天大15秋《概率论与数理统计》在线作业一100分答案

合集下载

吉大(2021-2022)学期《概率论与数理统计》在线作业一答案4

吉大(2021-2022)学期《概率论与数理统计》在线作业一答案4

吉大(2021-2022)学期《概率论与数理统计》在线作业一试卷总分:100 得分:100一、单选题(共15题,60分)1、设10件产品中只有4件不合格,从中任取两件,已知所取两件产品中有一件是不合格品,另一件也是不合格品的概率为A1/5【B】.1/4【C】.1/3【D】.1/2【正确选择】:A2、参数估计分)为( )和区间估计A矩法估计【B】.似然估计【C】.点估计【D】.总体估计【正确选择】:C3、射手每次射击的命中率为为0.02,独立射击了400次,设随机变量X为命中的次数,则X 的方差为()【A】.6【B】.8【C】.10【D】.20【正确选择】:B4、在长度为a的线段内任取两点将其分)成三段,则它们可以构成一个三角形的概率是A1/4 【B】.1/2【C】.1/3【D】.2/3【正确选择】:A5、进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,【D】.X=2.56则n=()【A】.6【B】.8【C】.16【D】.24【正确选择】:C6、已知全集为{1,3,5,7},集合A={1,3},则A的对立事件为A{1,3}【B】.{1,3,5}【C】.{5,7}【D】.{7}【正确选择】:C7、利用含有待估参数及( )其它未知参数的估计量,对于给定的样本值进行计算,求出的估计量的值称为该参数的点估计值A不含有【B】.含有【C】.可能【D】.以上都不对【正确选择】:A8、在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能确定预料其是否出现,这类现象我们称之为A确定现象【B】.随机现象【C】.自然现象【D】.认为现象【正确选择】:B9、事件A与【B】.相互独立的充要条件为AA+【B】.=Ω【B】.P(AB)=P(【B】.)P(A)【C】.AB=Ф【D】.P(A+【B】.)=P(A)+P(【B】.)【正确选择】:B10、任何一个随机变量X,如果期望存在,则它与任一个常数【C】.的和的期望为()【A】.EX【B】.EX+【C】.【C】.EX-CD以上都不对【正确选择】:B11、设电路供电网中有10000盏灯,夜晚每一盏灯开着的概率都是0.7,假定各灯开、关时间彼此无关,则同时开着的灯数在6800与7200之间的概率为()【A】.0.88888【B】.0.77777【C】.0.99999【D】.0.66666【正确选择】:C12、某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,则同时订两种报纸的住户的百分)比是A20%【B】.30%【C】.40%【D】.15%【正确选择】:B13、不可能事件的概率应该是A1【B】.0.5【C】.2【D】.0【正确选择】:D14、一批10个元件的产品中含有3个废品,现从中任意抽取2个元件,则这2个元件中的废品数X的数学期望为()【A】.3/5【B】.4/5【C】.2/5【D】.1/5【正确选择】:A15、电路由元件A与两个并联的元件【B】.、【C】.串联而成,若A、【B】.、【C】.损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是A0.325【B】.0.369【C】.0.496【D】.0.314【正确选择】:D二、判断题(共10题,40分)1、对于两个随机变量的联合分)布,两个随机变量的相关系数为0则他们可能是相互独立的。

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

0.8 0.1
4 0.3077
0.8 0.1 0.2 0.9 13
即考试不及格的学生中努力学习的学生占 30.77%.
26. 将两信息分别编码为 A 和 B 传递出来,接收站收到时,A 被误收作 B 的概率为 0.02,而
B 被误收作 A 的概率为 0.01.信息 A 与 B 传递的频繁程度为 2∶1.若接收站收到的信息是
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确
≤M)正品(记为 A)的概率.如果: (1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.
【解】(1)
P(A)=
C
m M
Cnm N M
/ CnN
(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有 PNn 种,n 次抽取中有 m
次为正品的组合数为
C
m n
种.对于固定的一种正品与次品的抽取次序,从
M
件正
品中取
m
件的排列数有 PMm
种,从
NM
件次品中取
nm
件的排列数为
Pnm N M
种,

P(A)=
Cmn PMm
Pnm N M
PNn

概率论与数理统计答案

概率论与数理统计答案

概率论与数理统计答案
1. 概率论中,事件的概率是什么?
事件的概率是指该事件发生的可能性大小。

通常用0到1之间的数值表示,0表示不可能发生,1表示一定会发生。

2. 如何计算联合概率和条件概率?
联合概率指两个事件同时发生的概率,可以用乘法原理计算。

条件概率是指已知一个事件发生的前提下,另一个事件发生的概率,可以用条件概率公式P(A|B) = P(A∩B) / P(B)来计算。

3. 如何计算期望和方差?
期望是指随机变量取值的平均值,可以用加权平均数来计算。

方差是指随机变量的取值与其期望之差的平方的平均数,可以用期望和平方的期望之差来计算。

4. 什么是正态分布?
正态分布是一种常见的连续概率分布,也称为高斯分布。

其具有对称、单峰、钟形曲线的特点,通过平均数和标准差来描述。

5. 如何进行假设检验?
假设检验是一种基于样本数据推断总体参数的方法。

通常先提出一个假设(原假设或备择假设),根据样本数据计算出一个统计量,然后根据这个统计量的概率分布来判断原假设是否成立。

福师《概率论》在线作业一15秋100分满分答案

福师《概率论》在线作业一15秋100分满分答案

福师《概率论》在线作业一15秋100分答案福师《概率论》在线作业一一、单选题(共 50 道试题,共 100 分。

)1.某单位有200台电话机,每台电话机大约有5%的时间要使用外线电话,若每台电话机是否使用外线是相互独立的,该单位需要安装()条外线,才能以90%以上的概率保证每台电话机需要使用外线时而不被占用。

A. 至少12条B. 至少13条C. 至少14条D. 至少15条正确答案:C2. 已知随机事件A 的概率为P(A)=0.5,随机事件B的概率P(B)=0.6,且P(B︱A)=0.8,则和事件A+B的概率P(A+B)=()A. 0.7B. 0.2C. 0.5D. 0.6正确答案:A3.现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6 000粒种子中良种所占的比例与1/6的差是()A. 0.0124B. 0.0458C. 0.0769D. 0.0971正确答案:A4.袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.则第二次取出白球的概率为 ( )B. 3/10C. 3/11D. 4/11正确答案:D5.有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为A. 0.89B. 0.98C. 0.86D. 0.68正确答案:B6.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A 不发生的概率相等,则P(A)=B. 1/2C. 1/3D. 2/3正确答案:D7. 环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰ 现取5份水样,测定该有害物质含量,得如下数据:0.53‰, 0.542‰,0.510‰ , 0.495‰ , 0.515‰则抽样检验结果( )认为说明含量超过了规定A. 能B. 不能C. 不一定D. 以上都不对正确答案:A8.一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率( ).B. 1/10!C. 4/10!D. 2/9!正确答案:A9.从a,b,c,d,...,h等8个字母中任意选出三个不同的字母,则三个字母中不含a与b的概率()A. 14/56B. 15/56C. 9/14D. 5/14正确答案:D10. 点估计( )给出参数值的误差大小和范围A. 能B. 不能D. 以上都不对正确答案:B11.设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3;X=1时,P=2/3。

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业《概率论与数理统计》第1阶段在线作业在《概率论与数理统计》的第1阶段在线作业中,我学习了概率论和数理统计的基本概念和方法。

本阶段的学习内容主要涵盖了随机变量、概率分布、多维随机变量、正态分布以及抽样分布等知识点。

在学习随机变量的部分,我了解了随机变量的概念和分类。

随机变量是概率论的核心概念之一,它是一个取值不确定的变量。

根据随机变量的取值情况,可以将其分为离散随机变量和连续随机变量两类。

离散随机变量的取值为可数个,而连续随机变量的取值为某个区间内的任意实数值。

概率分布是描述随机变量取值的规律性的数学函数。

在学习概率分布时,我了解了离散随机变量的概率质量函数(PMF)和连续随机变量的概率密度函数(PDF)。

离散随机变量的PMF可以通过对每个取值的概率进行求和得到,而连续随机变量的PDF则需要进行积分运算。

多维随机变量是指两个或多个随机变量构成的向量。

在学习多维随机变量时,我认识了联合概率密度函数和联合概率质量函数的概念,并掌握了如何计算多维随机变量的边缘概率密度函数和边缘概率质量函数。

正态分布是概率论中最重要的分布之一。

在学习正态分布时,我了解了其数学特征和性质,并学会了如何进行正态分布的标准化处理。

正态分布在实际中具有广泛的应用,尤其在统计推断中扮演着重要的角色。

抽样分布是指从总体中抽取多个样本,计算样本统计量,并研究这些统计量的分布情况。

在学习抽样分布时,我了解了样本均值的抽样分布,以及中心极限定理的概念和推导过程。

中心极限定理表明,当样本容量足够大时,样本均值的分布趋近于正态分布。

通过完成在线作业,我对概率论与数理统计的基本概念和方法有了更深入的了解。

这些知识和技能对于进行数据分析和统计推断非常重要,也为今后在相关领域的学习和研究打下了坚实的基础。

我会继续努力学习,巩固这些知识,并运用它们解决实际问题。

概率论与数理统计答案全

概率论与数理统计答案全

2 2 2 2 查表得χ2 α/2 (n − 1) = χ0.025 (19) = 32.852, χ1−α/2 (n − 1) = χ0.975 (19) = 8.907, 所以σ 的置信度
为0.95的置信区间为 ( ) 2 2 ( n − 1) s ( n − 1) s 19 × 497 19 × 497 , = , 2 32.852 8.907 χα/2 (n − 1) χ2 1−α/2 (n − 1)
n n ∏ i=1 n ∑ xi (ln Cm + ln pxi + ln(1 − p)(m − xi )), i =1 xi xi Cm p (1 − p)m− xi ,
∑ 1 d ln L( p) ∑ 1 1 1∑ ( xi − xi − xi ) = 0, = (m − xi )) = (nm − dp p 1− p p i=1 1− p i =1 i=1
习 题 7
1 题目见教材 解: 2 题目见教材 解:
3 题目见教材 证明: 4 题目见教材 解 : (1) 矩估计法 因为X ∼ B(m, p), 所以E (X ) = mp. 令 ¯, E (X ) = X 则 p的矩估计量为 p ˆ=
¯ X m.
(2) 极大似然估计法: 似然函数 L( p) = 对数似然函数 ln L( p) = 令
n n
¯. 得 p的极大似然估计值 p ˆ=x ¯,极大似然估计量 p ˆ=X 1
5 题目见教材 解 : (1) 矩估计法: 由X 的概率密度知 ∫ E (X ) = 令 ¯, E (X ) = X ˆ = 2X ¯. 则β的矩估计量为β (2) 极大似然估计法: 似然函数 L(β) =
n ∏ i=1

完整版概率论与数理统计习题集及答案文档良心出品

完整版概率论与数理统计习题集及答案文档良心出品

《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。

§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。

15春华师《概率论与数理统计》在线作业答案

15春华师《概率论与数理统计》在线作业答案

华师《概率论与数理统计》在线作业
一、单选题(共15 道试题,共60 分。


1. 一部件包括10部分。

每部分的长度是一个随机变量,它们相互独立且具有同一分布。

其数学期望为2mm,均方差为0.05mm,规定总长度为20±0.1mm时产品合格,则产品合格的概率为()。

A. 0.527
B. 0.364
C. 0.636
D. 0.473
正确答案:D
2. 一条自动生产线上产品的一级品率为0.6,现检查了10件,则至少有两件一级品的概率为()。

A. 0.012
B. 0.494
C. 0.506
D. 0.988
正确答案:D
3. 每颗炮弹命中飞机的概率为0.01,则500发炮弹中命中5发的概率为()。

A. 0.1755
B. 0.2344
C. 0.3167
D. 0.4128
正确答案:A
4. 工厂每天从产品中随机地抽查50件产品,已知这种产品的次品率为0.1%,,则在这一年内平均每天抽查到的次品数为()。

A. 0.05
B. 5.01
C. 5
D. 0.5
正确答案:A
5. 炮战中,在距离目标250米,200米,150米处射击的概率分别为0.1, 0.7, 0.2, 而在各处射击时命中目标的概率分别为0.05, 0.1, 0.2。

若已知目标被击毁,则击毁目标的炮弹是由距目标250米处射出的概率为()。

A. 交换行为
B. 投资行为
C. 协议行为。

大学概率论与数理统计习题及参考答案

大学概率论与数理统计习题及参考答案

P A P AB1 AB2 P AB1 P AB2 P B1 P A B1 P B2 P A B2
2 1 0.97 0.98 有9个是新的。第一次比赛从中任取3个来用, 比赛后仍放回盒中,第二次比赛再从盒中任取3个,求第二次取出的球都是 新球的概率。 解: 设 Bi 表示事件“第一次取出了 i 个新球”i, =0,1,2,3.
从而P( A B) 1 P( AB) 1 0.012 0.988.
10
三、为防止意外, 在矿内同时设有两种报警系统A与B, 每种系统单独使用时, 其有
效的概率系统A为0.92,系统B为0.93, 在A失灵的条件下, B有效的概率为0.85, 求 (1)发生意外时, 这两个报警系统至少有一个有效的概率; (2) B失灵的条件下, A有效的概率.

设事件A表示“报警系统A有效”,事件B表示“报警系统B有效”,由已知
P ( A) 0.92, P ( B) 0.93, P ( B A) 0.85,
则 P ( AB ) P ( A) P ( B A) 0.08 0.85 0.068 , 故 P( AB) P( B) P( AB) 0.93 0.068 0.862,
AB 6 ; A B 1 ,5 .
1
四、写出下面随机试验的样本空间: (1)袋中有5只球,其中3只白球2只黑球,从袋中 任意取一球,观察其颜色; (2) 从(1)的袋中不放回任意取两次球(每次取出一个)观察其颜色; (3) 从(1)的袋中不放回任意取3只球,记录取到的黑球个数; (4) 生产产品直到有10件正品为止,记录生产产品的总件数; 解 (1)设
i
表示抛掷一颗骰子,出现i点数,i=1,2,3,4,5,6. 则样本空间

概率论数理统计答案

概率论数理统计答案

概率论数理统计答案概率论、数理统计是我们生活中不可避免地遇到的问题。

这些问题的解决离不开概率论和数理统计的知识。

然而,这两门学科并不是一见倾心,即使学了也未必能轻松掌握,尤其是对于初学者来说。

下面,我将通过几个问题的答案,来阐述概率论和数理统计的相关知识。

问题1:某科目的考试成绩满分为100分,进行了300人的考试,平均分为70分,标准差为15分,问该科成绩在80分以上的学生占总人数的比例是多少?答:根据正态分布理论,假设该科目的成绩服从正态分布,可以通过标准正态分布表确定得分区间的分位点。

首先,计算该科考试的标准化分数:z = (80-70)/15 = 0.67,然后查表可知,该分数区间的累积概率为0.2514。

也就是说,80分以上的学生人数占总人数的比例为25.14%。

问题2:某家超市进货的鸡蛋尺寸有偏差,但保证平均每箱鸡蛋数量为24个。

现在有一个顾客随机挑选一箱鸡蛋,请问该顾客选择到数量小于20个的概率是多少?答:假设每箱鸡蛋的数量服从正态分布,那么该超市的进货量应该符合中心极限定理。

设每个鸡蛋的数量的均值为μ,标准差为σ,则该超市进货24个鸡蛋的标准化分数为z = (20-24μ)/σ。

根据正态分布的特性,计算可得符合条件的概率为P(Z<z),Z为标准正态分布,z的值可以从标准正态分布表中查找得知。

如此算下来,该顾客选择到数量小于20个的概率为0.0003。

问题3:某手机厂商有两种机型,分别为A、B型。

现在调查了10000名用户,发现喜欢A型机的用户有4000人,喜欢B型机的用户有6000人,而两种机型都喜欢的用户有2000人。

那么,随机选择一个用户,问TA喜欢B型机的概率是多少?答:根据全概率公式,随机选择一个用户个体喜欢B型机的概率为P(B) = P(B|A)P(A) + P(B|A')P(A'),其中,P(B|A)表示个体喜欢A型机的条件下喜欢B型机的概率,P(A)表示个体喜欢A型机的概率,P(B|A')表示个体不喜欢A型机的条件下喜欢B型机的概率,P(A')表示个体不喜欢A型机的概率。

《概率论与数理统计》在线作业

《概率论与数理统计》在线作业

第一阶段在线作业第1题1-设川与另互为对立事件,且* ? U) >0, P <B) >0,则下列各式中错误的是(P VA JP⑷=1申⑻ B.P (>4B) =P <A)B (B)屮C.F(AB) = 1D.P (AUB) =2您的答案:B题目分数:0.5此题得分:0.5批注:对立不是独立。

两个集合互补。

第2题2•设儿&为两个随机事件.且P U)>0,则P UU5U)=( 八A. P (AB)B.P (乂)4C P (B) D3您的答案:D题目分数:0.5此题得分:0.5批注:A发生,必然导致和事件发生。

■3.下列各函数可作为随机变壘分市函曹时是(0<r<l(_1」工w -1;C.用兀-[1 r>l.X 2 0<XClj .J r>l.I <0;0 <x <1 ;zx>1.您的答案:B题目分数:0.5此题得分:0.5批注:分布函数的取值最大为1,最小为0.第4题4 .设随机变量X的概率密度次(|x|a 其他4c.2J!l JP{-i<z<i}=(DU您的答案:A题目分数:0.5此题得分:0.5批注:密度函数在【-1,1】区间积分。

第5题玄役岛B为陋机事件,P (B) Ah P (A|B) =1贝J必有( )束A. F(AUB)^F (A)B. A ziBC. P (A) =P (B) D・ P (AB) =F <A)-您的答案:A题目分数:0.5此题得分:0.5批注:A答案,包括了BC两种情况。

第6题&将两封信ffi机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()心C. 2!D当C:4!您的答案:A题目分数:0.5此题得分:0.5批注:古典概型,等可能概型,16种总共的投法。

第7题第9题7.某人连续向一目标射击,每次命中目标的概率沟轴 他连续射击直至倫中沟止,则射註 i ■燉沏3的概率是( )-您的答案:C题目分数:0.5 此题得分:0.5批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。

东财《概率论与数理统计》在线作业一15秋100分答案

东财《概率论与数理统计》在线作业一15秋100分答案

东财《概率论与数理统计》在线作业一一、单选题(共17 道试题,共68 分。

)1. 下列试验不属于古典型随机试验的是()A. 试验E为掷一枚硬币B. 试验E为从一箱(装有50个灯泡)中抽取一个灯泡C. 试验E为某人连续射击两次D. 试验E为测试某一电器的使用寿命正确答案:D2. 试验E为某人连续射击两次试验,考察射击的过程及结果,如果事件A表示“射中一次”,则有利于A的基本事件数为()A. 3B. 1C. 2D. 4正确答案:C3. 现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A. 0.0124B. 0.0458C. 0.0769D. 0.0971正确答案:A4. 有六箱产品,各箱产品的合格率分别为0.99,0.95,0.96,0.98,0.94,0.97,今从每箱中任取一件产品,求全部是合格品的概率是()A. 0.8068B. 0.5648C. 0.6471D. 0.8964正确答案:A5. 利用样本观察值对总体未知参数的估计称为( )A. 点估计B. 区间估计C. 参数估计D. 极大似然估计正确答案:C6. 设试验E为在一批灯泡中,任取一个,测试它的寿命。

则E的基本事件空间是( )A. {t|t>0}B. {t|t<0}C. {t|t=100}D. {t|t≧0}正确答案:D7. 某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,。

概率论与数理统计参考答案

概率论与数理统计参考答案

概率论与数理统计参考答案概率论与数理统计参考答案概率论与数理统计是一门应用广泛的数学学科,它研究的是随机现象的规律性和不确定性。

在现代科学和工程技术中,概率论与数理统计的应用十分广泛,涉及到统计数据的分析、风险评估、市场预测等方面。

本文将以一些常见的问题为例,简要介绍概率论与数理统计的一些基本概念和方法,并给出相应的参考答案。

1. 掷骰子问题假设有一个均匀的六面骰子,每个面上的数字从1到6。

现在连续投掷这个骰子10次,每次都记录下投掷的结果。

问:a) 投掷10次后,出现6的次数是多少?b) 投掷10次后,出现奇数的次数是多少?解答:a) 掷骰子的每次结果都是相互独立的,且每个面出现的概率相等。

所以,每次投掷出现6的概率是1/6。

由于每次投掷都是相互独立的,所以投掷10次后,出现6的次数服从二项分布。

根据二项分布的概率计算公式,可以得到投掷10次后,出现6的次数为:P(X=0) = C(10, 0) * (1/6)^0 * (5/6)^10 ≈ 0.1615P(X=1) = C(10, 1) * (1/6)^1 * (5/6)^9 ≈ 0.3230P(X=2) = C(10, 2) * (1/6)^2 * (5/6)^8 ≈ 0.2907P(X=3) = C(10, 3) * (1/6)^3 * (5/6)^7 ≈ 0.1550P(X=4) = C(10, 4) * (1/6)^4 * (5/6)^6 ≈ 0.0595P(X=5) = C(10, 5) * (1/6)^5 * (5/6)^5 ≈ 0.0156P(X=6) = C(10, 6) * (1/6)^6 * (5/6)^4 ≈ 0.0026P(X=7) = C(10, 7) * (1/6)^7 * (5/6)^3 ≈ 0.0003P(X=8) = C(10, 8) * (1/6)^8 * (5/6)^2 ≈ 0.00002P(X=9) = C(10, 9) * (1/6)^9 * (5/6)^1 ≈ 0.000001P(X=10) = C(10, 10) * (1/6)^10 * (5/6)^0 ≈ 0.0000001b) 类似地,投掷10次后,出现奇数的次数也可以用二项分布来计算。

地大《概率论与数理统计》在线作业一答卷

地大《概率论与数理统计》在线作业一答卷
A.0.761
B.0.647
C.0.845
D.0.464
答案:D
21.
A.a
B.b
C.c
D.d
答案:A
22.10部机器独立工作,每部停机的概率为0.2。则3部机器同时停机的概率为()。
A.0.2013
B.0.7987
C.0.5532
D.0.4365
答案:A
23.
A.a
B.b
C.c
D.d
答案:B
24.假设有100件产品,其中有60件一等品,30件二等品,10件三等品,从中一次随机抽取 两件,则恰好抽到2件一等品的概率是( )
A.59/165
B.26/165
C.16/33
D.42/165
答案:A
25.设试验E为的投掷一枚骰子,观察出现的点数。 试判别下列事件是随机事件的为( )
A.1/8
B.3/8
C.5/8
D.7/8
答案:B
9.设连续型随机变量X的概率密度和分布函数分别为f(x),F(x),下列表达式正确为()。
A.0≤f(x)≤1
B.P(X=x)=F(x)
C.P(X=x)=f(x)
D.P(X=x)≤F(x)
答案:A
10.
A.a
B.b
C.c
D.d
答案:A
11.有一袋麦种,其中一等的占80%,二等的占18%,三等的占2%,已知一、二、三等麦种的发芽率分别为0.8,0.2,0.1,现从袋中任取一粒麦种,则它发芽的概率为()。 .0.1
答案:B
12.试判别下列现象是随机现象的为( )

概率论与数理统计天津大学作业答案

概率论与数理统计天津大学作业答案

概率论与数理统计复习题填空题1. 设随机变量1X的分布律为P{X k} A(—)k,k 1,2,3,4,则A ____________________2答案:16152. 设总体X服从均匀分布U( 1,), 为未知参数。

X1l X2^(,X n为来自总体X的一个简单随机样本,X为样本均值,则的矩估计量为________________ 0答案:3. 设X服从参数为1的指数分布e(1), 丫服从二项分布B(10,0.5),则血oD(X)答案:2.54. 设A,B,C为三个随机事件,则“ A,B,C中只有两个发生”可表示为答案:ABC ABC ABC5. 某袋中有7个红球、3个白球,甲乙二人依次从袋中取一球,每人取后不放回,则乙取到红球的概率为______________ 0答案:0.76. 设A,B,C为三个随机事件,则“ A,B,C中只有一个发生”可表示为__________ o 答案:ABC ABC ABC7. 某袋中有9个红球、3个白球,甲乙二人依次从袋中取一球,每人取后不放回,则乙取到白球的概率为_____________ 0答案:0.25选择题1、一批产品中有正品也有次品,从中随机抽取三件,设A, B, C分别表示抽出的第一件、第二件、第三件是正品,下列事件不能描述“正品不多于两件” 的是(C ) o(A) ABC (B)ABC ABC ABC ABC ABC ABC ABC(C ) ABC (D ) ABC2、设总体X 〜N(3,16) , X 1,X 2^|,X 16为来自总体X 的一个样本,X 为样本均 值,则(A )(A) X 3~ N(0,1)(B) 4(X 3)~ N(0,1)X 3 (C) ----------- N(o,1)(D)X 3〜N (o,1)4163、在假设检验中,H o 表示原假设,H 1表示对立假设,则犯第一类错误的情况 为(C )4、设X 1,X 2,X 3,X 4是来自均值为 的总体的样本,其中未知,则下列估计量中不是 的无偏估计的是(B )。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

北交《概率论与数理统计》在线作业一答案

北交《概率论与数理统计》在线作业一答案

北交《概率论与数理统计》在线作业一-0003试卷总分:100 得分:0一、单选题(共30 道试题,共75 分)1.现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A.0.0124B.0.0458C.0.0769D.0.0971正确答案:A2.假设事件A和B满足P(A∣B)=1,则A.A、B为对立事件B.A、B为互不相容事件C.A是B的子集D.P(AB)=P(B)正确答案:D3.设X与Y是相互独立的两个随机变量,X的分布律为:X=0时,P=0.4;X=1时,P=0.6。

Y 的分布律为:Y=0时,P=0.4,Y=1时,P=0.6。

则必有()A.X=YB.P{X=Y}=0.52C.P{X=Y}=1D.P{X#Y}=0正确答案:B4.设g(x)与h(x)分别为随机变量X与Y的分布函数,为了使F(x)=ag(x)+bh(x)是某一随机变量的分布函数,在下列各组值中应取()A.a=3/5 b=-2/5B.a=-1/2 b=3/2C.a=2/3 b=2/3D.a=1/2 b=-2/3正确答案:A5.设随机变量X~N(0,1),Y=3X+2,则Y服从()分布。

A.N(2,9)B.N(0,1)C.N(2,3)D.N(5,3)正确答案:A6.参数估计分为()和区间估计A.矩法估计B.似然估计C.点估计D.总体估计正确答案:C7.设A,B为任意两事件,且A包含于B(不等于B),P(B)≥0,则下列选项必然成立的是A.P(A)=P(A∣B)B.P(A)≤P(A∣B)C.P(A)>P(A∣B)D.P(A)≥P(A∣B)正确答案:B8.在区间(2,8)上服从均匀分布的随机变量的数学期望为()A.5B.6C.7D.8正确答案:A9.事件A与B相互独立的充要条件为A.A+B=ΩB.P(AB)=P(A)P(B)C.AB=ФD.P(A+B)=P(A)+P(B)正确答案:B10.假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。

福师《线性代数与概率统计》在线作业一15秋100分答案

福师《线性代数与概率统计》在线作业一15秋100分答案

福师《线性代数与概率统计》在线作业一
一、单选题(共50 道试题,共100 分。


1. 甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6乙击中敌机的概率为0.5,则敌机被击中的概率是()
A. 0.92
B. 0.24
C. 0.3
D. 0.8
正确答案:D
2. 任何一个随机变量X,如果期望存在,则它与任一个常数C的和的期望为()
A. EX
B. EX+C
C. EX-C
D. 以上都不对
正确答案:B
3. 假设事件A和B满足P(A∣B)=1,则
A. A、B为对立事件
B. A、B为互不相容事件
C. A是B的子集
D. P(AB)=P(B)
正确答案:D
4. 从5双不同的鞋子中任取4只,求此4只鞋子中至少有两只配成一双的概率是
A. 2/21
B. 3/21
C. 10/21
D. 13/21
正确答案:D
5. 有两个口袋,甲袋中有4个白球和6个红球,乙袋中有5个白球和4个红球,从甲袋中任取1个球放入乙袋,再由乙袋任1个球,则取得白球的概率是()
A. 0.45
B. 0.64
C. 0.54
D. 0.96
正确答案:C
6. 已知事件A与B相互独立,且P(B)>0,则P(A|B)=()
A. P(A)
B. P(B)
C. P(A)/P(B)
D. P(B)/P(A)
正确答案:A
7. 下列集合中哪个集合是A={1,3,5}的子集
A. {1,3}。

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;ABACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业 1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率.记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+== (2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯= (2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成,每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -===☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee -⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0,0.Y y y f y y ->=≤⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y =''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=>6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X xf x dy x x ==-<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y yy Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩.1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4. 设二维离散型随机变量(X , Y )的联合分布律为求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y ey f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j (,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛=≥==-⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本, 212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确答案:D满分:5分得分:5
5Байду номын сангаас题面见图片
A. A
B. B
C. C
D. D
正确答案:D满分:5分得分:5
6.题面见图片
A. A
B. B
C. C D. D
正确答案:C满分:5分得分:5
7.题面见图片
A. A
B. B
C. C
D. D
正确答案:A满分:5分得分:5
8.题面见图片
A. A
B. B
C. C D. D
正确答案:A满分:5分得分:5
17.题面见图片
A. A
B. B C. C
D. D
正确答案:C满分:5分得分:5
18.题面见图片
A. A
B. B
C. C D. D
正确答案:C满分:5分得分:5
19.题面见图片
A. A
B. B C. C D. D
正确答案:B满分:5分得分:5
20.题面见图片
A. A
B. B
正确答案:A满分:5分得分:5
9.题面见图片
A. A
B. B C. C
D. D
正确答案:A满分:5分得分:5
10.题面见图片
A. A
B. B
C. C D. D
正确答案:B满分:5分得分:5
11.题面见图片
A. A
B. B C. C D. D
正确答案:D满分:5分得分:5
12.题面见图片
A. A
B. B C. C D. D
《概率论与数理统计》在线作业一
1.题面见图片
A. A
B. B
C. C
D. D
正确答案:D满分:5分得分:5
2.题面见图片
A. A
B. B
C. C
D. D
正确答案:A满分:5分得分:5
3.题面见图片
A. A
B. B
C. C
D. D
正确答案:A满分:5分得分:5
4.题面见图片
A. A
B. B
C. C
D. D
C. C
D. D
正确答案:C满分:5分得分:5
正确答案:B满分:5分得分:5
13.题面见图片
A. A
B. B
C. C
D. D
正确答案:C满分:5分得分:5
14.题面见图片
A. A
B. B
C. C
D. D
正确答案:B满分:5分得分:5
15.题面见图片
A. A
B. B C. C
D. D
正确答案:B满分:5分得分:5
16.题面见图片
A. A
B. B C. C D. D
相关文档
最新文档