实验五牛顿迭代法

合集下载

关于牛顿迭代法的课程设计实验指导

关于牛顿迭代法的课程设计实验指导

yx O x * x 1 x 0关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。

在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。

牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。

近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。

牛顿迭代法正是将局部线性化的方法用于求解方程。

一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。

方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。

由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。

即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。

详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。

该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。

设x n 是方程解x *的近似,迭代格式)()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。

数学数学实验Newton迭代法

数学数学实验Newton迭代法

数学实验题目4 Newton 迭代法摘要0x 为初始猜测,则由递推关系产生逼近解*x 的迭代序列{}k x ,这个递推公式就是Newton 法。

当0x 距*x 较近时,{}k x 很快收敛于*x 。

但当0x 选择不当时,会导致{}k x 发散。

故我们事先规定迭代的最多次数。

若超过这个次数,还不收敛,则停止迭代另选初值。

前言利用牛顿迭代法求的根程序设计流程问题1(1 程序运行如下:r = NewtSolveOne('fun1_1',pi/4,1e-6,1e-4,10) r = 0.7391(2 程序运行如下:r = NewtSolveOne('fun1_2',0.6,1e-6,1e-4,10) r = 0.5885问题2(1 程序运行如下:否 是否是是定义()f x输入012,,,x N εε开 始1k =01()f x ε<0100()()f x x x f x =-'102||x x ε-<k N =输出迭代失败标志输出1x输出奇 异标志结 束01x x = 1k k =+ 否r = NewtSolveOne('fun2_1',0.5,1e-6,1e-4,10)r = 0.5671(2)程序运行如下:r = NewtSolveOne('fun2_2',0.5,1e-6,1e-4,20)r = 0.5669问题3(1)程序运行如下:①p = LegendreIter(2)p = 1.0000 0 -0.3333p = LegendreIter(3)p = 1.0000 0 -0.6000 0p = LegendreIter(4)p =1.0000 0 -0.8571 0 0.0857p = LegendreIter(5)p = 1.0000 0 -1.1111 0 0.2381 0②p = LegendreIter(6)p = 1.0000 0 -1.3636 0 0.4545 0 -0.0216r = roots(p)'r= -0.932469514203150 -0.6612 0.9324695142031530.6612 -0.238619186083197 0.238619186083197用二分法求根为:r = BinSolve('LegendreP6',-1,1,1e-6)r = -0.932470204878826 -0.661212531887755 -0.2386200573979590.2386 0.661192602040816 0.932467713647959(2)程序运行如下:①p = ChebyshevIter(2)p = 1.0000 0 -0.5000p = ChebyshevIter(3)p = 1.0000 0 -0.7500 0p = ChebyshevIter(4)p = 1.0000 0 -1.0000 0 0.1250p = ChebyshevIter(5)p = 1.0000 0 -1.2500 0 0.3125 0②p = ChebyshevIter(6)p = 1.0000 0 -1.5000 0 0.5625 0 -0.0313r = roots(p)'r = -0.965925826289067 -0.7548 0.9659258262890680.7547 -0.258819045102521 0.258819045102521用二分法求根为:r = BinSolve('ChebyshevT6',-1,1,1e-6)r = -0.965929926658163 -0.7755 -0.2588289221938780.2588 0.7020 0.965924944196429与下列代码结果基本一致,只是元素顺序稍有不同:j = 0:5;x = cos((2*j+1)*pi/2/(5+1))x =0.965925826289068 0.7548 0.258819045102521-0.258819045102521 -0.7547 -0.965925826289068(3)程序运行如下:①p = LaguerreIter(2)p = 1 -4 2p = LaguerreIter(3)p = 1 -9 18 -6p = LaguerreIter(4)p = 1 -16 72 -96 24p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000②p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000r = roots(p)'r =12.6432 7.8891 3.5964257710407111.4520 0.263560319718141用二分法求根为:r = BinSolve('LaguerreL5',0,13,1e-6)r = 0.263560314567722 1.4789 3.5964257656311507.0720 12.6490(4)程序运行如下:①p = HermiteIter(2)p = 1.0000 0 -0.5000p = HermiteIter(3)p = 1.0000 0 -1.5000 0p = HermiteIter(4)p = 1.0000 0 -3.0000 0 0.7500p = HermiteIter(5)p = 1.0000 0 -5.0000 0 3.7500 0②p = HermiteIter(6)p = 1.0000 0 -7.5000 0 11.2500 0 -1.8750r = roots(p)'r =-2.3587 2.3588 -1.3358490740136961.335849074013698 -0.4367 0.4366用二分法求根为:r = BinSolve('HermiteH6',-3,3,1e-6)r =-2.3516 -1.335849********* -0.43630.4366 1.335848983453244 2.3504所用到的函数function r = NewtSolveOne(fun, x0, ftol, dftol, maxit)% NewtSolveOne 用Newton法解方程f(x)=0在x0附近的一个根%% Synopsis: r = NewtSolveOne(fun, x0)% r = NewtSolveOne(fun, x0, ftol, dftol)%% Input: fun = (string) 需要求根的函数及其导数% x0 = 猜测根,Newton法迭代初始值% ftol = (optional)误差,默认为5e-9% dftol = (optional)导数容忍最小值,小于它表明Newton法失败,默认为5e-9 % maxit = (optional)迭代次数,默认为25%% Output: r = 在寻根区间内的根或奇点if nargin < 3ftol = 5e-9;endif nargin < 4dftol = 5e-9;endif nargin < 5maxit = 25;endx = x0; %设置初始迭代位置为x0k = 0; %初始化迭代次数为0while k <= maxitk = k + 1;[f,dfdx] = feval(fun,x); %fun返回f(x)和f'(x)的值if abs(dfdx) < dftol %如果导数小于dftol,Newton法失败,返回空值r = [];warning('dfdx is too small!');return;enddx = f/dfdx; %x(n+1) = x(n) - f( x(n) )/f'( x(n) ),这里设dx = f( x(n) )/f'( x(n) )x = x - dx;if abs(f) < ftol %如果误差小于ftol,返回当前x为根r = x;return;endendr = []; %如果牛顿法未收敛,返回空值function p = LegendreIter(n)% LegendreIter 用递推的方法计算n次勒让德多项式的系数向量Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)%% Synopsis: p = LegendreIter(n)%% Input: n = 勒让德多项式的次数%% Output: p = n次勒让德多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %P0(x) = 1p = 1;return;elseif n == 1 %P1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为P0pMid = [1 0]; %初始化三项递推公式中项为P1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Pn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = (2*i+3)/(i+2) * pMidCal - (i+1)/(i+2) * pBkCal; %勒让德多项式三项递推公式Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德多项式最高次项系数归一化function p = ChebyshevIter(n)% ChebyshevIter 用递推的方法计算n次勒让德-切比雪夫多项式的系数向量Tn+2(x) = 2*x*Tn+1(x) - Tn(x)%% Synopsis: p = ChebyshevIter(n)%% Input: n = 勒让德-切比雪夫多项式的次数%% Output: p = n次勒让德-切比雪夫多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %T0(x) = 1p = 1;return;elseif n == 1 %T1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为T0pMid = [1 0]; %初始化三项递推公式中项为T1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Tn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = 2*pMidCal - pBkCal; %勒让德-切比雪夫多项式三项递推公式Tn+2(x) = 2*x*Tn+1(x) - Tn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德-切比雪夫多项式最高次项系数归一化function p = LaguerreIter(n)% LaguerreIter 用递推的方法计算n次拉盖尔多项式的系数向量Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)*Ln(x)%% Synopsis: p = LaguerreIter(n)%% Input: n = 拉盖尔多项式的次数%% Output: p = n次拉盖尔多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %L0(x) = 1p = 1;return;elseif n == 1 %L1(x) = -x+1p = [-1 1];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [-1 1]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal1 = zeros(1,i+3); %构造用于计算的x*Ln+1(x)pMidCal1(1:i+2) = pMid;pMidCal2 = zeros(1,i+3); %构造用于计算的Ln+1(x)pMidCal2(2:i+3) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Ln(x)pBkCal(3:i+3) = pBk;pFwd =( (2*i+3)*pMidCal2 - pMidCal1 - (i+1)*pBkCal )/ (i+2); %拉盖尔多项式三项递推公式Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)^2*Ln(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function p = HermiteIter(n)% HermiteIter 用递推的方法计算n次埃尔米特多项式的系数向量Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)%% Synopsis: p = HermiteIter(n)%% Input: n = 埃尔米特多项式的次数%% Output: p = n次埃尔米特多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %H0(x) = 1p = 1;return;elseif n == 1 %H1(x) = 2*xp = [2 0];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [2 0]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Hn+1(x)pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Hn(x)pBkCal(3:i+3) = pBk;pFwd =2*pMidCal - 2*(i+1)*pBkCal; %埃尔米特多项式三项递推公式Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function r = BinSolve(fun, a, b, tol)% BinSolve 用二分法解方程f(x)=0在区间[a,b]的根%% Synopsis: r = BinSolve(fun, a, b)% r = BinSolve(fun, a, b, tol)%% Input: fun = (string) 需要求根的函数% a,b = 寻根区间上下限% tol = (optional)误差,默认为5e-9%% Output: r = 在寻根区间内的根if nargin < 4tol = 5e-9;endXb = RootBracket(fun, a, b); %粗略寻找含根区间[m,n] = size(Xb);r = [];nr = 1; %初始化找到的根的个数为1maxit = 50; %最大二分迭代次数为50for i = 1:ma = Xb(i,1); %初始化第i个寻根区间下限b = Xb(i,2); %初始化第i个寻根区间上限err = 1; %初始化误差k = 0;while k < maxitfa = feval(fun, a); %计算下限函数值fb = feval(fun, b); %计算上限函数值m = (a+b)/2;fm = feval(fun, m);err = abs(fm);if sign(fm) == sign(fb) %若中点处与右端点函数值同号,右端点赋值为中点b = m;else %若中点处与左端点函数值同号或为0,左端点赋值为中点a = m;endif err < tol %如果在a处函数值小于tolr(nr) = a; %一般奇点不符合该条件,这样可以去除奇点nr = nr + 1; %找到根的个数递增k = maxit; %改变k值跳出循环endk = k + 1; %二分迭代次数递增endendfunction X = powerX(x,a,b)% powerX 对给定向量(x1, x2,..., xn)返回增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)%% Synopsis: X = powerX(x,a,b)%% Input: x = 需要返回增幂矩阵的向量% a,b = 寻根区间上下限%% Output: X = 增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)if round(a) ~= a | round(b) ~= berror('a,b must be integers');elseif a >= berror('a must be smaller than b!');endx = x(:)';row = b-a+1;col = length(x);X = zeros(row, col);for i = b:-1:aX(b-i+1,:) = x.^i;Endfunction [f, dfdx] = fun1_1(x)f = cos(x) - x;dfdx = -sin(x) - 1;function [f, dfdx] = fun1_2(x)f = exp(-x) - sin(x);dfdx = -exp(-x) - cos(x);function [f, dfdx] = fun2_1(x)f = x - exp(-x);dfdx = 1 + exp(-x);function [f, dfdx] = fun2_2(x)f = x.^2 - 2*x*exp(-x) + exp(-2*x);dfdx = 2*x - 2*exp(-x) + 2*x*exp(-x) - 2*exp(-2*x);function y = LegendreP6(x)p = LegendreIter(6);X = powerX(x,0,6);y = p*X;function y = ChebyshevT6(x)p = ChebyshevIter(6);X = powerX(x,0,6);y = p*X;function y = LaguerreL5(x)p = LaguerreIter(5);X = powerX(x,0,5);y = p*X;function y = HermiteH6(x)p = HermiteIter(6);X = powerX(x,0,6);y = p*X;思考题(1)由于Newton法具有局部收敛性,所以在实际问题中,当实际问题本身能提供接近于根的初始近似值时,就可保证迭代序列收敛,但当初值难以确定时,迭代序列就不一定收敛。

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。

考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。

函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。

牛顿法利用极小点的必要条件:这就是牛顿迭代法。

迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。

因此使用牛顿法是有问题的。

如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。

这种情况可以通过正则化Hessian矩阵来避免。

常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。

正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。

实验五 用Newton法计算方程的根

实验五 用Newton法计算方程的根

五. 讨论分析当初始值选取离零点较远时将导致算法无法使用,例如第三题,将初始值改为2就无法计算出结果了,显示如下例如求020sin 35=-+-x x e x 的根,其中控制精度1010-=eps ,最大迭代次数40=M ,在steffensen 加速迭代方法的程序中,我们只需改动:it_max=40; ep=1e-10, 其余不变 。

利用以上程序,我们只需输入:phi=inline('exp(5*x)-sin(x)+(x)^3-20');[x_star,index,it]=steffensen(phi,0.5)可得:x_star = 0.637246094753909index = 0it = 41观察上述结果,index = 0,it = 41表明迭代失败,所以使用以上方法估计的时候,应该尽量估计出解的范围,偏离不应过大,距离增加迭代次数增加,也有可能迭代失败六. 改进实验建议根据上述分析,我认为,应该先对函数作一个简图,方便知道解的大概位置,然后我们才将这个大概值代入Newton 法或者Steffensen 中进行求解。

当然,我们可以用其他数学软件实现Newton 迭代法,我们可以用z-z 超级画板,其操作流程为:牛顿迭代法的公式是:x n+1=x n-f(x n)/f'(x n)。

下面我们就用牛顿迭代法设计程序求方程f(x)=ln(x)+2*x-6的近似解。

(一)观察方程f(x)=0的零点位置(1)显示坐标系的坐标刻度。

(2)作出函数y=ln(x)+2*x-6的图像,如下图所示:可以观察到方程的根在区间[2,3]上,我们可以设定近似解的初始值为2。

(二)设计求方程近似解的程序(1)在程序工作区中输入:f(x){ln(x)+2*x-6;}执行后,返回结果为:>> f(x) #这表示在计算机已经完成了函数f(x)的定义。

(2)定义f(x)的导函数g(x),在程序工作区中输入:Diff(f(x),x);执行后,返回结果为:>> 2+1/x #得到了f(x)的导函数。

牛顿迭代法及其应用

牛顿迭代法及其应用

牛顿迭代法及其应用牛顿迭代法是求解非线性方程的一种常用方法,其基本思想是利用泰勒公式,将原方程式化为近似的一次方程,不断迭代,直到获得满足要求的精度值为止。

在数学、物理、化学等领域,牛顿迭代法被广泛应用。

1. 原理与步骤给定一个函数 f(x),我们希望求出它的一个根,即使得 f(x) = 0 的 x 的值。

考虑到非线性函数的复杂性,我们采用牛顿迭代法来解决。

假设已经猜测出一个近似值 x0,通过泰勒公式将 f(x) 在 x0 处展开:f(x) ≈ f(x0) + f'(x0)(x - x0)为了简化计算,我们令上式等于0,即:f(x0) + f'(x0)(x - x0) = 0将 x 化简可得:x = x0 - f(x0) / f'(x0)将上式作为下一次迭代的初始值,即可不断迭代求解,直到满足要求的精度值。

2. 牛顿迭代法的应用2.1 偏微分方程偏微分方程是现代科学和工程所涉及的许多领域的基础,而牛顿迭代法可用于求解非线性偏微分方程。

由于牛顿迭代法依赖于初始值的选择,因此需要根据实际问题来选择初始值,从而得到精确的解。

2.2 统计学在统计学中,牛顿迭代法被广泛应用于最大似然估计。

最大似然估计是在给定数据集的前提下,寻找一种参数估计方法,使得似然函数(即给定数据集下模型参数的条件下,该数据集出现的概率)最大。

通过牛顿迭代法,可以快速求解似然函数的最大值,从而获得最优的参数估计结果。

2.3 非线性优化在优化问题中,如果目标函数为非线性函数,则无法通过简单的线性规划来解决,需要借助于牛顿迭代法。

通过迭代求解逼近目标函数的零点,可以实现非线性规划问题的求解。

3. 注意事项在使用牛顿迭代法时,需要注意以下几点:3.1 初始值的选择初始值的选择会直接影响到迭代的次数和迭代结果的精度。

一般来说,我们选择敏感度较高的点作为初始值,例如驻点或函数导数为零的点。

3.2 解存在性和唯一性使用牛顿迭代法求解方程时,需要保证解的存在性和唯一性。

牛顿迭代法——精选推荐

牛顿迭代法——精选推荐

⽜顿迭代法⽜顿(Newton's method)⼜称为⽜顿-拉夫逊(拉弗森)⽅法(Newton-Raphson method),它是在17世纪提出的⼀种在域和域上近似求解⽅程的⽅法。

⽜顿迭代公式设r是\(f(x)=0\)的根,选取\(x_0\)作为r的初始近似值,过点\((x_0,f(x_0))\) ,做曲线 \(y=f(x)\)的切线L,L的⽅程为\(y=f(x_0)+f’(x_0)(x-x_0)\) ,求出L与x轴交点的横坐标\[x_1=x_0-\frac{f(x_0)}{f’(x_0)}\]称\(x_1\)为r的⼀次近似值。

过点\((x_1,f(x_1))\) 做曲线 \(y=f(x)\)的切线,并求该切线与x轴交点的横坐标\[x_2=x_1-\frac{f(x_1)}{f’(x_1)}\]称\(x_2\)为r的⼆次近似值。

重复以上过程,得r的近似值序列,其中,\[x_{n+1}=x_n-\frac{f(x_n)}{f’(x_n)}\]称为r的\(n+1\)次近似值,上式称为⽜顿迭代公式。

⽤⽜顿迭代法解⾮线性⽅程,是把⾮线性⽅程\(f(x)=0\)线性化的⼀种近似⽅法。

把 \(f(x)\)在点 \(x_0\)的某邻域内展开成泰勒级数\[f(x)=f(x_0)+f’(x_0)(x-x_0)+\frac{f’’(x_0)(x-x_0)^2}{2!}+…+\frac{f^{(n)}(x_0)(x-x_0)^n}{n!}+R_n(x)\]取其线性部分(即泰勒展开的前两项),并令其等于0,即 \(f(x_0)+f’(x_0)(x-x_0)=0\),以此作为⾮线性⽅程 \(f(x)=0\)的近似⽅程,若\ (f’(x_0)\neq0\),则其解为\[x_1=x_0-\frac{f(x_0)}{f’(x_0)}\]这样,得到⽜顿迭代法的⼀个迭代关系式:\[x_{n+1}=x_n-\frac{f(x_n)}{f’(x_n)}\]从下⾯的图中,我们可以看到⽜顿迭代的⼏何意义,每次迭代,都会更加逼近\(f(x)=0\)的解。

牛顿迭代法实验

牛顿迭代法实验

100
1000 10000
6.00
7.10 6.11
27.00
29.70 30.84
31.00
29.10 30.06
36.00
34.10 32.99
13/16
实验结论:方程 z3 – 1 = 0 在复平面上有三个根
z1 1
取正方形区域 {( x, y ) | 2 x 2, 2 y 2} 内任意点确定复数 z0 x iy 为牛顿迭代法初值
设 x*是方程 f(x)=0 的根, x0是x*的近似值. 在 x0 附近,对函数做局部线性化


f ( x) f ( x0 ) f ( x0 )( x x0 ) f ( x0 ) f ( x0 )( x x0 ) 0 f ( x0 ) x1 x0 f ( x0 )
8/16
实验绘图主程序 function A0=Newtonlab(n) if nargin==0,n=101;end t=linspace(-2,2,n); [x,y]=meshgrid(t); X=roots([1,0,0,-1]); [A0,A1,A2,A3]=Nlab(x,y,X); A=A0+2*A1+3*A2+4*A3; figure(1),pcolor(x,y,A),shading interp figure(2),pcolor(x,y,A0), shading interp
10/16
利用矩阵统计各区域百分比程序
[m,n]=size(A0); N=m*n; II=find(A0==1);N0=length(II); II=find(A1==1);N1=length(II); II=find(A2==1);N2=length(II); II=find(A3==1);N3=length(II); format bank results=100*[N0,N1,N2,N3]/N

牛顿迭代法的基本原理知识点

牛顿迭代法的基本原理知识点

牛顿迭代法的基本原理知识点牛顿迭代法是一种求解方程近似解的数值计算方法,通过不断逼近方程的根,以获得方程的解。

它基于牛顿法则和泰勒级数展开,被广泛应用于科学和工程领域。

本文将介绍牛顿迭代法的基本原理和相关知识点。

一、牛顿迭代法的基本原理牛顿迭代法的基本原理可以总结为以下几个步骤:1. 假设要求解的方程为 f(x) = 0,给定一个初始近似解 x0。

2. 利用泰勒级数展开,将方程 f(x) = 0 在 x0 处进行二阶近似,得到近似方程:f(x) ≈ f(x0) + f'(x0)(x - x0) + 1/2 f''(x0)(x - x0)^23. 忽略近似方程中的高阶无穷小,并令f(x) ≈ 0,得到近似解 x1:0 ≈ f(x0) + f'(x0)(x1 - x0) + 1/2 f''(x0)(x1 - x0)^2求解上述方程,得到近似解 x1 = x0 - f(x0)/f'(x0)。

4. 通过反复迭代的方式,不断更新近似解,直到满足精度要求或收敛于方程的解。

二、牛顿迭代法的收敛性与收敛速度牛顿迭代法的收敛性与收敛速度与初始近似解 x0 的选择和方程本身的性质有关。

1. 收敛性:对于某些方程,牛顿迭代法可能无法收敛或者收敛到错误的解。

当方程的导数为零或者初始近似解离根太远时,迭代可能会发散。

因此,在应用牛顿迭代法时,需要对方程和初始近似解进行合理的选择和判断。

2. 收敛速度:牛顿迭代法的收敛速度通常较快,二阶收敛的特点使其在数值计算中得到广泛应用。

在满足收敛条件的情况下,经过每一次迭代,近似解的有效数字将至少加倍,迭代次数的增加会大幅提高精度。

三、牛顿迭代法的优点与局限性1. 优点:1) 收敛速度快:牛顿迭代法的二阶收敛特性决定了它在求解方程时的高效性和快速性。

2) 广泛适用:牛顿迭代法可以用于求解非线性方程、方程组和最优化问题等,具有广泛的应用领域。

数值分析实验五(二分法,牛顿迭代法)

数值分析实验五(二分法,牛顿迭代法)

实验五一、实验目的与要求:1、通过对二分法和牛顿迭代法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点;2、比较二者的计算速度和计算精度。

二、实验内容:通过对二分法和牛顿迭代法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点。

二分法算法:给定区间[a,b],并设与符号相反,取为根的容许误差,为的容许误差。

(1)令c=(a+b)/2(2)如果(c-a)<或,则输出,结束;否则执行(3)(3)如果,则令;否则则令,重复(1),(2),(3)。

牛顿迭代法算法:给定初值 , 为根的容许误差,为 的容许误差,N 为迭代次数的容许值。

(1)如果 =0或迭代次数大于N ,则算法失败,结束;否则执行(2)。

(2)计算 = - (3)若 < 或 < ,则输出 ,程序结束;否则执行(4)。

x 0εη)(x f )('x f x 1x 0)()('0x x o f f x x 01-ε)(1x f ηx 1x0x1(4)令= ,转向(1)。

三、实验题目:1、用二分法求方程f(x)=x^3+4*x*x-10在区间[1,1.5]上的根,要求求出具有3位有效数的近似根。

2、用牛顿法求方程x^3-3x-1=0在x=2附近的根。

四、程序:一、二分法#include<stdio.h>float f(float x){return x*x*x+4*x*x-10;}void main(){float a,b,c;a=1.0;b=1.5;for(;b-a>=0.01;){c=(a+b)/2;if(f(a)*f(c)==0)break;else if(f(a)*f(c)<0)b=c;elsea=c;}printf("方程的近似根为%f\n",c);printf("保留三位有效数字为%0.2f\n",c); }二、牛顿迭代法#include<stdio.h>#include<math.h>float f(float x){return x*x*x-3*x-1;}float g(float x){return 3*x*x-3;}void main(){float x0,x1,a,b,N;int i;i=0;printf("请输入初值X0,根的容许误差,|f(x)|的容许误差,迭代次数的容许值N。

牛顿迭代法求解方程

牛顿迭代法求解方程

牛顿迭代法求解方程牛顿迭代法是一种用于求解方程的数值方法。

该方法基于导数的概念,通过不断逼近函数曲线与 x 轴的交点来寻找解。

牛顿迭代法的基本思想是从一个初始点开始,通过计算当前点处函数曲线的导数值,然后将当前点沿着曲线方向移动到与 x 轴交点更接近的位置,反复迭代直到找到一个满足精度要求的解。

在本文中,我们将介绍牛顿迭代法的原理和应用,并通过实例来说明该方法的具体步骤。

一、牛顿迭代法的原理牛顿迭代法的基本原理是利用函数的导数来逼近方程的解。

设f(x) 是一个连续可导的函数,求解 f(x) = 0 的根。

首先取一个初始点 x0,然后通过函数的导数 f'(x) 来逼近曲线与 x 轴的交点。

根据导数的定义,我们可以得到函数在 x0 处的切线方程为:y = f(x0) + f'(x0)(x - x0)令切线与 x 轴的交点为 (x1, 0),可得:f(x0) + f'(x0)(x1 - x0) = 0解得 x1 = x0 - f(x0)/f'(x0)。

将 x1 作为新的初始点,重复上述步骤,直到找到满足精度要求的解。

即:xn+1 = xn - f(xn)/f'(xn)二、牛顿迭代法的步骤牛顿迭代法的步骤如下:1. 确定初始点 x0。

2. 计算函数 f(x) 的导数 f'(x)。

3. 计算 xn+1 = xn - f(xn)/f'(xn)。

4. 判断 |f(xn+1)| 是否小于给定的精度要求。

如果满足要求,则迭代结束,找到近似解xn+1;否则,继续迭代,返回步骤3。

三、牛顿迭代法的应用举例下面通过一个实例来说明牛顿迭代法的具体应用。

假设我们要求解方程 x^2 - 2 = 0 的近似解。

可以将该方程表示为 f(x) = x^2 - 2 = 0。

首先,我们选择一个初始点为 x0 = 1。

然后,计算 f'(x) = 2x。

根据牛顿迭代法的步骤,我们可以得到:x1 = x0 - f(x0)/f'(x0) = 1 - (1^2 - 2)/(2*1) = 1 - (-1)/2 = 1.5将 x1 = 1.5 作为新的初始点,重复上述计算。

牛顿迭代法实验课件

牛顿迭代法实验课件

05
结论与展望
牛顿迭代法的优缺点总结
收敛速度快
牛顿迭代法在初始点接近真实根的情况下具有非常快的收敛速度。
适用于多维问题
可以推广到多维问题,通过引入更多的方程和变量来求解复杂的问题。
牛顿迭代法的优缺点总结
• 适用于非线性问题:能够处理非线性方程 的求解问题,这是许多其他方法无法做到 的。
牛顿迭代法的优缺点总结
初始值影响
初始值对迭代结果有一定影响,但只要在合理范围内,最终都能 收敛到正确解。
结果误差分析
绝对误差
(|x - x_{true}| = 0.00002698)
相对误差
(frac{|x - x_{true}|}{|x_{true}|} = 0.0027%)
误差来源
主要来源于舍入误差和计算过程中的近似处理。
牛顿迭代法实验课件
目录
• 引言 • 牛顿迭代法的基本原理 • 牛顿迭代法的实现步骤 • 实验结果与分析 • 结论与展望
01
引言
牛顿迭代法的定义
牛顿迭代法是一种数值计算方法,通 过迭代的方式求解非线性方程的根。
它基于牛顿定理,即函数在某点的切 线与x轴的交点即为该函数的根。
牛顿迭代法的应用场景
在金融领域的应用
牛顿迭代法可以用于求解金融领 域中的复杂模型和优化问题,例 如资产定价和风险管理。
在工程领域的应用
牛顿迭代法可以用于求解各种工 程领域的优化问题,例如结构分 析和控制系统设计。
感谢您的观看
THANKS
通过改进初始点的选择方法,提 高迭代过程的成功率和收敛速度。
在迭代过程中引入阻尼因子,以 避免迭代过程在鞍点处停滞不前。
根据迭代过程中的误差信息,自 适应地调整步长,以提高收敛速 度和稳定性。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

牛顿迭代法算法

牛顿迭代法算法

牛顿迭代法算法
牛顿迭代法,又称牛顿-拉夫逊方法,是一种用来近似求解方程根的迭代算法。

该算法以牛顿的差商公式为基础,通过不断迭代逼近方程的根。

假设我们要求解方程 f(x)=0 的根,其中 f(x) 是一个连续可微的函数。

牛顿迭代法的步骤如下:
1. 选择一个初始近似根 x0;
2. 计算初始点处的函数值 f(x0) 和导数值 f'(x0);
3. 使用牛顿迭代公式 x1 = x0 - f(x0)/f'(x0) 计算下一个近似根;
4. 如果 |x1 - x0| 小于某个给定的精度要求,即达到所需精度,停止迭代并输出结果 x1 作为方程的近似根;
5. 否则,令 x0 = x1,返回步骤 2 继续迭代。

牛顿迭代法的思想是通过逐步改进初始近似根,使其逐渐接近真实根。

算法的收敛性与初始近似根的选择有关,通常需要合理选择初始点以确保算法的稳定性和快速收敛。

该算法被广泛应用于优化、数值分析、物理学等领域,具有较高的收敛速度和准确性。

牛顿迭代法的主要优势是可以求解高阶多项式方程以及非线性方程等复杂问题。

需要注意的是,牛顿迭代法也存在收敛速度慢、可能陷入局部最小值等缺点。

在实际应用中,需要根据具体问题来选择合适的求解方法。

牛顿迭代法的原理与应用

牛顿迭代法的原理与应用

牛顿迭代法的原理与应用牛顿迭代法(Newton's method)是一种数值计算方法,主要用于求解非线性方程和优化问题,其基本思想是通过线性逼近来不断逼近函数的零点。

牛顿迭代法是数学上的一个重要概念,应用广泛,并且在实际问题中也有很多应用。

本文旨在介绍牛顿迭代法的原理和应用。

一、牛顿迭代法的原理牛顿迭代法主要用于求解非线性方程的根,其基本思想是通过对函数进行逐次线性逼近来逼近函数的零点。

设 f(x) 在 x_0 处可导,那么函数在 x_0 处的一次泰勒展开式为:f(x)=f(x_0 )+f'(x_0 )(x-x_0 )将 f(x) 置于零,解出 x 的值,则可得到下一个逼近点:x_{1}=x_{0}-\frac{f(x_0)}{f'(x_0)}依照上述的迭代方式不断进行逼近,直到最终的误差小于某个可接受的范围为止。

例如,在求解方程 x^2-2=0 的根时,选择初始值 x_0=1。

然后根据上述迭代方式不断逼近,可以得到以下的结果:x_1=x_0-\frac{f(x_0)}{f'(x_0)}=1-\frac{1}{2}=0.5x_2=x_1-\frac{f(x_1)}{f'(x_1)}=0.5-\frac{-0.5}{1}=1.0x_3=x_2-\frac{f(x_2)}{f'(x_2)}=1.0-\frac{0}{2}=1.0可以看到,通过牛顿迭代法可以在三次迭代内得到非常精确的解。

同时,牛顿迭代法还可以求解多元函数的根和优化问题,但是在这里不进行详细介绍。

二、牛顿迭代法的应用牛顿迭代法在实际问题中有许多应用,下面介绍几个例子。

1. 数值解微分方程微分方程在物理、工程、生物学等领域中占有重要地位,但是大部分微分方程并不能求解得到。

通过数值方法来求解微分方程是一种很有效的方法,其中牛顿迭代法就是一个常用的工具。

将微分方程通过拉格朗日插值法或泰勒级数进行近似,再使用牛顿迭代法求解即可。

牛顿迭代法

牛顿迭代法

2.牛顿迭代法的几何解析
在 x0 处做曲线的切线,切线方程为
y f (x0 ) f (x0 ) f ' (x0 )(x x0 )
令 y 0可得切线与 x 轴的交点坐标
x1 x0
f (x0 ) f ' (x0 )
,这
就是牛顿迭代法的迭代公式。因此,牛顿法又称“切线
法”。
y
y f (x)
n=0;eps=1.0e-5;
x=0.5;
while abs(x-0.625*exp(-x)-0.375*x)>eps
x=0.625*exp(-x)+0.375*x;n=n+1;
end
x,n 结果为0.5671,n=3,说明迭代三次后达到精度要求。
练习5 对练习中方程
,用加快后的迭代格式
x ex
h(x) g(x) xg ' (x) 求x=0.5附近的根,精确到10-5 1 g'(x)
o
x2 x1 x0
x
牛顿迭代法
3.牛顿迭代法的收敛性
计算可得 g'(x)
f (x) f ''(x) [ f ' (x)]2
,设 x* 是 f (x) 0 的单根,
有 f ' (x*) 0 ,f (x*) 0 则
g' (x*)
f (x* ) f '' (x* ) [ f ' (x* )]2
x=x-(x*exp(x)-1)/((x+1)*exp(x)) end 可得迭代数列前6项为1.0000 ,0.6839, 0.5775
0.5671,0.5671,说明迭代实收敛的。 如果取初值为10,相应的MATLAB代码为 clear; x=10.0; for i=1:20

牛顿迭代法的数值实验和仿真

牛顿迭代法的数值实验和仿真

牛顿迭代法的数值实验和仿真牛顿迭代法是一种广泛应用于求解非线性方程的方法。

它的基本思想是通过不断接近方程的根,使得函数在根附近的一段区间内表现出线性的特征,从而不断逼近方程的解。

在本文中,我们将介绍牛顿迭代法的数值实验和仿真,并通过实例来展示该方法在实际问题中的应用。

1. 牛顿迭代法的原理牛顿迭代法的原理是利用泰勒级数来逼近函数的根。

具体来说,对于非线性方程 f(x) = 0,我们首先可以通过牛顿迭代公式:$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$来计算出一个初始解 $x_0$,然后不断通过公式进行迭代,直到满足一定的收敛条件。

其中,$f'(x)$ 表示 $f(x)$ 对 $x$ 的导数,也就是函数的斜率。

这个公式的推导是通过将函数在 $x_n$ 处进行一阶泰勒展开得到的。

2. 牛顿迭代法的数值实验为了验证牛顿迭代法的有效性,我们可以进行一些简单的数值实验。

现在考虑求解方程 $x^3 - 5x^2 + 3x -7 = 0$ 在 $[1,2]$ 中的解。

我们首先可以通过图像观察到该方程在1 到2 之间有一个根。

我们可以用 Matlab 程序来实现迭代计算,代码如下:function [x,it] = newton(f,df,x0,tol,maxit)for it = 1:maxitx = x0-f(x0)/df(x0);if abs(x-x0) < tol, return, endx0 = x;enderror('Maximum number of iterations reached')在代码中,f(x) 和 df(x) 分别表示要求解的方程和其一阶导数。

tol 表示迭代的停止条件,如果$|x_{n+1}-x_n|<tol$,则停止迭代。

maxit 表示最大的迭代次数,如果迭代次数超过了该限制,则停止迭代。

我们可以通过调用该程序,输入相应的参数来进行数值实验。

牛顿迭代法的实验报告

牛顿迭代法的实验报告

牛顿迭代法的实验报告牛顿迭代法是一种寻找函数零点的方法,它通过通过使用函数的导数来逼近实际零点。

在本实验中,我们使用了牛顿迭代法来求解一元高次方程的根。

实验目的:通过使用牛顿迭代法来求解一元高次方程的根,掌握牛顿迭代法的原理与应用。

实验器材与条件:- 电脑- MATLAB 软件实验原理:设函数 f(x) 在零点 x0 处有一阶导数f’(x0)不等于0,则 f(x)在点 x0 的切线方程为y = f’(x0) (x - x0) + f(x0)。

切线与 x 轴的交点为x1,有:f’(x0)(x1 - x0) + f(x0) = 0由于我们的目标是解方程 f(x) = 0,所以我们需要将上式改写成其中 x1 为由切线得到的下一个逼近值。

通过不断逼近 x1 直到误差满足一定要求,我们就可以以一个很高的精确度求解出方程的根。

实验步骤:本实验的目标是求解方程 x^3 - 2x -2 = 0 的根。

第一步,我们先定义该方程及其导数函数:syms x;f = x^3 - 2*x - 2;df = diff(f);其中 diff() 函数是 MATLAB 默认的求导函数。

第二步,我们设定初始值 x0,设定逼近误差 limit,然后进行牛顿迭代,直到误差小于 limit:x0 = 1;limit = 1e-6;diff_value = inf;while abs(diff_value) > limitx1 = x0 - subs(f, x0) / subs(df, x0);diff_value = subs(f, x1);x0 = x1;endx0通过运行上面的代码,我们可以得到方程的一个根,为 1.7693。

实验结果与分析:本实验顺利完成,我们使用牛顿迭代法成功求出了 x^3 - 2x - 2 = 0 的根,为 1.7693。

此结果与理论值非常接近,表明我们使用牛顿迭代法正确地找到了方程的根。

研究生数值分析(5)牛顿(Newton)迭代法

研究生数值分析(5)牛顿(Newton)迭代法
(k 0,1, 2,)
称为埃特肯算法。
例7 用迭代法求方程
f ( x) x 2 x 0 在[0,1]内根 x *
的近似值,精确到
xk 1 xk 104
解:取初始近似根 x0 0.5 xk 1 2 x 1.用简单迭代法 2.用牛顿迭代法 3.用埃特肯算法
1 1 0 m
这表明直接用牛顿迭代法对方程 只有线性收敛速度。
f ( x) 0
求重根
对 x* 是方程 则 x* 是方程
f ( x) 0
重根的情形,如将方程改写成
(其中 F ( x) f ( x) / f ' ( x) )
F ( x) 0
F ( x) 0
的单根,再对
F ( x) 0
f ' ( x) 0

在 [a, b] 上保号,
则当初值 x0 [a, b] ,且 f ( x0 ) f '' ( x0 ) 0 时, 牛顿迭代公式产生的迭代序列 { xk } 收敛于方程
f ( x) 0 在 [a, b] 上的唯一实根 x* 。
定理5的简要几何说明:
条件(1)保证了曲线 y=f (x)的连续性和光滑性; 条件(2)保证了方程y = f (x) 在[a ,b]内至少有 一实根; 条件(3)说明在[a ,b]上恒有
135.607
使其精确至7位有效数字。 解:作函数 f ( x) x2 c , 则f (x)=0的正根 x* 就是 c
f ( x) 0 的牛顿迭代公式为
2 f ( xk ) xk c 1 c xk 1 xk ' xk ( xk ) f ( xk ) 2 xk 2 xk

计算方法--牛顿法

计算方法--牛顿法

牛顿迭代法应用及运算一、实验问题1.给定初值x0及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。

2.给定方程f(x)=x 33−x=0,易知其有三个根x1∗=−√3,x2∗=0,x3∗=√3①由牛顿方法的局部收敛性可知存在δ>0,当x0∈(−δ,+δ)时,Newton迭代序列收敛于根x2∗,试确定尽可能大的δ。

②试取若干初始值,观察当x0∈(−∞,−1),(−1,−δ),(−δ,+δ),(δ,1),(1,+∞)时Newton序列的收敛性以及收敛于哪一个根。

二、实验原理⑴构造迭代函数的一条重要途径,是用近似方程来代替原方程去求根。

因此如果能将非线性方程f(x)=0用线性工程来代替,那么求近似根问题就很容易解决,而且十分方便。

牛顿法就是把非线性方程线性化的一种方法。

设x k是f(x)=0的一个近似根,把f(x)在x k处作一阶泰勒级数展开,即f(x)≈f(x k)+f′(x k)(x−x k)于是我们得到近似方程f(x k)+f′(x k)(x−x k)=0设f′(x k)≠0,则上式解为x̃=x k−f(x k) f′(x k)可以得到牛顿迭代法的公式为x k+1=x k−f(x k)f′(x k)(k=0,1,2,…)已知x0,就可以用牛顿迭代法的公式进行迭代运算,直到|x k+1−x k|<ε可以得到近似结果。

⑵判断牛顿法的局部收敛性,需要考虑单根和双根两种情况:牛顿法的迭代函数为φ(x)=x−f(x)f′(x)对φ(x)求导得φ′(x)=1−(f′(x))2−f′′(x)f(x)(f′(x))2=f′′(x)f(x)(f′(x))2φ′′(x)=[f(x)f′′(x)(f′(x))2]′=f′(x)f′′(x)(f′(x))2+f(x)[f′′(x)(f′(x))2]′i.当x∗是f(x)=0的单根时,则有f(x)=(x−x∗)g(x),且g(x∗)≠0.这时f′(x)=g(x)+(x−x∗)g(x)且f′(x∗)=g(x∗)≠0于是φ′(x∗)=f ′′(x∗)f(x∗)(f′(x∗))2=0,φ′′(x∗)=f′′(x∗)f′(x∗)一半的有φ′′(x∗)≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)实验目的
•熟悉Matlab编程;
•学习非线性方程求根的方法及程序设计算法
2)实验题目
1、迭代函数对收敛性的影响
实验题目
用迭代法求方程的根。

方案1:化方程为等价方程
取初值,迭代10次。

方案2:化为等价方程
取初值,迭代10次,观察其计算值,并加以分析。

实验程序:
实验结果:
方案一收敛很快,偏差和偏差的相对误差几乎为零;方案二不收敛
由此可见,迭代序列的敛散性与迭代公式有关,也与相邻两次迭代的偏差和偏差的相对误差有关,他们的值越小,迭代序列的收敛速度越快。

2、初值的选取对迭代法的影响
实验题目
用牛顿法求方程在x=1.5 附近的根。

方案1:使用牛顿法并取,由

迭代10次。

方案2:取,使用同样的公式
迭代10次,观察比较并分析原因。

实验程序:
实验结果:
3.收敛性与收敛速度的比较
实验题目
求方程的全部实根,
方案1:用牛顿法求解;
方案2:用简单迭代法;
取相同迭代初值,比较各方法的收敛速度。

实验程序:
1.普通迭代,选用初值0.5
2.牛顿迭代法
实验结果:
实验结果分析与小结
通过本次试验:
1:迭代函数会影响到迭代的收敛性,所以得到方程的近似解,迭代时必须选择收敛的迭代函数。

2只要迭代收敛,迭代初值的选取不会影响迭代的最终结果,不过如果初值越接近准确解,所需迭代次数越少。

相关文档
最新文档