圆周运动1(5)
合格性考试讲义 必修二 6-1 圆周运动
合格性考试讲义 必修二第六章 圆周运动 第一节 圆周运动一、描述圆周运动的物理量 1.圆周运动运动轨迹为圆周或一段圆弧的机械运动,圆周运动为曲线运动,故一定是变速运动. 2.线速度(1)物理意义:描述圆周运动物体的运动快慢.(2)定义公式:v =ΔsΔt .(3)方向:线速度是矢量,其方向为物体做圆周运动时该点的切线方向. 3.角速度(1)物理意义:描述物体绕圆心转动的快慢.(2)定义公式:ω=ΔθΔt .(3)单位:弧度/秒,符号是rad/s. (4)对角速度的理解(1)角速度描述做圆周运动的物体绕圆心转动的快慢,角速度越大,物体转动得越快.(2)角速度的大小:ω=ΔθΔt ,Δθ代表在时间Δt 内物体与圆心的连线转过的角度. (3)在匀速圆周运动中,角速度大小不变.4.转速和周期(1)转速:物体单位时间内转过的圈数. (2)周期:物体转过一周所用的时间. (3)对周期和频率(转速)的理解①周期描述了匀速圆周运动的一个重要特点——时间周期性.其具体含义是:描述匀速圆周运动的一些变化的物理量,每经过一个周期时,大小和方向与初始时刻完全相同,如线速度等.①当单位时间取1 s 时,f =n .频率和转速对匀速圆周运动来说在数值上是相等的,但频率具有更广泛的意义,两者的单位也不相同.①周期、频率和转速间的关系:T =1f =1n .二、描述圆周运动的物理量及其关系 1.描述圆周运动的各物理量之间的关系2.描述圆周运动的各物理量之间关系的理解(1)角速度、周期、转速之间关系的理解:物体做匀速圆周运动时,由ω=2πT=2πn 知,角速度、周期、转速三个物理量,只要其中一个物理量确定了,其余两个物理量也唯一确定了.(2)线速度与角速度之间关系的理解:由v =ω·r 知,r 一定时,v ①ω;v 一定时,ω①1r ;ω一定时,v ①r .同轴传动皮带传动齿轮传动A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点(两齿轮的齿数分别为n 1、n 2)角速度、周期相同线速度大小相同线速度大小相同三、匀速圆周运动1.定义:线速度大小不变的圆周运动. 2.特点(1)线速度大小不变,方向不断变化,是一种变速运动. (2)角速度不变. (3)转速、周期不变.【学考演练】1.思考判断(正确的打“√”,错误的打“×”)(1)做圆周运动的物体,其线速度的方向是不断变化的.(√) (2)线速度越大,角速度一定越大. (×) (3)转速越大,周期一定越大. (×)(4)做匀速圆周运动的物体相等时间内通过的弧长相等. (√) (5)做匀速圆周运动的物体相等时间内通过的位移相同. (×) (6)匀速圆周运动是一种匀速运动. (×)2.(2019·云南昆明期末)下列运动中,物体运动状态不变的是( ) A .自由落体运动 B .匀速直线运动 C .匀速圆周运动 D .平抛运动解析:选B.自由落体运动是匀加速直线运动,则运动状态不断变化,选项A 错误;匀速直线运动的运动状态不变,选项B 正确;匀速圆周运动是变加速曲线运动,运动状态不断改变,选项C 错误;平抛运动,是匀变速曲线运动,则运动状态不断改变,选项D 错误.3.(多选)对于做匀速圆周运动的物体,下列说法中正确的是( ) A .相等的时间内通过的路程相等 B .相等的时间内通过的弧长相等 C .相等的时间内通过的位移相等D .在任何相等的时间里,连接物体和圆心的半径转过的角度都相等解析:选ABD.匀速圆周运动是指速度大小不变的圆周运动,因此在相等时间内通过的路程相等,弧长相等,转过的角度也相等,A 、B 、D 项正确;相等时间内通过的位移大小相等,方向不一定相同,故C 项错误.4.(多选)做匀速圆周运动的物体,下列物理量中不变的是( ) A .速度 B .速率 C .周期 D .转速解析:选BCD 速度是矢量,匀速圆周运动的速度方向不断改变;速率、周期、转速都是标量,B 、C 、D 正确.5.关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下面说法中正确的是( ) A .线速度大的角速度一定大 B .线速度大的周期一定小 C .角速度大的半径一定小 D .角速度大的周期一定小解析:选D 由v =ωr 知,ω=vr ,角速度与线速度、半径两个因素有关,线速度大的角速度不一定大,A 错误;同样,r =vω,半径与线速度、角速度两个因素有关,角速度大的半径不一定小,C 错误;由T =2πr v 知,周期与半径、线速度两个因素有关,线速度大的周期不一定小,B 错误;而由T =2πω可知,ω越大,T 越小,D 正确.6.下列关于匀速圆周运动的说法中,正确的是( ) A .是线速度不变的运动 B .是角速度不变的运动 C .是角速度不断变化的运动 D .是相对圆心位移不变的运动解析:选B 匀速圆周运动,角速度保持不变,线速度大小保持不变,方向时刻变化,A 、C 错误,B 正确;相对圆心的位移大小不变,方向时刻变化,D 错误。
第六章圆周运动第1节圆周运动
弧长 l
=
=
半径 r
3.转速n (r/s):单位时间内转过的圈数 转速越大物体运动得越快
4.周期T (s):转过一周所用的时间 周期越大运动得越慢,周期越小运动得越快
描述圆周运动快慢的物理量:线速度v、角速度w、转速n
匀速圆周运动
物体沿着圆周运动,并且线速度的大小
处处相等.
注意:匀速圆周运动是一种变
题6 [2019·广东广雅中学高一检测]如图所示,A、
B两轮属于摩擦传动,两轮半径RA=2RB,P、Q为两 【点拨】
轮边缘上的点,当主动轮A匀速转动时,P、Q两点 (1)摩擦传动时,两
角速度大小之比为( B )
轮边缘的线速度大小相
A.2∶1 C.1∶1
B.1∶2 D.1∶4
等。 (2)两轮的转动方向 相反。
1 2
gt12
,
所以t1=
2R 。
g
A物体做匀速圆周运动,从a点运动到d点转过的角度应满足θ=2πn+ 3 (n=0,1,2,…)
2
所用时间为t2=
=
2
n
3 2
(n=0,1,2,…)
t1=t2,得
2R g
=
2
n
3 2
(n=0,1,…)。
2
2R
已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。下列说法正确的是
( BC)
A.从动轮做顺时针转动 B.从动轮做逆时针转动
C.从动轮的转速为 r1 n D.从动轮的转速为 r2 n
r2
r1
【解析】 A错,B对:由于皮带是交叉传动,所以主动轮做顺时针转动时,从动轮做逆时针转动。 C对,D错:皮带轮边缘上各点的线速度大小相等,又v1=ω1r1=2nπr1,v2=ω2r2=2n′πr2,由v1=v2 得n′= r1 n 。
第3课时 圆周运动(一)
3.对向心力的进一步理解 向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的 分力,总之,只要能达到维持物体做圆周运动效果的力,就是向心力.如水平 圆盘上跟随圆盘一起匀速转动的物体[图(甲)]和水平地面上匀速转弯的汽 车,所受摩擦力提供向心力;圆锥摆[图(乙)]和以规定速率转弯的火车,向心 力是重力与弹力的合力.
A.Q受到桌面的支持力变大 B.Q受到桌面的静摩擦力变大 C.小球P运动的线速度变小 D.小球P运动的角速度变大
解析:金属块 Q 保持在桌面上静止,对于金属块 Q 和小球 P 整体竖直方向上没有加速度,根据平
衡条件知,Q 受到桌面的支持力等于两物体的重力保持不变,选项 A 错误;设细线与竖直方向的
夹角为θ,细线的拉力大小为 FT,细线的长度为 L,小球 P 做匀速圆周运动时,由重力和细线的拉
力的合力提供向心力,如图所示,则有 FT= mg ,Fn=mgtan θ=mω2Lsin θ= mv2 ,解得ω
cos
L sin
= g ,v= gLsin tan ,使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增 L cos
4.圆周运动中向心力的分析 (1)匀速圆周运动:物体做匀速圆周运动时受到的外力的合力就是向心力,向 心力大小不变,方向始终与速度方向垂直且指向圆心,这是物体做匀速圆周 运动的条件. (2)变速圆周运动:在变速圆周运动中,合外力不仅大小随时间改变,其方向 也不一定沿半径指向圆心.合外力沿半径方向的分力(或所有外力沿半径方 向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向. 合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小.
R ab Ra 2
ac Rc
3 .故 aa∶ab∶ac=9∶6∶4,故选项 D 正确. 2
高三物理一轮复习 第3讲 圆周运动
心力。
(×)
(6)“魔盘”的转速逐渐增大时,盘上的人便逐渐向边缘滑去,这是人受沿
半径向外的离心力作用的缘故。
(× )
(7)当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上而不会
滑下,此时的向心力是由静摩擦力提供。
(×)
提能点(一) 描述圆周运动的物理量(自练通关)
点点通
1.[皮带传动]
(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小
3.[同轴传动] (2021·上海黄浦区模拟)某高中开设了糕点制作的选修课, 小明同学在体验糕点制作“裱花”环节时,他在绕中心匀 速转动的圆盘上放了一块直径 8 英寸(20 cm)的蛋糕,在 蛋糕上每隔 4 s 均匀“点”一次奶油,蛋糕一周均匀 “点”上 15 个奶油,则下列说法正确的是 A.圆盘转动的转速约为 2π r/min B.圆盘转动的角速度大小为3π0 rad/s C.蛋糕边缘的奶油线速度大小约为π3 m/s D.蛋糕边缘的奶油向心加速度约为9π0 m/s2
速圆周运动需要的向心力。
情景创设 现在有一种叫作“魔盘”的娱乐设施,如图所示。当“魔盘”转动很慢时, 人会随着“魔盘”一起转动,当盘的速度逐渐增大时,盘上的人便逐渐向边缘 滑去,离转动中心越远的人,这种滑动的趋势越明显,当“魔盘”转动到一定 速度时,人会“贴”在“魔盘”竖直壁上而不会滑下。
微点判断
(1)人随“魔盘”一起做匀速圆周运动时,其角速度是不变的。
(√ )
(2)人随“魔盘”一起做匀速圆周运动时,其合外力是不变的。
(× )
(3)人随“魔盘”一起做匀速圆周运动的向心加速度与半径成反比。
(× )
(4)随“魔盘”一起做匀速圆周运动时,人离“魔盘”中心越远,人运动得
第1节 圆周运动
第1节 圆周运动1.理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度,会用线速度大小的公式v =ΔsΔt进行计算.(重点)2.理解角速度的概念,会用公式ω=ΔφΔt 进行计算.(重点) 3.知道周期的概念.4.理解线速度、角速度和周期的关系:v =rω=2πrT.(重点+难点)一、形形色色的圆周运动物体的运动轨迹是圆的运动叫做圆周运动.圆周运动是一种常见的运动,如教材P 20图2-1-1所示.二、匀速圆周运动的线速度、角速度和周期1.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.2.线速度(1)物理意义:描述做匀速圆周运动的质点运动快慢的物理量. (2)定义:v =ΔsΔt(3)矢量性:线速度的方向和半径垂直,和圆弧相切(4)说明:匀速圆周运动是一种变速运动,这里所说的匀速只是速率不变的意思. 3.角速度(1)物理意义:描述做匀速圆周运动的质点转动快慢的物理量.(2)定义式:连接质点和圆心的半径所转过的角度Δφ跟所用时间Δt 的比值,即ω=ΔφΔt .(3)单位:弧度每秒,符号为rad/s(4)匀速圆周运动是角速度不变的圆周运动.(5)周期:做匀速圆周运动的物体,运动一周所用的时间. 三、线速度、角速度和周期之间的关系 1.v =2πr T .2.ω=2πT .3.v =rω.物体做圆周运动时,如果线速度较大,是否说明其角速度一定大?提示:由v =rω可知,因物体圆周运动的半径大小不知,故即使物体做圆周运动的线速度较大,其圆周运动的角速度也不一定大.对圆周运动的理解1.描述圆周运动的各物理量之间的关系2.对公式v =rω的加深理解线速度v 和角速度ω都可以用来描述圆周运动的快慢,公式v =rω反映了它们和半径之间的关系.(1)r 一定时,v ∝ω举例:骑自行车时,车轮转得越快,角速度就越大,车轮边缘上各点的线速度就越大. (2)ω一定时,v ∝r举例:地球上各点都绕地轴做圆周运动,且角速度相同,但地球表面纬度越低的地方,到地轴的距离就越大,因此线速度就越大,赤道上各点的线速度最大.(3)v 一定时,ω∝1r举例:如图所示的皮带传动装置中,两轮边缘上各点的线速度大小相等,但大轮的r 较大,所以ω较小.(1)v、ω、r间的关系是瞬时对应的.(2)v、ω、r三个量中,只有先确定其中一个量不变,才能进一步明确另外两个量是正比还是反比关系.(3)若比较物体沿圆周运动的快慢看线速度,若比较物体绕圆心运动的快慢看角速度或周期.质点做匀速圆周运动,则下列说法正确的是( )①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的弧长都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等A.①②B.③④C.①③D.②④[解题探究] (1)线速度和角速度的物理含义各是什么?(2)匀速圆周运动的线速度和角速度有什么特点?[解析]匀速圆周运动是变速运动,故在相等的时间内通过的弧长相等,但位移方向不同,故①错误,②正确.因为角速度是不变的,故④正确.平均速度是位移与时间的比值,所以③错误.[答案] D传动装置1.共轴传动如图所示,A点和B点在同轴的一个圆盘上,圆盘转动时,它们的线速度、角速度、周期存在以下定量关系:ωA=ωB,v Av B=rR,T A=T B,并且转动方向相同.2.皮带传动如图甲所示,A点和B点分别是两个轮子边缘的点,两个轮子用皮带连起来,并且皮带不打滑.轮子转动时,它们的线速度、角速度、周期存在以下定量关系:v A=v B,ωAωB=rR,T AT B=Rr,并且转动方向相同.甲乙3.齿轮传动如图乙所示,A点和B点分别是两个齿轮边缘上的点,两个齿轮轮齿啮合.齿轮转动时,它们的线速度、角速度、周期存在以下定量关系:v A=v B,T AT B=r1r2=n1n2,ωAωB=r2r1=n2n1,两点转动方向相反.式中n1、n2分别表示两齿轮的齿数.如图所示为一种滚轮——“平盘无极变速器”的示意图,它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果认为滚轮不会打滑,那么主动轴转速n1、从动轴转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是( )A.n2=n1xr B.n2=n1rxC.n2=n1x2r2D.n2=n1xr[解析]平盘上距离主动轴轴心x处的线速度为v=2πxn1,滚轮与平盘间不打滑,则滚轮的转动线速度等于v,因此,滚轮的转速与其线速度之间满足v=2πrn2,故v=2πxn1=2πrn2,即n2=xr n1,选项A正确,其他选项均错.[答案] A1.如图所示是自行车传动结构的示意图,其中Ⅰ是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮,假设脚踏板的转速为n r/s,则自行车前进的速度为( )A .πnr 1r 3r 2B .πnr 2r 3r 1C .2πnr 1r 3r 2D .2πnr 2r 3r 1解析:选C .前进速度即为Ⅲ轮的线速度,由同一个轮上的角速度相等,同一条线上的线速度相等可得:ω1r 1=ω2r 2,ω3=ω2,再有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2,C 正确.圆周运动的周期性引起的多解问题1.分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去.2.确定处理方法(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键.(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上2n π,具体n 的取值应视情况而定.如图所示,质点A 从某一时刻开始在竖直平面内沿顺时针方向做匀速圆周运动,出发点与圆心等高,与此同时位于圆心的质点B 自由下落.已知圆周半径为R ,求质点A 的角速度ω满足什么条件时,才能使A 、B 相遇.[解析] 要使质点A 和质点B 相遇,则它们从开始运动到相遇经历的时间应相等,即t A=t B ,考虑到圆周运动的周期性,质点A 从开始运动到相遇经历的时间为t A =34T +nT (n =0,1,2,3,…)对于质点B ,由自由落体运动规律R =12gt 2B 得t B =2R g由圆周运动的周期公式有T =2πω解上述方程得ω=⎝⎛⎭⎫n +34π 2gR(n =0,1,2,3,…). [答案] ω=⎝⎛⎭⎫n +34π 2gR(n =0,1,2,3,…) 2.为了测定子弹的飞行速度,在一根水平放置的轴上固定两个薄圆盘A 、B ,A 、B 平行相距2 m ,轴杆的转速为3 600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔所在圆盘的半径的夹角是30°,如图所示,则该子弹的速度可能是( )A .360 m/sB .720 m/sC .1 440 m/sD .108 m/s解析:选C .子弹从A 盘到B 盘,盘转动的角度 θ=2πn +π6(n =0,1,2,3,…),盘转动的角速度ω=2πT =2πf =2πn =2π×3 60060rad/s =120π rad/s .子弹在A 、B 间运动的时间等于圆盘转动θ角所用的时间,即2 m v =θω,所以v =2ωθ=2×120π2πn +π6 m/s (n =0,1,2,3,…),v =1 44012n +1 m/s (n =0,1,2,3,…). n =0时,v =1 440 m/s ; n =1时,v ≈110.77 m/s ; n =2时,v =57.6 m/s ; ….[随堂检测]1.关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下列说法正确的是( ) A .线速度大的角速度一定大B .线速度大的周期一定小C .角速度大的半径一定小D .角速度大的周期一定小解析:选D .由v =rω得ω=vr ,显然只有当半径r 一定时,角速度与线速度才成正比,故A 项错;由v =2πr T 得T =2πrv ,只有当半径r 一定时,周期与线速度才成反比,故B 项错;由ω=v r 知,线速度一定时,角速度与半径成反比,故C 项错;由ω=2πT 得T =2πω,显然周期与角速度成反比,角速度大的,周期一定小,故D 项对.2.如图所示,闹钟和手表之间的争论中,其中闹钟是用哪个物理量来分析圆周运动的( )A .角速度B .周期C .线速度D .转速解析:选C .闹钟和手表秒针的角速度相等,根据v =rω,半径越大,线速度越大,闹钟秒针的针尖到转轴的距离大于手表的秒针的针尖到转轴的距离,所以v 闹>v 手,闹钟根据自己线速度大而说自己运动得快.故C 正确,A 、B 、D 错误.3.如图所示,普通轮椅一般由轮椅架、车轮、刹车装置等组成.车轮有大车轮和小车轮,大车轮上固定有手轮圈,手轮圈由患者直接推动.已知大车轮、手轮圈、小车轮的半径之比为9∶8∶1,假设轮椅在地面上做直线运动,手和手轮圈之间、车轮和地面之间都不打滑,当手推手轮圈的角速度为ω时,小车轮的角速度为( )A .ωB .18ωC .98ωD .9ω解析:选D .手轮圈和大车轮的转动角速度相等,都等于ω,大车轮、小车轮和地面之间不打滑,则大车轮与小车轮的线速度相等,若小车轮的半径是r ,则有v =ω·9r =ω′·r ,小车轮的角速度为ω′=9ω,选项D 正确.4.(多选)如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:选BC .因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误,B 正确;由于通过皮带传动,皮带与轮边缘接触处的线速度相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确,D 错误.5.从我国汉代古墓一幅表现纺织女纺纱的情景的壁画上看到(如图),纺车上,一根绳圈连着一个直径很大的纺轮和一个直径很小的纺锤,纺纱女只要轻轻摇动那个巨大的纺轮,那根绳圈就会牵动着另一头的纺锤飞快转动.如果直径之比是100∶1,若纺轮转动1周,则纺锤转动多少周?解析:纺轮和纺锤在相同时间内转过的圆弧弧长相等,即线速度相等,v 轮=v 锤,由v =ω·r 知角速度之比ω轮∶ω锤=1∶100即当纺轮转动1周时,纺锤转动100周. 答案:100周[课时作业][学生用书P93(单独成册)]一、单项选择题1.如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的线速度大小相等B .a 、b 和c 三点的角速度相等C .a 、b 的角速度比c 的大D .c 的线速度比a 、b 的大解析:选B .a 、b 和c 均是同一陀螺上的点,它们做圆周运动的角速度都为陀螺旋转的角速度ω,B 对,C 错.三点的运动半径关系r a =r b >r c ,据v =ω·r 可知,三点的线速度关系v a =v b >v c ,A 、D 错.2.如图,圆盘绕过圆心且垂直于盘面的轴匀速转动,其上有a 、b 、c 三点,已知Oc =12Oa ,则下列说法中错误的是( )A .a 、b 两点线速度相同B .a 、b 、c 三点的角速度相同C .c 点的线速度大小是a 点线速度大小的一半D .a 、b 、c 三点的运动周期相同解析:选A .同轴转动的不同点角速度相同,B 正确;根据T =2πω知,a 、b 、c 三点的运动周期相同,D 正确;根据v =ωr 可知c 点的线速度大小是a 点线速度大小的一半,C 正确;a 、b 两点线速度的大小相等,方向不同.A 错误.3.如图所示,直径为d 的纸制圆筒,以角速度ω绕中心轴匀速转动,把枪口垂直对准圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,则子弹的速度不可能是( )A .dωπB .dω2πC .dω3πD .dω5π解析:选B .圆筒上只有一个弹孔,表明子弹从一个位置进入和离开圆筒,故子弹穿过圆筒的时间t 内,转过的角度θ=(2n +1)π(n =0,1,2…),故子弹的速度v =d t =dωθ=dω(2n +1)π.n =0时,v =dωπ,A 对.n =1时,v =dω3π,C 对.n =2时,v =dω5π,D 对.4.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速约为( )A .1 000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/s解析:选B .据车速与转速的关系知v =2πr ·n 即120×103=2π×0.3n 1,解得每小时的转速n 1≈6.4×104r/h .120×10360=2π×0.3n 2,解得每分钟的转速n 2≈1 000 r/min .120×1033.6×103=2π×0.3n 3,解得每秒钟的转速n 3≈18 r/s .二、多项选择题5.做匀速圆周运动的物体,下列物理量中不变的是( ) A .速度 B .速率 C .角速度D .转速解析:选BCD .速度是矢量,匀速圆周运动的速度方向不断改变;速率、转速都是标量,匀速圆周运动的速率、转速不变;角速度是矢量,在中学阶段不讨论角速度的方向,角速度方向不变.综上,B 、C 、D 正确.6.某老师在做竖直面内圆周运动快慢的实验研究,并给运动小球拍了频闪照片,如图所示(小球相邻影像间的时间间隔相等),小球在最高点和最低点的运动快慢比较,下列说法中正确的是( )A .最高点附近小球相邻影像间弧长短,线速度小,运动较慢B .最低点附近小球相邻影像间圆心角大,角速度大,运动较快C .小球在相邻影像间运动时间间隔相等,最高点与最低点运动一样快D .无法比较最高点和最低点的运动快慢解析:选AB .由所给频闪照片可知,在最高点附近,相邻影像间弧长较小,表明最高点附近的线速度较小,运动较慢,A 对;在最低点附近,相邻影像间弧长较大,对应相同时间内通过的圆心角较大,故角速度较大,运动较快,B 对.7.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( )A .它们的半径之比为2∶9B .它们的半径之比为1∶2C .它们的周期之比为2∶3D .它们的周期之比为1∶3解析:选AD .因为v 1v 2=r 1ω1r 2ω2=23,且ω1ω2=3,因此r 1r 2=23×ω2ω1=29,选项A 正确,选项B 错误;匀速圆周运动的周期T =2πω,则T 1T 2=ω2ω1=13,选项C 错误,选项D 正确. 8.假设某一飞船升空后,先运行在近地点高度为200 km 、远地点高度为350 km 的椭圆轨道上,实施变轨后做匀速圆周运动,共运行了n 周,起始时刻为t 1,结束时刻为t 2,运行速度为v ,半径为r ,则计算其运行周期可用( )A .T =t 2-t 1nB .T =t 1-t 2nC .T =2πr vD .T =2πv r解析:选AC .由题意可知飞船做匀速圆周运动n 周所需时间Δt =t 2-t 1,故其周期T =Δt n =t 2-t 1n ,选项A 正确;由周期公式有T =2πr v,选项C 正确. 三、非选择题9.如图所示,在O 1、O 2、O 3三个轮的边缘各取一点A 、B 、C ,已知三个轮的半径之比r 1∶r 2∶r 3=3∶2∶1,则A 、B 、C 三点的线速度大小之比为v A ∶v B ∶v C = ;A 、B 、C 三点的角速度之比ωA ∶ωB ∶ωC = ;A 、B 、C 三个轮子的转速之比n 1∶n 2∶n 3=解析:由于O 1、O 3两轮共轴,所以A 、C 两点角速度相等,即ωA =ωC ;由于O 1、O 2通过皮带传动,所以A 、B 两点线速度的大小相等,即v A =v B ,由v =ωr ,r 1∶r 3=3∶1,ωA=ωC ,则v A ∶v C =3∶1,整理得:v A ∶v B ∶v C =3∶3∶1;由ω=v r,r 1∶r 2=3∶2,v A =v B ,则ωA ∶ωB =2∶3,整理得:ωA ∶ωB ∶ωC =2∶3∶2,由ω=2πn ,得:n 1∶n 2∶n 3=2∶3∶2.答案:3∶3∶1 2∶3∶2 2∶3∶210.如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,O 轴离地面高为2R ,轮上a 、b 两点与O 点连线相互垂直,a 、b 两点均粘有一小物体,当a 点转至最低位置时,a 、b 两点处的小物体同时脱落,经过相同时间落到水平地面上.(1)试判断圆轮的转动方向.(2)求圆轮转动的角速度的大小.解析:(1)由题意知,a 、b 两点处的物体脱离圆轮后在空中的运动时间相等,因h b >h a ,所以脱离时b 点处物体的速度应竖直向下,即圆轮的转动方向为逆时针.(2)a 、b 两点处的物体脱落前分别随圆盘做匀速圆周运动v 0=ωR ①脱落后a 点处物体做平抛运动h a =12gt 2=R ②b 点处物体做竖直下抛运动h b =v 0t +12gt 2=2R ③ 联立以上方程得ω=g 2R .答案:(1)逆时针 (2) g 2R11.如图所示,小球A 在光滑的半径为R 的圆形槽内做匀速圆周运动,当它运动到图中的a 点时,在圆形槽中心O 点正上方h 处,有一小球B 沿Oa 方向以某一初速度水平抛出,结果恰好在a 点与A 球相碰,求:(1)B 球抛出时的水平速度多大?(2)A 球运动的线速度最小值为多大?解析:(1)小球B 做平抛运动,其在水平方向上做匀速直线运动,设小球B 的水平速度为v 0,则R =v 0t① 在竖直方向上做自由落体运动,则h =12gt 2 ② 由①②得v 0=R t =R g 2h . (2)A 球的线速度取最小值时,A 球刚好转过一圈,B 球落到a 点与A 球相碰,则A 球做圆周运动的周期正好等于B 球的飞行时间,即T =2h g 所以v A =2πR T=2πR g 2h . 答案:(1)Rg 2h (2)2πR g 2h。
高中物理 教科版必修二教案:第二章 第一节圆周运动
1.圆周运动学 习 目 标知 识 脉 络(教师用书独具)1.理解匀速圆周运动的概念和特点.(重点)2.理解线速度、角速度、周期、频率等概念,会对它们进行定量计算.(重点)3.知道线速度与角速度的定义,知道线速度与周期、角速度与周期的关系.(重点、难点)一、形形色色的圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:在相等时间内通过的圆弧长度相等的圆周运动. 二、匀速圆周运动的线速度、角速度和周期 1.线速度(1)大小:线速度是描述做圆周运动的质点运动快慢的物理量.线速度的大小等于质点通过的弧长跟所用时间的比值,即v =ΔsΔt.(2)方向:线速度不仅有大小,而且有方向.物体在某一时刻或通过某一位置的线速度方向就是圆周上该点的切线方向.2.角速度(1)定义:角速度是描述圆周运动的特有概念.连接运动质点和圆心的半径转过的角度和所用时间的比值,叫做匀速圆周运动的角速度.(2)公式:ω=ΔφΔt.(3)单位:角速度的单位是弧度每秒,符号是rad/s.3.周期做匀速圆周运动的物体运动一周所用的时间叫周期,用T 表示,其国际制单位为秒(s). 三、线速度、角速度和周期间的关系 1.r 、T 、v 、ω之间的关系质点沿半径为r 的圆周做匀速圆周运动,周期是T ,则 (1)线速度v =2πr T.(2)角速度ω=2πT.(3)线速度与角速度的关系为v =r ω. 2.转速(1)转速是指转动物体在单位时间内转过的圈数,常用符号n 表示. (2)单位:转/秒(r/s)或转/分(r/min). (3)角速度与转速的关系是ω=2πn .1.思考判断(正确的打“√”,错误的打“×”)(1)做匀速圆周运动的物体相等时间内通过的弧长相等.( ) (2)做匀速圆周运动的物体相等时间内通过的位移相同.( ) (3)匀速圆周运动是一种匀速运动.( )(4)匀速圆周运动的周期相同时,角速度及转速都相同.( ) (5)匀速圆周运动的物体周期越长,转动越快. ( )(6)做匀速圆周运动的物体在角速度不变情况下,线速度与半径成正比. ( )【提示】 (1)√ (2)× (3)× (4)√ (5)× (6)√ 2.(多选)关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是变速运动 C .匀速圆周运动是线速度不变的运动 D .匀速圆周运动是线速度大小不变的运动BD [这里的“匀速”,不是“匀速度”,也不是“匀变速”,而是速率不变,匀速圆周运动实际上是一种速度大小不变、方向时刻改变的变速运动,故B 、D 正确.]3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( )A .它们的半径之比为2∶9B .它们的半径之比为1∶2C .它们的周期之比为2∶3D .它们的周期之比为1∶3 AD [因为v 1v 2=r 1ω1r 2ω2=23,且ω1ω2=3,因此r 1r 2=23×ω2ω1=29,选项A 正确,选项B 错误;匀速圆周运动的周期T =2πω,则T 1T 2=ω2ω1=13,选项C 错误,选项D 正确.]4.如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,求A 、B 、C 三轮边缘上a 、b 、c 三点的角速度之比和线速度之比.[解析] a 、b 两点比较:v a =v b 由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2b 、c 两点比较ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2.[答案] 1∶2∶2 1∶1∶2对圆周运动的理解12.描述圆周运动的各物理量之间关系的理解(1)角速度、周期、转速之间关系的理解:物体做匀速圆周运动时,由ω=2πT=2πn知,角速度、周期、转速三个物理量,只要其中一个物理量确定了,其余两个物理量也唯一确定了.(2)线速度与角速度之间关系的理解:由v =ωr 知,r 一定时,v ∝ω;v 一定时,ω∝1r;ω一定时,v ∝r .【例1】 (多选)一小球被细绳拴着,在水平面内做半径为R 的匀速圆周运动,向心加速度为a ,那么下列说法正确的是( )A .小球运动的角速度ω=aRB .小球在时间t 内通过的路程为s =t aRC .小球做匀速圆周运动的周期T =R aD .小球在时间t 内可能发生的最大位移为2R ABD [由a =ω2R 得ω=a R ,t 时间内的路程s =vt =ωRt =t aR ,周期T =2πω=2πRa,圆周上距离最远的两点为直径,则最大位移为2R ,故知A 、B 、D 正确.]1.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( )A .1 000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/sB [由公式ω=2πn ,得v =r ω=2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003m/s ,代入得n =1 00018πr/s ,约为1 000 r/min.]“传动装置”问题分析1.同轴转动同轴的圆盘上各点图示相同量角速度:ωA =ωB 周期:T A =T B不同量 线速度:v A v B =r R2.皮带传动两轮边缘或皮带上各点 图示相同量边缘点线速度:v A =v B不同量角速度:ωA ωB =r R周期:T A T B =R r3.齿轮传动两齿轮啮合传动图示相同量 边缘点线速度:v A =v BA 、B 为两齿轮边缘点不同量角速度:ωA ωB =r 2r 1周期:T A T B =r 1r 2【例2】 构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A .该车可变换两种不同挡位B .该车可变换五种不同挡位C .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =1∶4D .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =4∶1 思路点拨:解答本题应从以下两点进行分析: (1)同轴转动,各轮角速度相等. (2)皮带传动时,线速度相等.C [由题意知,A 轮通过链条分别与C 、D 连接,自行车可有两种速度,B 轮分别与C 、D 连接,又可有两种速度,所以该车可变换四种挡位;当A 与D 组合时,两轮边缘线速度大小相等,A 转一圈,D 转4圈,即ωA ωD =14,选项C 对.]传动问题是圆周运动部分的一种常见题型,在分析此类问题时,关键是要明确什么量相等,什么量不相等,在通常情况下,应抓住以下两个关键点.(1)绕同一轴转动的各点角速度ω、转速n 和周期T 相等,而各点的线速度大小为v =ωr ,与半径r 成正比.(2)在皮带不打滑的情况下,皮带和皮带连接的轮子边缘线速度的大小相等,不打滑的摩擦传动的两轮边缘上各点的线速度大小也相等,而两传动轮的角速度为ω=\f(v,r ),与半径成反比.2.(多选)如图所示为某一皮带传动装置,主动轮的半径为r 1,从动轮的半径为r 2,已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2 n D .从动轮的转速为r 2r 1nBC [根据皮带的缠绕方向知B 正确,由2πnr 1=2πn 2r 2,得n 2=r 1r 2n ,C 项正确.]圆周运动的周期性引起的多解问题1周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去.2.确定处理方法(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键.(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上2n π,具体n 的取值应视情况而定.【例3】 如图所示,小球A 在半径为R 的光滑圆形槽内做匀速圆周运动,当它运动到图中的a 点时,在圆形槽中心O 点正上方h 处,有一小球B 沿Oa 方向以某一初速度水平抛出,结果恰好在a 点与A 球相碰,求:(1)B 球抛出时的水平速度多大? (2)A 球运动的线速度最小值为多大?思路点拨:(1)从小球A 运动到a 点开始计时,到在a 点恰好与小球B 相碰,两球运动时间相等.(2)在小球B 平抛到a 点的时间内,小球A 可能运动多个周期.[解析] (1)小球B 做平抛运动,其在水平方向上做匀速直线运动,设小球B 的水平速度为v 0,则R =v 0t①在竖直方向上做自由落体运动,则h =12gt 2②由①②得v 0=R t =Rg 2h. (2)A 球的线速度取最小值时,A 球刚好转过一圈,B 球落到a 点与A 球相碰,则A 球做圆周运动的周期正好等于B 球的飞行时间,即T =2hg,所以v A =2πRT=2πRg2h . [答案] (1)Rg2h(2)2πR g 2h3.一位同学做飞镖游戏,已知圆盘直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系中正确的是( )A .dv 20=L 2gB .ωL =π(1+2n )v 0(n =0,1,2,…)C .v 0=ωd2D .dω2=g π2(1+2n )2(n =0,1,2,…)B [当A 点转动到最低点时飞镖恰好击中A 点,L =v 0t ,d =12gt 2,ωt =π(1+2n )(n=0,1,2,…),联立解得ωL =π(1+2n )v 0(n =0,1,2,…),2dv 20=L 2g,2dω2=g π2(1+2n )2(n =0,1,2,…),v 0≠ωd2,B 正确.]1.(多选)质点做匀速圆周运动,则( ) A .在任何相等的时间里,质点的位移都相等 B .在任何相等的时间里,质点通过的路程都相等 C .在任何相等的时间里,质点运动的平均速度都相同D .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等BD [如图所示,由于线速度大小不变,根据线速度的定义,Δs =v ·Δt ,所以相等时间内通过的路程相等,B 对;但位移x AB 、x BC 大小相等,方向并不相同,平均速度不同,A 、C 错;由角速度的定义ω=ΔφΔt知Δt 相同,Δφ=ωΔt 相同,D 对.]2.根据教育部的规定,高考考场除了不准考生带手机等通讯工具入场外,手表等计时工具也不准带进考场,考试是通过挂在教室里的时钟计时的,关于正常走时的时钟.如图所示,下列说法正确的是 ( )A .秒针角速度是分针角速度的60倍B .分针角速度是时针角速度的60倍C .秒针周期是时针周期的13 600D .分针的周期是时针的124A [秒针、分针、时针周期分别为T 1=1 min ,T 2=60 min ,T 3=720 min ,所以T 1T 3=1720,T 2T 3=112,选项C 、D 错误.根据ω=2πT ,ω1ω2=T 2T 1=60,ω2ω3=T 3T 2=12,选项A 正确、B 错误.] 3.如图所示,两个摩擦传动的靠背轮,左边是主动轮,右边是从动轮,它们的半径不相等,转动时不打滑.则下列说法中正确的是( )A .两轮的角速度相等B .两轮转动的周期相同C .两轮边缘的线速度大小不相等D .两轮边缘的线速度大小相等D [靠摩擦传动的两轮边缘的线速度大小相等,C 错误、D 正确;由v =ωr 得ω=vr,故两轮的角速度不相等,周期也不相同,A 、B 错误.]4.从我国汉代古墓一幅表现纺织女纺纱的情景的壁画上看到(如图),纺车上,一根绳圈连着一个直径很大的纺轮和一个直径很小的纺锤,纺纱女只要轻轻摇动那个巨大的纺轮,那根绳圈就会牵动着另一头的纺锤飞快转动.如果直径之比是100∶1,若纺轮转动1周,则纺锤转动多少周?[解析] 纺轮和纺锤在相同时间内转过的圆弧长相等,即 线速度相等,v 轮=v 锤,由v =ω·r 知角速度之比ω轮∶ω锤=1∶100即当纺轮转动1周时,纺锤转动100周.[答案] 100周。
高中物理必修二《1 圆周运动》优质课教案教学设计
1.圆周运动1.知道什么是匀速圆周运动,知道匀速圆周运动是变速运动。
2.理解线速度、角速度、转速、周期等概念,会对它们进行定量计算。
3.理解掌握v=ωr和ω=2πn等公式。
4.熟悉同轴转动和皮带传动的特点。
5.理解匀速圆周运动的多解问题。
1.线速度(1)定义:物体做圆周运动通过的□01弧长与所用时间之比,v=□02ΔsΔt。
(2)意义:描述做圆周运动的物体□03运动的快慢。
(3)方向:线速度是矢量,方向为物体做圆周运动时该点的□04切线方向,与半径□05垂直。
(4)匀速圆周运动①定义:沿着圆周运动,并且线速度大小□06处处相等的运动。
②性质:线速度的方向是时刻□07变化的,所以是一种□08变速运动,“匀速”是指□09速率不变。
2.角速度(1)定义:物体做圆周运动转过的□10角度与所用时间之比,ω=□11ΔθΔt。
(2)意义:描述做圆周运动的物体绕圆心□12转动的快慢。
(3)单位①角的单位:弧度,符号是□13rad。
②角速度的单位:弧度每秒,符号是□14rad/s或□15s-。
(4)匀速圆周运动是角速度□16不变的圆周运动。
3.周期(1)周期T:做匀速圆周运动的物体,运动一周所用的□17时间,单位:□18秒(s)。
(2)转速n:物体转动的□19圈数与所用时间之比,单位:□20转每秒(r/s)或□21转每分(r/min)。
(3)周期和转速的关系:□22T=1n(n单位是r/s)。
(4)周期和角速度的关系:□23T=2πω。
4.线速度与角速度的关系(1)在圆周运动中,线速度的大小等于□24角速度的大小与□25半径的乘积。
(2)公式:v=□26ωr。
判一判(1)做匀速圆周运动的物体相等时间内通过的弧长相等。
()(2)做匀速圆周运动的物体相等时间内通过的位移相同。
()(3)匀速圆周运动是一种匀速运动。
()提示:(1)√做匀速圆周运动的物体,线速度大小处处相等,根据Δs=vΔt,相等时间内通过的弧长相等。
(2)×做匀速圆周运动的物体相等时间内通过的位移大小相等,但方向可能不同。
圆周运动。动能定理[技巧]
圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:T r r v πω2=⋅=,22224Tr r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224Tra π= ,因为周期T 和转速n 没有瞬时值。
3.描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是做匀速圆周运动的物体所受外力的合力。
向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
例如水平转盘上跟着匀速转动的物体由静摩擦力提供向心力;带电粒子垂直射入匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力;电子绕原子核旋转由库仑力提供向心力;圆锥摆由重力和弹力的合力提供向心力。
做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224Tr m r m r v m F πω=== 其中r 为圆运动半径。
(3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。
(4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。
几种常见的匀速圆周运动的实例图表图形受力分析利用向心力公式2tan sin mg m l θωθ=2tan (sin )mg m l d θωθ=+2tan mg m r θω=2tan mg m r θω=2Mg m r ω=4.竖直平面内圆周运动的临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同。
新课标高考一轮复习学案:圆周运动
高考物理一轮复习.摩擦传动:如下图丙所示,两轮边缘接触,接触点出现不打滑现象时,两轮边缘线速度大小相固定在同一转轴上,轮O1、O2用皮带连接且不打滑.在,已知三个轮的半径之比r1三点的线速度大小之比v A∶v B∶v C;∶ωB∶ωC;A三点的向心加速度大小之比a A∶a B∶a C.∶2点的线速度大小相等点的角速度大小相等点的线速度大小相等v C为多少?T为多少?转动的情况下,要完成上述运动圆筒的半径RC,由机械能守恒定律得mgh=mgR+12mv2C①力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,就是向心力. 3.向心力的公式F n =ma n =m v 2r =mω2r =mr 4π2T 2=mr 4π2f 2 . 4.匀速圆周运动的条件当物体所受的合外力(大小恒定)始终与速度方向垂直时,物体做匀速圆周运动,此时向心力由物体所受合外力提供.5.离心运动(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. (2)受力特点(如图所示)①当F =mω2r 时,物体做匀速圆周运动; ②当F =0时,物体沿切线方向飞出;③当F < mω2r 时,物体逐渐远离圆心,F 为实际提供的向心力; ④当F >mω2r 时,物体逐渐向圆心靠近.1.(多选)如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )A .a =mgR -WmRB .a =2mgR -WmRC .N =3mgR -2WRD .N =mgR -WR解析 质点P 下滑过程中,重力和摩擦力做功,根据动能定理可得mgR -W =12mv 2,根据公式a =v 2R ,联立可得a =mgR -WmR,A 正确,B 错误;在最低点时重力和支持力的合力充当向球的速度一定大于Q球的速度.选择路线①,赛车经过的路程最短.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等m vR,可得最大速率=μgR,则知②和③的速率相等,且大于①的速率,选项错误;根据t=sv,可得①、②、③所用的时间分别为t=+rμgr,t=2r+,t=2rπ,,车辆便会向内侧滑动,但只要不超出某一最高限度,车辆便不会向外侧滑动开始滑动的临界角速度时,物块与转台间的摩擦力为04若要小球刚好离开锥面,则小球的角速度ω0至少为多大?60°,则小球的角速度ω′为多大?若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公由牛顿第二定律及向心力公式得:B.Mg+mgD.Mg+10mg设大环半径为R,,加速度为,以整体为研究对象,受力情况如图所示.B.3mgn1∶4的向心加速度之比为2∶1先开始滑动,所以:v 1v =ω1rω·2r=11,故A.n πgv ,B.n -g 2v ,n =1,2,3,…C.2n πgv 0-v 20-4Rg,D.2n πg v 0+v 20-4Rg ,=2v 0g =2n πω,=n πg v ,=2v 0g =n -ω,n =1,2,3,…,ω=n -g2v ,B 正确;若小球上升最大高度大于直径,从B 孔离-gt 2,圆筒转动时间为=2n πω,2n πgv 0-v 20-4Rg ,n -ω,n =1,2,3,…,解得ω=n -g,D 错误.B.g 2RD.2g R最易脱离模型内壁的位置在最高点,转动的最低角速度位置的向心加速度大于b、d位置的向心加速度位置时最容易被甩下来位置时最容易被甩下来.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力.丁图中,轨道车过最高点的最小速度为gR在甲图中,当速度比较小时,根据牛顿第二定律得,mg-B.0.56 s点做圆周运动点转动的线速度大小相等点转动的角速度大小相等点转动的向心加速度大小相等小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即,故绳中有张力.根据牛顿第二定律有21。
6-1 圆周运动 (教学课件)-高中物理人教版(2019)必修第二册
2. 图为某种品牌的共享单车的链轮、链条、飞轮、踏板、后轮 示意图,在骑行过程中,踏板和链轮同轴转动、飞轮和后轮同轴转 动,已知链轮与飞轮的半径之比为,后轮直径为,当踩踏板做匀速 圆周运动的角速度为时,后轮边缘处A点的线速度大小为( )
A.12m/s
B.6m/s
C.2/3 m/s D.4/3 m/s
巩固提升三
3.(多选)火车以60 m/s的速率驶过一段弯道,某乘客发现放在水平桌面 上的指南针在10 s内匀速转过了10°.在此10 s时间内,火车( )
A.运动路程为600 m
B.加速度为零
C.角速度约为1 rad/s
D.转弯半径约为3.4 km
答案 AD 解析 由s=vt知,s=600 m,A正确;火车在弯道处做曲线运动,加速度不为零,B错误 ;由10 s内匀速转过10°知,角速度ω=θ/t=π/180rad/s≈0.017 rad/s,C错误;由v=rω知 ,r=v/ω≈3.4 km, D正确.
知识精讲
扩展:弧度制
圆心角θ的大小可以用弧长和半径的比值来描述,
∆S
这个比值是没有单位的,为了描述问题的方便,我们
“给”这个比值一个单位,这就是弧度(rad).
q 弧长
半径
∆S
r
运动一周
弧长 2R
半径R
2
360 度 2 弧度
思考:1800对应多少弧度? 900对应多少弧度?
角速度的单位: 弧度/秒(rad/s )
单位:Hz或s-1
转速:n 表示单位时间内转过的圈速 单位:r/s 周期越小、频率越高、转速越大表明物体运转得越快!
知识精讲
其他描述匀速圆周运动快慢的物理量
讨论:八大行星绕太阳做 匀速圆周哪个运动更快?
高考物理一轮复习第四章第4节圆周运动学案含解析
第4节 圆周运动一、圆周运动及其描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)速度特点:速度的大小不变,方向始终与半径垂直。
[注1] 2.描述圆周运动的物理量二、匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
2.大小:F =ma =m v 2r =mr ω2=mr 4π2T2=mr 4π2n 2=m ωv 。
3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
三、离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势。
3.受力特点(1)当F =m ω2r 时,物体做匀速圆周运动,如图所示; (2)当F =0时,物体沿切线方向飞出;(3)当F <m ω2r 时,物体逐渐远离圆心,F 为实际提供的向心力。
[注5]【注解释疑】[注1] 匀速圆周运动是变速运动,“匀速”指的是速率不变。
[注2] 线速度与角速度的对比理解线速度侧重于描述物体沿圆弧运动的快慢,角速度侧重于描述物体绕圆心转动的快慢。
[注3] 转速n 和频率f 含义相同,只是单位不同。
[注4] 向心加速度的方向也在时刻改变。
[注5] 物体做匀速圆周运动还是偏离圆形轨道完全是由实际提供的向心力和所需的向心力间的大小关系决定的。
[深化理解]1.对公式v =ωr 的理解 (1)当r 一定时,v 与ω成正比。
(2)当ω一定时,v 与r 成正比。
(3)当v 一定时,ω与r 成反比。
2.对a =v 2r=ω2r 的理解(1)当v 一定时,a 与r 成反比。
(2)当ω一定时,a 与r 成正比。
高中物理圆周运动公式总结
高中物理圆周运动公式总结介绍在高中物理学习中,圆周运动是一个重要的内容。
圆周运动指物体在一个固定半径的圆周上运动的现象。
在圆周运动中,我们经常需要使用一些公式来描述物体的运动状态和特征。
本文就是对高中物理圆周运动公式进行总结和归纳,旨在帮助读者更好地理解和掌握这些公式。
第一部分:圆周运动的基本概念在学习圆周运动公式之前,我们首先需要了解一些基本概念。
1.圆周运动的两个关键量:角速度和角加速度–角速度:表示物体单位时间内在圆周上转过的角度,用符号ω表示,单位为弧度/秒。
角速度的大小等于单位时间内转过的弧度数除以单位时间。
–角加速度:表示角速度的变化率,用符号α表示,单位为弧度/秒^2。
即角速度在单位时间内的变化量。
2.物体在圆周上的运动特征:线速度和向心加速度–线速度:表示物体在圆周上的运动速度,是物体沿圆周切线方向的速度,用符号v表示。
–向心加速度:表示物体在圆周上受到的向心力带来的加速度,用符号ac表示。
第二部分:圆周运动公式的推导和应用1.角速度和角加速度的关系–角速度与角加速度之间的关系可以用公式ω = ω0 + αt表示,其中ω0表示初始角速度,t表示时间。
2.线速度和角速度的关系–线速度与角速度之间的关系可以用公式v = rω表示,其中v 表示线速度,r表示圆周的半径。
3.向心加速度和角速度的关系–向心加速度与角速度之间的关系可以用公式ac = rω^2表示,其中ac表示向心加速度。
4.向心加速度和线速度的关系–向心加速度与线速度之间的关系可以用公式ac = v^2/r表示。
5.角速度和周期的关系–角速度与周期T之间的关系可以用公式ω = 2π/T表示。
6.角速度和频率的关系–角速度与频率f之间的关系可以用公式ω = 2πf表示。
第三部分:圆周运动公式的实例演练为了更好地理解和应用圆周运动公式,我们给出一些实例进行演练。
例题1:一个半径为3m的圆周上有一个物体,其角速度为4π rad/s,求其线速度。
6-1圆周运动(教学课件)——高中物理人教版(2019)必修第二册
7 B组 4.如图5-6所示,具有圆锥形状的回转器(陀螺)绕它 的轴线在光滑的桌面上以角速度ω快速旋转,同时以速 度v向左运动,若回转器的轴线一直保持竖直,为使回 转器从桌子的边沿滑出时不会与桌子边缘发生碰撞,速 度v至少应等于(设回转器的高为H,底面半径为R,不 计空气对回转器的作用)( )
7 B组
(3)周期是所有周期运动(或变化)的一个特征量。
4.频率:
(1)定义: 周期的倒数叫做频率
f
1 T
(2)单位: 秒的倒数(s-1)——赫兹(Hz)
(3)物理意义:单位时间内质点完成周期性运动的次数。
5.转速:
(1)定义:单位时间内物体运动的圈数 (2)单位:r/s或r/min;符号:n
2 描述圆周运动快慢的物理量 1.线速度 (1)意义: 描述质点沿圆周运动的快慢
例3、甲、乙两个做圆周运动的质点,它们 的角速度之比为3∶1,线速度之比为2∶3,
那么下列说法正确的是(AD)
A.它们的半径之比为2∶9 B.它们的半径之比为1∶2 C.它们的周期之比为2∶3 D.它们的周期之比为1∶3
4 传动问题 皮带传动
齿轮传动
同一传动各轮边缘上线速度相同
vA=vB
ωAR=ωBr
6 A组
3.考虑地球自转,乌鲁木齐和广州两地所在处 物体具有的角速度和线速度相比较( ) A.乌鲁木齐处物体的角速度大,广州处物体的 线速度大 B.乌鲁木齐处物体的线速度大,广州处物体的 角速度大 C.两处物体的角速度、线速度都一样大 D.两处物体的角速度一样大,但广州处物体的 线速度比乌鲁木齐处物体的线速度要大
2.角速度
(1)定义: 在匀速圆周运动中半径转过的角度跟所用
时间的比值
(2)大小:
1.圆周运动
1.圆周运动[学习目标要求] 1.掌握线速度的定义式,理解圆周运动线速度大小、方向的特点,知道什么是匀速圆周运动。
2.掌握角速度的定义式和单位。
3.知道周期、转速的概念。
4.掌握描述圆周运动的各物理量之间的关系。
线速度1.圆周运动:运动轨迹为圆周或一段圆弧的机械运动。
2.线速度(1)定义:物体运动的弧长Δs与时间Δt之比。
(2)定义式:v=Δs Δt。
(3)方向:物体做圆周运动时该点的切线方向。
线速度是矢量。
(4)物理意义:表示物体在某点运动的快慢。
3.匀速圆周运动:线速度大小处处相等的圆周运动。
因线速度的方向在时刻变化,故匀速圆周运动是一种变速运动。
[判一判](1)做圆周运动的物体,其速度一定是变化的。
(√)(2)圆周运动线速度定义式v=ΔsΔt中的Δs表示位移。
(×)(3)做匀速圆周运动的物体,绕圆周运动一周,平均速度为零,线速度也为零。
(×)(4)匀速圆周运动是线速度不变的运动。
(×)角速度1.物理意义:描述做圆周运动的物体绕圆心转动的快慢。
2.定义:半径转过的角度Δθ与所用时间Δt之比。
3.定义式:ω=ΔθΔt。
4.单位:在国际单位制中,角速度的单位是弧度每秒,符号:rad/s,也可以写成s-1。
5.角速度是矢量,但是中学阶段不研究其方向。
6.匀速圆周运动角速度特点:角速度不变。
[想一想]钟表上的时针和分针绕轴转动的角速度一样吗?提示:时针12小时转一周,分针1小时转一周,故分针绕轴转动的角速度较大。
周期周期转速频率(补充)定义做圆周运动的物体,运动一周所用的时间物体转动的圈数与所用时间之比做圆周运动的物体单位时间内转过的圈数符号T n f单位秒(s)转每秒(r/s)、转每分(r/min)赫兹(Hz) [判一判](1)物体转动的周期越短,转动得就越快。
(√)(2)转速越大,说明物体转动得越快。
(√)(3)钟表分针的转速为160r/s。
(×)线速度与角速度的关系1.推导:由v=ΔsΔt,ω=ΔθΔt,Δθ=Δsr,可得:v=ωr。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、匀速圆周运动1、定义:质点沿圆周运动,如果在相等时间内通过的弧长相等,那么这种运动叫做匀速圆周运动。
2、描述匀速圆周运动的有关量及它们的关系:(1)、线速度:质点通过的弧长S 与所用时间的比值,即表示线速度的大小:v =ts方向:在该点切线方向上。
(2)、角速度:连接运动物体和圆心的半径转过的角度φ跟所用时间t 的比值。
即表示角速度 ω= tφ (3)、周期:做匀速圆周运动的物体运动一周所用的时间叫做周期。
符号用T 表示,单位是s 。
(4)、频率:单位时间内运动的周数,即周期的倒数,叫做频率。
符号用f 表示,单位是Hz 。
f=1/T (5)、转速:做匀速圆周运动的物体单位时间内转过的圈数叫转速。
符号用n 表示,单位是r/s 、r/min 。
n=f (6)向心加速度:①方向:做匀速圆周运动的物体,加速度指向圆心 ②大小:22v a r n rω==③意义:是用来描述物体做圆周运动的线速度方向变化快慢的物理量。
【注意】虽然匀速圆周运动线速度大小不变,但方向时刻改变,故匀速圆周运动是变速运动;向心加速度大小不变但方向时刻改变(始终指向圆心),故匀速圆周运动是一种变加速运动。
3、线速度、角速度、周期之间的关系:v =T rπ2 、 ω=Tπ2 例1:如图1所示为皮带传动装置,右轮半径为r ,a 为它边缘的一点,左侧是大轮轴,大轮半径为4r ,小轮半径为2r 。
b 为小轮上一点,它到小轮中心距离为r,c 、d 分别位于小轮和大轮的边缘上,若在传动中不打滑,则:( )A 、a 点与b 点线速度大小相等;B 、a 点与b 点角速度大小相等;C 、a 点与c 点线速度大小相等; 图1D 、a 点与d 点向心加速度大小相等;点拨:本例主要考查线速度、角速度、向心加速度概念,同时抓住两个核心:若线速度一定时,角速度与半径成反比;若角速度一定,线速度与半径成正比。
答案:C 、D 练习:1.对于做匀速圆周运动的物体,下列说法不正确...的是: A. 线速度和周期不变 B. 单位时间里通过的路程一定大于位移 C. 角速度和转速不变 D. 所受合力的大小不变,加速度方向不断改变 2.如图2所示为一皮带传动装置,在传动过程中皮带不打滑,则轮上A 、B 、C 三点的线速度、角速v =r ω=2πnr =2πfr图2度及向心加速度的关系正确..的是: A. A与B 的向心加速度大小相等 B. B与C的线速度大小相等 C. A与C的角速度大小相等 D. A与B的线速度大小相等例2:如图所示,A 、B 两质点绕同一圆心按顺时针方向作匀速圆周运动,A 的周期为T 1,B 的周期为T 2,且T 1<T 2,在某时刻两质点相距最近,开始计时,问:(1)何时刻两质点相距又最近? (2)何时刻两质点相距又最远? 分析:选取B 为参照物。
(1) AB 相距最近,则A 相对于B 转了n 转, 其相对角度△Φ=2πn相对角速度为ω相=ω1-ω2经过时间: t=△Φ/ω相=2πn/ω1-ω2=1221T T T nT - (n=1、2、3…)(2)AB 相距最远,则A 相对于B 转了n-1/2转, 其相对角度△Φ=2π(n-21) 经过时间:t=△Φ/ω相=(2n-1)T 1T 2/2(T 2-T 1)(n=1、2、3…)本题关键是弄清相距最近或最远需通过什么形式来联系A 和B 的问题,巧选参照系是解决这类难题的关键。
二、向心力引入:由于匀速圆周运动的速度方向时刻在变,所以匀速圆周运动是变速曲线运动。
而力是改变物体运动状态的原因。
所以做匀速圆周运动的物体所受合外力有何特点?加速度又如何呢? 1、定义:做匀速圆周运动的物体受到一个指向圆心的合力的作用,这个力叫向心力。
2、向心力的性质:(1)向心力指向圆心,方向不断变化,是变化的力。
(2)向心力的作用效果——只改变运动物体的速度方向,不改变速度大小。
(3)向心力的大小与物体质量m 、圆周半径r 和角速度ω都有关系,且给出公式:F =mr ω2(说明该公式的得到方法,空气变量法、定量测数据)(4)向心力公式的推导:v r ω= 2222=m v v F r m r m r rω==向3、向心加速度(1)做圆周运动的物体,在向心力F 的作用下必然要产生一个加速度,据牛顿运动定律得到:这个加速度的方向与向心力的方向相同,叫做向心加速度。
(2)结合牛顿运动定律推导得到: r a 2ω= rv a 2=4.说明的几个问题:(1)由于a 向的方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力是一个效果力,方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
例3:甲、乙两球做匀速圆周运动,向心加速度a 随半径r 变化的关系图像如图3所示, 由图像可知:( )A. 甲球运动时,角速度大小为2 rad/sB. 乙球运动时,线速度大小为6m/sC. 甲球运动时,线速度大小不变D. 乙球运动时,角速度大小不变练习:1、关于向心力的说法不正确...是:( ) A. 向心力的方向沿半径指向圆心 B. 做匀速圆周运动的物体,其向心力是不变的C. 向心力不改变质点速度的大小D. 做匀速圆周运动的物体,其向心力即为其所受的合外力 2、在公路上行驶的汽车转弯时,下列说法中不正确...的是:( ) A. 在水平路面上转弯时,向心力由静摩擦力提供 B. 以恒定的速率转弯,弯道半径越大,需要的向心力越大 C. 转弯时要限速行驶,是为了防止汽车产生离心运动造成事故D. 在里低、外高的倾斜路面上转弯时,向心力可能由重力和支持力的合力提供 3、如图4,轻杆的一端与小球相连接,轻杆另一端过O 轴在竖直平面内做圆周运动。
当 小球达到最高点A 、最低点B 时,杆对小球的作用力可能是:A. 在A 处为推力,B 处为推力B. 在A 处为拉力,B 处为拉力C. 在A 处为推力,B 处为拉力D. 在A 处作用力为零,在B 处作用力不为零 图4 4 、如图5所示,在注满水的玻璃管中放一个乒乓球,然后再用软木塞封住管口,将此玻璃管放在旋转的水平转盘上,且保持与转盘相对静止,则乒乓球会( ) A .向外侧运动 B .向内侧运动 C .保持不动 D .条件不足,无法判断5、汽车行驶在半径为50m 的圆形水平跑道上,速度为10m/s 。
已知汽车的质量为1000 kg ,汽车与地面的最大静摩擦力为车重的0.8倍。
问:(g =10m/s2)图38图51)汽车绕跑道一圈需要的时间是多少?角速度是多少?其向心力是多大?2)要使汽车不打滑,则其速度最大不能超过多少?5、下课后,小丽在运动场上荡秋千。
已知小丽的质量为40 kg,每根系秋千的绳子长为4 m ,能承受的最大张力是300N。
如图6所示,当秋千板摆到最低点时,速度为3 m/s。
(g =10m/s2,小丽看成质点处理,秋千绳、底座等不计质量)(1)此时,小丽做圆周运动的向心力是多大?图6 (2)此时,小丽对底座的压力是多少?每根绳子受到拉力T是多少?(3)如果小丽到达最低点的速度为5m/s,绳子会断吗?三、离心现象及其应用1、离心运动:离心现象做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
这种运动叫做离心运动。
2、离心运动的条件:(1)当产生向心力的合外力突然消失,物体便沿所在位置的切线方向飞出。
(2)当产生向心力的合外力不完全消失,而只是小于所需要的向心力,物体将沿切线和圆周之间的一条曲线运动,远离圆心而去。
3、离心现象的本质——物体惯性的表现做匀速圆周运动的物体,由于本身有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动。
如果提供向心力的合外力突然消失,物体由于本身的惯性,将沿着切线方向运动,这也是牛顿第一定律的必然结果。
如果提供向心力的合外力减小,使它不足以将物体限制在圆周上,物体将做半径变大的圆周运动。
此时,物体逐渐远离圆心,但“远离”不能理解为“背离”。
做离心运动的物体并非沿半径方向飞出,而是运动半径越来越大。
4、离心运动的应用和防止1.离心运动的应用实例:雨伞旋转、链球投掷、洗衣机的脱水筒。
2.离心运动的防止实例:汽车拐弯时限速、高速旋转的飞轮、砂轮的限速。
例4:物体m 用线通过光滑的水平板上的小孔与砝码M 相连,并且正在做匀速圆周运动,如图所示,如果减小M 的质量,则物体的轨道半径r 、角速度ω、线速度v 的大小变化情况是( )A .r 不变,v 变小、ω变小B .r 增大,ω减小、v 不变C .r 减小,v 不变、ω增大D .r 减小,ω不变、v 变小练习:1、关于离心现象,下列说法不正确...的是:( ) A. 脱水桶、离心分离器是利用离心现象工作的 B. 限制速度、加防护罩可以防止离心现象造成的危害 C. 做圆周运动的物体,当向心力突然增大时做离心运动D. 做圆周运动的物体,当合外力消失时,它将沿切线做匀速直线运动2、物体做离心运动时,其运动轨迹:( )A. 一定是直线B. 一定是曲线C. 可能是一个圆D. 可能是直线也可能是曲线 课后作业1、一级方程式F1汽车大赛中,布朗车队的车手巴顿驾驶着一辆总质量是M (M 约1.5吨)的赛车经过一半径为R 的水平弯道时的速度为v .工程师为提高赛车的性能,都将赛车形状设计得使其上、下方空气存在一个压力差——气动压力(行业术语),从而增大了赛车对地面的正压力,行业中将正压力与摩擦力的比值称为侧向附着系数,用η表示.要使上述赛车转弯时不致侧滑,所需气动压力至少为多大?答案:ηM v2R-Mg2、如图11所示,质量为0.5 kg 的小杯里盛有1 kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1 m ,小杯通过最高点的速度为4 m/s 。
求:(1)在最高点时,绳的拉力T 是多少?(2)在最高点时水对小杯底的压力是多少?(3)为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?图7。