放电的危害、对策及其利用危害:①输电线路发生电晕时会引起功率损耗,如电晕放电时发光并发生咝咝声和引起化学发应(如使大气中氧变为臭氧),这些都需要能量;②电晕放电过程中由于流注的不断消失和重新产生会出现放电脉冲,形成高频电磁波对无线电广播和电视信号产生干扰;③电晕放电发出的噪声有可能超过环境保护的标准。

对策:限制导线的表面场强,采用分裂导线。

利用:①可以利用电晕放电产生的空间电荷来改善极不均匀的电场分布,以提高击穿电压。

而且,电晕放电在其他工业部门也获得了广泛的应用。

②在净化工业废气的静电除尘器和净化水用的臭氧发生器以及静电喷涂等都是电晕放电在工业中应用的例子。

9.极性效应:由于高场强下电极极性的不同,空间电荷的极性也不同,对放电发展的影响也就不同,这就造成了不同极性的高场强电极的电晕起始电压的不同以及间隙击穿电压的不同。

高电压技术期末复习资料

高电压技术期末复习资料

高电压技术期末复习资料高电压技术期末复习资料高电压技术是电力系统中的一个重要领域,涉及到电力传输、配电、绝缘等方面。

本文将为大家提供一些高电压技术的期末复习资料,希望对大家的学习有所帮助。

一、高电压技术的基础知识1. 电压和电流的基本概念:电压是电力系统中的一种基本物理量,表示电荷在电场中的势能差;电流是电荷在单位时间内通过导体横截面的数量。

2. 电力系统的基本组成:电力系统由发电厂、输电线路、变电站和配电网等组成,其中输电线路是高电压技术的重要组成部分。

3. 高电压技术的应用领域:高电压技术广泛应用于电力传输、电力配电、电力设备绝缘等方面。

二、高电压设备的绝缘技术1. 绝缘材料的分类:绝缘材料可以分为固体绝缘材料和液体绝缘材料两大类,固体绝缘材料包括绝缘纸、绝缘胶带等;液体绝缘材料包括绝缘油等。

2. 绝缘材料的性能指标:绝缘材料的性能指标包括介电强度、介电损耗、体积电阻率等。

3. 绝缘材料的应用:绝缘材料广泛应用于高压电缆、变压器、绝缘子等高电压设备中,起到隔离电流、防止电弧放电等作用。

三、高电压输电线路的设计与运行1. 输电线路的类型:输电线路可以分为架空线路和地下电缆线路两大类,架空线路包括铁塔线路和电缆线路。

2. 输电线路的设计:输电线路的设计需要考虑电流负荷、电压损耗、绝缘距离等因素,以确保电力传输的安全和稳定。

3. 输电线路的运行与维护:输电线路的运行需要定期检查和维护,包括检查绝缘子、检修设备、清理线路等。

四、高电压技术的安全问题1. 高电压事故的危害:高电压事故可能导致人身伤害、设备损坏甚至火灾等严重后果,因此安全问题是高电压技术中需要重视的方面。

2. 高电压事故的防范措施:高电压事故的防范措施包括设备绝缘、操作规程、安全培训等,以确保高电压设备的安全运行。

五、高电压技术的发展趋势1. 现代高电压技术的发展:随着电力系统的发展和电力需求的增加,高电压技术也在不断发展,如超高压输电技术、新型绝缘材料的研发等。

高电压技术复习资料

高电压技术复习资料

第一、二章1.高电压技术研究的对象主要是电气装置的绝缘,绝缘的测试,电力系统的过电压。

2.电介质极化的种类:电子式极化(极化过程所需的时间极短,约10-15s,极化与频率无关,没有能量损耗),离子式极化(极化过程所需的时间很短,约10-13s,极化与频率无关,没有能量损耗),偶极子式极化(极化过程所需的时间较长,约10-10~10-2s,极化程度与外加电压的频率有较大的关系,有能量损耗,温度对极化过程影响很大。

),空间电荷极化(因电介质的电导一般很小,对应的时间常数很大,故夹层极化过程非常缓慢,夹层极化只在低频时才来得及完成。

)3.电介质在工程上的意义:1)选择电介质时,除应注意电气强度等要求之外,还应注意εr的大小。

2)几种绝缘介质组合在一起使用时,应注意各种材料εr的配合。

3)应注意介质的极化损耗,她是介质损耗的重要组成部分,介质损耗对绝缘劣化和热击穿有较大的影响。

4.电介质的电导是离子性电导,金属的电导是电子性电导。

5.容易吸收水分的电介质称为亲水性介质(玻璃,陶瓷)。

不易吸收水分的介质称为憎水性介质(石蜡,硅有机物)。

6.原子的游离:如果原子从外界获得的能量足够哒,以致使原子的一个或几个电子摆脱原子核的束缚而形成自由电子和正离子。

7.汤逊理论认为,δd较小时气体间隙的击穿主要由电子的碰撞游离和正离子撞击阴极表面造成的表面游离所引起。

8.汤逊理论的条件:均匀电场,低气压,短间隙。

9.电子崩:电子在气体中发生碰撞电离时的链式反应发展过程。

一个电子在电场作用下由阴极向阳极运动时,将与气体原子(或分子)碰撞,如果电场很强、电子的能量足够大时,会发生碰撞电离,使原子分解为正离子和电子,此时空间出现两个电子。

这两个电子又分别与两个原子发生碰撞电离,出现4个自由电子。

如此进行下去,空间中的自由电子将迅速增加,类似于电子雪崩。

巴申定律:当气体和电极材料一定时,气隙的击穿电压是气体的相对密度δ和气隙距离d乘积的函数,U b=f(δd)。

高电压技术总结复习资料

高电压技术总结复习资料

一、填空和概念解释1、电介质:电气设备中作为绝缘使用的绝缘材料。

2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程.3、击穿电压:击穿时对应的电压。

4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压.5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。

6、游离:电介质中带电质点增加的过程。

7、去游离:电介质中带电质点减少的过程。

8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。

9、光游离:中性分子接收光能产生的游离。

10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。

11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。

12、二次电子发射:具有足够能量的质点撞击阴极放出电子。

13、电晕放电:气体中稳定的局部放电.14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻.16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。

17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。

18、沿面放电:沿着固体表面的气体放电。

19、湿闪电压:绝缘介质在淋湿时的闪络电压。

20、污闪电压:绝缘介质由污秽引起的闪络电压。

21、爬距:绝缘子表面闪络的距离。

22、极化:电介质在电场的作用下对外呈现电极性的过程。

23、电导:电介质在电场作用下导电的过程.24、损耗:由电导和有损极化引起的功率损耗。

25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。

26、吸收比:t=60s和t=15s时的绝缘电阻的比值。

27、过电压:电力系统承受的超过正常电压的。

28、冲击电晕:输电线路中由冲击电流产生的电晕。

29、雷暴日:一年中听见雷声或者看见闪电的天数。

30、雷暴小时:一年中能听到雷声的小时数。

31、地面落雷密度:每平方公里每雷暴日的落雷次数。

高电压_考试复习

高电压_考试复习

《高电压技术》综合复习资料一、填空题(占40分)1、汤逊理论主要用于解释短气隙、低气压的气体放电。

2、“棒—板”电极放电时电离总是从棒开始的。

3、正极性棒的电晕起始电压比负极性棒的电晕起始电压高,原因是崩头电子被正极性棒吸收, 有利于电子崩的发展。

4、电力系统中电压类型包括工频电压、直流电压、雷电冲击电压和操作冲击电压等4种类型。

5、在r/R等于 0.33 时同轴圆筒的绝缘水平最高。

6、沿面放电包括沿面滑闪和沿面闪络两种类型。

7、电介质的电导包括离子电导和电子电导两种类型,当出现电子电导时电介质已经被击穿。

8、弱极性液体介质包括变压器油和蓖麻油等,强极性液体介质包括水和乙醇(至少写出两种)。

9、影响液体介质击穿电压的因素有_电压形式的影响、温度、含水量、含气量的影响、杂质的影响油量的影响(至少写出四种)。

10、三次冲击法冲击高电压实验是指分别施加三次正极性和三次负极性冲击电压的实验。

11、变压器油的作用包括绝缘和冷却。

12、绝缘预防性实验包括绝缘电阻、介质损耗角正切、工频高压试验、直流高压试验和冲击高电压试验等。

13、雷电波冲击电压的三个参数分别是波前时间、半波时间和波幅值。

14、设备维修的三种方式分别为故障维修、预防维修和状态维修。

15、介质截至损耗角正切的测量方法主要包括基波法和过零相位比较法两种。

16、影响金属氧化物避雷器性能劣化的主要是阻性泄露电流。

17、发电厂和变电所的进线段保护的作用是降低入侵波陡度和降低入侵波幅值。

18、小波分析同时具有在时域范围和频率范围内对信号进行局部分析的优点,因此被广泛用于电力系统局部放电的检测中。

19、电力系统的接地按其功用可为工作接地、保护接地和防雷接地三类。

20、线路末端短路时电压反射波为与入射波电压相同,电流反射波为与入射波电流相反。

21、反向行波电压和反向行波电流的关系是 u=-Zi 。

22、“云—地”雷电放电过程包括先导放电、主放电和余辉放电三个阶段。

《高电压技术》资料

《高电压技术》资料

本科11级电气《高电压技术》复习资料第一部分电介质的放电理论一、选择题1) 流注理论未考虑 B 的现象。

A.碰撞游离 B.表面游离 C.光游离 D.电荷畸变电场2) 先导通道的形成是以 C 的出现为特征。

A.碰撞游离 B.表面游离 C.热游离 D.光游离3) 电晕放电是一种 A 。

A.自持放电 B.非自持放电 C.电弧放电 D.均匀场中放电 ......第二部分电气设备的高电压试验一、选择题1) 下面的选项中,非破坏性试验包括_ADEG_____,破坏性实验包括_BCFH_____。

A. 绝缘电阻试验B.交流耐压试验C.直流耐压试验D.局部放电试验E.绝缘油的气相色谱分析F.操作冲击耐压试验G.介质损耗角正切试验H.雷电冲击耐压试验2) 用铜球间隙测量高电压,需满足那些条件才能保证国家标准规定的测量不确定度?ABCD......第三部分电力系统过电压1) 波在线路上传播,当末端短路时,以下关于反射描述正确的是__B____。

A.电流为0,电压增大一倍B.电压为0,电流增大一倍C.电流不变,电压增大一倍D.电压不变,电流增大一倍2) 下列表述中,对波阻抗描述正确的是__B____。

A.波阻抗是前行波电压与前行波电流之比B.对于电源来说波阻抗与电阻是等效的C.线路越长,波阻抗越大D.波阻抗的大小与线路的几何尺寸有关高电压技术复习题三、简答题1、气体击穿:气体由绝缘状态变为导电状态的现象称为击穿。

2、沿面闪络:若气体间隙存在固体或液体电介质,由于固体和液体的交界面处是绝缘薄弱环节,击穿常常发生在固体和液体的交界面上,这种现象称为沿面闪络。

3、气体击穿:气体由绝缘状态变为导电状态的现象称为击穿。

4、沿面闪络:若气体间隙存在固体或液体电介质,由于固体和液体的交界面处是绝缘薄弱环节,击穿常常发生在固体和液体的交界面上,这种现象称为沿面闪络。

5、辉光放电:当气体电压较低,放电回路电源功率较小,外施电压增到一定值时,气体间隙突然放电并使整个间隙发亮,这种放电形式称为辉光放电。

高电压技术复习资料

高电压技术复习资料

高电压技术复习资料第1 章气体放点的物理过程1.电离是指电子脱离原子的束缚而形成自由电子、正离子的过程.电离是需要能量的,所需能量称为电离能Wi(用电子伏eV 表示,也可用电离电位Ui=Wi/e 表示)2.根据外界给予原子或分子的能量形式的不同,电离方式可分为热电离、光电离、碰撞电离(最重要)和分级电离。

3.阴极表面的电子溢出:(1)正离子撞击阴极:正离子位能大于 2 倍金属表面逸出功。

(2)光电子发射:用能量大于金属逸出功的光照射阴极板。

光子的能量大于金属逸出功。

(3)强场发射:阴极表面场强达到106V/cm(高真空中决定性)(4)热电子发射:阴极高温4.气体中负离子的形成:电子与气体分子或原子碰撞时,也有可能发生电子附着过程而形成负离子,并释放出能量(电子亲合能)。

电子亲合能的大小可用来衡量原子捕获一个电子的难易,越大则越易形成负离子。

负离子的形成使自由电子数减少,因而对放电发展起抑制作用。

SF6气体含F,其分子俘获电子的能力很强,属强电负性气体,因而具有很高的电气强度。

5.带点质点的消失:(1)带电质点的扩散:带电质点从浓度较大的区域向浓度较小的区域的移动,使带电质点浓度变得均匀。

电子的热运动速度高、自由行程大,所以其扩散比离子的扩散快得多。

(2)带电质点的复合:带异号电荷的质点相遇,发生电荷的传递和中和而还原为中性质点的过程,称为复合。

带电质点复合时会以光辐射的形式将电离时获得的能量释放出来,这种光辐射在一定条件下能导致间隙中其他中性原子或分子的电离。

6.气体间隙中电流与外施电压的关系:第一阶段:电流随外施电压的提高而增大,因为带电质点向电极运动的速度加快复合率减小第二阶段:电流饱和,带电质点全部进入电极,电流仅取决于外电离因素的强弱(良好的绝缘状态)第三阶段:电流开始增大,由于电子碰撞电离引起的电子崩第四阶段自持放电:电流急剧上升放电过程进入了一个新的阶段(击穿)外施电压小于U0时的放电是非自持放电。

高电压技术复习资料

高电压技术复习资料

高电压技术复习资料一、填空题1、__________的大小可用来衡量原子捕获一个电子的难易,该能量越大越容易形成__________ 。

(电子亲合能、负离子)2、自持放电的形式随气压与外回路阻抗的不同而异。

低气压下称为__________ ,常压或高气压下当外回路阻抗较大时称为火花放电,外回路阻抗很小时称为__________ 。

(辉光放电、电弧放电)3、自持放电条件为__________ 。

(γ(-1)=1或γ=1)4、汤逊放电理论适用于__________ 、__________ 条件下。

(低气压、pd较小)5、流注的特点是电离强度__________ ,传播速度__________ 。

(很大、很快)6、棒—板间隙中棒为正极性时电晕起始电压比负极性时__________ 。

(略高)7、长间隙的放电大致可分为先导放电和__________ 两个阶段,在先导放电阶段中包括__________ 和流注的形成及发展过程。

(主放电、电子崩)8、在稍不均匀场中,高场强电极为正电极时,间隙击穿电压比高场强电极为负时__________ 。

在极不均匀场中,高场强电极为负时,间隙击穿电压比高场强电极为正时__________ 。

(稍高、高)9、电晕放电产生的空间电荷可以改善__________ 分布,以提高击穿电压。

(极不均匀的电场)10、电子碰撞电离系数代表一个电子沿电场线方向行径__________ cm时平均发生的碰撞电离次数。

(1)11、提高气体击穿电压的两个途径:改善电场分布,使之尽量均匀,削弱气体中的电离过程。

12、我国采用等值盐密法划分外绝缘污秽等级。

13、沿整个固体绝缘表面发生的放电称为闪络。

14、在电气设备上希望尽量采用棒—棒类对称型的电极结构,而避免棒—板类不对称型的电极结构。

15、对于不同极性的标准雷电波形可表示为±1.2/50us 。

16、我国采用 250/2500us 的操作冲击电压标准电压。

高电压技术复习资料

高电压技术复习资料

1.1带电粒子的产生与消失电离:产生带电粒子的物理过程。

电力能:电力过程所需要的能量。

原子的激发(激励):在外界因素作用下,气体原子获得外加能量时,一个或若干个电子有可能转移到离核较远的轨道上去的现象。

带电粒子的产生:碰撞电离(有碰撞引起的电离)光电离(由光辐射引起的气体原子或分子电离的现象)热电离(气体在热状态下引起的电离过程)表面电离(气体中的电子也可以由电场作用下的金属表面发射出来)。

这三种形式同时存在、相互作用,只是各种电离形式表现出的强弱不同。

空间电离:气体在间隙空间里带电粒子的产生过程。

逸出功:从金属电极表面发射电子需要的一定的能量。

去电离过程:当气体中发生放电时,与不断产生带电粒子的电力过程相反的过程。

气体去电离的基本形式:漂移(带电粒子在外电场的作用下做定向移动,消逝于电极面形成的回路电流,从而减少了气体中的带电粒子的现象)、扩散、复合、(吸附)。

1.2均匀电场中的气体放电均匀电场:在电场中,电场强度处处相等。

汤逊放电理论实验条件:均匀电场、低气压、短间隙。

自持放电:仅由电场的作用就能自行维持的放电。

非自持放电:需要外界电离因素才能维持的放电。

起始放电电压:放电由非自持转为自持的临界电压。

起始放电场强:起始放电电压对应的场强。

汤逊自持放电条件:电子碰撞电离形成电子崩是气体放电的主要过程,而放电是否由非自持转为自持,则取决于阴极表面是否释放出了二代电子。

光电离。

书图1.2巴申曲线:放电电压与放电距离d和气压p的乘积的曲线,呈U型。

巴申定律:高气压或真空都可提高击穿电压,工程上已广泛使用。

正流注:当外加电压较低时,电子崩需要整个间隙才能形成流注,这种流注是由阳极向阴极发展的。

负流注:外加电压高于击穿电压,流注由阴极向阳极发展。

流注放电理论:解释高气压长间隙以及不均匀电场中的气体放电现象。

1.3不均匀电场中的气体放电气体放电特征:稍不均匀电场的间隙击穿前看不到放电迹象,一旦出现自持放电,便立即导致整个间隙的击穿;极不均匀电场当外加电压达到某一临界时间时,首先出现电晕放电现象,当外加电压进一步增大时,电晕区也随之扩大,但气隙依然保持其绝缘状态没有被击穿。

高电压技术复习资料

高电压技术复习资料

第一章1气体分子的电离:碰撞电离,光电离,热电离金属的表面电离:正离子碰撞阴极,光电效应,强场发射,热电子放射2.气体中带电粒子的消失有中和,扩散,消失于电极3,电子的迁移率大于离子的4.由非自持放电转入自持放电的电压为起始电压5.汤森德放电理论认为碰撞电离和正离子碰撞阴极造成表面电离是主要电离形式,可以解释Pd较小时,温度不变时的击穿现象6.汤森德理论具体内容:放电始于有效电子通过碰撞电离形成电子崩,通过正离子碰撞阴极产生二次电子,若满足自持条件则击穿7.采用抽成真空或加大气压来提高气隙击穿电压的是巴申定律。

巴申定律是指均匀电场的击穿电压是气体压力和电极距离的乘积的函数。

8.汤逊理论(辉光放电)和流注理论(火花放电)在描述气体放电击穿过程有以下几个不同方面,放电外形,放电时间,击穿电压,阴极材料影响9.流注放电理论认为自持放电的主要因素是电子碰撞电离,空间光电离,空间电荷畸变电场。

10.正极性电晕起始电压高于负极性,为极性效应。

负极性击穿电压高于正极性。

长间隙的平均击穿电压远低于短间隙(先导放电)11.长间隙放电大致为电晕,先导,主放电不太长间隙放电主要为电子崩,流注和主放电12.负极性雷分为先导放电,主放电,余光放电13.雷电流波前时间:1~5us,半峰值时间:20~100,防雷保护中常采用的波形:2.6/50第二章1.气体的冲击电压击穿时间由升压时间,统计时延,放电发展时间组成,放电时延为统计时延加放电发展时间2.作用在气隙上的电压有持续作用电压(直流电压和工频电压),非持续作用电压(雷电冲击电压和操作冲击电压3.U50%与持续作用电压下击穿电压之比为冲击系数4.间隙的伏秒特形状取决于电极间的电厂分布5.稍不均匀电场间隙:球球,球板,同轴圆柱。

影响稍不均匀电场击穿电压因素:电场结构,大气条件,临近效应,照射效应6.极不均匀电场中影响击穿电压的主要因素为间隙距离。

雷电冲击电压下棒板间隙有明显的极性效应。

高电压技术复习要点―大学

高电压技术复习要点―大学

高电压技术复习要点―大学高电压技术复习纲要(《高电压技术》――张一尘)第一章气体的绝缘特性1.气体中带电质点的产生和消失方式。

2.碰撞游离、热游离、金属表面游离、光游离、扩散、复合、电子被吸附3.Townsend理论的自持放电条件。

4.均匀电场气体间隙伏安特性的特征段及其含义。

5.流注理论与Townsend理论的主要区别及各自的适用范围。

6.极不均匀电场中放电有何特性。

7.棒-板气隙极性效应对电晕起始电压和击穿电压大小的影响及缘由。

8.极性效应、自持放电、非自持放电9.电晕放电是何种放电形式。

10.Passen定律的物理意义及适用情况。

11.我国标准规定的雷电冲击电压标准波形时间参数。

12.冲击电压作用下的放电时延的组成。

13.气体的冲击击穿特性需要如何表征。

14.伏秒特性及实用意义。

15.影响气体间隙击穿电压的主要因素。

16.气隙电场均匀程度对击穿电压的影响。

17.气压和温度变化对间隙击穿电压的影响。

18.提高气体间隙击穿电压的主要措施。

19.沿面闪络20.沿面闪络电压为什么低于同样距离下纯空气间隙的击穿电压。

21.提高套管沿面闪络电压的主要措施。

第二章液体和固体电介质的绝缘特性1.电介质的极化形式2.电介质极化、电子式极化、离子式极化、偶极子式极化、空间电荷极化3.绝缘电阻、泄漏电阻4.电介质的基本功能。

介质电导与金属电导的本质区别。

5.吸收现象及其成因和条件。

6.电介质的电导过程和吸收现象的工程意义。

7.介质损耗及介质损耗角正切值的物理意义。

8.液体电介质击穿的“小桥理论”。

9.介质损耗的基本形式。

10.影响液体电介质击穿电压的因素。

11.固体电解质击穿的形式及影响击穿电压的因素、提高击穿电压的措施。

12.电介质老化的形式。

对于高压电气设备绝缘,老化的主要形式。

第三章电气设备的绝缘试验 1.绝缘预防性试验的目的。

2.绝缘预防性试验分类。

3.兆欧表屏蔽端子的作用。

4.吸收比5.测介质损耗角正切值的两种接线方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一篇绝缘的基本理论第一章气体的绝缘特性1、气体中带电质点产生的方式: 热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式: 流入电极、逸出气体空间、复合3、电子崩与汤逊理论:电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围:击穿电压与气体相对密度和极间距离乘积之间的关系。

两者乘积大于0.26cm时,不再适用5、流注理论: 考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分:以最大场强与平均场强之比来划分。

7、极不均匀电场中的电晕放电:电晕放电的概念、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性:a.雷电和操作过电压波的波形b. 冲击电压作用下的放电延时与伏秒特性c.50%击穿电压的概念9、电场形式对放电电压的影响:均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。

10、电压波形对放电电压的影响: a.电压波形对均匀和稍不均匀电场影响不大b.对极不均匀电场影响相当大c.完全对称的极不均匀场:棒棒间隙d.极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响:湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响:在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施:a.电极形状的改进b.空间电荷对原电场的畸变作用c.极不均匀场中屏障的采用d.提高气体压力的作用e.高真空f.高电气强度气体SF6的采用14、沿面放电的概念:沿着固体介质表面发展的气体放电现象。

多发生在绝缘子、套管与空气的分界面上。

15 提高沿面放电电压的措施:a.屏障b.屏蔽c.表面处理d.应用半导体材料e.阻抗调节习题 1.1 1.3 1.4 1.9 1.13 1.14 1.16第2章液体和固体介质的绝缘特性1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。

介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。

极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。

由中性分子构成的电介质。

极化的基本形式:电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导离子电导和电子电导3、电介质的损耗a.介质损耗针对的是交流电压作用下介质的有功功率损耗b.介质损耗一般用介损角的正切值来表示4、提高液体电介质击穿电压的措施:提高油品质,采用覆盖、绝缘层、极屏障等措施5、固体电介质的击穿:电击穿、热击穿、电化学击穿的击穿机理及特点6、影响固体电介质击穿电压的主要因素: 电压作用时间温度电场均匀程度受潮累积效应机械负荷第二篇电气设备试验第3章电气设备的绝缘试验电气绝缘非破坏性试验1、绝缘电阻与吸收比的测量:a.用兆欧表来测量电气设备的绝缘电阻b.吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。

c.K恒大于1,且越大表示绝缘性能越好。

d.大容量电气设备中,吸收现象延续很长时间,吸收比不能很好地反映绝缘的真实状态,可用极化指数再判断。

e.测量绝缘电阻能有效地发现总体绝缘质量欠佳;绝缘受潮;两极间有贯穿性的导电通道;绝缘表面情况不良。

2、泄漏电流的测量:测量泄漏电流从原理上来说,与测量绝缘电阻是相似的,能发现一些尚未完全贯通的集中性缺陷,原因在于:a.在试品上的直流电压要比兆欧表的工作电压高得多,故能发现兆欧表所不能发现的某些缺陷.b.加在试品上的直流电压是逐渐增大的,可以在升压过程中监视泄漏电流的增长动向。

3、介质损耗角正切的测量:a.tanδ能反映绝缘的整体性缺陷(例如全面老化)和小电容试品中的严重局部性缺陷。

根据tan δ随电压而变化的曲线,可判断绝缘是否受潮、含有气泡及老化的程度。

b.西林电桥法测量的基本原理4、局部放电的测量局部放电:高压电气设备的绝缘内部总是存在一些缺陷,如气泡空隙、杂质等。

由于这些异物的电导和介电常数不同于绝缘物,故在外加电场作用下,这些异物附近将具有比周围更高的场强,有可能引起该处物质产生电离放电现象,称为局部放电。

5 绝缘状态的综合判断三比较方法若个别试验项目不合格,达不到规程的要求,可使用三比较方法。

a.与同类型设备作比较:同类型设备在同样条件下所得的试验结果应该大致相同,若差别很大就可能存在问题b.在同一设备的三相试验结果之间进行比较:若有一相结果相差达50%以上,该相很可能存在缺陷c.与该设备技术档案中的历年试验数据进行比较:若性能指标有明显下降情况,即可能出现新的缺陷电气绝缘破坏性试验绝缘的高电压试验:在高压试验室用工频交流高压、直流高压、雷电冲击高压、操作冲击高压等模拟电气设备的绝缘在运行中受到的工作电压,用以考验各种绝缘耐受这些高电压作用的能力。

特点:a.具有破坏性试验的性质b.一般放在非破坏性试验项目合格通过之后进行,以避免或减少不必要的损失。

1 工频高电压试验工频高电压的产生:a.通常采用高压试验变压器或其串级装置来产生。

b.对电缆、电容器等电容量较大的被试品,可采用串联谐振回路来获得试验用的工频高电压。

c.工频高压装置是高压试验室中最基本的设备,也是产生其他类型高电压的设备基础部件。

高压试验变压器的特点:a.试验变压器本身应有很好的绝缘,但绝缘裕度小,试验过程中要严格限制过电压。

b.试验变压器容量一般不大c.外观上的特点:油箱本体不大而其高压套管又长又大。

d.试验变压器与连续运行时间不长,发热较轻,因而不需要复杂的冷却系统。

e.漏抗大,短路电流较小,可降低机械强度方面的要求,节省制造费用。

绝缘的工频耐压试验:a.工频交流耐压试验是检验电气设备绝缘强度的最有效和最直接的方法。

b.工频耐压试验可用来确定电气设备绝缘耐受电压的水平,判断电气设备能否继续运行,是避免其在运行中发生绝缘事故的重要手段。

c.工频耐压试验时,对电气设备绝缘施加比工作电压高得多的试验电压,这些试验电压反映了电气设备的绝缘水平。

工频高压试验的基本接线图以试验变压器或其串级装置作为主设备的工频高压试验(包括耐压试验)的基本接线如下图所示。

试验变压器的输出电压必须能在很大的范围内均匀地加以调节,所以它的低压绕组应由一调压器来供电。

A V一调压器PV1一低压侧电压表T一工频高压装置R1一变压器保护电阻TO一被测试品R2一测量球隙保护电阻PV2一高压静电电压表F一测量球隙Lf一Cf一谐波滤波器工频高压试验的实施方法a.按规定的升压速度提升作用在被测试品TO上的电压,直到等于所需的试验电压U为止,这时开始计算时间。

b.为了让有缺陷的试品绝缘来得及发展局部放电或完全击穿,达到U后还要保持一段时间,一般取一分钟。

c.如果在此期间没有发现绝缘击穿或局部损伤(可通过声响、分解出气体、冒烟、电压表指针剧烈摆动、电流表指示急剧增大等异常现象作出判断)的情况,即可认为该试品的工频耐压试验合格通过。

2 直流高电压试验直流高电压的产生a.将工频高电压经高压整流器而变换成直流高电压。

b.利用倍压整流原理制成的直流高压串级装置(或称串级直流高压发生器)能产生出更高的直流试验电压直流高压试验的基本接线若高压静电电压表PV2量程不够,可改为球隙、高值电阻串接微安表或高阻值直接分压器来测量高压直流高压试验的特点:最常见的直流高压试验为某些交流电气设备(油纸绝缘高压电缆、电力电容器、旋转电机等)的绝缘预防性试验。

和交流耐压试验相比主要有以下一些特点:a.只有微安级泄漏电流,试验设备不需要供给试品的电容电流,试验设备的容量较小,b.试验时可同时测量泄漏电流,由所得得“电压-电流”曲线能有效地显示绝缘内部的集中性缺陷或受潮。

C.在直流高压下,局部放电较弱,不会加快有采购绝缘材料的分解或老化变质,一定程度具有非破坏性试验的性质。

D. 直流电压下,绝缘内的电压分布由电导决定,因而与交流运行电压下的电压分布不同,所以交流电气设备的绝缘考验不如交流耐压试验那样接近实际。

3 冲击高电压试验:a.研究电气设备在运行中遭受雷电过电压和操作过电压的作用时的绝缘性能。

b.许多高压试验室中都装设了冲击电压发生器,用来产生试验用的雷电冲击电压波和操作冲击电压波。

c.高压电气设备在出厂试验、型式试验时或大修后都必须进行冲击高压试验。

标准雷电冲击全波采用的是非周期性双指数波。

4冲击高电压的产生—波尾时间常数 —— 前时间常数 实际冲击电压发生器回路放电回路的利用系数多级冲击电压发生器a.单级冲击电压发生器能产生的最高电压一般不超过200~300kV 。

b.因而采用多级叠加的方法来产生波形和幅值都能满足需要的冲击高电压波。

多级冲击电压发生器原理接线图基本原理:并联充电,串联放电内绝缘冲击耐压试验a.电气设备内绝缘的雷电冲击耐压试验采用三次冲击法,即对被试品施加三次正极性和三次负极性雷电冲击试验电压。

(1.2/50us 全波)。

b.对变压器和电抗器类设备的内绝缘,还要进行雷电冲击截波(1.2/2~/2-5us)耐压试验,其对绕组绝缘(特别是纵绝缘)的考验往往更加严格。

外绝缘冲击耐压试验a.可采用15次冲击法,即对被测试品施加正、负极性冲击全波试验电压各16次,相邻两次冲击的时间间隔应不小于1min 。

在每组15次冲击的试验中,如果击穿或闪络的闪数不超过2次,即可认为该外绝缘试验合格。

b.内、外绝缘的操作冲击高压试验的方法与雷电冲击全波试验完全相同。

4 高电压的测量技术a.高电压试验除了要有产生各种试验电压的高压设备,还必须要有能测量这些高电压的仪器和设备。

b.电力系统中,广泛应用电压互感器配上低电压表来测量高电压;但此法在试验室中用得很少。

试验室条件下广泛应用高压静电电压表、峰值电压表、球隙测压器、高压分压器等仪器测量高电压。

c.国标规定,高电压的测量误差一般应控制在±3%以内。

静电电压表a.静电电压表测交流时为其电压有效值,测带脉动的直流时近似为其平均值。

b.静电电压表不能用于测量冲击电压。

c.静电电压表的内阻很高,在测量时几乎不会改变被测试样上的电压d.大气中工作的高压静电电压表量程上限在50-250kV;SF6气体中可达500-600kV 。

更高的电压需配合分压器使用 峰值电压表 峰值电压表的制成原理通常有两种,一种是利用整流电容电流测量,另一种是利用整流充电电压测量。

峰值电压表可分为交流峰值电压表和冲击峰值电压表。

球隙测压器:a.测量球隙由一对相同直径的金属球构成,测量误差2%-3%,满足大多数工程测试的要求。

相关文档
最新文档