2012年中考数学常考考点(八)
年中考第1轮基础复习21:八(上)第七章:二元一次方程组试题
第一部分:基础复习八年级数学(上)第七章:二元一次方程组一、中考要求:1.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.2.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.3.了解二元一次方程组的图象解法,初步体会方程与函数的关系.4.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.二、中考卷研究(一)中考对知识点的考查:、年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 方程组的整数解2%2 解方程组2%3 列方程组解实际问题 2.5~6%4 二元一次方程与一次函数3~7%本章多考查二元一次方程组的解法及应用等.另外本章还多考查方程思想和转化思想以及我们收集和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.三、中考命题趋势及复习对策本章中方程组是刻画现实世界的一个有效的数学模型,考查方程组的题目约占总分的10%左右,题型有填空、选择、解答.中考对数学思想方法的考查一方程组的实际应用将进一步提高,一大批具有较强的时代气息,格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握方程组的解法,还应在方程组的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题.★★★(I)考点突破★★★考点1:方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 55(1)3(5)x yy x-=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.二、经典考题剖析:【考题1-1】(、汉中)若2x+y+4+(x-2)=0则3x+2y=_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y=3×2+2×(-6)=-6【考题1-2】(、北碚,5分)解方程组:x-y=4 2x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解.三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-194x-5y=17⎧⎨⎩①②,用加减法消去x,得到的方程为()A、2y=-2 B.2y=-36 C. 12y=-2 D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是()A.11x=x=2x=73 C. D.19y=8y=3y=3x=3B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩3.若x=-2y=1⎧⎨⎩是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b)(a-b)的值为()A.-353B.353C.-16D.164.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=154x-by=-2⎧⎨⎩①②由于甲看错了方程①中的a得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a、b为计算,求原方程组的解x与y的差.6.若a+b4b 与3a+b 是同类二次根式,求a、b的值.7.已知关于x,y的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品()A.赚50%B.赔50%C.赔25%D.不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(、南山区正题3分)如图1-7-1,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩解::B 点拨:此题关键是找出等量关系AB⊥BC,隐含x+y=90°.【考题2-3】(、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
2012年北京市中考数学试卷(解析版)
2012年北京市高级中等学校招生考试数 学1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。
此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒ 【解析】 B【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱 【解析】 D【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.8 5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A .16B .13C .12D .23【解析】 B【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒ 【解析】 C【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是A .180,160B .160,180C .160,160D .180,180 【解析】 A【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。
2012年中考数学复习考点跟踪训练08 列方程(组)解应用题
考点跟踪训练8 列方程(组)解应用题一、选择题1.(2010·曲靖)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下面所列方程正确的是( )A .5(x -2)+3x =14B .5(x +2)+3x =14C .5x +3(x +2)=14D .5x +3(x -2)=14答案 A解析 水性笔的单价为x 元,则练习本的单价为(x -2)元,5本练习本和3支水性笔的总价为5(x -2)+3x 元,故选A.2.(2010·恩施)某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A. 21元B. 19.8元 C .22.4元 D .25.2元答案 A解析 设该商品的进价为x 元,28×0.9-x =20%x,1.2x =28×0.9,x =21.3.(2011·泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C.⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =400 答案 B解析 甲种奖品每件16元、x 件需16x 元,乙种奖品每件12元、y 件需12y 元,合计16x +12y =400,故选B.4.(2010·绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .96答案 D解析 设1艘大船一次载客x 人,1艘小船一次载客y 人,⎩⎪⎨⎪⎧x +4y =46,2x +3y =57,解之,得⎩⎪⎨⎪⎧x =18,y =7,∴3x +6y =3×18+6×7=54+42=96. 5.(2011·凉山)某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173()1+x %2=127B .173()1-2x %=127C .173()1-x %2=127D .127()1+x %2=173答案 C解析 该品牌服装降价一次后为173-173×x %=173(1-x %)元,降价两次后为173(1-x %)-173(1-x )×x %=173(1-x %)2元,故选C.二、填空题6.(2011·湘潭)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为________.答案 50-8x =38解析 每个莲蓬的单价为x 元,8个莲蓬合计8x 元,找回(50-8x )元,所以50-8x =38.7.(2011·浙江)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 ________元.答案 440 解析 设一束鲜花的价格为x 元,一个礼盒的价格为y 元,则⎩⎪⎨⎪⎧x +2y =143,①2x +y =121,②由①+②得3x +3y =264.∴x +y =88.∴5x +5y =88×5=440.8.(2011·潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费.某用户在5月份用电100度,共交电费56元,则a =________度.答案 40解析 0.50×100<56,可知该用户超量用电.0.50a +0.50(1+20%)(100-a )=56,0.5a +60-0.6a =56,-0.1a =-4,a =40.9.(2011·上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.答案 20%解析 设每年屋顶绿化面积的增长率为x .2000(1+x )2=2880.(1+x )2=1.44.1+x =±1.2.所以x 1=0.2,x 2=-2.2(舍去).故x =0.2=20%.10.(2011·宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是______m(可利用的围墙长度超过6m).答案 1解析 设AB 长为x m ,则BC =(6-2x )m.∴x (6-2x )=4,x 2-3x +2=0.x 1=2,x 2=1.当x =2时,AB =2,BC =2,不合题意,舍去,所以x =1.三、解答题11.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.解 设粗加工的该种山货质量为x 千克,根据题意,得x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克.12.(2011·扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下: 甲:⎩⎪⎨⎪⎧ x +y =12x +8y = 乙:⎩⎨⎧ x +y = x 12+y 8=根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示 __________________;乙:x 表示 ____________________,y 表示 __________________;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)解 (1) 甲:⎩⎪⎨⎪⎧ x +y =20,12x +8y =180; 乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20. 甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度;(2)若解甲的方程组 ⎩⎪⎨⎪⎧ x +y =20, ①12x +8y =180, ② ①×8,得:8x +8y =160, ③③-②,得:4x =20,∴x =5.把x =5代入①得:y =15,∴ 12x =60,8y =120.若解乙的方程组⎩⎪⎨⎪⎧x +y =180, ①x 12+y 8=20, ② ②×12,得:x +1.5y =240, ③③-①,得:0.5y =60.∴y =120.把y =120代入①,得,x =60.答:A 、B 两工程队分别整治河道60米和120米.13.(2011·益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元.⎩⎨⎧ 14x +()20-14y =29,14x +()18-14y =24,解得:⎩⎪⎨⎪⎧x =1,y =2.5. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x ≤14时,y =x ;当x >14时,y =14×1+()x -14×2.5=2.5x -21,所求函数关系式为:y =⎩⎨⎧x ()0≤x ≤14,2.5x -21()x >14. (3)∵x =24>14,∴把x =24代入y =2.5x -21,得:y =2.5×24-21=39.答:小英家3月份应交水费39元.14.(2011·烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务.部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?解 设原计划每天打x 口井,由题意可列方程30x -30x +3=5, 去分母得,30(x +3)-30x =5x (x +3),整理得,x 2+3x -18=0,解得x 1=3,x 2=-6(不合题意,舍去).经检验,x 2=3是方程的根,∴x =3.答:原计划每天打3口井.15.(2011·衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:解 设每盆花苗增加x 株,则每盆花苗有()x +3株,平均单株盈利为()3-0.5x 元,由题意,得()x +3()3-0.5x =10.化简,整理得x 2-3x +2=0.解这个方程,得x 1=1,x 2=2,∴x +3=4或5.答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________.请用一种与小明不相同的方法求解上述问题.解 (1)平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数;每盆的株数=3+每盆增加的株数.(2)解法解法2(图象法):如图,纵轴表示平均单株盈利,横坐标表示株数,则相应长方形面积表示每一盆盈利.从图象可知,每盆植入4株或5株时,相应长方形面积都是10.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.解法3(列分式方程):设每盆花苗增加x 株时,每盆盈利10元,根据题意,得10x +3=3-0.5x . 解这个方程,得x 1=1,x 2=2.经验证,x1=1,x2=2是所列方程的解.∴x+3=4或5.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.四、选做题16.(2011·义乌)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?解(1)2x,50-x.(2)由题意得:(50-x)(30+2x)=2100,化简得:x2-35x+300=0,解得:x1=15, x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20.答:每件商品降价20元,商场日盈利可达2100元.。
专题08一元二次方程(4大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)
专题08一元二次方程(4大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解一元二次方程---------------------------------------------------------------------------------------------------------------------1二、考点02一元二次方程根的判别式--------------------------------------------------------------------------------------------------------2三、考点03根与系数的关系---------------------------------------------------------------------------------------------------------------------4四、考点04一元二次方程的实际应用--------------------------------------------------------------------------------------------------------5考点01解一元二次方程一、考点01解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是()A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为()A .2B .2-C .2或2-D .123.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为()A .4B .4-C .3D .3-4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .136.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是()A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为()A .3-或0B .0或1C .5-或3-D .5-或18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为.9.(2023·广东广州·中考真题)解方程:2650x x -+=.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.考点02一元二次方程根的判别式二、考点02一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是()A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是()A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是()A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是()A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .116.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是()A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A .0B .1C .2D .318.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是()A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A .16-B .4-C .4D .1620.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是.21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为.23.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是.25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是.27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法...解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.考点03根与系数的关系三、考点03根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是()A .4045B .4044C .2022D .134.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为()A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是.37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.39.(2023·内蒙古通辽·中考真题)阅读材料:材料1:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a+=-,12cx x a =.材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值.解:∵m ,n 是一元二次方程210x x --=的两个实数根,∴1,1m n mn +==-.则()22111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x +-=的两个实数根为12x x ,,则12x x +=___________,12x x =___________;(2)类比:已知一元二次方程22310x x +-=的两个实数根为m ,n ,求22m n +的值;(3)提升:已知实数s ,t 满足2223102310s s t t +-=+-=,且s t ≠,求11s t-的值.考点04一元二次方程的实际应用四、考点04一元二次方程的实际应用40.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=41.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是()A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=42.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为()A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=43.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为()A .20%B .22%C .25%D .28%44.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为215m ,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为()A .5m 或6mB .2.5m 或3mC .5mD .3m45.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x 人,则可得到方程()A .()136x x ++=B .()2136x +=C .()1136x x x +++=D .2136x x ++=46.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是()A .22(12)864x x ++=B .22(12)864x x ++=C .(12)864x x -=D .(12)864x x +=47.(2023·黑龙江哈尔滨·中考真题)为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x 米,根据题意,所列方程正确的是()A .()6720x x -=B .()6720x x +=C .()6360x x -=D .()6360x x +=48.(2023·黑龙江·中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m49.(2022·黑龙江·中考真题)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A .8B .10C .7D .950.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.51.(2023·黑龙江牡丹江·中考真题)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.52.(2022·上海·中考真题)某公司5月份的营业额为25万,7月份的营业额为36万,已知6、7月的增长率相同,则增长率为.53.(2022·四川成都·中考真题)若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是.54.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.55.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?56.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m 如果能,请求出AB 的长;如果不能,请说明理由.57.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为cm cm cm cm a b c d 、、、.若纸张大小为16cm 10cm ⨯,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?58.(2023·湖北黄冈·中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当x =___________2m 时,35y =元/2m ;(2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%a ,当a 为何值时,2025年的总种植成本为28920元?59.(2022·山东德州·中考真题)如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为2800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.60.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.。
无锡新领航教育辽宁省各市2012年中考数学分类解析 专题8:平面几何基础
- 1 - 辽宁各市2012年中考数学试题分类解析汇编
专题8:平面几何基础
锦元数学工作室 编辑
一、选择题
1. (2012辽宁鞍山3分)下列图形是中心对称图形的是【 】
A .
B .
C .
D .
【答案】C 。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,
根据中心对称图形的定义可知:只有C 选项旋转180°后能和原来的图形重合。
故选C 。
2. (2012辽宁朝阳3分)如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】
A. 080
B. 090
C. 0100
D. 0110
【答案】A 。
【考点】三角形中位线定理,平行线的性质,三角形外角性质。
【分析】∵C、D 分别EA 、EB 为的中点,∴CD∥AB。
∴∠ECD=∠2。
∵∠1是△ECD 的外角,∴∠E+∠ECD=∠1。
∵∠E=300,∠1=1100,∴∠ECD=1100-300=800。
故选A 。
3. (2012辽宁朝阳3分)下列图形中,既是轴对称图形又是中心对称图形的是【 】。
中考数学常见考点以及考试要求
中考数学常见考点以及考试要求一、数与运算(10个考点)考点1、数的整除性以及有关概念(本考点含整数和整除、分解素因数)考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;(2)知道能被2或3、5、9整除的正整数的特征;(3)会分解素因数;(4)会求两个正整数的最小公倍数和最大公因数.具体问题讨论涉及的正整数一般不大于100.样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)考点2、分数的有关概念、基本性质和运算考核要求:(1)掌握分数与小数的互化,初步体会转化思想;(2)掌握异分母分数的加减运算以及分数的乘除运算.考点3、比、比例和百分比的有关概念及比例的性质考核要求:(1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求.考点4、有关比、比例、百分比的简单问题考核要求:(1) 考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用.考点5、有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示考核要求:(1)理解相反数、倒数、绝对值等概念;(2)会用数轴上的点表示有理数.注意:(1)去掉绝对值符号后的正负号的确定(2)0没有倒数.考点6、平方根、立方根、次方根的概念考核要求:(1)理解平方根、立方根、次方根的概念;(2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别.考点7、实数的概念考核要求:理解实数的有关概念.注意:判断无理数不看形式,要看实质.考点8、数轴上的点与实数的一一对应考核要求:掌握实数与数轴上的点的一一对应关系.解题关键是判断实数的大小.考点9、实数的运算考核要求:(1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数0和数1的特征)、运算顺序,明确有关运算性质的推广和运用;(2)会用计算器进行实数的运算.注意:(1)利用运算定律,力求简便计算和巧算(2)运算要稳中求快,准确无误.考点10、科学记数法考核要求:(1)理解科学记数法的意义;(2)会用科学记数法表示较大的数.二、方程与代数(27个考点)考点11、代数式的有关概念考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;(2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式.注意单项式与多项式次数的区别.考点12、列代数式和求代数式的值考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算.考点13、整式的加、减、乘、除及乘方的运算法则考核要求:(1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积.注意:要灵活理解同类项的概念.考点14、乘法公式(平方差、两数和、差的平方公式)及其简单运用考核要求:(1)掌握平方差、两数和(差)的平方公式;(2)会用乘法公式简化多项式的乘法运算;(3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式.考点15、因式分解的意义考核要求:(1)知道因式分解的意义和它与整式乘法的区别;(2)会鉴别一个式子的变形过程是因式分解还是整式乘法.考点16、因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法)考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.考点17、分式的有关概念及其基本性质考核要求:(1)会求分式有无意义或分式为0的条件;(2)理解分式的有关概念及其基本性质;(3)能熟练地进行通分、约分.考点18、分式的加、减、乘、除运算法则考核要求:(1)掌握分式的运算法则;(2)能熟练进行分式的运算、分式的化简.考点19、正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:(1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论.考点20、整数指数幂,分数指数幂的运算考核要求:(1)掌握幂的运算法则;(2)会用整数指数幂及负整数指数幂进行运算;(3)掌握负整数指数式与分式的互化;(4)知道分数指数式与根式的互化。
2012年重庆市中考数学知识点总复习以及大题分解
试卷结构1、内容结构与比例:数与代数 50% 空间与图形 35% 统计与概率 15%二、一、有理数1、有理数有理数的意义,会比较有理数的大小2、借助数轴理解相反数绝对值的意义,会求相反数与绝对值3、掌握有理数的加、减、乘、除、乘方以及简单的混合运算4、运用有理数运算律简化运算,并解决简单问题二、实数1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根2、了解开方与乘方互为逆运算,知道实数与数轴上的点一一对应3、用有理数估计一个无理数的大致范围4、了解近似数的概念并会进行近似数的运算5、了解二次根式的概念及其加减乘除运算法则,会用它们进行有关的实数的简单四则运算(不要求分母有理化)三、代数式1、能分析简单问题的数量关系,并用代数式表示2、会求代数式的值,能根据简单的实际问题,探索所需的公式,并会进行计算四、整式与分式1、了解整数指数幂的意义和基本性质,会用科学计数法表示数2、了解正式的概念,会进行简单的正式加减运算,会进行简单的整式乘法运算3、会推导乘法公式:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2,并能进行简单计算4、会提公因式、分式法进行因式分解5、了解分式的概念,会运用分式的基本性质进行约分和通分,会进行简单的分式加减乘除运算1、能够用等式表示具体问题中的数量关系2、用观察、画图等的手段估计方程解的过程3、会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程4、理解配方法5、根据具体问题实际意义,检验结果是否合理6、能用不等式表示具体问题中的大小关系7、会解简单的一元一次方程不等式(不等式组),并能在数轴上表示出解集8、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题1、了解函数的概念和3中表示方法2、结合图像,对简单实际问题中的函数关系进行分析3、能确定自变量的取值范围,并求出函数值4、结核函数关系的分析,尝试对变量的变化规律进行初步预测5、根据已知条件确定函数的表达式6、会画一次函数的图像并理解kx+b=y(k不等于0)的性质7、理解正比例函数8、用一次函数结局实际问题9、会用描点法画出二次函数的图像,并从图像上认识二次函数的性质1、会比较角的大小,认识度分秒,并进行简单换算2、了解平行线及其性质3、了解补角、余角对顶角4、了解垂线、垂线段的概念5、会做垂线6、了解垂直平分线及其性质7、了解三角形的有关性质(内角、外角、中线、高、角平分线),了解三角形的稳定性质8、了解全等三角形的概念9、了解等腰三角形的相关概念10、了解直角三角形的概念11、会用勾股定理解决问题12、了解四边形的概念13、等腰梯形14、圆(弧、玄、圆心角),了解点与圆、直线与圆的位置关系15、圆心角、圆周角16、三角形的内心与外心17、了解切线18、计算弧长和扇形面积、圆锥的侧面积和全面积19、会做线段、角、角平分线、线段垂直平分线20、做三角形21、作圆22、判断简单物体的三视图及其侧面展开图23、轴对称24、作轴对称25、图形的平移26、图形的旋转27、图形的相似28、图形与坐标29、证明1、统计:个体、样本2、扇形统计图表示数据3、加权平均数4、会计算极差、方差,并明确其意义5、计算简单事件发生的频率第一章 数与代数第二章 方程与不等式第三章 函数第四章 空间与图形第五章 概率与统计考点一、有理数 1.有理数: (1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(相反数的证明) 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (aa 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3)0a 1aa >⇔=;0a 1aa <⇔-=; (4)|a|是重要的非负数,即|a|≥0=5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 7.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 10.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .12.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时:(-a)n=a n或(a-b)n =(b-a)n.13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0⇔a=0,b=0;14.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.15.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 考点二、实数1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
2012年安徽中考数学试题及答案(解析版)
2012年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(2012•安徽)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.(2012•安徽)计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x54.(2012•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1C.m2﹣n D.m2﹣2m+15.(2012•安徽)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元6.(2012•安徽)化简的结果是()A.x+1B.x﹣1C.﹣x D.x7.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.(2012•安徽)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()9.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.10.(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题共4小题,每小题5分,满分20分)11.(2012•安徽)2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是_________.12.(2012•安徽)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为,,,则数据波动最小的一组是_________.13.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.14.(2012•安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是_________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(2012•安徽)计算:(a+3)(a﹣1)+a(a﹣2)16.(2012•安徽)解方程:x2﹣2x=2x+1.四、(本大题共2小题,每小题8分,满分16分)17.(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是_________(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.18.(2012•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.五、(本大题共2小题,每小题10分,满分20分)19.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.20.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.七、(本题满分12分)22.(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG 的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.2012年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法。
【中考12年】江苏省淮安市2001-2012年中考数学试题分类 专题8 平面几何基础
【中考12年】江苏省淮安市2001-2012年中考数学试题分类专题8平面几何基础选择题2. (2003年江苏淮安3分)四边形的内角和等于【】A.180°B.270°C.360°D.450°【答案】C。
【考点】多边形的内角和定理。
【分析】根据多边形的内角和定理,得四边形的内角和等于()0042180=360-⨯。
故选C。
4. (2003年江苏淮安3分)如图,在△ABC中,DE∥BC,且AD=2,DB=4,则AEEC的值为【】5. (2005年江苏淮安大纲3分)如图,直线a ∥b ,直线c 是截线,如果∠1=50°,那么∠2等于【 】6. (2005年江苏淮安大纲3分)如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有【 】A .1个B .2个C .3个D .4个【答案】B 。
【考点】三角形构成条件。
【分析】∵三角形的两边长为2和9,∴第三边长x 满足:92x 92<< -,即7x 11<<。
∵x 为整数,∴x=8,9,10。
∵三角形的周长为奇数,∴x=8, 10。
∴满足条件的三角形共有2个。
故选B 。
7. (2005年江苏淮安课标3分)下图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约300的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是【 】点A B.点B C.点C D.点D9. (2008年江苏淮安3分)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是【】A.40°B.50°C.80°D.100°【答案】A。
【考点】对顶角的性质,角平分线定义。
【分析】∵∠BOC和∠AOD是对顶角,且∠BOC=80°,∴∠AOD=∠BOC=80°。
002.实数的运算2012年中考数学分类汇编(30套转载)
一、选择题1. (2012•台湾)计算(﹣1000)×(5﹣10)之值为何?( )A .1000B .1001C .4999D .5001考点: 有理数的乘法。
专题: 计算题。
分析: 将﹣1000化为﹣(1000+),然后计算出5﹣10,再根据分配律进行计算.解答: 解:原式=﹣(1000+)×(﹣5)=(1000+)×5=1000×5+×5=5000+1=5001.故选D .点评: 本题考查了有理数的乘法,灵活运用分配律是解题的关键.2. (2012•台湾)计算[()2]3×[()2]2之值为何?( )A .1B .C .()2D .()4考点: 整式的混合运算。
专题: 计算题。
分析: 先算乘方,再算乘法即可.解答: 解:原式=()6×()4=()6×()﹣4,=()2故选C .点评: 本题考查的是整式的混合运算,整式的混合运算运算顺序和有理数的混合运算顺序相似,即先算乘方,再算乘法,最后算加减,有括号的先算括号里面的.3. (2012浙江舟山)()02-等于( ) (A) -2 (B) 0 (C) 1 ( D) 2【答案】C4. (2012浙江台州)计算-1+1的结果是( * )A .1B .0C .-1D .-2【答案】B5. (2012浙江嘉兴)0(2)-等于( )A .1B .2C .0D .-2 【答案】A 0A .﹣2B .0C .1D .2考点: 零指数幂。
分析: 根据零指数幂的运算法则求出(﹣2)0的值解答: 解:(﹣2)0=1.故选C .点评: 考查了零指数幂:a 0=1(a ≠0),由a m ÷a m =1,a m ÷a m =a m ﹣m =a 0可推出a 0=1(a ≠0),注意:00≠1.7. (2012•杭州)计算(2﹣3)+(﹣1)的结果是( )A .﹣2B .0C .1D .2【答案】A8. (2012四川南充) 计算:2-(-3)的结果是( )A .5B .1C .-1D .-5【答案】A 9.(2012山东滨州)32-等于A .-6B .6C .-8D .8【答案】C10. (2012山东滨州)求20123222221+⋅⋅⋅++++的值,可令S =20123222221+⋅⋅⋅++++,则2S=2013322222+⋅⋅⋅+++,因此1222013-=-S S ,仿照以上推理,计算出20123222221+⋅⋅⋅++++的值为 A .152012- B .152013- C .4152013- D .4152012- 【答案】C10. (2012铁岭)2的算术平方根是( )A 、2B 、﹣2C 、±2D 、2考点:算术平方根。
吉林省2012年中考数学试卷考点分析
考点分布 题号 1 数与式 3 7 15 6 方程与不等式 8 9 16 18 函数 24 26 图形的认识 与变换 2 14 19 4 5 三角形与四边 形 12 20 22 25 11 圆 13 23 10 统计与概率 17 21 12 年所考查的知识点 比较数的大小 同类项,同底数幂相乘,完全平方式 无理数的简单计算 代数式化简求值 列分式方程解应用题 不等式的解集 一元二次方程的解 看图列方程组解应用题 函数图象 利用函数解决方案设计问题 一次、二次函数结合并讨论图形问题 视图 图形的旋转并计算 坐标系内画图求面积比 三角形内角和、平行线的应用 菱形与反比例函数的应用 直角三角形有关性质的计算 解直角三角形 证明全等三角形矩形 利用相似性质列出函数关系式,进而 探究动点问题 圆中求角 切线性质的应用 扇形周长和面积 求方差 求概率 条形图求众数、平均数 10 3 3 8 3 5 7 15 14 分值 2 2 3 5 2 3 3 5 5 8 10 2 3 7 2 2 3 7 7 3
四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试): 锐角三角函数
(备战中考)四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)锐角三角函数◆考点聚焦1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系,•这也是本节的重点和难点.2.准确记忆30°、45°、60°的三角函数值.3.会用计算器求出已知锐角的三角函数值.4.已知三角函数值会求出相应锐角.5.掌握三角函数与直角三角形的相关应用,这是本节的热点.◆备考兵法充分利用数形结合的思想,对本节知识加以理解记忆.◆识记巩固1.锐角三角函数的定义:如图,在Rt△ABC中,∠=90°,斜边为c,a,b分别是∠A的对边和邻边,则sinA=______=_______;cosA=______=_______;tanA=______=_______.2.填表:30°45°60°sinαcosαtanα注意:30°,45°,60°的三角函数值是中考的必考考点,其他数值是利用数形结合的方法推导的,要求在理解的基础上进行识记.3.锐角三角函数间的关系:(1)互为余角的三角函数间的关系:sin(90°-α)=____,cos(90°-α)=_____.(2)同角三角函数的关系:①平方关系:sin2α+cos2α=_______;②商数关系:sincosαα=_______.注意:对于互为余角的锐角三角函数关系,要求学生能利用定义,•结合图形进行理解,并能灵活运用公式;对于同一锐角三角函数的关系,仅让学生了解,不作中考要求.4.锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<sinα<1,0<cosα<1,当0°≤α≤45°时,sinα,tanα随角度的增大而_______,cosα随角度的增大而_______.(2)当0°<α<45°时,sinα_____cosα;当45°<α<90°时,sinα______cosα.识记巩固参考答案21世纪教育网1.A∠的斜边斜边acA∠的邻边邻边bcAA∠∠的对边的邻边ab2.122232322212321 33.(1)cosα sinα(2)①1 ②tanα 21世纪教育网4.(1)增大减小(2)< >[来源:学科网ZXXK]◆典例解析例1 (2011广东东莞,19,7分)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF= CF =8.(l)求∠BDF的度数;(2)求AB的长.【解】(1)∵BF=CF ,∠C=030,∴∠FBC=030,∠BFC=0120又由折叠可知∠DBF=030∴∠BDF=090(2)在Rt △BDF 中,∵∠DBF=030,BF=8∴BD=3∵AD ∥BC ,∠A=090∴∠ABC=090又∵∠FBC=∠DBF=030∴∠ABD=030在Rt △BDA 中,∵∠AVD=030,BD=3∴AB=6.6. (2011湖北襄阳,19,6分)先化简再求值:412)121(22-++÷-+x x x x ,其中160tan -︒=x . 【答案】 原式12)1()2)(2(212+--=+-+⋅+--=x x x x x x x ················2分 当13160tan -=-︒=x 时, ··················· 3分原式13333113213-=--=+----=. 6分例2 已知α为锐角,且tan α=2,则代数式cos α=______. 解析 方法一:在Rt △ABC 中,∠C=90°,tan α=2,令,b=2,则此时. ∴sin α=a ccos α∴原式==1)33226⨯==. 方法二:∵tan α=sin cos αα=2. ∴2sin αα. 又∵sin 2α+cos 2α=1.∴cos α==12()22===.方法三:∵tan α=sin cos αα,sin 2α+cos 2α=1. ∴原式=sin cos ||cos cos αααα-===|tan α-1|=|2-1|=22-.答案222 -例3 如图,在Rt△ABC中,∠C=90°,sinB=35,点D在BC边上,且∠ADC=45°,DC=6,求∠BAD的正切值.解析过点B作BE⊥AD,交AD延长线于E.∵∠C=90°,∴sinB=ACBA=35.∵∠ADC=45°,∴AC=DC=6,∴AB=10,BC=8,∴BD=2.∵∠ADC=45°,∴∠BDE=45°,∴DE=BE=22BD=2.又∵在Rt△ACD中,AD=DC=62,∴AE=72,∴tan∠BAD=272BEAE==17.21世纪教育网点评要求∠BAD的正切值,首先得将∠BAD转化到某一直角三角形中去,因此通过作垂线,构造直角三角形是解决这个问题的关键.2011年真题1. (2011甘肃兰州,4,4分)如图,A、B、C三点在正方形网格线的交点处,若将△ACB 绕着点A逆时针旋转得到△AC’B’,则tanB’的值为A.12B.13C.14D.24【答案】B 2. (2011江苏苏州,9,3分)如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则t anC 等于A.43B.34C.53D. 54【答案】B3. (2011四川内江,11,3分)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为 A .83B .15C .93D .123【答案】C4. (2011山东临沂,13,3分)如图,△ABC 中,cosB =22,sinC =53,则△ABC 的面积是( )A .221 B .12 C .14 D .21 【答案】AB ACD EA BC C ’B ’5. (2011安徽芜湖,8,4分)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A .12B . 34C . 32D .45【答案】C6. (2011山东日照,10,4分)在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ab .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A(C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1【答案】D7. (2011山东烟台,9,4分)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形【答案】C8. (2011 浙江湖州,4,3)如图,已知在Rt △ABC 中,∠ C =90°,BC =1,AC =2,则tan A 的值为A .2B .12C .55D .255[来源:学科网ZXXK]【答案】B9. (2011浙江温州,5,4分)如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )A .513B .1213C .512D .135【答案】A10.(2011四川乐山2,3分)如图,在4×4的正方形网格中,tanα=A .1B .2C .12D .52【答案】B11. (2011安徽芜湖,8,4分)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A .12B . 34C . 32D .45【答案】B12. (2011湖北黄冈,9,3分)cos30°=( )A .12B .22C .32D 3【答案】C13. (2011广东茂名,8,3分)如图,已知: 9045<<A ,则下列各式成立的是A .sinA =cosAB .sinA >cosAC .sinA >tanAD .sinA <cosA 【答案】B14. (20011江苏镇江,6,2分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB,垂足为 D.若AC=5,BC=2,则sin ∠ACD 的值为( )A.53B.255C. 52D. 23答案【 A 】15. (2011湖北鄂州,9,3分)cos30°=( )A .12B .22C .32D 3【答案】C[来源:Z_xx_]16. (2011湖北荆州,8,3分)在△ABC 中,∠A =120°,AB =4,AC =2,则B sin 的值是A .1475B .53 C .721 D .1421 【答案】D17. (2011湖北宜昌,11,3分)如图是教学用直角三角板,边AC=30cm ,∠C=90°,tan∠BAC=33,则边BC 的长为( ). A. 303cm B. 203cm C.103cm D. 53cm21世纪教育网(第11题图)【答案】C18.二、填空题1. (2011江苏扬州,13,3分)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB=【答案】105°2. (2011山东滨州,16,4分)在等腰△ABC 中,∠C=90°则tanA=________.【答案】13. (2011江苏连云港,14,3分)如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.【答案】124. ( 2011重庆江津, 15,4分)在Rt △ABC 中,∠C=90º,BC=5,AB=12,sinA=_________.【答案】125· 5. (2011江苏淮安,18,3分)如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=22,则△ABC 的周长等于 .DAB CB1C1【答案】6236. (2011江苏南京,11,2分)如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos∠AOB 的值等于_________.【答案】127. (2011江苏南通,17,3分)如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB =30°,D 点测得∠ADB =60°,又CD =60m ,则河宽AB 为 ▲ m (结果保留根号).【答案】303.8. (2011湖北武汉市,13,3分)sin 30°的值为_____.【答案】219. (20011江苏镇江,11,2分)∠α的补角是120°,则∠α=______,sin α=______. 答案:60°,3210.(2011贵州安顺,14,4分)如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .(第11题)BA MO【答案】54 11.21世纪教育网 12.三、解答题(1) 1. (2011安徽芜湖,17(1),6分)计算:20113015(1)()(cos68)338sin 602π---+++-.【答案】解:解: 原式31813382=--++-⨯……………………………………………4分 83=-+ …………………………………6分2. (2011四川南充市,19,8分)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.(1)求证:⊿ABE∽⊿DFE ;(2)若sin∠DFE=31,求tan∠EBC 的值. F ED CBA【答案】(1)证明:∵四边形ABCD 是矩形∴∠A=∠D=∠C=90°∵⊿BCE 沿BE 折叠为⊿BFE ∴∠BFE=∠C=90°∴∠AFB+∠DFE=180°-∠BFE=90° 又∠AFB+∠ABF=90° ∴∠ABF=∠DFE ∴⊿ABE ∽⊿DFE第14题图(2)解:在Rt ⊿DEF 中,sin ∠DFE=EF DE =31∴设DE=a,EF=3a,DF=22DE EF -=22a∵⊿BCE 沿BE 折叠为⊿B FE[来源:21世纪教育网] ∴CE=EF=3a,CD=DE+CE=4a,AB=4a, ∠EBC=∠EBF 又由(1)⊿ABE ∽⊿DFE ,∴BF FE =ABDF =a a422=22∴tan ∠EBF=BF FE=22 tan ∠EBC=tan ∠EBF=22 3. (2011甘肃兰州,21,7分)已知α是锐角,且sin(α+15°)=32。
专题08 一元二次方程(课件)-2023年中考数学一轮复习(全国通用)
一元二次 了解一元二次方程根的判别式, 常以选择题、填空题的形式考查一元二
2 方程根的 会用根的判别式判断一元二次 次方程根的判别式,部分地市以探究题
判别式 方程根的情况.
的形式考查.
中考命题说明
考点
课标要求
考查角度
①能够根据具体问题中的数量关系,列 常以选择题、填空题的形式考
一元二 出方程解决实际问题,体会方程是刻画 查一元二次方程的列法,以列
【分析】A、是一元二次方程,故本选项符合题意; B、是分式方程,不是一元二次方程,故本选项不符合题意; C、当a=0时,不是一元二次方程,故本选项不符合题意; D、化简后为–1= x+1,是一元一次方程,不是一元二次方程,本选项不符合题意, 故选A. 【答案】A.
知识点1:一元二次方程及有关概念
典型例题
知识点1:一元二次方程及有关概念
典型例题
【例3】(4分)(2021•广东14/25)若一元二次方程x2+bx+c=0(b,c为常数)
的两根x1,x2满足-3<x1<-1,1<x2<3,则符合条件的一个方程为
.
【考点】一元二次方程的定义. 【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一. 【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足 -3<x1<-1,1<x2<3, ∴满足条件的方程可以为:x2-2=0(答案不唯一), 故答案为:x2-2=0(答案不唯一).
知识点2:一元二次方程的解法
典型例题
【例6】(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程
(x+3)2=2c,则c的值为( )
A.-3
B.0
2012年陕西中考数学真题(含答案)
2012年陕西省中考数学试卷参考答案与试题解析一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的)1.如果零上5℃记作+5℃,那么零下7℃可记作()A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作﹣7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图。
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左边看竖直叠放2个正方形.故选C.点评:考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算(﹣5a3)2的结果是()A.﹣10a5B.10a6C.﹣25a5D.25a6考点:幂的乘方与积的乘方。
分析:利用积的乘方与幂的乘方的性质求解即可求得答案.解答:解:(﹣5a3)2=25a6.故选D.点评:此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是()分数(分)89 92 95 96 97评委(位) 12 2 1 1A . 92分B . 93分C . 94分D . 95分考点: 加权平均数。
分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答: 解:由题意知,最高分和最低分为97,89, 则余下的数的平均数=(92×2+95×2+96)÷5=94. 故选C .点评: 本题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式. 5.如图,△ABC 中,AD 、BE 是两条中线,则S △EDC :S △ABC =( ) A . 1:2B . 2:3C . 1:3D . 1:4考点: 相似三角形的判定与性质;三角形中位线定理.分析: 在△ABC 中,AD 、BE 是两条中线,可得DE 是△ABC 的中位线,即可证得△EDC ∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答: 解:∵△ABC 中,AD 、BE 是两条中线,∴DE 是△ABC 的中位线, ∴DE ∥AB ,DE=AB , ∴△EDC ∽△ABC , ∴S △EDC :S △ABC =()2=.故选D .点评: 此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A . (2,﹣3),(﹣4,6)B . (﹣2,3),(4,6)C . (﹣2,﹣3),(4,﹣6)D . (2,3),(﹣4,6)考点: 一次函数图象上点的坐标特征。
中考数学常考考点(七)
中考数学常考考点(七)(八)应用题(不等式组、方程组、分式方程)、猜想验证;1、某班将举行“庆祝建90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本? (2)请你解释:小明为什么不可能找回68元? 2、漳州市出口贸易总值为22.52亿美元,至出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.(1)求这两年漳州市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测漳州市的出口贸易总值.3、 某高科技公司根据市场需求,计划生产A 、B 两种型号的医疗器械,其部分信息如下: 信息一:A 、B 两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资 金全部用于生产此两种医疗器械.信息三:A 、B 两种医疗器械的生产成本和售价如下表:型号A B 成本(万元/ 台) 20 25 售价(万元/ 台)2430哦!我把自己口袋里的13元一起当作找回的钱款这就对了!(第24题图2买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.你肯定搞错(第24题图根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪-几种生产方案?哪种生产方案能获得最大利润? (2)根据市场调查,-每台A 型医疗器械的售价将会提高a 万元(0a ).每台A 型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?4、某产品第一季度每件成本为50元,第二、三季度每件产品平均降低成本的百分率为x .(1)请用含x 的代数式表示第二季度每件产品的成本;(2)如果第三季度该产品每件成本比第一季度少9.5元,试求的值;(3)该产品第二季度每件的销售价...为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、三季度每件产品平均降低成本..的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润..为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求的最大值.(注:利润=销售价-成本)5、如图,等腰梯形花圃ABCD 的底边AD 靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB 的长为x 米. (1)请求出底边BC 的长(用含x 的代数式表示); (2)若∠BAD=60°, 该花圃的面积为S 米2.①求S 与x 之间的函数关系式(要指出自变量x 的取值范围),并求当S=393时x 的值;②如果墙长为24米,试问S 有最大值还是最小值?这个值是多少?6、供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行,t (t ≥0)小时后乙开抢修车载着所需材料出发.(1)若t = 38(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t 的最大值是多少?7、某种新产品进价是120元,在试销阶段发现每件售价(元)与产品的日销量(件)始终存在下表中的数量关系:(1)请你根据上表所给数据表述出每件售价提高的数量(元)与日销量减少的数量(件)之间的关系.(2)在不改变上述关系的情况下,请你帮助商场经理策划每件商品定价为多少元时,每日盈利可达到1 600元?8、“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;CD总计A200吨Bx吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;9、武夷山市某茶厂生产某品牌茶叶,它的成本价是每千克180元,售价是每千克230元,年销售量为10000千克.随着产量增加,为了扩大销售量,增加效益,公司决定拿出一定量的资金做广告.根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.(1)根据图象提供的信息,求y与x之间的函数关系式;(2)求年利润S(万元)与广告费x(万元)之间的函数关系式;(年利润S=年销售总额-成本费-广告费)(3)问广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?10、永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西O 1 2 3 12.7(倍)4.2的旅游胜地. “永定土楼”模型深受游客喜爱. 图中折线(AB ∥CD ∥x 轴)反映了某种规格土楼模型的单价y (元)与购买数量x (个)之间的函数关系. (1)求当10≤x ≤20时,y 与x 的函数关系式;(2)已知某旅游团购买该种规格的土楼模型 总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)11、为了抓住世博会商机,某商店决定购进A 、B 两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?(九)弧长的计算;1、 如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC . 三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为 .2、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是 m 。
2012年陕西省中考数学试卷-答案
【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。
2012年、2013年武汉中考数学试卷考点对比表
20
解答
列表法和树状图法
7
21
解答
作图-旋转变换;弧长的计算
7
21
解答
作图、旋转变换、轴对称、最短路线问题
7
22
解答
三角形的内切圆与内心;三角形的面积;勾股定理;圆周角定理;解直角三角形
8
22
解答
垂径定理、勾股定理、圆周角定理、解直角三角形
8
23
解答
二次函数的应用
10
23
解答
二次函数的应用
10
24
3
15
填空
反比例函数综合题
3
16
填空
切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义
3
16
填空
正方形的性质
3
17
解答
解分式方程
6
17
解答
解分式方程
6
18
解答
一次函数与一元一次不等式
6
18
解答
一次函数与一元一次不等式
6
19
解答
全等三角形的判定与性质
6
1
解答
列表法与树状图法
3
4
选择
随机事件
3
4
选择
随机事件
3
5
选择
根与系数的关系
3
5
选择
根与系数的关系
3
6
选择
科学计数法:表示较大数
3
6
选择
等腰三角形的性质
3
7
选择
翻折变换(折叠问题)
3
7
选择
简单组合体的三视图
3
8
选择
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C M
B y
中考数学常考考点(八)
⏹ (十一)勾股定理、中位线;
1、如图,OABC 是一个长方形纸片,其中OA=8,OC=4,通过折叠使得C 点与A 点重合,折痕为EF (1)求出OE 的长度
(2)试猜想四边形AFCE 的形状,并证明
(3)EF 所在的直线,是否存在一动点P ,使得|PB-PC|的值最大,如果不存在请说明理由;若存在求出点P 的坐标
2、如图28,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC.已知AB=5,DE=1,BD=8,设CD=x.
(1)用含x 的代数式表示AC +CE 的长; (2)请问点C 满足什么条件时,AC +CE 的值最小? (3)根据(2)中的规律和结论,
请构图求出代数式
9)12(42
2
+-+
+x x 的最小值.
勾股定理的使用:a, 寻找直角三角形,b ,直角三角形中可以用勾股定理列方程求线段的长。
B :中位线:a:三角形中 已知中点可以通过作第三边的平行线(或者连结两边的中点)得到中位线,利用中位线平行于第三边并且等于第三边的一半解题。
b:梯形中已知一腰的中点可以通过作底边的平行线(或者连结两腰的中点)得到中位线,利用梯形的中位线平行于底边并且等于两底边和的一半解题。
C:解答题中中位线一般不单独考,通常都是结合其他的知识点进行综合考查,大部分都是通过以上的辅助线的作法,应用性质解题。
⏹ (十二)一次函数、一次方程和不等式(利润最大化、待定系数、面积、数形结合、
分类讨论);
1、如图,直线y =-2x +2与x 轴、y 轴分别交于A 、B 两点,将△OAB 绕点O 逆时针方向旋
转90°后得到△OCD .
(1)填空:点C 的坐标是(_ ,_ ),
点D 的坐标是(_ ,_ );
E
D C B
A 图2
P
y
x
G
F
E
D
C
B
A O
(2)设直线CD 与AB 交于点M ,求线段BM 的长;
(3)在y 轴上是否存在点P ,使得△BMP 是等腰三角形?若存在,
请求出所有满足条件的点P 的坐标;若不存在,请说明理由. 2、已知一次函数y kx b =+与反比例函数4y x
=的图象相交于点A (1-,m )、B (4-,n ).
(1)求一次函数的关系式;
(2)在给定的直角坐标系中画出这两个函数的图象,并根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?
3、如图,在方格纸中建立直角坐标系,已知一次函数1y x b
=-+的图象与反比例函数2k y x
=
的图象相交于点A (5,1)和A 1.
(1)求这两个函数的关系式; (2)由反比例函数2k y x
=
的图象特征可知:点A 和A 1关于
直线y =x 对称.请你根据图象,填写点A 1的坐标__________及12y y <时x 的取值范围__________.
4、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发
沿同一路线接他,在离家28千米处与小明相遇。
接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小
名离家的路程y (干米) 与x (小时)之间的函致图象如图所示,
(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时;
(2)求线段CD 所表示的函敛关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,
5、已知:直线y=kx(k ≠0)经过点(3,-4).
2k y x
=
5 5
-5 -5
A 1
A
O
x
y
y =x 1y kx b =+
(第3题图)
(第23题图)
1
A
B
C
D
x (小时)
y (千米)
O
1020
3028
(1)求k 的值;
(2)将该直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相离
(点O 为坐标原点),试求m 的取值范围.
6、点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.
7、已知:一次函数y kx b =+的图象经过M(0,2),(1,3)两点. (l) 求k 、b 的值;
(2) 若一次函数y kx b =+的图象与x 轴的交点为A(a ,0),求a 的值. 8、在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线,
与坐标轴围成矩形O A P B 的周长与面积相等,则点P 是和谐点.(1)判断点(1,2),(4,4)M N 是否为和谐点,并说明理由; (2)若和谐点(,3)P a 在直线()y x b b =-+为常数上,求点,a b 的值. 9、如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上. (1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围;
(2)将线段AB 绕点B 逆时针旋转90o
,得到线段BC ,请在答题卡
指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,
则y 随x 的增大而 (填“增大”或“减小”). 10、某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如
空调机 电冰箱 甲连锁店 200 170 乙连锁店
160
150
y
x
F
O
B
A
A 图8
B x
y
O
何设计调配方案,使总利润达到最大?
11、某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电
价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电
价x(元/千度)的函数图象如图:
(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)
与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60
千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生
利润最大是多少元?
12、如图所示,四边形OABC是矩形,点A、C的坐标分别为(﹣3,0),(0,1),
点D是线段BC 上的动点(与端点B、C不重合),过点D 作直线
交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段0A 上时,且.若矩形OABC关于直线DE的对称图形
为四边形O
1A
1
B
1
C
1
,试探究四边形O
1
A
1
B
1
C
1
与矩形OABC的重叠部分的面积是否发
生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
x(元/千度) y(元/千度)
500
300
200
O。