2018年吉林省长春市中考数学模拟试卷含答案解析

合集下载

2018年吉林长春市中考数学试卷(含解析)

2018年吉林长春市中考数学试卷(含解析)

2018年吉林省长春市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题:(本大题共8小题,每小题3分,共24分)1.(2018吉林省长春市,1,3)-15的绝对值是(A)-15(B)15(C)-5 (D)5【答案】B【解析】根据负数的绝对值是它的相反数,可知-15的绝对值是15.【知识点】绝对值2.(2018吉林省长春市,2,3)长春市奥林匹克公园即将于2018年年底建成,它的总投资约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为(A)0.25×1010(B)2.5×1010(C)2.5×109(D)25×108【答案】C【解析】把一个数写成|a|×10n的形式(其中1≤|a|<10,n为整数),这种计数的方法叫做科学记数法.其方法是:(1)确定a,a是只有一位整数的数;(2)确定n,当原数的绝对值≥10时,n为正整数,且等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前面零的个数(含整数数位上的零)2 500 000 000=2.5×109.故选C.错误!未找到引用源。

【知识点】科学记数法3.(2018吉林省长春市,3,3)下列立体图形中,主视图是圆的是(A)(B)(C)(D)【答案】D【解析】空间几何体的三视图首先是要确定主视图的位置,然后要时刻遵循“长对正,高平齐,宽相等” 的规律,即是空间几何体的长对正视图的长,高对侧视图的高,宽对俯视图的宽.轮廓内看见的棱线用实线画出,看不见的棱线用虚线画出.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.A. 圆锥的主视图为三角形,不符合题意;B. 圆柱的主视图为长方形,不符合题意;C.圆台的主视图为梯形,不符合题意;D.球的三视图都是圆,符合题意;故选D.【知识点】立体图形三视图——主视图.4.(2018吉林省长春市,4,3) 不等式3x —6≥0的解集在数轴上表示正确的是1231231230–1123(A ) (B ) (C) (D)【答案】B【解析】解一元一次不等式的步骤: (1)去分母; (2)去括号; (3)移项;(4)合并同类项; (5)系数化为1.此题只需移项,系数化为1即可. 解:3x —6≥0 3x ≥6 x ≥2123【知识点】一元一次不等式 5.(2018吉林省长春市,5,3) 如图,在△ABC 中,CD 平分 ∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为EDAB C(A )44° (B )40° (C )39° (D )38°【答案】C【解析】根据三角形内角和定理,可以计算出∠ACB=180°—∠A —∠B=180°—54°—48°=78°,又CD 平分 ∠ACB ,所以∠DCB=39°,因DE ∥BC ,根据两直线平行,内错角相等,所以∠CDE=∠DCB=39°. 【知识点】角平分线;两直线平行,内错角相等;三角形内角和. 6.(2018吉林省长春市,6,3)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(A )五丈 (B )四丈五尺 (C )一丈 (D )五尺【答案】B【解析】本题是利用相似求物高的问题,默认已知条件:太阳光是平行光线;同一时刻,甲物高/乙物高=甲影长/乙影长.看实际问题:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸.提取关键信息:标杆高度-----一尺五寸,标杆影长----五寸,竹竿高度----未知数,竹竿影长一丈五尺,画出草图,设竹竿高度为x ,建立数学模型:= x 一丈五尺一尺五寸五寸,解得x =四丈五尺.【知识点】相似,数学文化,方程思想.7.(2018吉林省长春市,6,3) 如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为(A )800sin α米 (B )800tan α米 (C )800sin α米 (D )800tan α米 αACB【答案】D【解析】由题中条件可知,在RT △ABC 中,∠ABC=α,AC=800米,建立数学模型tan α=AC AB ,可得AB=800tan α米.【知识点】解直角三角形,锐角三角函数,俯角问题. 8.(2018吉林长春,8,3分)如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数xky =(x > 0)的图象上.若AB =2,则k 的值为 (A )4(B )22 (C )2 (D )2(第8题)【答案】A【思路分析】本题中,若能求出点C 的坐标,即可求出k 值. 由等腰直角三角形的性质,再利用勾股定理可求出斜边AC 的长,又AC ⊥x 轴,即可得出点C 纵坐标;由等腰直角三角形ABC 可知∠BAC=45°,又有AC ⊥x 轴可知∠CAO =90°,故∠OAB=45°,所以ΔOAB 是等腰直角三角形,进而可求出OA 的长,即可得点C 的横坐标. 【解题过程】解:在Rt ΔABC 中,AB=BC ,∠ABC=90°,AB=2 ∴ AC =4 ,∠BAC=45° ∵AC ⊥x 轴 ∴∠CAO =90° ∴∠OAB=45°∴ΔOAB 是等腰直角三角形 又AB=2由勾股定理OA 2+OB 2=AB 2 得OA=2 ∴点C 坐标为(2,22) 把点C (2,22)代入函数xky =(x > 0)得k = 4. 故选项A 正确. 【知识点】等腰直角三角形,勾股定理,待定系数法求反比例函数解析式二、填空题(本大题共6小题,每小题3分,共18分)9.(2018吉林长春,9,3分)比较大小:10 3.(填“>”、“=”或“<”) 【答案】>【解析】∵ 3=9,10>9 ∴10>3. 【知识点】实数的大小比较 10.(2018吉林长春,10,3分)计算:a 2 ·a 3= . 【答案】a 5 【解析】a 2 ·a 3=a 2+3=a 5 【知识点】同底数幂的乘法11. (2018吉林长春,11,3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3).若直线y =2x 与线段AB 有公共点,则n 的值可以为 .(写出一个即可)(第11题) 【答案】2【解析】由点A 、B 的坐标分别为(1,3)、(n ,3)可知,线段AB // x 轴;令y =3得,x =23. ∴当x ≥23时,直线y =2x 与线段AB 有公共点,故取n ≥23的数即可. 【知识点】平面直角坐标系,一次函数12.(2018吉林长春,12,3分)如图,在ΔABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A =32°,则∠CDB 的大小为 度.(第12题)【答案】37【解析】∵AB=AC ,∠A =32° ∴∠ACB =(180°-32°)÷2=74° 由尺规作图知,CB=CD ∴∠CBD=∠CDB 又∵∠CBD+∠CDB=∠ACB∴∠CDB =21∠ACB=37° 【知识点】等腰三角形,三角形内角和,尺规作图,外角13.(2018吉林长春,13,3分)如图,在YABCD 中,AD=7,AB=32,∠B=60°.E 是边BC 上任意一点,沿AE 剪开,将ΔABE 沿BC 方向平移到ΔDCF 的位置,得到四边形AEFD ,则四边形AEFD 周长的最小值为 .(第13题)【答案】20【思路分析】由平移性质可知,四边形AEFD 是平行四边形,且AD=7. 故当边AE 值最小时,四边形AEFD 周长有最小值.如图,作AE ⊥BC ,此时AE 有最小值.【解题过程】解:如图,作AE ⊥BC .此时四边形AEFD 周长最小. 在R tΔAEB 中,∠AEB=90°,AB=32,∠B=60° ∴AE =AB·sin 60°=32×23=3 由平移性质可知,四边形AEFD 是平行四边形 ∴四边形AEFD 周长为2(AD +AE )=2×(7+3)=20. 【知识点】平行四边形,平移,最值14. (2018吉林长春,14,3分)如图,在平面直角坐标系中,抛物线y =x 2 + mx 交x 轴的负半轴于点A . 点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ' 恰好落在抛物线上. 过点A ' 作x 轴的平行线交抛物线于另一点C .若点A' 的横坐标为1,则A'C 的长为 .(第14题)【答案】3 【思路分析】如下图,A'C 与y 轴交于点D. 因为点A 与点A' 关于点B 对称,则AB=A'B ;又因A'C// x 轴,则ΔABO ≌ ΔA'BD ,AO=A'D. 点A' 的横坐标为1,即A'D=AO=1.所以点A 坐标为(-1,0),把点A (-1,0)代入函数解析式可求得m 值,进而可知A' 坐标,由A'C// x 轴,可求出点C 横坐标,即可求出A'C 的长.【解题过程】解:如图,A'C与y轴交于点D.∵点A与点A'关于点B对称∴AB=A'B又A'C// x轴∴∠A'DB=∠AOB=90°,∠DA'B=∠OAB∴ΔABO ≌ΔA'BD∴AO=A'D∵点A' 的横坐标为1∴A'D=AO=1∴A坐标为(-1,0)把(-1,0) 代入抛物线解析式y=x2 + mx 得m=1∴抛物线解析式为y=x2 + x∴A' 坐标为(1,2)令y=2得,x1 = -2 , x2=1∴A'C=1-(-2)=3.【知识点】待定系数法求抛物线解析式,对称的性质,平行线的性质,三角形全等,直角坐标系中求线段长度三、解答题(本大题共10小题,共78分)15.(2018吉林长春,15,6分)先化简,再求值:22111xx x-+--,其中51x=-.【思路分析】本题是同分母分式的加法运算,直接分母不变,分子相加即可,然后利用因式分解进行化简,最后代入求值.【解题过程】解:原式=2211 xx-+-=211 xx--=()()111x xx+--=1x+将51x=-代入,得,原式=511-+=5.【知识点】分式的化简求值16.(2018吉林长春,16,6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱.现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)(第16题)【思路分析】本题共有3张卡片,且是有放回抽取,依据题意用列表法或画树状图法分析所有可能出现的结果,然后根据概率公式求出该事件的概率即可. 【解题过程】解法一: 解:列表如下A 1 A 2BA 1 (A 1,A 1) (A 1,A 2) (A 1,B )A 2 (A 2,A 1) (A 2,A 2) (A 2,B ) B(B ,A 1)(B ,A 1)(B ,B )由表知,所有可能出现的结果有9种,其中抽出的两张卡片上的图案都是“金鱼”的情况有4种,并且每一种情况出现的可能性都是相同的. 所以, P(两张卡片上的图案都是“金鱼”)=49. 解法二:解:根据题意,可以画出如下的树状图:由树状图知,所有可能出现的结果有9种,其中抽出的两张卡片上的图案都是“金鱼”的情况有4种,并且每一种情况出现的可能性都是相同的. 所以, P(两张卡片上的图案都是“金鱼”)=49. 【知识点】随机事件的概率,列表法,树状图法17. (2018吉林长春,17,6分)图①、图② 均是8×8的正方形网格,每个小正方形的顶点称为格点, 线段OM 、ON 的端点均在格点上,在图①、图② 给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上. 要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.A 2 A 1A 1B A 2 A 2 A 1 B A 2 B A 1 B图①图②O NMMNO【思路分析】依据题意,理解格点的定义,结合轴对称的图形的定义和性质以及题目的要求,做出符合要求的图形.例如,可作出∠MON 的平分线,其平分线与格点的交点即为另一个顶点.【解题过程】图②图①O NMMNO【知识点】新定义(格点)的理解;轴对称;18.(2018吉林长春,18,7分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购,可以优惠. 结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润. (1)每套课桌椅的成本. (2)求商店的利润. 【思路分析】(1)设每套课桌椅成本为x 元,则优惠后的单价为(100-x )元,然后依据商店获得了同样多的利润,列出关于x 的方程,最后求出方程的解,即可.(2)总利润=每套课桌椅的利润×课桌椅的套数. 【解题过程】(1)解:设每套课桌椅的成本为x 元.由题意得60(100-x )=72(100-3-x ) 解得x =82.答:每套课桌椅的成本是82元.(2)由(1)得每套课桌椅的成本是82元,所以商店的利润是60(100-x)=60(100-82)=1080答:商店的利润是1080元【知识点】一元一次方程解决实际问题;总利润=每套课桌椅的利润×课桌椅的套数19.(2018吉林长春,19,7分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C= 40°.(1)求∠B的度数.(2)求»AD的长.(结果保留π)【思路分析】本题考查了圆的切线的性质,直角三角形两锐角的关系;以及弧长的计算公式.(1)由切线的性质可得,△ABC为直角三角形,利用直角三角形两锐角互余可求∠B的度数(2)利用弧长公式:l=错误!未找到引用源。

2018年吉林省长春市中考数学一模试卷和解析答案

2018年吉林省长春市中考数学一模试卷和解析答案

2018年吉林省长春市中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣2地绝对值是()A.﹣2 B.﹣ C.D.22.(3分)据统计,2017年国庆黄金周内旅游市场接待游客约589000000人次.589000000这个数用科学记数法表示为()A.589×106B.58.9×107C.5.89×108D.0.589×1093.(3分)如图所示地几何体是由五个完全相同地正方体组成地,它地俯视图是()A.B.C.D.4.(3分)计算(x2y)3地结果是()A.x6y3B.x5y3C.x5y D.x2y35.(3分)关于x地一元二次方程x2+4x+k=0有两个实数根,则k地取值范围是()A.k≤﹣4 B.k≥﹣4 C.k≤4 D.k>46.(3分)如图,若以平行四边形一边AB为直径地圆恰好与边CD相切于点D,则∠C地度数是()A.40°B.45°C.50°D.60°7.(3分)将含有30°角地直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A地对应点A′地坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣)D.(﹣,)8.(3分)如图,在平面直角坐标系中,菱形OABC地顶点B在y轴正半轴上,顶点C在函数y=(x<0)地图象上.若对角线AC=6,OB=8,则k地值是()A.24 B.12 C.﹣12 D.﹣6二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)因式分解:y3﹣16y=.10.(3分)不等式组地解集是.11.(3分)如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C地大小为度.12.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么地值等于.13.(3分)如图,以AB为直径,点O为圆心地半圆经过点C,若AC=BC=,则图中阴影部分地面积是.14.(3分)如图,线段AB地长为4,C为AB上一个动点,分别以AC、BC为斜边在AB地同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长地最小值是.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2a﹣b)2﹣a(4a﹣3b),其中a=1,b=.16.(6分)甲、乙两人做摸球游戏,在不透明地口袋里放入大小相同地两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色地乙赢.这个游戏公平吗?为什么?17.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们地代步工具.某人去距离家8千米地单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车地速度是骑共享单车地1.5倍,求骑共享单车从家到单位上班花费地时间.18.(7分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间地情况,随机调查了其中地50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整地统计图,并知道每周课外体育活动时间在6≤x<8小时地学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺地部分;(3)求这50名学生每周课外体育活动时间地平均数;(4)估计全校学生每周课外体育活动时间不少于6小时地人数.19.(7分)如图,在▱ABCD中,AB<BC,以点A为圆心,AB长为半径作圆弧交AD于点F,再分别以点B、F为圆心,大于BF地一半长为半径作圆弧,两弧交于一点P,连结AP并延长交BC于点E,连结EF.(1)四边形ABEF是(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你地结论.(2)AE、NF相交于点O,若四边形ABEF地周长为40,BF=10,则AE地长为,∠ADC=°,(直接填写结果)20.(7分)在数学活动课上,九年级(1)班数学兴趣小组地同学们要测量某公园人工湖亭子A与它正东方向地亭子B之间地距离,现测得亭子A位于点P北偏西30°方向,亭子B位于点P北偏东42°方向,测得点P与亭子A之间地距离为200米,求亭子A与亭子B之间地距离.(结果精确到1米)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90,=1.73】21.(8分)周末,甲、乙两名大学生骑自行车去距学校6000米地净月潭公园,两人同时从学校出发,以a米/分地速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分地速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时地速度追赶乙,甲追上乙后,两人以相同地速度前往净月潭,乙骑自行车地速度始终不变,设甲,乙两名大学生距学校地路程为s(米),乙同学行驶地时间为t(分),s与t之间地函数图象如图所示.(1)求a,b地值;(2)求甲追上乙时,距学校地路程;(3)当两人相距500米时,直接写出t地值是.22.(9分)定义:在三角形中,把一边地中点到这条边地高线地距离叫做这条边地中垂距.例:如图①,在△ABC中,D为边BC地中点,AE⊥BC于E,则线段DE地长叫做边BC地中垂距.(1)设三角形一边地中垂距为d(d≥0).若d=0,则这样地三角形一定是,推断地数学依据是.(2)如图②,在△ABC中,∠B=45°,AB=,BC=8,AD为边BC地中线,求边BC地中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=4.点E为边CD地中点,连结AE并延长交BC地延长线于点F,连结AC.求△ACF中边AF地中垂距.23.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,射线ED⊥BC于点E,AD=AB=BE=BC=4,动点P从点E出发,沿射线ED以每秒2个单位长度地速度运动,以PE为对角线做正方形PMEN,设运动时间为t秒,正方形PMEN与四边形ABCD重叠部分面积为S.(1)当点N落在边DC上时,求t地值.(2)求S与t地函数关系式.(3)当正方形PMEN被直线BD分成2:1两部分时,直接写出t地值.24.(12分)在平面直角坐标系中,规定:抛物线y=a(x﹣h)2+k地关联直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3地关联直线为y=2(x+1)﹣3,即y=2x﹣1.(1)如图,对于抛物线y=﹣(x﹣1)2+3.①该抛物线地顶点坐标为,关联直线为,该抛物线与其关联直线地交点坐标为和;②点P是抛物线y=﹣(x﹣1)2+3上一点,过点P地直线PQ垂直于x轴,交抛物线y=﹣(x﹣1)2+3地关联直线于点Q.设点P地横坐标为m,线段PQ地长度为d(d>0),求当d随m地增大而减小时,d与m之间地函数关系式,并写出自变量m地取值范围.(2)顶点在第一象限地抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B地左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.①求△BCD地面积(用含a地代数式表示).②当△ABC为钝角三角形时,直接写出a地取值范围.2018年吉林省长春市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣2地绝对值是()A.﹣2 B.﹣ C.D.2【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.2.(3分)据统计,2017年国庆黄金周内旅游市场接待游客约589000000人次.589000000这个数用科学记数法表示为()A.589×106B.58.9×107C.5.89×108D.0.589×109【解答】解:589000000这个数用科学记数法表示为5.89×108.故选:C.3.(3分)如图所示地几何体是由五个完全相同地正方体组成地,它地俯视图是()A.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面第二层最左边有一个正方形.故选:A.4.(3分)计算(x2y)3地结果是()A.x6y3B.x5y3C.x5y D.x2y3【解答】解:(x2y)3=(x2)3y3=x6y3,故选:A.5.(3分)关于x地一元二次方程x2+4x+k=0有两个实数根,则k地取值范围是()A.k≤﹣4 B.k≥﹣4 C.k≤4 D.k>4【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.6.(3分)如图,若以平行四边形一边AB为直径地圆恰好与边CD相切于点D,则∠C地度数是()A.40°B.45°C.50°D.60°【解答】解:连接OD,如图,∵CD为切线,∴OD⊥CD,∵四边形ABCD为平行四边形,∴∠A=∠C,AB∥CD,∴OD⊥AB,∴∠BOD=90°,∴∠A=∠BOD=45°,∴∠C=45°.故选:B.7.(3分)将含有30°角地直角三角板OAB如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A地对应点A′地坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣)D.(﹣,)【解答】解:如图所示:过点A′作A′C⊥OB.∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA′=OA.∴∠COA′=45°.∴OC=2×=,CA′=2×=.∴A′地坐标为(,﹣).故选:C.8.(3分)如图,在平面直角坐标系中,菱形OABC地顶点B在y轴正半轴上,顶点C在函数y=(x<0)地图象上.若对角线AC=6,OB=8,则k地值是()A.24 B.12 C.﹣12 D.﹣6【解答】解:∵菱形地两条对角线地长分别是6和4,∴C(﹣3,4),∵点C在反比例函数y=地图象上,∴k=(﹣3)×4=﹣12.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)因式分解:y3﹣16y=y(y+4)(y﹣4).【解答】解:原式=y(y+4)(y﹣4),故答案为:y(y+4)(y﹣4)10.(3分)不等式组地解集是﹣2<x≤.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤,所以不等式组地解集是﹣2<x≤.故答案为:﹣2<x≤.11.(3分)如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C地大小为56度.【解答】解:∵AB∥CD,∠B=34°,∴∠CDE=∠B=34°,又∵CE⊥BE,∴Rt△CDE中,∠C=90°﹣34°=56°,故答案为:56.12.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么地值等于.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.13.(3分)如图,以AB为直径,点O为圆心地半圆经过点C,若AC=BC=,则图中阴影部分地面积是.【解答】解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC==.故答案为:.14.(3分)如图,线段AB地长为4,C为AB上一个动点,分别以AC、BC为斜边在AB地同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长地最小值是2.【解答】解:设AC=x,BC=4﹣x,∵△CD,△BCE均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数地最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:2三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2a﹣b)2﹣a(4a﹣3b),其中a=1,b=.【解答】解:原式=4a2﹣4ab+b2﹣4a2+3ab=b2﹣ab,当a=1,b=时,原式=3﹣.16.(6分)甲、乙两人做摸球游戏,在不透明地口袋里放入大小相同地两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色地乙赢.这个游戏公平吗?为什么?【解答】解:不公平,画树状图如下:由树状图知,P(一黑一白)==,P(颜色相同)==,∵≠,∴不公平.17.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们地代步工具.某人去距离家8千米地单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车地速度是骑共享单车地1.5倍,求骑共享单车从家到单位上班花费地时间.【解答】解:设骑共享单车从家到单位上班花费x分钟,依题意得:×1.5=,解得x=60.经检验,x=60是原方程地解,且符合题意.答:骑共享单车从家到单位上班花费地时间是60分钟.18.(7分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间地情况,随机调查了其中地50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整地统计图,并知道每周课外体育活动时间在6≤x<8小时地学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺地部分;(3)求这50名学生每周课外体育活动时间地平均数;(4)估计全校学生每周课外体育活动时间不少于6小时地人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时地学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时地学生有:50﹣5﹣22﹣12﹣3=8(人),补全地频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间地平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时地学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时地学生有300人.19.(7分)如图,在▱ABCD中,AB<BC,以点A为圆心,AB长为半径作圆弧交AD于点F,再分别以点B、F为圆心,大于BF地一半长为半径作圆弧,两弧交于一点P,连结AP并延长交BC于点E,连结EF.(1)四边形ABEF是菱形(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你地结论.(2)AE、NF相交于点O,若四边形ABEF地周长为40,BF=10,则AE地长为10,∠ADC=120°,(直接填写结果)【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5 ,∠ABC=2∠ABO=120°.故答案为10 ,120.20.(7分)在数学活动课上,九年级(1)班数学兴趣小组地同学们要测量某公园人工湖亭子A与它正东方向地亭子B之间地距离,现测得亭子A位于点P北偏西30°方向,亭子B位于点P北偏东42°方向,测得点P与亭子A之间地距离为200米,求亭子A与亭子B之间地距离.(结果精确到1米)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90,=1.73】【解答】解:作PH⊥AB于点H.∵在Rt△APH中,∠APH=30°,∴AH=AP=×200=100(米),PH=AP•cos∠APH=200×=100(米),又∵Rt△PBH中,∠BPH=42°,∴BH=PH•tan∠BPH=100×tan42°≈100×0.90=90(米),则AB=AH+BH=100+90≈100+155.7≈256(米).答:亭子A与亭子B之间地距离是256米.21.(8分)周末,甲、乙两名大学生骑自行车去距学校6000米地净月潭公园,两人同时从学校出发,以a米/分地速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分地速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时地速度追赶乙,甲追上乙后,两人以相同地速度前往净月潭,乙骑自行车地速度始终不变,设甲,乙两名大学生距学校地路程为s(米),乙同学行驶地时间为t(分),s与t之间地函数图象如图所示.(1)求a,b地值;(2)求甲追上乙时,距学校地路程;(3)当两人相距500米时,直接写出t地值是 5.5分钟或17.5分钟.【解答】解:(1)由题意a==200,b==30,∴a=200,b=30.(2)+4.5=7.5,设t分钟甲追上乙,由题意,300(t﹣7.5)=200t,解得t=22.5,22.5×200=4500,∴甲追上乙时,距学校地路程4500米.(3)两人相距500米是地时间为t分钟.由题意:1.5×200(t﹣4.5)+200(t﹣4.5)=500,解得t=5.5分钟,或300(t﹣7.5)+500=200t,解得t=17.5分钟,故答案为5.5分钟或17.5分钟.22.(9分)定义:在三角形中,把一边地中点到这条边地高线地距离叫做这条边地中垂距.例:如图①,在△ABC中,D为边BC地中点,AE⊥BC于E,则线段DE地长叫做边BC地中垂距.(1)设三角形一边地中垂距为d(d≥0).若d=0,则这样地三角形一定是等腰三角形,推断地数学依据是线段地垂直平分线上地点到两端地距离相等..(2)如图②,在△ABC中,∠B=45°,AB=,BC=8,AD为边BC地中线,求边BC地中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=4.点E为边CD地中点,连结AE并延长交BC地延长线于点F,连结AC.求△ACF中边AF地中垂距.【解答】解:(1)三角形一边地中垂距为d(d≥0).若d=0,则这样地三角形一定是等腰三角形,推断地数学依据是线段地垂直平分线上地点到两端地距离相等.故答案为等腰三角形,线段地垂直平分线上地点到两端地距离相等.(2)如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=45°,AB=3,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=4,∴DE=BD﹣BE=4﹣3=1,∴边BC地中垂距为1.(3)如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=4,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中边AF地中垂距为.23.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,射线ED⊥BC于点E,AD=AB=BE=BC=4,动点P从点E出发,沿射线ED以每秒2个单位长度地速度运动,以PE为对角线做正方形PMEN,设运动时间为t秒,正方形PMEN与四边形ABCD重叠部分面积为S.(1)当点N落在边DC上时,求t地值.(2)求S与t地函数关系式.(3)当正方形PMEN被直线BD分成2:1两部分时,直接写出t地值.【解答】解:(1)如图1中,当点N落在边DC上时,∵△DEC是等腰直角三角形,∴当点P与D重合时,点N落在CD上,∵PE=DE=4,∴t==2s时,点N落在边DC上;(2)①如图2中,当0<t≤2时,重叠部分是正方形EMPN,S=PE2=2t2;②如图3中,当2<t≤4时,重叠部分是五边形EFDGM,S=×42×=•(2t)2×﹣(2t﹣4)2=﹣t2+8t﹣4;③如图4中,当t>4时,重叠部分是四边形EFDA,S=8+4=12.综上所述,S=(3)①如图5中,设EM交BD于G,当EG=2GM时,∵EG=2,∴GM=,∴EN=3,∴PE=EM=6,∴t==3s.②如图6中,当MG=2GE时,MG=4,EM=6,PE=12,t==6s.综上所述,t=3s或6s时,正方形PMEN被直线BD分成2:1两部分;24.(12分)在平面直角坐标系中,规定:抛物线y=a(x﹣h)2+k地关联直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3地关联直线为y=2(x+1)﹣3,即y=2x﹣1.(1)如图,对于抛物线y=﹣(x﹣1)2+3.①该抛物线地顶点坐标为(1,3),关联直线为y=﹣x+4,该抛物线与其关联直线地交点坐标为(1,3)和(2,2);②点P是抛物线y=﹣(x﹣1)2+3上一点,过点P地直线PQ垂直于x轴,交抛物线y=﹣(x﹣1)2+3地关联直线于点Q.设点P地横坐标为m,线段PQ地长度为d(d>0),求当d随m地增大而减小时,d与m之间地函数关系式,并写出自变量m地取值范围.(2)顶点在第一象限地抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B地左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.①求△BCD地面积(用含a地代数式表示).②当△ABC为钝角三角形时,直接写出a地取值范围.【解答】解:(1)①抛物线地顶点坐标为(1,3),关联直线为y=﹣(x﹣1)+3=﹣x+4,解方程组得或,所以该抛物线与其关联直线地交点坐标为(1,3)和(2,2);故答案为(1,3),y=﹣x+4,(1,3)和(2,2);②设P(m,﹣m2+2m+2),则Q(m,﹣m+4),如图1,∵d随m地增大而减小,∴m<1或1<m<2,当m<1时,d=﹣m+4﹣(﹣m2+2m+2)=m2﹣3m+2;当1<m<2时,d=﹣m2+2m+2﹣(m+4)=﹣m2+3m﹣2,当m≥,d随m地增大而减小,综上所述,当m<1,d=m2﹣3m+2;≤m<2时,d=﹣m2+3m﹣2;(2)①抛物线y=﹣a(x﹣1)2+4a地关联直线为y=﹣a(x﹣1)+4a=﹣ax+5a,解方程组得或,∴A(1,4a),B(2,3a),当y=0时,﹣a(x﹣1)2+4a=0,解得x1=3,x2=﹣1,则C(﹣1,0),当y=0时,﹣ax+5a=0,解得x=5,则D(5,0),∴S=×6×3a=9a;△BCD②AC2=22+16a2,BC2=32+9a2,AB2=12+a2,当AC2+AB2<BC2,∠BAC为钝角,即22+16a2+12+a2<32+9a2,解得a<;当BC2+AB2<AC2,∠ABC为钝角,即32+9a2+12+a2<22+16a2,解得a>1,综上所述,a 地取值范围为0<a <或a >1.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2018年吉林省长春市朝阳区中考模拟试卷数学卷附答案

2018年吉林省长春市朝阳区中考模拟试卷数学卷附答案

2018年吉林省长春市朝阳区东北师大附中中考模拟试卷数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.的绝对值等于 ‒2()A.B. C. D. 2‒1212‒22.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150 000 000 000用科学记数法可表示为 ()A. B. C. D. 15×10100.15×1012 1.5×1011 1.5×10123.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是 ()A.B.C.D.4.不等式组的解集在数轴上表示正确的是 {32‒12x ≤0x +2>0()A.B.C.D.5.方程根的情况是 4x 2‒2x +14=0()A. 有两个相等的实数根B. 只有一个实数根C. 没有实数根D. 有两个不相等的实数根6.如图,点E 是CD 上一点,EF 平分交AB 于点F ,若AB//CD ∠AED ,则的度数为 ∠AEC =42∘∠AFE ()A. B. C. D. 42∘65∘69∘71∘7.如图,的直径,BC 切于点B ,OC 平行于弦AD ,,则AD⊙O AB =4⊙O OC =5的长为 ()A.65B. 85C. 7D. 2358.如图,A ,B 两点在反比例函数的图象上,C ,D 两点在反比例函数y =k 1x 的图象上,轴于点E ,轴于点F ,,,y =k 2x AC ⊥y BD ⊥y AC =2BD =1,则的值是 EF =3k 1‒k 2()A. 6B. 4C. 3D. 2二、填空题(本大题共6小题,共18.0分)9.计算:______.2×3=10.分解因式:______.x 2y ‒y =11.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如(a +3)图所示的长方形不重叠无缝隙,则拼成的长方形的另一边长是______.()12.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学九章算术中的“井深几何”问题,它的题意可以由图获得,则《》井深为______尺.13.如图,四边形ABCD 中,,,以点B 为圆心,BA 为半径AB =CD AD//BC 的圆弧与BC 交于点E ,四边形AECD 是平行四边形,,则图中阴AB =5影部分扇形面积是______.14.如图,在平面直角坐标系中,二次函数的图象与y 轴交于点B ,y =‒x 2+bx +5以点C 为圆心的半圆与抛物线相交于点A 、若点C 的坐标为y =‒x 2+bx +5B.,则b 的值为______.(‒1,72)三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:,其中.(2a ‒3)(2a +3)‒(a +1)(4a ‒2)a =7216.孙子算经是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱如果甲《》.得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文甲、乙两23.人原来各有多少钱?四、解答题(本大题共8小题,共66.0分)17.甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同甲口袋中小球分别标.有数字1,6,7,乙口袋中小球分别标有数字1,2,现从甲口袋中随机摸出1个小球,记下标号;再4.从乙口袋中随机摸出1个小球,记下标号用树状图或列表的方法,求两次摸出小球的标号之积是偶数.()的概率.18.第24届冬季奥林匹克运动会将于2022年02月04日年02月20日~2022在我国北京举行,全国人民掀起了雪上运动热潮如图,一名滑雪运动员沿.34∘B.着倾斜角为的斜坡,从A滑行至若这名滑雪运动员的高度下降了300米,求他沿斜坡滑行了多少(0.1)(sin34∘=0.56cos34∘=0.83tan34∘=0.67)米?结果精确到米参考数据:,,19.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,().学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果.进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:(1)本次调查的学生共有______人,在扇形统计图中,m的值是______.(2)分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?△ABC AB=AC20.如图,在中,,点D是边BC的中点,过点A、D分别作BC与AB的平行线,相交于AD.点E,连结EC、求证:四边形ADCE是矩形.21.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输的工作效率降低到原来的甲、乙运输12.队调运物资的数量吨与甲工作时间天的函数图象如图所示.y()x()______;______.(1)a =b =求甲运输队重新开始工作后,甲运输队调运物资的数量吨与工作时间天的函数关系式;(2)y()x()直接写出乙运输队比甲运输队多运50吨物资时x 的值.(3)22.感知:如图1,在中,D 、E 分别是AB 、AC 两边的中点,延长DE 至点F ,使,连结△ABC EF =DE 易知≌.FC.△ADE △CFE探究:如图2,AD 是的中线,BE 交AC 于点E ,交AD 于点F ,且,求证:.△ABC AE =EF AC =BF 应用:如图3,在中,,,,DE 是的中位线过点D 、E 作△ABC ∠B =60∘AB =4BC =6△ABC .,分别交边BC 于点F 、G ,过点A 作,分别与FD 、GE 的延长线交于点M 、N ,则四DF//EG MN//BC 边形MFGN 周长C 的取值范围是______.AD=6cm AB=8cm∠DAB=120∘∠DAB.1cm/s 23.如图1,在▱ABCD中,,,,射线AE平分动点P以的PQ⊥AD PM//AE QM//AD 速度沿AD向终点D运动,过点P作交AE于点Q,过点P作,过点Q作,M.t(s)S(cm2).交PM于点设点P的运动时间为,四边形APMQ与四边形ABCD重叠部分面积为(1)PQ=.()______用含t的代数式表示(2)当点M落在CD上时,求t的值.(3)求S与t之间的函数关系式.(4)如图2,连结AM,交PQ于点G,连结AC、BD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.C1l⊥x24.定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M作轴,如果二次函C2C1C2C1.数的图象与关于l成轴对称,则称是关于点M的伴随函数如图2,在平面直角坐标系中,二C1y=‒2x2+2C1次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次C2C1函数是关于点M的伴随函数.(1)m=1若,①C2求的函数表达式.②P(a,b1)Q(a+1,b2)C2b1≥b2点,在二次函数的图象上,若,a的取值范围为______.(2)MN//x过点M作轴,①MN=4C2PN=1如果,线段MN与的图象交于点P,且MP::3,求m的值.②C2G1G2G1G2如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由和所G.A(1,0)B(3,0)ABCD.组成的图象记为以、为顶点在x轴上方作正方形直接写出正方形ABCD与G有三个公共点时m的取值范围.答案和解析【答案】1. D2. C3. A4. A5. A6. C7. B8. D 9. 610.y(x +1)(x ‒1)11.a +612.57.513. 25π614. ‒1215. 解:(2a ‒3)(2a +3)‒(a +1)(4a ‒2),=4a 2‒9‒4a 2‒2a +2=‒2a ‒7当时,原式. a =72=‒2×72‒7=‒7‒7=‒1416. 解:设甲原有x 文钱,乙原有y 文钱,由题意可得,,{x +12y =4823x +y =48解得:,{x =36y =24答:甲原有36文钱,乙原有24文钱.17. 解:列表得:甲乙1671167221214442428两次摸出的小球标号之积是偶数.∴P()=7918. 解:如图在中,米,,,Rt△ABC AC=300∠ACB=90∘∠ABC=34∘则.AB=AC÷sin34∘=300÷0.56≈535.7m答:他沿斜坡大约滑行了米.535.719. 50;30%20. 证明:,∵AE//BD DE//AB四边形ABDE是平行四边形∴,∴AB=DE AE=BD点D是BC的中点∵AB=AC∴DE=AC∵∴BD=CD AD⊥BC所以,AE=DC AE//DC四边形ADCE是平行四边形∴平行四边形ADCE是矩形∵∠ADC=90∘∴21. 5;1122. 43+6≤C≤47+623. 3t24. a≥3 2【解析】1. 解:根据绝对值的性质,.|‒2|=2故选:D.根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2. 解:,150000000000=1.5×1011故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,a×10n1≤|a|<10.小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对.>1值时,n是负数.<1此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表.a×10n1≤|a|<10示时关键要正确确定a的值以及n的值.3. 解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4. 解:{32‒12x ≤0①x +2>0②解不等式得:,∵①x ≥3解不等式得:,②x >‒2不等式组的解集为,∴x ≥3在数轴上表示为:,故选:A .先求出不等式组的解集,再在数轴上表示出解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.5. 解:,∵△=(‒2)2‒4×4×14=4‒4=0有两个相等的实数根,∴故选:A .计算出判别式的值即可判断.本题考查了一元二次方程的根的判别式:当,方程有两个不相等ax 2+bx +c =0(a ≠0)△=b 2‒4ac △>0的实数根;当,方程有两个相等的实数根;当,方程没有实数根.△=0△<06. 解:,∵∠AEC =42∘,∴∠AED =180∘‒∠AEC =138∘平分,∵EF ∠AED ,∴∠DEF =12∠AED =69∘又,∵AB//CD .∴∠AFE =∠DEF =69∘故选:C .由平角求出的度数,由角平分线得出的度数,再由平行线的性质即可求出的度数.∠AED ∠DEF ∠AFE 本题考查的是平行线的性质以及角平分线的定义熟练掌握平行线的性质,求出的度数是解决问题的关.∠DEF 键.7. 解:连接BD .是直径,.∵AB ∴∠ADB =90∘,,.∵OC//AD ∴∠A =∠BOC ∴cos∠A =cos∠BOC 切于点B ,,∵BC ⊙O ∴OB ⊥BC ,∴cos∠BOC =OB OC =25.∴cos∠A =cos∠BOC =25又,,∵cos∠A =AD ABAB =4.∴AD =85故选:B .首先由切线的性质得出,根据锐角三角函数的定义求出的值;连接BD ,由直径所对的圆OB ⊥BC cos∠BOC 周角是直角,得出,又由平行线的性质知,则,在直角中,∠ADB =90∘∠A =∠BOC cos∠A =cos∠BOC △ABD 由余弦的定义求出AD 的长.本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用此题是一个综合题,难.度中等.8. 解:连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知,S △AOE =S △BOF =12|k 1|=12k 1,S △COE =S △DOF =12|k 2|=‒12k 2,∵S △AOC =S △AOE +S △COE ,∴12AC ⋅OE =12×2OE =OE =12(k 1‒k 2)…①,∵S △BOD =S △DOF +S △BOF ,∴12BD ⋅OF =12×(EF ‒OE)=12×(3‒OE)=32‒12OE =12(k 1‒k 2)…②由两式解得,①②OE =1则.k 1‒k 2=2故选:D .由反比例函数的性质可知,,结合和S △AOE =S △BOF =12k 1S △COE =S △DOF =‒12k 2S △AOC =S △AOE +S △COE 可求得的值.S △BOD =S △DOF +S △BOF k 1‒k 2本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.9. 解:;2×3=6故答案为:.6根据二次根式的乘法法则进行计算即可.此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键,是一道基础a ⋅b =ab 题.10. 解:,x 2y ‒y ,=y(x 2‒1),=y(x +1)(x ‒1)故答案为:.y(x +1)(x ‒1)观察原式,找到公因式y 后,提出公因式后发现符合平方差公式,利用平方差公式继续分解可x 2y ‒y x 2‒1得.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11. 解:拼成的长方形的面积,=(a +3)2‒32,=(a +3+3)(a +3‒3),=a(a +6)拼成的长方形一边长为a ,∵另一边长是.∴a +6故答案为:.a +6根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.12. 解:如图,依题意有∽,△ABF △ADE ::DE ,∴AB AD =BF 即5::5,AD =0.4解得,AD =62.5尺.∴BD =AD ‒AB =62.5‒5=57.5()故答案为.57.5根据题意可知∽,根据相似三角形的性质可求AD ,进一步得到井深.△ABF △ADE 本题考查了相似三角形的判定与性质,解题的关键是得到∽.△ABF △ADE 13. 解:四边形AECD 是平行四边形,∵,∴AE =CD ,∵AB =BE =CD =6,∴AB =BE =AE 是等边三角形,∴△ABE ,∴∠B =60∘.∴S 扇形BAE =60π×52360=25π6故答案为:.25π6证明是等边三角形,,根据扇形的面积公式计算即可.△ABE ∠B =60∘本题考查了平行四边形的性质、等边三角形的判定和性质、扇形的面积公式,熟练掌握扇形的面积公式是本题的关键,扇形面积计算公式:设圆心角是,圆的半径为R 的扇形面积为S ,则或n ∘S 扇形=nπR 2360其中l 为扇形的弧长.S 扇形=12lR()14. 解:当时,,则,x =0y =5B(0,5)设,A(m,n)则,{m +02=‒1n +52=72解得:,{m =‒2n =2所以点,A(‒2,2)将点代入,得:,A(‒2,2)‒4‒2b +5=2解得:,b =‒12故答案为:.‒12先根据解析式求得点B 的坐标,再由点C 是AB 中点,利用中点的坐标公式求得点A 的坐标,代入解析式即可求出b 的值.本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握中点坐标的计算公式求得点A 的坐标及抛物线上点的坐标符合函数解析式.15. 根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.本题考查整式的混合运算化简求值,解答本题的关键是明确整式化简求值的计算方法.‒16. 根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.23本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.17. 首先列表将所有等可能的结果全部列举出来,利用概率公式求解即可求出两次摸出小球的标号之积是偶数的概率..本题考查了列表法与树状图法求概率,解题的关键是通过列表或树形图能够将所有等可能的结果全部列举出来,难度不大.18. 如图,在中,根据三角函数可得,可求他沿斜坡滑行了多少米.Rt △ABC AB =AC ÷sin 34∘本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.19. 解:本次调查的学生共有人,;(1)20÷40%=50()m =15÷50=30%故答案为:50;;30%绘画的人数人,书法的人数人,(2)50×20%=10()50×10%=5()如图所示:估计该校选修乐器课程的人数为人.(3)2000×30%=600由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m 的值;(1)求出绘画与书法的学生数,补全条形统计图即可;(2)总人数乘以样本中选修乐器课程人数所占百分比可得.(3)本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20. 首先证明四边形ABDE 是平行四边形,再证明四边形ADCE 是平行四边形,由,即可推出∠ADC =90∘四边形ADCE 是矩形.本题考查等腰三角形的性质、平行四边形的判定和性质、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21. 解:甲运输队工作3天后因故停止,2天后重新开始工作(1)∵甲运输的工作效率降低到原来的∴a =3+2=5∵12原来3天调运150吨,现在需6天调运150吨.∴设函数关系式为,∴b =5+6=11(2)y =kx +b 图象过,∵(5,150)(11,300)解得:∴{150=5k +b 300=11k +b {k =25b =25解析式∴y =25x +25由题意得:乙运输队调运物资的数量吨与工作时间天的函数关系式:(3)y()x()y =37.5x若乙运输队调运物资没有完成.①乙运输队比甲运输队多运50吨物资∵当乙运输队运输完物资后,∴37.5x ‒(25x +25)=50∴x =6乙运输队比甲运输队多运50吨物资∵或9∴300‒(25x +25)=50∴x =9∴x =6根据题意可以求a ,b 的值.(1)设解析式为且过,,用待定系数法可求解析式.(2)y =kx +b (5,150)(11,300)由乙运输队比甲运输队多运50吨物资,可得,代入可得x 的值.(3)y 乙‒y 甲=50本题考查一次函数的图象性质,本题关键是用待定系数法求一次函数解析式.22. 探究:证明:如图2,延长AD 至点M ,使,连接MC ,MD =FD 在和中,,△BDF △CDM {BD =CD ∠BDF =∠CDM DF =DM ≌.∴△BDF △CDM(SAS),.∴MC =BF ∠M =∠BFM ,∵EA =EF ,∴∠EAF =∠EFA ,∵∠AFE =∠BFM ,∴∠M =∠MAC ,∴AC =MC ;∴BF =AC 应用:解:如图2,,,∵MN//BC FM//GN 四边形MFGN 是平行四边形,∴,,∴MF =NG MN =FG 是的中位线,∵DE △ABC ,,∴DE =12BC =3DE//BC ,∴MN =FG =12BC =3四边形MFGN 周长,∴=2(MF +FG)=2MF +6时,MF 最短,∴MF ⊥BC 即:四边形MFGN 的周长最小,过点A 作于H ,AH ⊥BC ∴FM =AH在中,,,Rt △ABH ∠B =60∘AB =4,,∴AH =ABsinB =4×32=23BH =2,∴CH =4四边形MFGN 的周长C 最小为∴AC =27>AB ∴,2MF +6=2AH +6=43+6四边形MFGN 的周长C 最大为,如图2MF +6=2AC +6=47+6(4)故答案为:.43+6≤C ≤47+6探究:先判断出≌进而得出,再判断出得出即可△BDF △CDM MC =BF ∠M =∠BFM.∠M =∠MAC AC =MC 得出结论;应用:先判断出四边形MFGN 是平行四边形,再判断出,进而判断出时,四边MN =FG =DE =4MF ⊥BC 形MFGN 的周长最小和点G 和C 重合时最大,最后构造出直角三角形求出AH 即可得出结论.此题是四边形综合题,主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的判定和性质,平行线间的距离,解探究关键是≌,解应用的关键是判断出时,四边形MFGN 的周△BDF △CDM MF ⊥BC 长最小和点G 和C 重合时最大.23. 解:如图1中,(1),AE 平分,∵∠DAB =120∘∠DAB ,∴∠DAQ =60∘,∵PQ ⊥AD ,∴∠APQ =90∘,∴tan 60∘=PQ AP 故答案为∴PQ =3t.3t.如图2中,(2)四边形ABCD 是平行四边形,∵,∴AB//CD ,∴∠D =180∘‒∠DAB =60∘,,∵PM//AE MQ//AD ,四边形APMQ 是平行四边形,∴∠DPM =∠DAQ =60∘是等边三角形,,∴△DPM PM =AQ =2PA =2t ,∴DP =PM ,∴6‒t =2t .∴t =2当时,如图1中,重叠部分是平行四边形APMQ ,.(3)①0<t ≤2S =AP ⋅PQ =3t 2如图3中,当时,重叠部分五边形APSTQ ,②2<t ≤3.S =3t 2‒34(3t ‒6)2=‒534t 2+93t ‒93如图4中,当时,重叠部分是四边形PSTA .③3<t ≤6综上所述,S =S △DAT ‒S △DSP =34×62‒34⋅(6‒t )2=‒34t 2+33t..S ={3t 2(0<t ≤2)‒534t 2+93t ‒93(2<t ≤3)‒34t 2+33t (3<t ≤6)如图5中,当时,,(4)GH//AB ∵AG =GM 点M 在线段CD 上,此时.∴t =2s 如图6中,当GH 与BD 重合时,作交DA 的延长线于T .BT ⊥DA在中,,,Rt △ABT ∵AB =8∠BAT =60∘,,∴AT =12AB =4BT =43,∵PG//BT ,∴PG BT =DP DT,∴3t 43=6‒t 10解得t =83s.如图7中,当时,易证B 、C 、Q 共线,GH//AD可得是等边三角形,,△ABQ AB =AQ =BQ =8,∴AQ =2t =8,∴t =4s 综上所述,或或4s 时,GH 与三角形ABD 的一边平行或共线.t =2s 83s 在中,解直角三角形即可;(1)Rt △APQ 只要证明是等边三角形,构建方程即可解决问题;(2)△DPM 分三种情形:当时,如图1中,重叠部分是平行四边形APMQ ,如图3(3)①0<t ≤2S =AP ⋅PQ =3t 2.②中,当时,重叠部分五边形APSTQ ;如图4中,当时,重叠部分是四边形分别求2<t ≤3③3<t ≤6PSTA.解即可;分三种情形讨论求解即可解决问题;(4)本题考查四边形综合题、等边三角形的判定和性质、平行线分线段成比例定理、勾股定理、平行四边形的判定和性质、多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.24. 解:当时,抛物线与抛物线关于直线对称(1)①m =1C 2C 1x =1抛物线的顶点时∴C 2(2,2)抛物线的解析式为∴C 2y =‒2(x ‒2)2+2=‒2x 2+8x ‒6点,在二次函数的图象上②∵P(a,b 1)Q(a +1,b 2)C 2当时∴b 2‒b 1=‒2(a +1)2+8(a +1)‒6‒(‒2a 2+8a ‒6)=‒4a +6b 1≥b 2故答案为:‒4a +6≤0∴a ≥32a ≥32轴,MP ::3(2)①∵MN//x PN =1当时,∴MP =1m >02m =1当时,m =12m <0‒2m =1分析图象可知:当时,可知C 1和G 的对称轴关于直线对称,的顶点恰在AD 上,此m =‒12②m =12x =12C 2时G 与正方形恰由2个交点.当时,直线MN 与x 轴重合,G 与正方形恰由三个顶点.m =1当时,G 过点且G 对称轴左侧部分与正方形有两个交点m =2B(3,0)当或时,G 与正方形ABCD 有三个公共点.m =212<m ≤1根据对称性可求得解析式,将,代入解析式用求差法得到a 的范围;(1)C 2P(a,b 1)Q(a +1,b 2)通过分类讨论探究m 的变化对于图象G 位置的变化.(2)本题为二次函数综合题,考查了二次函数图象性质和轴对称图形性质解答关键是研究动点到达临界点时图.形的变化,从而得到临界值.。

2018年吉林省长春市中考数学试卷(含答案与解析)

2018年吉林省长春市中考数学试卷(含答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前吉林省长春市2018年初中学业水平考试数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.15-的绝对值是 ( )A .15-B .15C .5-D .52.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为( )A .100.2510⨯B .102.510⨯C .92.510⨯D .82510⨯ 3.下列立体图形中,主视图是圆的是( )ABCD 4.不等式360x -≥的解集在数轴上表示正确的是( )ABCD5.如图,在ABC △中,CD 平分ACB ∠交AB 于点D ,过点D 作DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠的大小为 ( )A .44︒B .40︒C .39︒D .38︒6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺7.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sin α米B .800tan α米C .800sin α米D .800tan α米 8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数0k y x x=(>)的图象上,若2AB =,则k 的值为 ( )A .4B.C .2D毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)二、填空题(本大题共6小题,每小题3分,共18分) 9..(填“>”、“=”或“<”) 10.计算:23•a a = .11.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,3、(),3n ,若直线2y x =与线段AB 有公共点,则n 的值可以为 .(写出一个即可)12.如图,在ABC △中,AB AC =.以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若32A ∠=︒,则CDB ∠的大小为 度.13.如图,在ABCD 中,7AD=,AB =60B ∠=︒.E 是边BC 上任意一点,沿AE 剪开,将ABE △沿BC 方向平移到DCF △的位置,得到四边形AEFD ,则四边形AEFD 周长的最小值为 .14.如图,在平面直角坐标系中,抛物线2y x mx =+交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A '恰好落在抛物线上.过点A '作x 轴的平行线交抛物线于另一点C .若点A '的横坐标为1,则A C '的长为 .三、解答题(本大题共10小题,共78分)15.(本小题满分6分)先化简,再求值:22111x x x -+--,其中1x =.16.(本小题满分6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为1A 、2A ,图案为“蝴蝶”的卡片记为B ).17.(本小题满分6分)图①、图②均是88⨯的正方形网格,每个小正方形的顶点称为格点,线段OM 、ON 的端点均在格点上.在图①、图②给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求: (1)所画的两个四边形均是轴对称图形. (2)所画的两个四边形不全等.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)18.(本小题满分7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润. (1)求每套课桌椅的成本; (2)求商店获得的利润.19.(本小题满分7分)如图,AB 是O 的直径,AC 切O 于点A ,BC 交O 于点D .已知O 的半径为6,40C ∠=︒. (1)求B ∠的度数.(2)求AD 的长.(结果保留π)20.(本小题满分7分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下: 20 21 19 16 27 18 31 29 21 22 25 20 19 22 35 33 19 17 18 29 18 35 22 15 18 18 31 31 19 22 整理上面数据,得到条形统计图:根据以上信息,解答下列问题:(1)上表中众数m 的值为 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”) (3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3 5.5x≤≤时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(本小题满分9分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF BE⊥交BC于点F.易证ABF BCE≌.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG BE⊥交BC于点F,交AD于点G.(1)求证:BE FG=.(2)连结CM,若1CM=,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG BE⊥交AD于点G,连结EG、MG.若3CM=,则四边形GMCE的面积为.数学试卷第7页(共32页)数学试卷第8页(共32页)数学试卷 第9页(共32页) 数学试卷 第10页(共32页)23.(本小题满分10分)如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,4AB =,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD AC ⊥于点D (点P 不与点A 、B 重合),作60DPQ ∠=︒,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒. (1)用含t 的代数式表示线段DC 的长; (2)当点Q 与点C 重合时,求t 的值;(3)设PDQ △与ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式; (4)当线段PQ 的垂直平分线经过ABC △一边中点时,直接写出t 的值.24.(本小题满分12分)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD y ⊥轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数2112y x mx =-++(0x ≥)的图象记为1G ,函数2112y x mx =---(0x <)的图象记为2G ,其中m 是常数,图象1G 、2G 合起来得到的图象记为G .设矩形ABCD 的周长为L . (1)当点A 的横坐标为1-时,求m 的值; (2)求L 与m 之间的函数关系式;(3)当2G 与矩形ABCD 恰好有两个公共点时,求L 的值; (4)设G 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,直接写出L 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________62.【答案】C【解析】2500000000用科学记数法表示为92.510⨯. 【考点】科学记数法的表示方法. 3.【答案】D【解析】A .圆锥的主视图是三角形,故A 不符合题意; B .圆柱的主视图是矩形,故B 错误; C .圆台的主视图是梯形,故C 错误; D .球的主视图是圆,故D 正确.【考点】简单几何体的三视图,熟记常见几何体的三视图是解题关键. 4.【答案】B【解析】360362x x x ≥≥≥﹣,,,在数轴上表示为,故选:B .【考点】解一元一次不等式和在数轴上表示不等式的解集. 5.【答案】 C 【解析】5448180544878A B ACB ∠=︒∠=︒∴∠=︒-︒-︒=︒,,,CD 平分ACB ∠交AB 于点D ,178=392DCB ∴∠=⨯︒︒,39DE BC CDE DCB ∴∠=∠=︒∥,,故选:C .7 / 16【考点】三角形内角和问题. 6.【答案】B【解析】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,1.5150.5x ∴=,解得45x =(尺). 【考点】相似三角形的应用. 7.【答案】D【解析】解:在Rt ABC 中,90800CAB B AC α∠=︒∠==,,米,ACtan ABα∴=, 800tan tan AC AB αα∴==. 故选:D .【考点】解直角三角形的应用. 8.【答案】A【解析】解:作BD AC ⊥于D ,如图,ABC 为等腰直角三角形,AC ∴==,BD AD CD ∴== AC x ⊥轴,C∴,把C 代入ky x=得4k ==. 故选:A .8【考点】反比例函数图象上点的坐标特征. 9.【答案】>【解析】解:23910=<,3>,故答案为:>.【考点】实数的大小比较和算术平方根的应用. 10.【答案】5a【解析】解:23235•a a a a +==. 故答案为:5a .【考点】同底数的幂的乘法的运算法则. 11.【答案】2【解析】解:∵直线2y x =与线段AB 有公共点,23n ∴≥,32n ∴≥.故答案为:2.【考点】一次函数图象上点的坐标特征. 12.【答案】37 【解析】解:32741372AB AC A ABC ACB BC DC CDB CBD ACB =∠=︒∴∠=∠=︒=∴∠=∠=∠=︒,,,又,.故答案为:37.【考点】等腰三角形的性质,三角形外角的性质. 13.【答案】20【解析】解:当AE BC ⊥时,四边形AEFD 的周长最小, ∵AE BC ⊥,AB =60B ∠=︒.∴3AE BE ==,∵ABE 沿BC 方向平移到DCF 的位置, ∴7EF BC AD ===,9 / 16∴四边形AEFD 周长的最小值为:14620+=, 故答案为:20. 【考点】平移的性质. 14.【答案】3【解析】解:当0y =时,20x mx +=,解得120x x m ==-,,则,0A m (-),∵点A 关于点B 的对称点为A ',点A '的横坐标为1, ∴点A 的坐标为10(-,), ∴抛物线解析式为2y x x =+,当1x =时,22y x x =+=,则1,2A '(),当2y =时,22x x +=,解得1221x x =-=,,则2,1C (-),∴A C '的长为123-=(-). 故答案为3.【考点】二次函数图象上点的坐标特征. 15.【解析】解:()()2222111211111111x x x x x x x x x x x -+---+=--=-+-=-=+当1x时,原式11+= 【考点】分式的化简求值.由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果, 所以抽出的两张卡片上的图案都是“金鱼”的概率为49.10【考点】列表法和树状图法. 17.【答案】解:如图所示:【考点】作图——轴对称变换,以及全等三角形的判定. 18.【答案】解:(1)设每套课桌椅的成本为x 元, 根据题意得:601006072100372x x ⨯-=⨯-()-, 解得:82x =.答:每套课桌椅的成本为82元. (2)60100821080⨯-=()(元). 答:商店获得的利润为1080元. 【考点】一元一次方程的应用. 19.【答案】解:(1)∵AC 切O 于点A ,904050BAC C B ∠=︒∠=︒∴∠=︒,,;(2)连接OD , 502100B AOD B ∠=︒∴∠=∠=︒,,∴AD 的长为100610=1803ππ⨯.【考点】切线的性质、圆周角定理、弧长公式等知识点. 20.【答案】解:(1)由图可得, 众数m 的值为18,11 / 16故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)1+1+2+3+1+2300=10030⨯(名), 答:该部门生产能手有100名工人.【考点】条形统计图、用样本估计总体、加权平均数、中位数和众数.21.【答案】解:(1)每分钟向储存罐内注入的水泥量为1535÷=分钟;(2)设0y kx b k =+≠()把()3,15,()5.5,25代入15=225 5.5k b k b +⎧⎨=+⎩,解得43k b =⎧⎨=⎩∴当3 5.5x ≤≤时,y 与x 之间的函数关系式为43y x =+(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为541-=立方米;只打开输出口前,水泥输出量为5.53 2.5-=立方米,之后达到总量8立方米需输出8 2.5 5.5-=立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5 5.511+=分钟故答案为:1,11.【考点】一次函数的图象性质以及在实际问题中比例系数k 代表的意义.22.【答案】解:感知:∵四边形ABCD 是正方形,909090AB BC BCE ABC ABE CBE AF BE ABE BAF BAF CBE ∴=∠=∠=︒∴∠+∠=︒⊥∴∠+∠=︒∴∠=∠,,,,,,在ABF 和BCE 中,90BAF CBE AB BC ABC BCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,ABF BCE ASA ∴≌(); 探究:(1)如图②,过点G 作GP BC ⊥于P ,∵四边形ABCD 是正方形,∴90AB BC A ABC =∠=∠=︒,,∴四边形ABPG 是矩形,∴PG AB =,∴PG BC =,同感知的方法得,PGF CBE ∠=∠,在PGF 和CBE 中,90PGF CBE PG BC PFG ECB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,PGF CBE ASA BE FG ∴∴=≌(),,(2)由(1)知,FG BE =,连接CM ,∵90BCE ∠=︒,点M 是BE 的中点,222BE CM FG ∴==∴=,,故答案为:2.应用:同探究(2)得,226BE ME CM ===,∴3ME =,同探究(1)得,6CG BE ==,∵BE CG ⊥, ∴1163922CEGM S CG ME =⨯=⨯⨯=四边形, 故答案为9.【考点】正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质.23.【答案】解:(1)在Rt ABC 中,304A AB ∠=︒=,,13 / 1690AC PD AC ADP CDP ∴=⊥∴∠=∠=︒,,在Rt ADP 中,2AP t =,202DP t AD APcosA t CD AC AD t ∴====∴==,﹣<<); (2)在Rt PDQ 中,∵60DPC ∠=︒,30PQD A PA PQ PD AC AD DQ ∴∠=︒=∠∴=⊥∴=,,,,∵点Q 和点C 重合,21AD DQ AC t ∴+=∴⨯=∴=,;(3)当01t ≤<时,21122PDQ S SDQ DP t ==⨯=⨯=; 当12t <<时,如图2,21CQ AQ AC AD AC t =-=-=--),在Rt CEQ 中,30CQE ∠=︒,∴•121CE CQ tan CQE t t =∠=-=)(﹣),∴)()21112122PDQ ECQ S S S t t t ==⨯-⨯-⨯-=+--,∴())220112t S t <≤=⎨⎪+-<<⎪⎩;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,11190222230PGF PG PQ AP t AF AB A AQP ∴∠=︒=====∠=∠=︒,,,,60302222212FPG PFG PF PG t AP PF t t t ∴∠=︒∴∠=︒∴==∴+=+=∴=,,,,; 当PQ 的垂直平分线过AC 的中点M 时,如图4,11190222QMN AN AC QM PQ AP t ∴∠=︒=====,, 在Rt NMQ中,cos30MQ NQ ==︒,34AN NQ AQ t +==∴=,, 当PQ 的垂直平分线过BC 的中点时,如图5,111302260301BF BC PE PQ t H ABC BFH H BH BF ∴====∠=︒∠=︒∴∠=︒=∠∴==,,,,,,在Rt PEH 中,22PH PE t ==,22554AH AP PH AB BH t t t ∴=+=+∴+=∴=,,,即:当线段PQ 的垂直平分线经过ABC △一边中点时,t 的值为12秒或34秒或54秒.15 / 16【考点】等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质.24.【答案】解:(1)由题意()()()0,11,11,1E A B -,,把()1,1B 代入2112y x mx =-++中,得到1112m =-++, ∴12m =. (2)∵抛物线1G 的对称轴1m x m =-=-, ∴2AE ED m ==,∵矩形ABCD 的对称中心为坐标原点O ,4284AD BC m AB CD L m ∴====∴=+,,.(3)∵当2G 与矩形ABCD 恰好有两个公共点,∴抛物线2G 的顶点21,12M m m ⎛⎫-- ⎪⎝⎭在线段AE 上, ∴21112m -=, ∴2m =或2-(舍弃),∴82420L =⨯+=.(4)①当最高点是抛物线1G 的顶点21,12N m m ⎛⎫+ ⎪⎝⎭时, 若213122m +=,解得1m =或1-(舍弃), 若21192m +=时,4m =或4-(舍弃), 又∵2m ≤,观察图象可知满足条件的m 的值为12m ≤≤,②当()2,21m -是最高点时,321922m m⎧≤-≤⎪⎨⎪≤⎩,解得25m ≤≤,综上所述,15m ≤≤,∴1244L ≤≤.【考点】二次函数综合题、矩形的性质、待定系数法、不等式组等知识.。

2018年长春市中考数学试卷及答案解析(word版)

2018年长春市中考数学试卷及答案解析(word版)

2018年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3=.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.2018年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为2.(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20.【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为3.【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD +DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=2(t ﹣1)×=2(t ﹣1),∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2,∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t ,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

2018年吉林省长春市中考数学模拟试卷

2018年吉林省长春市中考数学模拟试卷

2018年吉林省长春市中考数学模拟试卷(二)一、选择题(共8小题,每小题3分,满分24分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.32.不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0) C.(0,2) D.(0,﹣2)5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.46.下列轴对称图形中,对称轴最多的是()A.B.C.D.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.108.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=.10.函数y=x+中,自变量x的取值范围是.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为(结果保留π).12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF 为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.中考数学模拟试卷(二)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3 B.﹣2 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间,故选:C.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.不等式3x+10≤1的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解不等式,可得不等式的解集,根据等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),可得答案.【解答】解:由3x+10≤1,解得x≤﹣3,故选:C.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.一次函数y=x﹣2的图象经过点()A.(﹣2,0)B.(0,0) C.(0,2) D.(0,﹣2)【考点】一次函数图象上点的坐标特征.【分析】分别把x=0,y=0代入解析式y=x﹣2即可求得对应的y,x的值.【解答】解:当x=0时,y=﹣2;当y=0时,x=2,因此一次函数y=x﹣2的图象经过点(0,﹣2)、(2,0).故选:D.【点评】此题考查一次函数图象上点的坐标特征,在这条直线上的各点的坐标一定适合这条直线的解析式.5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.4【考点】中位数;算术平均数.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选C.【点评】本题考查的是中位数,熟知中位数的定义是解答此题的关键.6.下列轴对称图形中,对称轴最多的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A有四条对称轴,B有六条,C有三条,D有两条.故选:B.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【专题】计算题.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】根据题意可以分别求得点B、点C的坐标,从而可以得到k的取值范围,本题得以解决.【解答】解:∵过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,∴点B的纵坐标为5,点C的横坐标为4,将y=5代入y=﹣x+6,得x=1;将x=4代入y=﹣x+6得,y=2,∴点B的坐标为(1,5),点C的坐标为(4,2),∵函数y=(x>0)的图象与△ABC的边有公共点,点A(4,5),点B(1,5),点B(4,2),∴1×5≤k≤4×5即5≤k≤20,故选A.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.10.函数y=x+中,自变量x的取值范围是x≠2.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为,7π(结果保留π).【考点】切线的性质;弧长的计算.【分析】根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB=140°,根据弧长公式求出即可.【解答】解:∵PA和PB是⊙O的切线,点A和点B是切点,∴∠PAO=∠PBO=90°,∵∠P=40°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴的长为=7π,故答案为:7π【点评】本题考查了切线的性质,弧长公式的应用,能根据切线的性质求出∠PAO=∠PBO=90°是解此题的关键,注意:圆的切线垂直于过切点的半径.12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,菱形的两条对角线的长分别是6和4,函数y=的图象经过点C,则k的值为﹣6.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【专题】操作型.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C 是解题关键.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1﹣),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【考点】二元一次方程组的应用.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.17.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:由树形图可知所有等可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率,注意列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.18.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论.【解答】证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.【点评】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.19.图①、②分别是一把水平放置的椅子的效果图与椅子侧面的示意图,椅子高为AC,椅面宽BE为60cm,椅脚高ED为35cm,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得带你E的俯角为53°,求椅子高AC(精确到0.1cm).【参考数据:sin53°=0.739,cos53°=0.673,tan53°=1.099】【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】要求AC的长,只要求出AB和BC的长即可,根据题意可知BC与DE的长相等,根据∠AEB=53°和BE的长可以求得AB的长,从而可以求得AC的长,本题得以解决.【解答】解:∵AC⊥BE,AC⊥CD,AC∥ED,∴四边形BCDE是矩形,∠AEB=35°,∴BC=DE=35,在Rt△ABE中,∠ABE=90°,tan∠AEB=,BE=60,∴AB=BE•tan∠AEB=60×tan53°=60×1.009=65.94,∴AC=AB+BC=65.94+35=100.94≈100.9cm,即椅子的高约为100.9cm.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答问题.20.某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值.(2)四种方式中被选择次数最多的方式为C(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为40%.(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数.【考点】条形统计图;用样本估计总体.【分析】(1)直接利用条形统计图可得出n的值;(2)利用条形统计图结合(1)中所求,得出C种方式的学生人数占被调查的学生人数的百分比;(3)利用条形统计图得出选择B方式的学生比选择A方式的学生多的人数.【解答】解:(1)n=36+60+96+48=240(人),故n的值为240;(2)由条形统计图可得:四种方式中被选择次数最多的方式为:C;选择该种方式的学生人数占被调查的学生人数的百分比为:×100%=40%;故答案为:C,40%;(3)由题意可得:600×﹣1600×=160(人),答:该校1600名学生中选择B方式的学生比选择A方式的学生多的人数为160人.【点评】此题主要考查了条形统计图的应用,正确利用条形统计图得出正确信息是解题关键.21.问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为8.【考点】正方形的性质;全等三角形的判定与性质.【分析】特例探究:易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE;拓展应用:首先证得△ADE≌△CDF,由全等三角形的性质可得∠DAE=∠CDF,易得△BAE≌△ADF,可得AE=AF,同特例探究可得AF⊥BE,易得四边形ABFE的面积为:.【解答】解:特例探究:AF=BE,AF⊥BE.∵四边形ABCD为正方形,△ADE与△DCF均为等边三角形,∴AB=AD=CD,∠BAD=∠ADC,AE=AD=CD=DF,∠DAE=∠CDF,∴∠BAD+∠DAE=∠ADC+∠CDF,即∠BAE=∠ADF,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE;拓展应用:在△ADE与△CDF中,∵,∴△ADE≌△CDF(SSS),∴∠DAE=∠CDF,∠ADF=∠ADC+∠CDF=90°+∠CDF,∠BAE=∠BAD+∠EAD=90°+∠EAD,∴∠ADF=∠BAE,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠ABE=∠DAF,∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE,==8,∴S四边形ABFE故答案为:8.【点评】本题主要考查了正方形的性质和等边三角形的性质,证得AF=BE,AF⊥BE是解答此题的关键.22.甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,甲机器先开始工作,中途停机检修了0.5小时.如图是甲、乙两台机器在整个工作过程中各自加工的零件个数y(个)与甲机器工作时间x(时)之间的函数图象.(1)求图中m和a的值.(2)机器检修后,求甲加工的零件个数y与x之间的函数关系式.(3)在乙机器工作期间,求两台机器加工的零件个数相差50个时x的值.【考点】一次函数的应用.【专题】函数及其图象.【分析】(1)根据已知和图象可以得到m的值,由甲、乙两台机器各自加工相同数量的零件,工作时工作效率不变,可以求得a的值;(2)由图象可以得到点B、C的点的坐标,从而可以得到机器检修后,甲加工的零件个数y与x之间的函数关系式;(3)根据题意可以列出相应的等式,从而可以求得x的值.【解答】解:(1)由题意可得,m=1.5﹣0.5=1,∵工作效率保持不变,∴,解得a=40,即m=1,a=40;(2)设机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=k1x+b1,则,解得,即机器检修后,甲加工的零件个数y与x之间的函数关系式是:y=40x﹣20(3.5≤x≤7);(3)设CE所在直线的函数解析式为:y=k2x+b2,则解得,,即直线CE所在直线的解析式为:y=80x﹣160,则|(80x﹣160)﹣(40x﹣20)|=50,解得,或x=.即当甲机器工作小时或小时时,恰好相差50个.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+1(a>0)与y轴交于点A,点D的坐标为(,1),过点D作DC∥y轴,交抛物线于点C,过点C作CB∥x轴,交y轴于点B,连结AD.(1)当点B的坐标为(0,2)时,求抛物线对应的函数表达式.(2)当矩形ABCD的边AD被抛物线分成1:3两部分时,求点C的坐标.(3)当矩形ABCD是正方形时,求a的值.(4)在抛物线的对称轴上有一点P,当△ABP为等腰直角三角形时,求点P的坐标.【考点】二次函数综合题.【分析】(1)由题意易得点C的坐标为:(,2),然后代入抛物线y=ax2﹣4ax+1,即可求得答案;(2)首先设抛物线交AD于点E,则点E的纵坐标为1,可求得点E的坐标,然后分别从AE=3DE 或3AE=DE去分析求解即可求得答案;(3)若矩形ABCD是正方形,则AD=CD,可求得点C的坐标,然后分别从点C在点D上方与点C在点D下方,去分析求解即可求得答案;(4)分别从∠BAP=90°,∠ABP=90°或∠APB=90°,去分析求解即可求得答案.【解答】解:(1)∵CB∥x轴,DC∥y轴,点B的坐标为(0,2),点D的坐标为(,1),∴点C的坐标为:(,2),∵抛物线y=ax2﹣4ax+1(a>0)过点C,∴﹣8+1=2,解得:a=,∴抛物线对应的函数表达式为:y=x2﹣x+1;(2)设抛物线交AD于点E,则点E的纵坐标为1,由ax2﹣4ax+1=1,解得:x1=0,x2=4,∴点E的坐标为(4,1),∵点D的坐标为(,1),则DE=﹣4,当AE=3DE时,4=3(﹣4),解得:a=,∴点C的坐标为:(,);当3AE=DE时,12=﹣4,解得:a=,∴点C的坐标为:(16,25);(3)若矩形ABCD是正方形,则AD=CD,∵点D的坐标为:(,1),且DC∥y轴,∴C(,﹣7),若点C在点D上方,则CD=﹣8,∴=﹣8,解得:a=;若点C在点D下方,则CD=8﹣,∴=8﹣,解得:a=;综上可得:a=或;(4)抛物线的对称轴方程为:x=﹣=﹣=2,∵△ABP为等腰直角三角形,∴若∠BAP=90°,则点P的坐标为:(2,1);若∠ABP=90°,则AB=BP=2,∴点P的坐标为:(2,3)或(2,﹣1);若∠APB=90°,AB=2×2=4,∴点P的坐标为:(2,3);综上所述:点P的坐标为:(2,1)或(2,3)或(2,﹣1).【点评】此题属于二次函数的综合题.考查了待定系数求二次函数解析式、矩形的性质、正方形的性质以及等腰直角三角形性质.注意掌握分类讨论思想的应用是解此题的关键.24.(2016•长春模拟)如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.(1)CE=6﹣2t(含t的代数式表示).(2)求点G落在线段AC上时t的值.(3)当S>0时,求S与t之间的函数关系式.(4)点P在点E出发的同时从点A出发沿A﹣H﹣A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.【考点】四边形综合题.【分析】(1)由菱形的性质得出BC=AB=6得出CE=BC﹣BE=6﹣2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE= =t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积﹣△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.【解答】解:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC﹣BE=6﹣2t;故答案为:6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=EF=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°﹣60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE===t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积﹣△NFN的面积=××(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.【点评】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、三角函数、三角形面积的计算等知识;本题综合性强,难度较大,特别是(3)中,需要进行分类讨论才能得出结果.。

18年吉林省长春市中考数学试卷(含答案解析版)

18年吉林省长春市中考数学试卷(含答案解析版)

2018年吉林省长春市中考数学试卷(含答案解析版)2018年吉林省长春市中考数学试卷一、选择题1.﹣的绝对值是A.﹣B.C.﹣5 D.5 2.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为A.×1010 B.×1010 C.×109 D.25×108 3.下列立体图形中,主视图是圆的是A.B.C.D.4.不等式3x﹣6≥0的解集在数轴上表示正确的是A.D.B.C.5.如图,在△ABC中,CD平分∠ACB交AB 于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为A.44° B.40° C.39°D.38°6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸,则竹竿的长为第1页A.五丈B.四丈五尺C.一丈D.五尺7.如图,某地修建高速公路,要从A地向B地修一条隧道.为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B 两地之间的距离为A.800sinα米B.800tanα米C.米D.米8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=的图象上,若AB=2,则k的值为A.4 B.2 C.2 D.二、填空题9.比较大小:3.10.计算:a2?a3=.11.如图,在平面直角坐标系中,点A、B的坐标分别第2页为、,若直线y=2x 与线段AB有公共点,则n的值可以为.12.如图,在△ABC 中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.如图,在?ABCD 中,AD=7,AB=2 ,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE 沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.如图,在平面直角坐标系中,抛物线y=x2+mx交x 轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.第3页三、解答题15.先化简,再求值:+,其中x= ﹣1.16.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.17.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:所画的两个四边形均是轴对称图形.所画的两个四边形不全等.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.求每套课桌椅的成本;求商店获得的利润.19.如图,AB是⊙O 的直径,AC切⊙O于点A,BC交第4页⊙O于点D.已知⊙O的半径为6,∠C=40°.求∠B的度数.的长.求20.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 22 25 20 19 22 35 33 19 17 18 29 18 35 22 15 18 18 31 31 19 22 整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量数值平均数23 众数m 中位数21 根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若第5页CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.如图,在?ABCD中,AD=7,AB=2 ,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF 的位置,得到四边形AEFD,则四边形AEFD周长的最小值为20 .【考点】L5:平行四边形的性质;PA:轴对称﹣最短路线问题;Q2:平移的性质.【专题】55:几何图形.【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2 ,∠B=60°.∴AE=3,BE= ,∵△ABE沿BC 方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20 【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD 的周长第16页最小进行分析.14.如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【考点】H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;R7:坐标与图形变化﹣旋转.【专题】11 :计算题.【分析】解方程x2+mx=0得A,再利用对称的性质得到点A的坐标为,所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′,接着利用C 点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A,∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为,∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′,当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C,∴A′C的长为1﹣=3.故答案为3.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.第17页三、解答题15.先化简,再求值:+,其中x= ﹣1.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的加法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解答】解:+= == =x+1,当x= ﹣1时,原式= ﹣1+1= .【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图的方法,求抽出的两张卡片上的图案都是”金鱼”的概率.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解第18页【解答】解:列表如下:A1 A2 B A1A2B 表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:所画的两个四边形均是轴对称图形.所画的两个四边形不全等.【考点】KB:全等三角形的判定;P7:作图﹣轴对称变换.【专题】13 :作图题.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:第19页【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.求每套课桌椅的成本;求商店获得的利润.【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程及应用.【分析】设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;根据总利润=单套利润×销售数量,即可求出结论.【解答】解:设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×﹣72x,解得:x=82.答:每套课桌椅的成本为82元.60×=1080.答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:找准等量关系,正确列出一元一次方程;根据数量关系,列式计算.19.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.第20页。

2018年吉林省长春市届初中中考第一次模拟考试数学试题及答案(word版)

2018年吉林省长春市届初中中考第一次模拟考试数学试题及答案(word版)

(A) (B) (C) (D)2017—2018学年度下学期初三年级第一次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。

一、选择题(本大题共8小题,每小题3分,共24分)1. 3-的绝对值是(A)3- (B)3 1(C)3- 1(D)32. 下列四个几何体,他们的正视图中与众不同的是3. 2017年长春市机动车约为1890000辆. 1890000这个数用科学记数法表示为(A) (B) (C) (D)51.8()9A 10⨯ 518.()9B 10⨯ 61.8()9C 10⨯ 70.18()9D 10⨯4. 不等式组21,213(1)x x x x ≤+⎧⎨-≥-⎩的解集在数轴上表示正确的是5. 如右图,在ABC ∆中,90C ∠=.按以下步骤操作图:○1一点A 为圆心,小于AC 的长为半径画弧,分别交,AB AC 于点,;E F ○2分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ○3作射线AG 交BC 边于点D . 若1,2,CD AC ==则点D 到AB 的距离是(A)1 (B)2 (C)3 6. 如图,在ABC ∆中,90C ∠=.AC BC >,DE 是线段AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若36A ∠=,则EBC ∠等于(A)18 (B)28 (C)32 (D)54 7. 如图,四边形ABCD 内接于圆O ,若125,B ∠=则AOC ∠的大小是(A)125 (B)110 (C)100(D)958. 如图,在平面直角坐标系中,菱形OABC 的对角线OB 在x 的正半轴上,顶点A 在第一象限并且在函数(0)ky x x=>的图象上.若菱形OABC 面积为12,则k 等于(A)6- (B)6 (C)12- (D)12二、填空题(本大题共6小题,每小题3分,共18分) 9.计算:32254a b b c ⋅=________.10.篮球每个a 元,排球每个b 元,买3个篮球和2个排球共需________元. 11.二次函数232y x x =-+的图象与x 轴的交点个数是________. 12.如图,直线AB // CD // EF ,若34AC CE ==,________.13.如图,在ABC ∆中,90ABC ∠=, 1.BC AC ==把ABC ∆绕点A 逆时针旋转90后得到ADE ∆,则BC 扫过部分的面积(阴影部分)为_______(结果保留π).14.如图,在平面直角坐标系中,抛物线24y x x =-+的顶点为A ,与x 轴分别交与O ,B 两点.过顶点A 分别作AC x ⊥轴于点C ,AD y ⊥轴于点D ,连结BD ,AC 于点E ,则ADE ∆和BCE ∆的面积和为________.三、解答题(本大题共10小题,共78分)15.(6分) 先化简,再求值:()()2232121a a a -+--,其中13a =.16.(6分)在一个不透明的口袋里装有2个红球、1个白球,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后不放回,再随机摸出一个小球.请你用画树状图(或列表)的方法,求两次摸出的小球颜色不同的概率.17.(6分)某校英语考试采取网上阅卷的形式,已知该校甲、乙两名教师各阅卷200张,甲教师的阅卷速度是乙教师的2倍,结果甲教师比乙教师提前2个小时完成阅卷工作.求甲、乙两名教师每小时批阅学生试卷的张数.18.(7分)如图,已知AC 是矩形ABCD 的对角线,过AC 的中点O 的直线EF ,交BC 于点F ,交AD 于点E ,连接,.AF CE(1)求证:;O AOE C F ∆∆≌,试判断四边形AFCE是什么特殊四边形?请证明你的结(2)若EF AC论.19.(7分)某校为了解“书香校园”活动的开展情况,随机抽取了n名学生,调查他们一周阅读课外书籍的时间(单位:时),并将所得数据绘制成如下的统计图表.(1)求n 的值,并补全频数分布直方图.(2)这组数据的中位数落在频数分布表中的哪个时间段?(3)根据上述调查结果,估计该校2400名学生中一周阅读课外书籍时间在6小时以上 的人数.20.(7分)如图,某游乐园有一个滑梯AB ,高度AC 为5.1米,C ∠是直角,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比调整前滑梯AB 长多少米?(精确到0.1米) (参考数据:580.85sin ︒≈,580.53cos ︒≈,58 1.60tan ︒≈)21.(8分)甲、乙两车分别从,A B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲乙两车距A 地的路程为y (千米),甲乙两车行驶的时间为x (时),y 与x 之间的函数图象如图所示.(1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)当乙车到达A 地时,直接写出甲车距A 地的路程为_________千米.22.(9分)(问题原型)学完旋转变换之后,老师给同学们留了这样一个问题:“如图1,在等边ABC 内有一点P ,连接,PA PB PC ,,若345PC PB PA ===,,,求CPB ∠的度数”,思考求CPB ∠度数的方法,解决下面问题:(问题探究)如图2,小明在做这道题时,将BPC ∆绕着点C 顺时针旋转,使得点B 的对应点与点A 重合,得到',AP C ∆连结'PP ,从而求出了CPB ∠的度数,请你写出小明的解答过程.(方法推广)小明解决完上述问题后,提出了一个新的问题:若果将原题中的等边ABC ∆改为等腰直角ABC ∆,90ACB ∠=,12AC BC PC PB ===,,,则PA 等于多少时?135CPB ∠=.请你直接写出答案.23.(10分)如图,在平行四边形ABCD 中,42AB AD ==,,60A ∠=.动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,过点P作PQ AB ⊥交折线AD DC -于点Q ,以PQ 为边在PQ 右侧作等边三角形PQN .将PQN ∆绕QN 的中点旋转180得到MNQ ∆.设四边形PQMN 与平行四边形ABCD 重叠部分图形的面积为S (平方单位),点P 的运动时间为t (s )(04t ≤≤)(1)当点N 在边BC 上时,则t 的值是______.(2)当MN 经过点C 时,求t 的值.(3)当点Q 在CD 边上,且四边形PQMN 与平行四边形ABCD 重叠部分图形是四边形时,求S 与t 之间的函数关系式. (4)设平行四边形ABCD 和四边形PQMN 的对角线的交点分别是点O ,'O .当'OO 最短时,直接写出t的值.24.(12分)如图○1,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 在抛物线1L 上(点A 与点B 不重合),我们把这样的两条抛物线1L 、2L 互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条. (1)抛物线1L :243y x x =-+-与抛物线2L 是“伴随抛物线”,且抛物线2L 的顶点B 的横坐标为4,则抛物线2L 的解析式是__________________; (2)若抛物线21()y a x m n =-+的任意一条“伴随抛物线”的解析式为22()y a x h k =-+,求出1a 与2a 的关系式,并说明理由;(3)在图○2中,已知抛物线21:23(0)L y mx mx m m =-->与y 轴相交于C ,它的“伴随抛物线”为2L ,抛物线2L 与y 轴相交于D ,若4CD m =,求抛物线2L 的对称轴.答案:1. B2. D3. C4. B5. A6. A7. B8. B9. 3420a b c 10. 32a b + 11. 2 12.37 13. 14π 14. 4 15. 化简结果 1a - 当13a =时,原式=23-16.17.解:设乙阅卷速度为每小时x 张,则甲为2x 根据题意得20020022x x-= 解得 x =50 经检验,x =50是原方程的解,且符合题意. 所以 甲速度为2x =2x50=100答:甲速度每小时100张 乙速度每小时50张18.()2=3P 两次摸出的小球颜色不同(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:四边形AFCE是菱形;理由如下:理由是:由(1)△AOE≌△COF得:OE=OF 又∵OA=OC,∴四边形AFCE是平行四边形,又∵EF⊥AC ∴平行四边形AFCE是菱形.19.解:(1)根据题意可得:;(2)根据中位数的求法,将200名学生的时间从小到大排列可得,200名学生的中位数应是第100个和第101个同学时间的平均数;读图可得第100个和第101个同学时间都在之间;故这组数据的中位数落在频数分布表中的第三个时间段,即为;(3)在样本中,有人一周阅读课外书籍时间在6小时以上,该校2 400名学生中一周阅读课外书籍时间在6小时以上的有人.即该校2 400名学生中一周阅读课外书籍时间在6小时以上有840人.20.解:Rt△ACD中,∵∠ADB=30°,AC=5.1米,∴AD=2AC=10.2(m)∵在Rt△ABC中,AB=AC÷sin58°≈6m,∴AD﹣AB=10.2-6≈4.2(m).∴调整后的滑梯AD比原滑梯AB增加4.2米21.(1)由图可知,甲车从地到达地的速度为:(千米/小时),所以甲车从地到达地的行驶时间为:(小时)。

2018年长春市中考数学试卷及答案解析(word版)

2018年长春市中考数学试卷及答案解析(word版)

2018年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1. (3.00分)-「的绝对值是()A「丄B- C - 5D. 52. (3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A. 0.25 X 1010B. 2.5 X 1010C. 2.5 X 1011D. 25X 1012 13 143. (3.00分)下列立体图形中,主视图是圆的是()r ! 1 . 1 >丄 > A. J0 1 ? 3 B. C .-10 12 3D.-10 1235. (3.00分)如图,在△ ABC中, CD平分/ ACB交AB于点D,过点D作DE// BC 交AC于点E.若/ A=54°, / B=48°,则/ CDE的大小为(尺,1尺=10寸),则竹竿的长为()子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10 12(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影4. (3.00分)不等式3x-6>0的解集在数轴上表示正确的是(39° D .38°A.五丈B.四丈五尺C. 一丈D.五尺7. (3.00分)如图,某地修建高速公路,要从 A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A B 两地之间的距离,一架直升飞机从 A 地出发, 垂直上升800米到达C 处,在C 处观察B 地的俯角为a 则A B 两地之间的距 离为( )A 800sin 小B 800tan a *C 册米8. (3.00分)如图,在平面直角坐标系中,等腰直角三角形 ABC 勺顶点A 、B 分 别在x 轴、y 轴的正半轴上,/ ABC=90, CALx 轴,点C 在函数y 土 (x >0)的x、填空题(本大题共6小题,每小题3分,共18分) 9. (3.00 分)比较大小:k/10 3.(填 >”、=”或 N”)10. (3.00 分)计算:a 2?a 3=11. (3.00分)如图,在平面直角坐标系中,点 A 、B 的坐标分别为(1, 3)、(n.D.3),若直线y=2x 与线段AB 有公共点,则n 的值可以为 __________ .(写出一个即12. (3.00分)如图,在△ ABC 中,AB=AC 以点C 为圆心,以CB 长为半径作圆13. (3.00 分)如图,在? ABCD^,AD=7 AB=^5,/ B=60°. E 是边 BC 上任意 一点,沿AE 剪开,将△ ABE 沿BC 方向平移到△ DCF 的位置,得到四边形AEFD点A.点B 是y 轴正半轴上一点,点A 关于点B 的对称点A 恰好落在抛物线上.过 点A 作x 轴的平行线交抛物线于另一点 C.若点A'的横坐标为1,则AC 的长三、解答题(本大题共10小题,共78分)D,连结BD.若/ A=32°,则/ CDB 的大小为度.则四边形AEFD 周长的最小值为y=x 2+mx 交x 轴的负半轴于2 _15. (6.00分)先化简,再求值:,其中x= n- 1.X-l K-l16. (6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为金鱼”另外一张卡片的正面图案为蝴蝶”卡片除正面剪纸图案不同外,其余均相同•将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是金鱼”的概率.(图案为金鱼”的两张卡片分别记为A、A,图案为蝴蝶”的卡片记为B)17. (6.00分)图①、图②均是8X 8的正方形网格,每个小正方形的顶点称为格点,线段OM ON的端点均在格点上•在图①、图②给定的网格中以OM ON 为邻边各画一个四边形,使第四个顶点在格点上•要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18. (7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠•结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19. (7.00分)如图,AB是。

2018年长春市中考数学试卷及答案解析-精校.doc

2018年长春市中考数学试卷及答案解析-精校.doc

2018年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C 处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,、求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1,图案为“蝴蝶”的卡片记为B)A217.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:2 02119162718312921222 5219223533191718291 8352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.2018年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C 处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:2 02119162718312921222 5219223533191718291 8352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,=CG×ME=×6×3=9,∴S四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×t=2,∴t=1;(3)当0<t≤1时,S=S△PDQ=DQ×DP=×t×t=t2;当1<t<2时,如图2,CQ=AQ﹣AC=2AD﹣AC=2t﹣2=2(t﹣1),在Rt△CEQ中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t﹣1)×=2(t﹣1),∴S=S△PDQ ﹣S△ECQ=×t×t﹣×2(t﹣1)×2(t﹣1)=﹣t2+4t﹣2,∴S=;(4)当PQ的垂直平分线过AB的中点F时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.的顶点N(m,m2+1)时,(4)①当最高点是抛物线G1若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

最新-吉林省长春市2018届中考数学模拟试卷(八)含答案解析 精品

最新-吉林省长春市2018届中考数学模拟试卷(八)含答案解析 精品

2018年吉林省长春市中考数学模拟试卷(八)一、选择题(共8小题,每小题3分,满分24分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.长珲高铁于2018年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×1033.由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.4.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.5.一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于()A.116°B.32°C.58°D.64°7.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°8.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0) C.(,0) D.(,0)二、填空题(共6小题,每小题3分,满分18分)9.分解因式:2a2﹣6a=.10.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.11.比较大小:3(填“>”、“=”或“<”).12.如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为.13.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于.14.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1)2+x(x+2),其中x=.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.17.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上.DF=BE.求证:四边形BEDF是矩形.19.某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】20.为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.21.某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.22.已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.24.如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.2018年吉林省长春市中考数学模拟试卷(八)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质解答即可.【解答】解:|﹣3|=3.故选:B.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.长珲高铁于2018年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:360=3.6×102,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据从正面看是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边两个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.5.一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣4)2﹣4×1×6=﹣4<0,所以方程没有实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于()A.116°B.32°C.58°D.64°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.【点评】此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【考点】作图—基本作图.【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.8.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0) C.(,0) D.(,0)【考点】反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:2a2﹣6a=2a(a﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】观察原式,找到公因式2a,提出即可得出答案.【解答】解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).【点评】此题主要考查了因式分解的基本方法一提公因式法.本题只要将原式的公因式2a提出即可.10.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为(m+2n)元.【考点】列代数式.【专题】推理填空题.【分析】根据购买l个单价为m元的饮料和2个单价为n元的面包,可以用代数式表示出所需的钱数,本题得以解决.【解答】解:购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为:(m+2n)元,故答案为:(m+2n).【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式,注意单位前面的代数式要加括号.11.比较大小:<3(填“>”、“=”或“<”).【考点】实数大小比较.【分析】求出2=,3=,再比较即可.【解答】解:∵2=,3=,∴2<3,故答案为:<.【点评】本题考查了二次根式的性质,实数的大小比较的应用,主要考查学生的比较能力.12.如图,直线a、b被直线c、d所截.若∠1=∠2,∠3=125°,则∠4的大小为55°.【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故答案为:55°.【点评】此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.13.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于1:2.【考点】平行四边形的性质;相似三角形的判定与性质.【分析】利用平行四边形的性质得出AD∥BC,AD=BC,进而得出△DEF∽△DCF,再利用相似三角形的判定与性质得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△DCF,∴=,∵点E是边AD的中点,∴DE=AE=BC,∴==.故答案为:1:2.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,得出△DEF∽△DCF是解题关键.14.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【考点】直线与圆的位置关系;一次函数的性质.【专题】压轴题.【分析】根据直线ly=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMO~△ABO,即可得到结果.【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.【点评】本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.三、解答题(共10小题,满分78分)15.先化简,再求值:(x﹣1)2+x(x+2),其中x=.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,多项式除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字l,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号数字之和是奇数的情况,再利用概率公式即可求得答案即可.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【考点】分式方程的应用.【分析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【点评】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上.DF=BE.求证:四边形BEDF是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据平行四边形的性质得出DC∥AB,即DF∥BE,根据平行四边形的判定得出四边形DEBF 为平行四边形,根据矩形的判定得出即可.【解答】证明:∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形.【点评】本题考查了矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”).19.某货站传送货物的平面示意图如图所示,为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°变为37°,因此传送带的落地点A到点B向前移动了2米.求货物(即点C)到地面的高度.(结果精确到0.1米)【参考数据:sin37°=0.6018,cos37°=0.7986,tan37°=0.7536】【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°,然后分别在Rt△ACD中与在Rt△BCD中,表示出AD,BD与CD的关系,继而列出方程:﹣CD=2,解此方程即可求得答案.【解答】解:过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°,在Rt△ACD中,∠CAD=45°,∴CD=AD,在Rt△BCD中,∠CBD=37°,tan∠CBD=,∴BD=,∵AB=BD﹣AD=2,∴﹣CD=2,解得:CD=≈6.1(米).答:货物(即点C)到地面的高度为6.1米.【点评】此题考查了坡度坡角问题.注意准确构造直角三角形是关键.20.为了解市民“获取新闻的最主要途径”,某市记者在全市范围内随机抽取了n名市民,对其获取新闻的最主要途径进行问卷调查.问卷中的途径有:A.电脑上网;B.手机上网;C.电视;D.报纸;E.其他.每位市民在问卷调查时都按要求只选择了其中一种最主要的途径.记者收回了全部问卷后,将收集到的数据整理并绘制成如图不完整的统计图.根据以上信息解答下列问题:(l)求n的值.(2)请补全条形统计图.(3)根据统计结果,估计该市80万人中.将B途径作为“获取新闻的最主要途径”的总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(3)用全市的总人数乘以“获取新闻的最主要途径”所占的百分比,即可得出答案.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)“报纸”的人数为:1000×10%=100.补全图形如图所示:(3)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×=32(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21.某天,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.(l)求乙组加工零件的数量y与时间t之间的函数关系式.(2)求甲组加工零件总量a.(3)如果要求这一天加工零件总数量为700个,求乙组工人应提前加工零件的时间.【考点】一次函数的应用.【分析】(1)根据题意列方程即可得到结论;(2)把已知条件代入函数的解析式即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)当0≤t<5时,y=0,当5≤t≤8时,设y与时间t之间的函数关系式为:y=kx+b,将(5,0),(8,360)代入得:,解得:,∴y与时间t之间的函数关系式为:y=120x﹣600;(2)∵当t=7时,y=120×7﹣600=240,∴a=120+(240﹣120)÷(7﹣4)×(8﹣4)=280(个);(3)(700﹣280)÷120﹣(8﹣5)=0.5(时)答:乙组工人应提前加工零件的时间为0.5小时.【点评】此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.22.已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为相等.探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7.则EM的长为 2.8.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】(1)如图1中,作EF∥AB交BC于F,只要证明△BDM≌△FEM即可.(2)如图2中,作EF∥AB交CB的延长线于F,只要证明△BDM≌△FEM即可.(3)如图3中,作EF∥AB交CB的延长线于F,由BD∥EF得,再证明EF=EC即可.【解答】(1)如图1中,猜想:DM=EM.理由:作EF∥AB交BC于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AD,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.故答案为DM=EM.(2)结论DM=EM.理由::如图2中,作EF∥AB交CB的延长线于F,∵AB=AC,∴∠ABC=∠C,∵EF∥AB,∴∠EFC=∠ABC,∴∠C=∠EFC,∴EF=EC,∵BD=EC,∴DB=EF,∵EF∥AB,∴∠D=∠MEF,在△BDM和△FEM中,,∴△BDM≌△FEM,∴DM=EM.(3)如图3中,作EF∥AB交CB的延长线于F,∵EF∥AB,∴∠F=∠ABC,∵AB=AC,∴∠ABC=∠C,∴EF=CE=4,∵BD∥EF,∴,∴=,∴EM=2.8,故答案为2.8.【点评】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是添加辅助线构造全等三角形以及等腰三角形,属于中考常考题型.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.【考点】二次函数综合题.【分析】(1)根据待定系数法,将点A,点B代入抛物线解析式,解关于b,c的二元一次方程组,即可求得抛物线的解析式;(2)根据待定系数法求出直线AC的解析式,设点P(m,m2+2m﹣8),用含m的式子表示出点D,将它们的纵坐标相减,用含m的式子表示出PD的长度,根据平行四边形的对边平行且相等,得PD=BC,求出m的值,即可求出点P的坐标;(3)由题意,可知OA=OC,得到∠ACO=45°,根据平行线的性质及三角形的内角和,可得∠PDE=∠DPE=45°,进而得△DPE是等腰直角三角形,根据等腰三角形的三线合一和直线三角形斜边上的中线等于斜边的一半,可得:EF=PD,用含m的式子表示出点E的横坐标,根据二次函数的最大值,即可解答.【解答】解:(1)抛物线y=x2+bx+c经过点A(﹣4,0),点B(0,8),∴,解得:,∴这条抛物线所对应的函数表达式为y=x2+2x﹣8;(2)设直线AC的解析式为:y=kx+b,点A(﹣4,0),点C(0,﹣4)在直线AC上,∴,解得:,∴直线AC所对应的函数表达式为:y=﹣x﹣4;∵点P在抛物线y=x2+2x﹣8上,∴设点P(m,m2+2m﹣8),∵PD∥y轴,∴点D(m,﹣m﹣4),∴PD=﹣m﹣4﹣(m2+2m﹣8)=﹣m2﹣3m+4,∵四边形PBCD是平行四边形,∴PD=BC,即﹣m2﹣3m+4=4,解得:m1=0,m2=﹣3,∵点P不与点B重合,∴m=﹣3,∴P(﹣3,﹣5);(3)∵点A(﹣4,0),点C(0,﹣4),∴OA=OC,∵∠AOC=90°,∴∠ACO=45°,∵PD∥y轴,∴∠PDE=∠ACO=45°,∵PE⊥AC于点E,∴∠PED=90°,∴∠PDE=∠DPE=45°,设点E的横坐标为n,如图,过点E作EF⊥PD于点F,∵△DPE是等腰直角三角形,∴EF=PD,即n﹣m=PD,∴n=m+PD=m+(﹣m2﹣3m+4)=﹣(m+)2+,∵﹣4<m<0,∴当m=﹣时,n最大,且n的最大值为.【点评】本题主要考查二次函数的综合应用,第(2)小题熟记平行四边形的对边平行且相等是解决此题的关键,第(3)小题,考查了等腰三角形和直线三角形的性质,能够将等腰三角形的三线合一和直角三角形斜边的中线等于斜边的一半联系起来是解决此题的关键.24.如图,在△ABC中,∠C=90°,AC=BC=12cm,D为BC边中点.DE⊥BC交边AB于点E.点P从点E出发.以1cm/s的速度沿ED向终点D运动.同时点Q从点E出发,以cm/s的速度沿EA向终点A运动.以PQ为边在∠AED的内部作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2).点P的运动时间为t(s).(1)点Q到直线DE的距离为t.(用含t的代数式表示)(2)求正方形顶点M落在AC边上时t的值.(3)求S与t的函数关系式.(4)直接写出整个运动过程中线段QM所扫过的面积.【考点】四边形综合题.【分析】(1)利用等腰直角三角形的性质即可;(2)由正方形的性质得到△FPQ≌△GQM,用时间t表示线段建立方程即可;(3)按时间分情况,利用面积之和或差表示出所求的图形的面积即可;(4)找出整个运动过程中线段QM所扫过的面积和△AEM面积一样大即可.【解答】解:(1)∵△ABC是等腰直角三角形,∴∠ABC=45°,∵DE∥AC,∴∠FEQ=45°,∵EQ=t,∴QF=t,故答案为t.(2)过点Q作QF⊥DE交AC于G,如图1,∵∠C=90°,DE⊥BC,∴DE∥AC,∴∠PFQ=∠QGM=90°,∵四边形PQMN为正方形,∴∠PQM=90°,PQ=MQ,∴∠FPQ+∠FQP=∠FQP+∠GQM=90°,∴∠FPQ=∠GQM..∴△FPQ≌△GQM,∴FP=GQ,∵AC=BC=12,点D为BC中点,∴∠A=∠B=45°,CD=6,∵PT=EF=t,PF=QG=2t,∴t+2t=6,∴t=2;解:(3)当正方形顶点落在BC边上时,如图2,2(6﹣t)=6,∴t=3,当0<t≤2时,如图3,S=PQ2=t2+(2t)2=5t2,当2<t≤3时,如图4,S=[t﹣(6﹣t)]2=﹣t2+45t﹣45,当3<t≤6时如图5,S=(6+12)×6﹣t2(6﹣t)2﹣(6﹣t)2=﹣t2+15t+9,(4)解:如图6,AC与MN的交点为H,由题意由EH=AH=6,△ACD≌△MHA,∴MH=AC=6,∴EM=EH+MG=18,∴S线段QM所扫过的面积=S△AEM=×EM×AH=×18×6=54.【点评】此题是四边形的综合题,主要考查动点中正方形随之变化的情景,解题的关键是分段来求图形的面积,本题的难点是重叠部分面积的计算.。

最新-吉林省长春市朝阳区2018届中考数学一模试卷含答案解析 精品

最新-吉林省长春市朝阳区2018届中考数学一模试卷含答案解析 精品

2018年吉林省长春市朝阳区中考数学一模试卷一、选择题:每小题3分,共24分.1.若等式﹣3□2=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷2.将数412000用科学记数法表示为()A.4.12×106B.4.12×105C.41.2×104D.0.412×1063.计算(2a3)2的结果是()A.4a6B.4a5C.2a6D.2a54.图中的两个长方体底面相同而高度不同,关于这两个长方体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同5.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.6.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°7.如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥OC交⊙O于点D,若∠B=25°,则∠BAD的度数是()A.25°B.30°C.40°D.50°8.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.4二、填空题:每小题3分,共18分.9.计算:﹣=.10.一元二次方程x2﹣2x+2=0根的判别式的值是.11.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为.12.如图,在平面直角坐标系中,点A在函数y=的图象上,过点A作AB∥x 轴交y轴于点B,连结OA,过点B作BC∥OA交x轴于点C,若△BOC的面积是2,则k=.13.如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则的长是.(结果保留π)14.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP 的面积是.三、解答题:本大题共10小题,共78分.15.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=﹣.16.一个不透明的口袋里有三个小球,上面分别标有数字1,3,4,每个小球除数字外其他都相同,甲先从口袋中随机取出1个小球,记下数字后放回,乙再从口袋中随机取出1个小球记下数字,用画树状图(或列表)的方法,求取出的两个小球上的数字之积为偶数的概率.17.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.18.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点(点D不与点A重合),点E是AC 的中点,连结DE并延长至点F,使EF=DE,连结AF、CF.(1)求证:四边形ADCF是平行四边形;(2)当点D是AB的中点时,若AB=4,求四边形ADCF的周长.19.我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?20.如图,某校教学兴趣小组为测量建筑物AB的高度,用高度为1m的测量仪器CD,在距建筑物AB底部25m的C处,测得该建筑物顶部A处的仰角为∠ADE=41°,求建筑物AB的高度.(精确到0.1m).【参考数据:sin41°=0.66,cos41°=0.75,tan41°=0.87】21.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.22.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=°.应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC 的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN=°;图③中∠CPN=°.拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN=°(用含n的代数式表示).23.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s 的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t (s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.24.如图①,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A、B的坐标分别是(﹣1,0)、(4,0),与y轴交于点C,点P在第一、二象限的抛物线上,过点P作x轴的平行线分别交y轴和直线BC于点D、E,设点P的横坐标为m,线段DE的长度为d.(1)求这条抛物线对应的函数表达式;(2)当点P在第一象限时,求d与m之间的函数关系式;(3)在(2)的条件下,当PE=2DE时,求m的值;(4)如图②,过点E作EF∥y轴交x轴于点F,直接写出四边形ODEF的周长不变时m的取值范围.2018年吉林省长春市朝阳区中考数学一模试卷参考答案与试题解析一、选择题:每小题3分,共24分.1.若等式﹣3□2=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷【考点】有理数的混合运算.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:∵﹣3+2=﹣1,∴□内的运算符号为+.故选:A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.2.将数412000用科学记数法表示为()A.4.12×106B.4.12×105C.41.2×104D.0.412×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将412000用科学记数法表示为:4.12×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.计算(2a3)2的结果是()A.4a6B.4a5C.2a6D.2a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(2a3)2=4a6.故选A.【点评】本题主要考查了幂的乘方的性质,熟练掌握运算法则是解题的关键.4.图中的两个长方体底面相同而高度不同,关于这两个长方体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的高不同,故A错误;B、俯视图是两个相等的正方形,故B正确;C、左视图的高不同,故C错误;D、主视图、俯视图不相同,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.5.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先分别解两个不等式得到x<3和x≤1,然后利用数轴分别表示出x<3和x≤1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤0得x≤1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选C.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.6.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°【考点】三角形的外角性质.【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.7.如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥OC交⊙O于点D,若∠B=25°,则∠BAD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;平行线的性质.【分析】根据∠B=25°,得∠C=25°,再由外角的性质得∠AOC,根据平行线的性质得出∠BAD的度数.【解答】解:∵OB=OC,∴∠B=∠C,∵∠B=25°,∴∠C=25°,∵∠AOC=2∠B,∴∠AOC=50°,∵AD∥OC,∴∠BAD=∠AOC=50°,故选D.【点评】本题考查的是圆周角定理,以及平行线的性质,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.8.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.4【考点】一次函数图象上点的坐标特征.【分析】求出点E和直线y=﹣x+2与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=﹣x+2上,∴点E的坐标(,1),∵直线y=﹣x+2与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.【点评】本题考查一次函数图象上的点的坐标特征,解题的关键是知道点的位置能确定点的坐标,是数形结合的好题目,属于中考常考题型.二、填空题:每小题3分,共18分.9.计算:﹣=.【考点】二次根式的加减法.【分析】首先化简二次根式,进而求出答案.【解答】解:﹣=2﹣=.故答案为:.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.10.一元二次方程x2﹣2x+2=0根的判别式的值是﹣4.【考点】根的判别式.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣2x+2=0根的判别式的值是:△=(﹣2)2﹣4×2=﹣4.故答案为:﹣4.【点评】此题主要考查了根的判别式,正确记忆公式是解题关键.11.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为3.【考点】平行线分线段成比例.【专题】计算题.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后利用比例的性质可计算出BE的长.【解答】解:∵l1∥l2∥l3,∴=,即=,∴BE=3.故答案为3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.12.如图,在平面直角坐标系中,点A在函数y=的图象上,过点A作AB∥x 轴交y轴于点B,连结OA,过点B作BC∥OA交x轴于点C,若△BOC的面积是2,则k=4.【考点】反比例函数系数k的几何意义.【分析】根据题意四边形ABCO是平行四边形,求出△ABO的面积,利用公式:S△ABO=即可解决问题.【解答】解:∵AO∥BC、AB∥CO,∴四边形ABCO是平行四边形,∴AO=BC,AB=CO,S△AOB=S△BOC=2,∴,∵k>0,∴k=4,故答案为4.【点评】本题考查反比例函数系数k的几何意义,记住公式:S△ABO=是解决问题的关键,属于中考常考题型.13.如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则的长是.(结果保留π)【考点】切线的性质;弧长的计算.【分析】根据切线的性质和OC=CD证得△OCD是等腰直角三角形,证得∠COB=135°,然后根据弧长公式求得即可.【解答】解:∵CD是⊙O的切线,∴OC⊥CD,∵OC=CD=2,∴△OCD是等腰直角三角形,∴∠COD=45°,∴∠COB=135°,∴的长==.故答案为.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,切线的性质的应用是解题的关键.14.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP 的面积是2.【考点】二次函数图象上点的坐标特征.【分析】求得C的坐标,进而求得B的坐标,根据点P关于x轴的对称点恰好落在直线AB上得出三角形的高,然后根据三角形面积公式即可求得.【解答】解:令x=0,则y=x2﹣2x﹣1=﹣1,∴A(0,﹣1),把y=﹣1代入y=x2﹣2x﹣1得﹣1=x2﹣2x﹣1,解得x1=0,x2=2,∴B(2,﹣1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.【点评】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标以及三角形的高是解题的关键.三、解答题:本大题共10小题,共78分.15.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=﹣.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5,当x=﹣时,原式=4×(﹣)+5=3.【点评】本题考查了整式的混合运算的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中.16.一个不透明的口袋里有三个小球,上面分别标有数字1,3,4,每个小球除数字外其他都相同,甲先从口袋中随机取出1个小球,记下数字后放回,乙再从口袋中随机取出1个小球记下数字,用画树状图(或列表)的方法,求取出的两个小球上的数字之积为偶数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树形图,然后由树形图即可求得所有等可能的结果与两次取出的数字之积为偶数情况,再利用概率公式即可求得答案.【解答】解:画树形图得:由树形图可知所有可能情况有9种,取出的两个小球上的数字之积为偶数的有5种,所以P(取出的两个小球上的数字之积为偶数)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.【考点】分式方程的应用.【分析】设原计划每天铺设管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.【解答】解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.【点评】本题考查分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.期中找到合适的等量关系是解决问题的关键.18.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点(点D不与点A重合),点E是AC 的中点,连结DE并延长至点F,使EF=DE,连结AF、CF.(1)求证:四边形ADCF是平行四边形;(2)当点D是AB的中点时,若AB=4,求四边形ADCF的周长.【考点】菱形的判定与性质;平行四边形的判定.【分析】(1)根据两组对边分别平行的四边形是平行四边形即可判定.(2)只要证明四边形ADCF是菱形即可解决问题.【解答】(1)证明:∵点E是AC的中点,∴AE=EC,∵EF=DE,∴四边形ADCF是平行四边形.(2)解:∵∠ACB=90°,点DAB的中点,∴CD=AD=AB=2,∴平行四边形ADCF是菱形,∴菱形ADC的周长8.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,熟练记住平行四边形、菱形的判定和性质是解题的关键,属于参考常考题型.19.我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其他三项的百分比得出B项目的百分比,然后求出圆心角的度数;(2)首先根据A项目的人数和百分比求出总人数,然后计算出B项目的人数;(3)利用全校人数×足球的百分比得出人数.【解答】解:(1)最喜欢B项目的人数百分比:1﹣44%﹣8%﹣28%=20%,其所在扇形图中的圆心角的度数为:360°×20%=72°;(2)选择B项目的人数为:20%=20(人),补全图形如下:(3)2000×28%=560人.答:全校最喜欢足球的人数是560人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.20.如图,某校教学兴趣小组为测量建筑物AB的高度,用高度为1m的测量仪器CD,在距建筑物AB底部25m的C处,测得该建筑物顶部A处的仰角为∠ADE=41°,求建筑物AB的高度.(精确到0.1m).【参考数据:sin41°=0.66,cos41°=0.75,tan41°=0.87】【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意结合锐角三角函数关系得出AE的长,进而得出答案.【解答】解:由题意可得:BC=DE=25m,则tan41°===0.87,解得:AE=21.75,故AB=21.75+1≈22.8(m).答:建筑物AB的高度为22.8m.【点评】此题主要考查了解直角三角形的应用,正确得出AE的长是解题关键.21.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【考点】一次函数的应用.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1600(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.22.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=120°.应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC 的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN=90°;图③中∠CPN=72°.拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN=°(用含n的代数式表示).【考点】四边形综合题.【分析】探究:(1)利用等边三角形的性质得到BC=AC,∠ACB=∠ABC,从而得到△ACN≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM,再利用三角形的外角等于与它不相邻的两内角之和,即可求解.应用:利用正方形(或正五边形)的性质得到BC=DC,∠ABC=∠BCD,从而判断出△DCN≌△CBM,再利用全等三角形的性质得到∠CDN=∠BCM,再利用三角形的外角等于与它不相邻的两内角之和(或者三角形的内角和),即可.拓展:利用正n五边形的性质得到BC=DC,∠ABC=∠BCD,从而判断出△DCN≌△CBM,再利用全等三角形的性质得到∠CDN=∠BCM,再利用三角形的内角和,即可.【解答】探究:(1)解:∵△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC=60°.∴∠ACN=∠CBM=60°.在△ACN和△CBM中,∴△ACN≌△CBM.(2)解:∵△DCN≌△CBM,∴∠CAN=∠BCM,∵∠ABC=∠BMC+∠BCM,∠BAN=∠BAC+∠CAN,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60°+60°=120°,故答案为120.应用:将等边三角形换成正方形,解:四边形ABCD是正方形,∴BC=DC,∠ABC=∠BCD=90°.∴∠MBC=∠DCN=120°.在△DCN和△CBM中,∴△DCN≌△CBM.∴∠CDN=∠BCM,∵∠BCM=∠PCN∴∠CDN=∠PCN在Rt△DCN中,∠CDN+∠CND=90°,∴∠PCN+∠CND=90°,∴∠CPN=90,将等边三角形换成正五边形,五边形ABCDE是正五边形,∴BC=DC=108°.∴∠MBC=∠DCN=72°.在△DCN和△CBM中,∴△DCN≌△CBM.∴∠BMC=∠CND,∠BCM=∠CDN,∵∠ABC=∠BMC+∠BCM=108°∴∠CPN=180°﹣(∠CND+∠PCN)=180°﹣(∠CND+∠BCM)=180°﹣(∠BCM+∠BMC)=180°﹣108°=72°.故答案为90,72.拓展解:方法和上面正五边形的方法一样,得到∠CPN=180°﹣(∠CND+∠PCN)=180°﹣(∠CND+∠BCM)=180°﹣(∠BCM+∠BMC)=180°﹣108°=72°故答案为.【点评】本题是四边形的综合题,也是一道规律题,主要考查了正n边形的性质,涉及知识点比较多,如等边三角形、正方形、正五边形的性质,如由四边形ABCD是正方形,得到BC=DC,∠ABC=∠BCD=90°,全等三角形的性质和判定,三角形的内角和定理,对顶角相等,解题的关键是充分利用三角形的外角等于与它不相邻的两内角之和(或者三角形的内角和).23.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s 的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t (s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.【考点】相似形综合题.【专题】综合题;分类讨论.【分析】(1)易证△APQ是等边三角形,即可得到QR=PQ=AP=2t;(2)过点A作AG⊥BC于点G,如图②,易得点R运动的路程长是AG+CG,只需求出AG、CG 就可解决问题;(3)四边形APRQ与△ACD重叠部分图形可能是菱形,也可能是五边形,故需分情况讨论,然后运用割补法就可解决问题;(4)由于直角顶点不确定,故需分情况讨论,只需分∠QRB=90°和∠RQB=90°两种情况讨论,即可解决问题.【解答】解:(1)如图①,∵△ABC是等边三角形,∴∠ACB=∠B=60°.∵PQ∥BC,∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,∴△APQ是等边三角形.∴PQ=AP=2t.∵△PQR是等边三角形,∴QR=PQ=2t;(2)过点A作AG⊥BC于点G,如图②,则点R 运动的路程长是AG+CG .在Rt △AGC 中,∠AGC=90°,sin60°==,cos60°==,AC=4, ∴AG=2,CG=2.∴点R 运动的路程长2+2;(3)①当0<t ≤时,如图③,S=S 菱形APRQ =2×S 正△APQ =2××(2t )2=2t 2;②当<t ≤1时,如图④PE=PC •sin ∠PCE=(4﹣2t )×=2﹣t ,∴ER=PR ﹣PE=2t ﹣(2﹣t )=3t ﹣2,∴EF=ER•tanR=(3t﹣2)∴S=S﹣S△REF菱形APRQ=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;(3)t=或t=提示:①当∠QRB=90°时,如图⑤,cos∠RQB==,∴QB=2QR=2QA,∴AB=3QA=6t=4,∴t=;②当∠RQB=90°时,如图⑥,同理可得BC=3RC=3PC=3(4﹣2t)=4,∴t=.【点评】本题主要考查了等边三角形的判定与性质、特殊角的三角函数值、等边三角形的面积公式(等边三角形的面积等于边长平方的倍)等知识,运用分类讨论的数学思想是解决本题的关键.24.如图①,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A、B的坐标分别是(﹣1,0)、(4,0),与y轴交于点C,点P在第一、二象限的抛物线上,过点P作x轴的平行线分别交y轴和直线BC于点D、E,设点P的横坐标为m,线段DE的长度为d.(1)求这条抛物线对应的函数表达式;(2)当点P在第一象限时,求d与m之间的函数关系式;(3)在(2)的条件下,当PE=2DE时,求m的值;(4)如图②,过点E作EF∥y轴交x轴于点F,直接写出四边形ODEF的周长不变时m的取值范围.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,可得答案;(4)根据周长公式,可得答案.【解答】解:(1)由题意,得解得∴这条抛物线对应的函数表达式是y=﹣x2+3x+4;(2)当x=0时,y=4.∴点C的坐标是(0,4).设直线BC的函数关系式为y=kx+b.由题意,得。

2018年吉林省长春市中考数学试卷(带解析)

2018年吉林省长春市中考数学试卷(带解析)

2018年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣15的绝对值是()A.﹣15B.15C.﹣5D.5【解答】解:|−15|= 1 5,故选:B.2.(3分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.3.(3分)下列立体图形中,主视图是圆的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.4.(3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D .【解答】解:3x ﹣6≥0,3x ≥6,x ≥2,在数轴上表示为,故选:B .5.(3分)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为()A .44°B .40°C .39°D .38°【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD 平分∠ACB 交AB 于点D ,∴∠DCB=12×78°=39°,∵DE ∥BC ,∴∠CDE=∠DCB=39°,故选:C .6.(3分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,15=1.50.5,解得x=45(尺).故选:B.7.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800米D.800米【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==800.故选:D.8.(3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x >0)的图象上,若AB=2,则k的值为()A.4B.22C.2D.2【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=得k=2×22=4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.(填“>”、“=”或“<”)【解答】解:∵32=9<10,∴10>3,故答案为:>.10.(3分)计算:a 2•a 3=a 5.【解答】解:a 2•a 3=a 2+3=a 5.故答案为:a 5.11.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为2.(写出一个即可)【解答】解:∵直线y=2x 与线段AB 有公共点,∴2n ≥3,∴n ≥32.故答案为:2.12.(3分)如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=32°,则∠CDB 的大小为37度.【解答】解:∵AB=AC ,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC ,∴∠CDB=∠CBD=12∠ACB=37°.故答案为:37.13.(3分)如图,在▱ABCD中,AD=7,AB=23,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为20.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=23,∠B=60°.∴AE=3,BE=3,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:2014.(3分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C 的长为3.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A 关于点B 的对称点为A ′,点A ′的横坐标为1,∴点A 的坐标为(﹣1,0),∴抛物线解析式为y=x 2+x ,当x=1时,y=x 2+x=2,则A ′(1,2),当y=2时,x 2+x=2,解得x 1=﹣2,x 2=1,则C (﹣2,1),∴A ′C 的长为1﹣(﹣2)=3.故答案为3.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2−2−1+1−1,其中x=5﹣1.【解答】2−2−1+1−1=2−2+1−1=2−1−1=(+1)(−1)−1=x +1,当x=5﹣1时,原式=5﹣1+1=5.16.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B)【解答】解:列表如下:A 1A 2B A1(A 1,A 1)(A 2,A 1)(B ,A 1)A2(A 1,A 2)(A2,A 2)(B ,A 2)B (A 1,B )(A 2,B )(B ,B )由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.17.(6分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM 、ON 的端点均在格点上.在图①、图②给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【解答】解:如图所示:18.(7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.19.(7分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴100×6180=103π.20.(7分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:2 02119162718312921222 5219223533191718291 8352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×1+1+2+3+1+230=100(名),答:该部门生产能手有100名工人.21.(8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入15=3+25=5.5+解得=4=3∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,1122.(9分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD 于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,∠=∠=∠=∠=90°,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE ,在△PGF 和△CBE 中,∠=∠=∠=∠=90°,∴△PGF ≌△CBE (ASA ),∴BE=FG ,(2)由(1)知,FG=BE ,连接CM ,∵∠BCE=90°,点M 是BE 的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE ⊥CG ,∴S 四边形CEGM =12CG ×ME=12×6×3=9,故答案为9.23.(10分)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A 、B 重合),作∠DPQ=60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)用含t 的代数式表示线段DC 的长;(2)当点Q 与点C 重合时,求t 的值;(3)设△PDQ 与△ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式;(4)当线段PQ 的垂直平分线经过△ABC 一边中点时,直接写出t 的值.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=23,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×32=3t ,∴CD=AC ﹣AD=23﹣3t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD +DQ=AC ,∴2×3t=23,∴t=1;(3)当0<t ≤1时,S=S △PDQ =12DQ ×DP=12×3t ×t=32t 2;当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=23t ﹣23=23(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=23(t ﹣1)×33=2(t ﹣1),∴S=S △PDQ ﹣S △ECQ =12×3t ×t ﹣12×23(t ﹣1)×2(t ﹣1)=﹣332t 2+43t ﹣23,∴S=322(0<≤1)−3322+43−23(1<<2);(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=12PQ=12AP=t ,AF=12AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP +PF=2t +2t=2,∴t=12;当PQ 的垂直平分线过AC 的中点M 时,如图4,∴∠QMN=90°,AN=12AC=3,QM=12PQ=12AP=t ,在Rt △NMQ 中,NQ=30°=233t ,∵AN +NQ=AQ ,∴3+233t=23t ,∴t=34,当PQ 的垂直平分线过BC 的中点时,如图5,∴BF=12BC=1,PE=12PQ=t ,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H ,∴BH=BF=1,在Rt △PEH 中,PH=2PE=2t ,∴AH=AP +PH=AB +BH ,∴2t +2t=5,∴t=54,即:当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为12秒或34秒或54秒.24.(12分)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD ⊥y 轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数y=﹣12x 2+mx +1(x ≥0)的图象记为G 1,函数y=﹣12x 2﹣mx ﹣1(x <0)的图象记为G 2,其中m 是常数,图象G 1、G 2合起来得到的图象记为G .设矩形ABCD 的周长为L .(1)当点A 的横坐标为﹣1时,求m 的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当32≤y0≤9时,直接写出L的取值范围.【解答】解:(1)由题意E(0,1),A(﹣1,1),D(1,1)把D(1,1)代入y=﹣12x2+mx+1中,得到1=﹣12+m+1,∴m=1 2.(2)∵抛物线G1的对称轴x=﹣−1=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,12m2﹣1)在线段AE上,12m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,12m2+1)时,12m2+1=32,解得m=1或﹣1(舍弃),12m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1≤2−1≤9 2≤,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.。

2018年吉林省长春市中考数学模拟试卷(5月份)(解析版)

2018年吉林省长春市中考数学模拟试卷(5月份)(解析版)

2018年吉林省长春市中考数学模拟试卷(5月份)一、选择题(本大題共8小题,每小题3分,共24分)1.(3分)下列运算结果为正数的是()A.(﹣3)×(﹣3)B.﹣3+(﹣3)C.﹣3﹣(﹣3)D.﹣3÷32.(3分)据统计,中国汽车保有量约为3亿,其中女司机约为9800万人,用科学记数法表示数字9800是()A.9.8×107B.9.8×103C.9.8×104D.9.8×1012 3.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠27.(3分)如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是()A.(1,2)B.(2,3.2)C.(3,3﹣)D.(4,4+)8.(3分)如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣二、填空题(本大题共6小题,每小题3分,共18分9.(3分)不等式2x﹣3>1的解集是.10.(3分)以m=为反例,可以证明命题“关于x的一元二次方程x2+x+m=0必有实数根”是错误的命题(写出一个m值即可).11.(3分)如图,一人乘雪橇沿坡角为α的斜坡笔直滑行了82米,那么他下降的高度为米(用含α的式子表示).12.(3分)我国古代典籍《庄子•天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭.”意思是说:即使是一尺长的木棍,第一天截取它的一半,以后每天截取剩下部分的一半,那么世世代代也截取不尽.按此做法,第n天后“一尺之棰”剩余的长度为尺(用含n的式子表示).13.(3分)如图,正六边形ABCDEF内接于⊙O.若正六边形的周长为18,则的长为(结果保留x).14.(3分)在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A、B分别在图象C1和C2上,点A、B的横坐标分别为a、b,且a+b=0.当b<x≤a时该函数的最大值和最小值均与a、b的值无关,则a的取值范围为.三、解答题(本大题共10小题,共78分)15.(6分)以下是小嘉化简代数式(x﹣2y)2﹣(x+y)(x﹣y)﹣2y2的过程解:原式=(x2﹣4xy+4y2)﹣(x2﹣y2)﹣2y2……①=x2﹣4xy+4y2﹣x2﹣y2﹣2y2……②=y2﹣4xy……③(1)小嘉的解答过程在第步开始出错,出错的原因是;(2)请你帮助小嘉写出正确的解答过程,并计算当4x=3y时代数式的值.16.(6分)一个不透明的袋子里装有三个分别标有数字﹣1、1、2的小球,除所标有的数字不同外,其它方面均相同,现随机从中摸取一个小球,记录所摸取的小球上的数字后放回并搅匀,再随机摸取一个小球,记录小球上的数字,用列表法或树形图法求两次记录数字之和是正数的概率.17.(6分)某单位一直在同一家办公用品商店以同一价位购买复印纸,下表是部分购买记录:求该单位第三次买复印纸的总价格为多少元?18.(7分)如图,∠BCA=90°,点O在△ABC的斜边AB上,以OB为半径的⊙O经过点B,与AC相切于点D,连结BD.(I)求证;BD平分∠ABC;(2)若∠ABC=60°,OB=2,计算△ABC的面积.19.(7分)随着生活质量的提窩,人们的消费水平逐年上升,下面是根据国家统计局发布的我国居民近三年的消费数据绘制的统计图表:我国居民年人均各项消费支出统计表(单位:万元)(1)根据统计表中的数据,补全条形统计图.(2)从2015年到2017年,我国居民人均消费每年增长的值近似相等,由此估算2018年我国居民人均消费值为万元.(3)国际上常用恩格尔系数反应一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,恩格尔系数的计算公式为:恩格尔系数=.例如:我国2015年、2016年的恩格尔系数分别为≈30.6%,≈30.4%.请你求出我国2017年的恩格尔系数(精确到0.1%),并根据变化情况谈谈你的看法.20.(7分)如图,在平面直角坐标系中,两个村庄M、N的坐标分别是(4,6)、(1,0),两村庄之间有一条河,河的两岸线的纵坐标分别是2和3,现准备在河上建一座桥(桥近似看成一条线段),桥垂直于河岸线,再在桥的两端向两个村庄铺建直线型路段,当两路段之和最小时,完成下列问题.(1)请画出桥的位置.(用虚线画出必要的辅助线)(2)你所画的桥的位置的数学依据是.(3)直接写出桥的横坐标.21.(8分)2018长春国际马拉松赛拟定于2018年5月27日在长春市举行,小张报名参加了10公里跑的项目,经了解,10公里跑的起点在体育中心,终点在卫星广场(如图①),比赛当天赛道上距离起点5km处会设置一个饮料站,距离起点7.5km处会设置一个食品补给站.为了更好的完成比赛,小张在比赛前进行了一次模拟跑,从起点体育中心出发,沿赛道跑向终点卫星广场,小张与终点卫星广场之间的路程S(km)与时问t(h)之间的函数图象如图②所示.(1)求小张从饮料站跑到终点的过程中S与t之间的函数表达式;(2)求小张在这次模拟跑中从饮料站跑到食品补给站所用的时间;(3)后来小张又在10公里跑的赛道进行了一次模拟跑,他以每小时12千米的速度匀速从起点跑到食品补给站的位置,如果他想跑完全程不超过45分钟,接下来一段路程他的速度至少应为每小时千米.22.(9分)【探究】如图①,点E、F、G、H分别在平行四边形ABCD的边AB、BC、CD、DA上,连结EF、FG、GH、HE,将△AEH、△BFE、△CGF、△DHG分别沿EF、FG、GH、HE折叠,折叠后的图形恰好能拼成一个无重叠、无缝隙的矩形.若AD=5,EF=2,求EH的长.【应用】参考图②,四边形ABCD是平行四边形,∠A=120°,AD<AB.当按图①的方式折叠后的图形能拼成一个无重叠、无缝隙的正方形时,则=.23.(10分)如图①,△ABC中,∠ACB=90°,AC=,BC=10,点P从点B出发以每秒5个单位长度的速度沿BC向终点C匀速运动,作PQ⊥AB于Q,以PQ为斜边向左构造等腰直角△PQR,设点P的运动时间为t秒.(1)填空;AB=,用含t的代数式表示PQ,则PQ=.(2)当点R落在边AC上时,求t的值.(3)在点P的运动过程中,直线PR与直线AC的夹角是否发生变化?如果不变,请求出直线PR和直线AC所夹锐角的正切值;如果变化,请简要说明理由.(4)与点P出发的同时,点D从点A出发,以每秒个单位长度的速度沿AC向终点C匀速运动,当点P停止运动时,点D也随之停止.作DE⊥AB于E,以DE为斜边向右构造等腰直角△DEF,如图②.当△DEF的一条边与△PQR的一条边在同一条直线上时,直接写出t的值.24.(12分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,且矩形ABCD的各边均与某条坐标轴垂直则称矩形ABCD 为该函数图象的“垂美矩形”.如图,矩形ABCD为直线l的“垂美矩形”.(1)若某一次函数图象的“垂美矩形”的两邻边比为1:2,写出一个满足条件的函数表达式:(写出一个即可).(2)若反比例函数y=图象的“垂美矩形”ABCD的顶点A、C均在直线y=kx上,则矩形ABCD的面积为.(3)若二次函数y=x2﹣4x图象的“垂美矩形”ABCD的顶点C的横坐标是顶点A横坐标的2倍,设顶点A的横坐标为m,矩形ABCD的周长为L.求L与m之间的函数关系式,并直接写出当L随着m的增大而减小时m的取值范围.(4)若二次函数y=x2﹣4nx图象的“垂美矩形”ABCD的顶点A、C的横坐标分别为﹣2、1,分别作点A、C关于此二次函数图象对称轴的对称点A′、C',连结A′C′.当n为何值时,线段A′C′将矩形ABCD分成两部分图形的面积比为2:7?(写出解答过程)2018年吉林省长春市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大題共8小题,每小题3分,共24分)1.(3分)下列运算结果为正数的是()A.(﹣3)×(﹣3)B.﹣3+(﹣3)C.﹣3﹣(﹣3)D.﹣3÷3【解答】解:A、(﹣3)×(﹣3)=9,符合题意;B、﹣3+(﹣3)=﹣6,不符合题意;C、﹣3﹣(﹣3)=0,不符合题意;D、﹣3÷3=﹣1,不符合题意;故选:A.2.(3分)据统计,中国汽车保有量约为3亿,其中女司机约为9800万人,用科学记数法表示数字9800是()A.9.8×107B.9.8×103C.9.8×104D.9.8×1012【解答】解:用科学记数法表示数字9800是9.8×103.故选:B.3.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选:D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=3【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选:A.5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选:A.6.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.7.(3分)如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是()A.(1,2)B.(2,3.2)C.(3,3﹣)D.(4,4+)【解答】解:A、点(1,2)到直线y=x的距离为(2﹣1)=<1,∴点(1,2)可能在⊙A的内部;B、点(2,3.2)到直线y=x的距离为(3.2﹣2)=<1,∴点(2,3.2)可能在⊙A的内部;C、点(3,3﹣)到直线y=x的距离为[3﹣(3﹣)]=<1,∴点(3,3﹣)可能在⊙A的内部;D、点(4,4+)到直线y=x的距离为(4+﹣4)=1,∴点(4,4+)不可能在⊙A的内部.故选:D.8.(3分)如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣【解答】解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)不等式2x﹣3>1的解集是x>2.【解答】解:∵2x﹣3>1,∴2x>4,∴x>2,∴原不等式的解集为:x>2.10.(3分)以m=2为反例,可以证明命题“关于x的一元二次方程x2+x+m=0必有实数根”是错误的命题(写出一个m值即可).【解答】解:∵方程x2+x+m=0,必有实数解,∴△=1﹣4m≥0,解得:m≤,则命题“关于x的一元二次方程x2+x+m=0,必有实数解.”是假命题.则可以作为反例的是m=2,故答案为:2,11.(3分)如图,一人乘雪橇沿坡角为α的斜坡笔直滑行了82米,那么他下降的高度为82•sinα米(用含α的式子表示).【解答】解:如图,设下滑的距离为AB=82米,下降的高度为线段AC.在Rt△ABC中,AC=AB•sinα=82•sinα,故答案为82•sinα.12.(3分)我国古代典籍《庄子•天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭.”意思是说:即使是一尺长的木棍,第一天截取它的一半,以后每天截取剩下部分的一半,那么世世代代也截取不尽.按此做法,第n天后“一尺之棰”剩余的长度为尺(用含n的式子表示).【解答】解:由题意可得:第一次剩下尺,第二次剩下×=尺,第三次剩下××=尺,则第n天后“一尺之棰”剩余的长度为:.故答案为:.13.(3分)如图,正六边形ABCDEF内接于⊙O.若正六边形的周长为18,则的长为2π(结果保留x).【解答】解:连接OC、OE.在正六边形ABCDEF中,∵周长为18,∴CD=3,OC=OE=CD=3,∠COE=120°,∴==2π,故答案为2π.14.(3分)在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A、B分别在图象C1和C2上,点A、B的横坐标分别为a、b,且a+b=0.当b<x≤a时该函数的最大值和最小值均与a、b的值无关,则a的取值范围为1≤a≤1+.【解答】解:∵函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).∴抛物线C2的解析式y=﹣(x+1)2+3∵当b<x≤a时该函数的最大值和最小值均与a、b的值无关,∴当b<x≤a时该函数的最大值和最小值分别为3和1∴a≥1,b<﹣1当y=1时,1=﹣(x+1)2+3,且x<0∴x=﹣﹣1,当y=3时,3=(x﹣1)2+1且x>0∴x=+1∴﹣﹣1<b<﹣11≤a≤+1故答案为:1≤a≤+1三、解答题(本大题共10小题,共78分)15.(6分)以下是小嘉化简代数式(x﹣2y)2﹣(x+y)(x﹣y)﹣2y2的过程解:原式=(x2﹣4xy+4y2)﹣(x2﹣y2)﹣2y2……①=x2﹣4xy+4y2﹣x2﹣y2﹣2y2……②=y2﹣4xy……③(1)小嘉的解答过程在第②步开始出错,出错的原因是去括号时﹣y2没变号;(2)请你帮助小嘉写出正确的解答过程,并计算当4x=3y时代数式的值.【解答】解:(1)②出错原因:去括号时﹣y2没变号;故答案为:②;去括号时﹣y2没变号.(2)正确解答过程:原式=x2﹣4xy+4y2)﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=3y2﹣4xy.当4x=3y时,原式3y2﹣3y2=0.16.(6分)一个不透明的袋子里装有三个分别标有数字﹣1、1、2的小球,除所标有的数字不同外,其它方面均相同,现随机从中摸取一个小球,记录所摸取的小球上的数字后放回并搅匀,再随机摸取一个小球,记录小球上的数字,用列表法或树形图法求两次记录数字之和是正数的概率.【解答】解:画树状图:或列表:共有9种等可能的结果数,其中两次记录数字之和是正数的结果数为6,所以P(两次记录数字之和是正数)==.17.(6分)某单位一直在同一家办公用品商店以同一价位购买复印纸,下表是部分购买记录:求该单位第三次买复印纸的总价格为多少元?【解答】j解:设A4纸的价格为每包x元,B5纸的价格为每包y元.根据题意,得解得所以10×20+12×15=380(元).答:该单位第三次买复印纸的总价格为380元.18.(7分)如图,∠BCA=90°,点O在△ABC的斜边AB上,以OB为半径的⊙O经过点B,与AC相切于点D,连结BD.(I)求证;BD平分∠ABC;(2)若∠ABC=60°,OB=2,计算△ABC的面积.【解答】解:(1)如图,连结OD,∵∠BCA=90°,点O在△ABC的斜边AB上,以OB为半径的⊙O经过点B,与AC相切于点D,∴∠ODA=∠C=90°,OB=OD,∴BC∥OD,∠OBD=∠ODB,∴∠CBD=∠ODB,∴∠OBD=∠CBD,∴BD平分∠ABC;(2)∵∠ABC=60°,OB=2,且∠ODA=∠C=90°.∴∠A=90°﹣60°=30°,OD=OB=2.∴OA==4,∴AB=2+4=6,∴BC=6sin30°=3,AC=6cos30°=3,∴S△ABC=×3×3=.19.(7分)随着生活质量的提窩,人们的消费水平逐年上升,下面是根据国家统计局发布的我国居民近三年的消费数据绘制的统计图表:我国居民年人均各项消费支出统计表(单位:万元)(1)根据统计表中的数据,补全条形统计图.(2)从2015年到2017年,我国居民人均消费每年增长的值近似相等,由此估算2018年我国居民人均消费值为 1.96万元.(3)国际上常用恩格尔系数反应一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,恩格尔系数的计算公式为:恩格尔系数=.例如:我国2015年、2016年的恩格尔系数分别为≈30.6%,≈30.4%.请你求出我国2017年的恩格尔系数(精确到0.1%),并根据变化情况谈谈你的看法.【解答】解:(1)m=0.23+0.54+0.41+0.25+0.15+0.21+0.04=1.83,补全条形图图如所示.(2)2015至2016年增加0.14万元、2016至2017年增加0.12万元,估计2018年我国居民人均消费值约为1.83+0.13=1.96万元,故答案为:1.96.(3)我国2017年的恩格尔系数为≈29.5%.因为30.6%>30.4%>29.5%,所以我国人民的生活质量越来越高.20.(7分)如图,在平面直角坐标系中,两个村庄M、N的坐标分别是(4,6)、(1,0),两村庄之间有一条河,河的两岸线的纵坐标分别是2和3,现准备在河上建一座桥(桥近似看成一条线段),桥垂直于河岸线,再在桥的两端向两个村庄铺建直线型路段,当两路段之和最小时,完成下列问题.(1)请画出桥的位置.(用虚线画出必要的辅助线)(2)你所画的桥的位置的数学依据是两点之间,线段最短.(3)直接写出桥的横坐标.【解答】解:(1)如图所示,桥AB即本题所求.(2)两点之间,线段最短(3)设直线M'N的解析式y=kx+b根据题意得:解得:∴y=x﹣当y=2时,2=x﹣x=∴桥的横坐标为.21.(8分)2018长春国际马拉松赛拟定于2018年5月27日在长春市举行,小张报名参加了10公里跑的项目,经了解,10公里跑的起点在体育中心,终点在卫星广场(如图①),比赛当天赛道上距离起点5km处会设置一个饮料站,距离起点7.5km处会设置一个食品补给站.为了更好的完成比赛,小张在比赛前进行了一次模拟跑,从起点体育中心出发,沿赛道跑向终点卫星广场,小张与终点卫星广场之间的路程S(km)与时问t(h)之间的函数图象如图②所示.(1)求小张从饮料站跑到终点的过程中S与t之间的函数表达式;(2)求小张在这次模拟跑中从饮料站跑到食品补给站所用的时间;(3)后来小张又在10公里跑的赛道进行了一次模拟跑,他以每小时12千米的速度匀速从起点跑到食品补给站的位置,如果他想跑完全程不超过45分钟,接下来一段路程他的速度至少应为每小时20千米.【解答】解:(1)设小张从饮料站跑到终点的过程中S与t之间的函数表达式为S=kt+b,,得,即小张从饮料站跑到终点的过程中S与t之间的函数表达式为S=﹣10t+12(0.7≤t≤1.2);(2)10﹣7.5=2.5,∴将S=2.5代入S=﹣10t+12,得2.5=﹣10t+12,得t=0.95,0.95﹣0.7=0.25,答:小张在这次模拟跑中从饮料站跑到食品补给站所用的时间为0.25小时;(3)设小张接下来一段路程他的速度为a千米/小时,,解得,a≥20,故答案为:20.22.(9分)【探究】如图①,点E、F、G、H分别在平行四边形ABCD的边AB、BC、CD、DA上,连结EF、FG、GH、HE,将△AEH、△BFE、△CGF、△DHG分别沿EF、FG、GH、HE折叠,折叠后的图形恰好能拼成一个无重叠、无缝隙的矩形.若AD=5,EF=2,求EH的长.【应用】参考图②,四边形ABCD是平行四边形,∠A=120°,AD<AB.当按图①的方式折叠后的图形能拼成一个无重叠、无缝隙的正方形时,则=.【解答】解:【探究】如图1∵折叠后A、B落在点M处,C、D落在点N处.∵四边形ABCD是平行四边形,∴∠C+∠D=180°,∠B=∠D.由折叠可知,∠C=∠FNG,∠D=∠HNG,∠B=∠EMF=∠D=∠GNH,HD=HN,MF=BF,AH=MH.∴H、N、F共线.∵折叠后的图形恰好能拼成一个无重叠、无缝隙的矩形,∴H、N、M、F共线,EF=HG,EF∥HG,∠FEH=90°.∴∠NHG=∠MFE.∴△EFM≌△GHN.∴MF=BF=HN=HD.∴AH+HD=MH+MF.即AD=FH.∵AD=5,EF=2,∠FEH=90°,∴FH=5.∴EH==.【应用】如图2由探究可得:AD=HF,BE=EM=AE,∠B=∠EMF∵∠A=120°,AD∥BC∴∠B=60°=∠EMF∵EHGF是正方形∴EH=EF,∠EFH=45°∴FH=EF作EO⊥HF,且∠EFH=45°∴EO=FO=EF∵∠EMF=60°,EO⊥HF∴EO=OM,EM=2MO∴OM=EF EM=EF∴BE=AE=EF∴AB=EF∴==23.(10分)如图①,△ABC中,∠ACB=90°,AC=,BC=10,点P从点B出发以每秒5个单位长度的速度沿BC向终点C匀速运动,作PQ⊥AB于Q,以PQ为斜边向左构造等腰直角△PQR,设点P的运动时间为t秒.(1)填空;AB=,用含t的代数式表示PQ,则PQ=3t.(2)当点R落在边AC上时,求t的值.(3)在点P的运动过程中,直线PR与直线AC的夹角是否发生变化?如果不变,请求出直线PR和直线AC所夹锐角的正切值;如果变化,请简要说明理由.(4)与点P出发的同时,点D从点A出发,以每秒个单位长度的速度沿AC向终点C匀速运动,当点P停止运动时,点D也随之停止.作DE⊥AB于E,以DE为斜边向右构造等腰直角△DEF,如图②.当△DEF的一条边与△PQR的一条边在同一条直线上时,直接写出t的值.【解答】解:(1)∵∠ACB=90°,AC=,BC=10,∴由勾股定理得AB=;∵BP=5t,△ABC∽△PBQ,∴==,∴PQ==3t,故答案为:;3t;(2)如图,当点R落在边AC上时,过R作RM⊥PQ,RN⊥AB,则BQ+RM+AN=AB,即3t×+3t×+3t××=,解得t=,∴点R落在边AC上时t的值为.(3)直线PR与直线AC的夹角不变.由(2)可知,当点R落在边AC上时,t=,则CP=10﹣5t=10﹣5×=.作RN⊥AB于N,易知RN=MQ=PQ=×3t=×=.∵∠A=∠A,∠ANR=∠ACB=90°,∴△ANR∽△ACB,∴=,∴AR=,∴CR=AC﹣AR=﹣=,∴tan∠PRC===,即直线PR和直线AC所夹锐角的正切值为.(4)t的值为或.如图,当EF与PR在同一直线上时,△PQE是等腰直角三角形,∴EQ=PQ=3t,由题可得,AE=2t,BQ=4t,∵AE+EQ+QB=AB,∴2t+3t+4t=,解得t=;如图,当DF与RQ在同一直线上时,△DEQ是等腰直角三角形,∴EQ=DE=1.5t,由题可得,AE=2t,BQ=4t,∵AE+EQ+QB=AB,∴2t+1.5t+4t=,解得t=.24.(12分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,且矩形ABCD的各边均与某条坐标轴垂直则称矩形ABCD 为该函数图象的“垂美矩形”.如图,矩形ABCD为直线l的“垂美矩形”.(1)若某一次函数图象的“垂美矩形”的两邻边比为1:2,写出一个满足条件的函数表达式:y=2x或y=﹣2x或y=x或y=﹣x(写出一个即可).(2)若反比例函数y=图象的“垂美矩形”ABCD的顶点A、C均在直线y=kx上,则矩形ABCD的面积为8.(3)若二次函数y=x2﹣4x图象的“垂美矩形”ABCD的顶点C的横坐标是顶点A横坐标的2倍,设顶点A的横坐标为m,矩形ABCD的周长为L.求L与m之间的函数关系式,并直接写出当L随着m的增大而减小时m的取值范围.(4)若二次函数y=x2﹣4nx图象的“垂美矩形”ABCD的顶点A、C的横坐标分别为﹣2、1,分别作点A、C关于此二次函数图象对称轴的对称点A′、C',连结A′C′.当n为何值时,线段A′C′将矩形ABCD分成两部分图形的面积比为2:7?(写出解答过程)【解答】解:(1)y=2x或y=﹣2x或y=x或y=﹣x.(答案不唯一,一次项系数为±或±2均可).故答案为y=2x或y=﹣2x或y=x或y=﹣x(2)如图,设A(a,b),则ab=2.由题意,A、C关于原点对称,∴C(﹣a,﹣b),∵四边形ABCD是矩形,∴CD=2a,AD=2b,∴S矩形ABCD=4ab=8,故答案为8.(3)由题意可知,A(m,m2﹣4m),C(2m,4m2﹣8m).因为点A在点C的左侧,所以m>0,当0<m<时,L=2[2m﹣m+(m2﹣4m)﹣(4m2﹣8m)]∴L=﹣6m2+10m.当m>时,L=2[2m﹣m+(4m2﹣8m)﹣(m2﹣4m)].∴L=6m2﹣6m.当L随着m的增大而减小时m的取值范围为≤m<.(4)如图,过点A′作A′H⊥CC′于点H,∴四边形A′BCH是矩形.∴A′B=CH,由抛物线的轴对称性可知,CH=C′D.∴A′B=C′D.∵A′B∥C′D,∴四边形A′BDC′是平行四边形.∴A′C′∥BD.由题意可知,A(﹣2,4+8n)、C(1,1﹣4n),二次函数图象的对称轴为直线x=2n,AB=CD=3.∴AA′=2(2n+2)=4n+4,CC′=2(1﹣2n)=2﹣4n.若线段A′C′将矩形ABCD分成两部分图形的面积比为2:7,当n<0时,AA′:AB=2:3.∴AA′=4n+4=2.∴n=﹣.当n>0时,CC′:CD=2:3.∴CC′=2﹣4n=2.∴n=0.综上,n的值为﹣或0.。

吉林省长春市2018届最新中考第一次模拟考试数学试题及答案

吉林省长春市2018届最新中考第一次模拟考试数学试题及答案

(A)(B)(C)(D)(A)(B)(C)(D)2017—2018学年度下学期初三年级第一次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。

一、选择题(本大题共8小题,每小题3分,共24分)1. 3-的绝对值是(A)3-(B)31(C)3-1(D)32. 下列四个几何体,他们的正视图中与众不同的是3. 2017年长春市机动车约为1890000辆.1890000这个数用科学记数法表示为51.8()9A 10⨯518.()9B 10⨯61.8()9C 10⨯70.18()9D 10⨯4. 不等式组21,213(1)x x x x ≤+⎧⎨-≥-⎩的解集在数轴上表示正确的是5. 如右图,在ABC ∆中,90C ∠= .按以下步骤操作图:○1一点A 为圆心,小于AC 的长为半径画弧,分别交,AB AC 于点,;E F ○2分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ; ○3作射线AG 交BC 边于点D . 若1,2,CD AC ==则点D 到AB 的距离是(A)1(B)2(C)36. 如图,在ABC ∆中,90C ∠= .AC BC >,DE 是线段AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若36A ∠= ,则EBC ∠等于 (A)18 (B)28 (C)32 (D)547. 如图,四边形ABCD 内接于圆O ,若125,B ∠= 则AOC ∠的大小是 (A)125 (B)110 (C)100 (D)958. 如图,在平面直角坐标系中,菱形OABC 的对角线OB 在x 的正半轴上,顶点A 在第一象限并且在函数(0)ky x x=>的图象上.若菱形OABC 面积为12,则k 等于 (A)6-(B)6(C)12-(D)12二、填空题(本大题共6小题,每小题3分,共18分)9.计算:32254a b b c ⋅=________.10.篮球每个a 元,排球每个b 元,买3个篮球和2个排球共需________元. 11.二次函数232y x x =-+的图象与x 轴的交点个数是________.12.如图,直线AB // CD // EF ,若34AC CE ==,13.如图,在ABC ∆中,90ABC ∠= , 1.BC AC ==把ABC ∆绕点A 逆时针旋转90 后得到ADE ∆,则BC 扫过部分的面积(阴影部分)为_______(结果保留π).14.如图,在平面直角坐标系中,抛物线24y x x =-+的顶点为A ,与x 轴分别交与O ,B 两点.过顶点A 分别作AC x ⊥轴于点C ,AD y ⊥轴于点D ,连结BD ,AC 于点E ,则ADE ∆和BCE ∆的面积和为________.三、解答题(本大题共10小题,共78分)15.(6分) 先化简,再求值:()()2232121a a a -+--,其中13a =.16.(6分)在一个不透明的口袋里装有2个红球、1个白球,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后不放回,再随机摸出一个小球.请你用画树状图(或列表)的方法,求两次摸出的小球颜色不同的概率.17.(6分)某校英语考试采取网上阅卷的形式,已知该校甲、乙两名教师各阅卷200张,甲教师的阅卷速度是乙教师的2倍,结果甲教师比乙教师提前2个小时完成阅卷工作.求甲、乙两名教师每小时批阅学生试卷的张数.18.(7分)如图,已知AC 是矩形ABCD 的对角线,过AC 的中点O 的直线EF ,交BC 于点F ,交AD 于点E ,连接,.AF CE (1)求证:;O AOE C F ∆∆≌(2)若EF AC ⊥,试判断四边形AFCE 是什么特殊四边形?请证明你的结论.19.(7分)某校为了解“书香校园”活动的开展情况,随机抽取了n 名学生,调查他们一周阅读课外书籍的时间(单位:时),并将所得数据绘制成如下的统计图表.(1)求n 的值,并补全频数分布直方图.(2)这组数据的中位数落在频数分布表中的哪个时间段?(3)根据上述调查结果,估计该校2400名学生中一周阅读课外书籍时间在6小时以上20.(7分)如图,某游乐园有一个滑梯AB ,高度AC 为5.1米,C ∠是直角,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比调整前滑梯AB 长多少米?(精确到0.1米)(参考数据:580.85sin ︒≈,580.53cos ︒≈,58 1.60tan ︒≈)21.(8分)甲、乙两车分别从,A B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲乙两车距A 地的路程为y (千米),甲乙两车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)当乙车到达A 地时,直接写出甲车距A 地的路程为_________千米.22.(9分)(问题原型)学完旋转变换之后,老师给同学们留了这样一个问题:“如图1,在等边ABC ∆内有一点P ,连接,PA PB PC ,,若345PC PB PA ===,,,求CPB ∠的度数”,思考求CPB ∠度数的方法,解决下面问题:(问题探究)如图2,小明在做这道题时,将BPC ∆绕着点C 顺时针旋转,使得点B 的对应点与点A 重合,得到',AP C ∆连结'PP ,从而求出了CPB ∠的度数,请你写出小明的解答过程.(方法推广)小明解决完上述问题后,提出了一个新的问题:若果将原题中的等边ABC ∆改为等腰直角ABC ∆,90ACB ∠= ,12AC BC PC PB ===,,, 则PA 等于多少时?135CPB ∠= .请你直接写出答案.23.(10分)如图,在平行四边形ABCD 中,42AB AD ==,,60A ∠= .动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,过点P 作PQ AB ⊥交折线AD DC -于点Q ,以PQ 为边在PQ 右侧作等边三角形PQN .将PQN ∆绕QN 的中点旋转180 得到MNQ ∆.设四边形PQMN 与平行四边形ABCD 重叠部分图形的面积为S(平方单位),点P 的运动时间为t (s )(04t ≤≤) (1)当点N 在边BC 上时,则t 的值是______. (2)当MN 经过点C 时,求t 的值.(3)当点Q 在CD 边上,且四边形PQMN 与平行四边形ABCD 重叠部分图形是四边形时,求S 与t 之间的函数关系式.(4)设平行四边形ABCD 和四边形PQMN 的对角线的交点分别是点O ,'O .当'OO 最短时,直接写出t 的值.24.(12分)如图○1,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 在抛物线1L 上(点A 与点B 不重合),我们把这样的两条抛物线1L 、2L 互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线1L :243y x x =-+-与抛物线2L 是“伴随抛物线”,且抛物线2L 的顶点B 的横坐标为4,则抛物线2L 的解析式是__________________; (2)若抛物线21()y a x m n =-+的任意一条“伴随抛物线”的解析式为22()y a x h k =-+,求出1a 与2a 的关系式,并说明理由;(3)在图○2中,已知抛物线21:23(0)L y mx mx m m =-->与y 轴相交于C ,它的“伴随抛物线”为2L ,抛物线2L 与y 轴相交于D ,若4CD m =,求抛物线2L 的对称轴.答案:1. B2. D3. C4. B5. A6. A7. B8. B9. 3420a b c 10.32a b + 11. 2 12.37 13.14π 14. 4 15.化简结果 1a - 当13a =时,原式=23-16.17.解:设乙阅卷速度为每小时x 张,则甲为2x根据题意得20020022x x-= 解得 x =50 经检验,x =50是原方程的解,且符合题意.所以 甲速度为2x =2x50=100答:甲速度每小时100张 乙速度每小时50张18.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO=∠FCO ,∵O 是AC 的中点,∴AO=CO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA );(2)解:四边形AFCE 是菱形;理由如下:理由是:由(1)△AOE ≌△COF 得:OE=OF 又∵OA=OC ,∴四边形AFCE 是平行四边形, 又∵EF ⊥AC ∴平行四边形AFCE 是菱形.19.解:(1)根据题意可得:;(2)根据中位数的求法,将200名学生的时间从小到大排列可得, 200名学生的中位数应是第100个和第101个同学时间的平均数; 读图可得第100个和第101个同学时间都在之间;故这组数据的中位数落在频数分布表中的第三个时间段,即为;()2=3P 两次摸出的小球颜色不同(3)在样本中,有人一周阅读课外书籍时间在6小时以上,该校2 400名学生中一周阅读课外书籍时间在6小时以上的有人.即该校2 400名学生中一周阅读课外书籍时间在6小时以上有840人.20.解:Rt△ACD中,∵∠ADB=30°,AC=5.1米,∴AD=2AC=10.2(m)∵在Rt△ABC中,AB=AC÷sin58°≈6m,∴AD﹣AB=10.2-6≈4.2(m).∴调整后的滑梯AD比原滑梯AB增加4.2米21.(1)由图可知,甲车从地到达地的速度为:(千米/小时),所以甲车从地到达地的行驶时间为:(小时)。

吉林省长春市2018年中考数学模拟试卷

吉林省长春市2018年中考数学模拟试卷

吉林省长春市2018年中考数学模拟试卷(十)一、选择题(共8小题,每小题3分,满分24分)1.﹣的相反数是()A.﹣2 B.2 C.﹣ D.2.2014年吉林省对全省供热管网进行改造,改造后全年二氧化碳排放量共减少7620000吨,7620000这个数用科学记数法表示为()A.762×104B.76.2×105 C.7.62×106 D.0.762×1073.不等式2x+1<3的解集在数轴上表示为()A. B.C.D.4.由5个相同的小正方体组成的几何体如图所示,这个几何体的主视图是()A. B.C.D.5.关于x的方程x2﹣2x+c=0有两个相等的实数根,则c的值为()A.1 B.﹣1 C.4 D.﹣46.如图,在△ABC中,DE∥BC交AB于点D,交AC于点E.若AB=4,AC=3,AD=3,则AE的长为()A.B.C.D.7.如图,点C在以AB为直径的⊙O上(点C不与A、B重合),点E在弦AC上,EF⊥AB于点F,若∠B=66°,则∠AEF的大小为()A.24°B.33°C.66°D.76°8.如图,在平面直角坐标系中,四边形OABC是边长为1的正方形,顶点A、C分别在x 轴的负半轴、y轴的正半轴上.若直线y=kx+2与边AB有公共点,则k的值可能为()A.B.C.D.3二、填空题(共6小题,每小题3分,满分18分)9.比较大小: 2 (填“<“,“=“或“>“).10.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.11.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为.12.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为.13.如图,在平面直角坐标系中,直线y=x﹣3分别与x轴、y轴交于点A、B,点P的坐标为(0,4).若点M在直线AB上,则PM长的最小值为.14.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C 在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.三、解答题(共10小题,满分78分)15.先化简,再求值:(a﹣),其中a=﹣1.16.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.17.甲、乙两位同学为校艺术节制作彩旗,已知每小时甲比乙多制作5面彩旗,甲制作60面彩旗与乙制作50面彩旗所用时间相同.求甲每小时制作采取的数量.18.如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.19.某校数学兴趣小组用测量仪器测量某大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,试求桥塔AB 的高度.(结果精确到0.1米)【参考数据:sin41.5°≈0.663,cos41.5°≈0.719,tan41.5°≈0.885】20.长春市某校准备组织七年级学生游园,供学生选择的游园地点有:东北虎园、净月潭、长影世纪城,每名学生只能选择其中一个地点.该校学生会从七年级学生中随机抽取了a名学生,对他们选择各游园地点的情况进行了调查,并根据调查结果绘制成如下条形统计图.(1)求a的值;(2)求这a名学生选择去净月潭游园的人数的百分比.(3)按上述调查结果,估计该校七年级650名学生中选择去净月潭游园的人数.21.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)图中a=.(2)求出甲车行驶路程y(km)与时间x(h)之间的函数关系式.(3)当两车恰好相距50km时,直接写出甲车行驶的时间.22.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF 的数量关系.23.如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=ax2+经过A、B两点,点E是直线AB上方抛物线上的一点.(1)求抛物线所对应的函数表达式.(2)求△ABE面积的最大值,并求出此时点E的坐标.(3)过点E作y轴的平行线交直线AB于点M,连结CM.点Q在抛物线对称轴上,点P 在抛物线上.当以P、Q、C、M为顶点的四边形是平行四边形时,请直接写出点P的坐标.24.如图①,在▱ABCD中,BE⊥AD于点E,且点E为AD中点,AD=BE=4,点P从点A 出发以每秒1个单位长度的速度沿射线AD方向运动.设点P的运动时间为t秒,点P出发后,过点P作AD的垂线,交折线AB﹣BC于点Q,以PQ为边向左作正方形PQMN.设正方形PQMN与▱ABCD重叠部分的面积为S.(1)求点N与点D重合时,t的值.(2)用含t的代数式表示线段EN的长.(3)当正方形PQMN与▱ABCD重叠部分不是正方形时,求S与t之间的关系式.(4)如图②,设点O为BE的中点,请直接写出点P的运动过程中,△OQM为等腰三角形时,t的值.解答一、选择题(共8小题,每小题3分,满分24分)1.﹣的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.2.2014年吉林省对全省供热管网进行改造,改造后全年二氧化碳排放量共减少7620000吨,7620000这个数用科学记数法表示为()A.762×104B.76.2×105 C.7.62×106 D.0.762×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7620000=7.62×106,故选C.3.不等式2x+1<3的解集在数轴上表示为()A. B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),可得答案.【解答】解:2x+1<3,解得x<1,在数轴上表示为:故选:D.4.由5个相同的小正方体组成的几何体如图所示,这个几何体的主视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:主视图有3列,每列小正方形数目分别为1,1,2,故选:B.5.关于x的方程x2﹣2x+c=0有两个相等的实数根,则c的值为()A.1 B.﹣1 C.4 D.﹣4【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0,由此建立关于c的方程解答即可.【解答】解:∵关于x的方程x2﹣2x+c=0有两个相等的实数根,∴(﹣2)2﹣4×1×c=0,解得:c=1.故选:A.6.如图,在△ABC中,DE∥BC交AB于点D,交AC于点E.若AB=4,AC=3,AD=3,则AE的长为()A.B.C.D.【考点】平行线分线段成比例.【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【解答】解:∵DE∥BC,∴,即,解得:AE=;故选:D.7.如图,点C在以AB为直径的⊙O上(点C不与A、B重合),点E在弦AC上,EF⊥AB于点F,若∠B=66°,则∠AEF的大小为()A.24°B.33°C.66°D.76°【考点】圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再求出∠A的度数,根据直角三角形的性质即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵∠B=66°,∴∠A=90°﹣66°=24°.∵EF⊥AB,∴∠AFE=90°,∴∠AEF=90°﹣24°=66°.故选C.8.如图,在平面直角坐标系中,四边形OABC是边长为1的正方形,顶点A、C分别在x 轴的负半轴、y轴的正半轴上.若直线y=kx+2与边AB有公共点,则k的值可能为()A.B.C.D.3【考点】两条直线相交或平行问题;正方形的性质.【分析】根据正方形的性质得出点A与点B的坐标,代入解析式得出范围解答即可.【解答】解:由题意可得:点A(﹣1,0),点B(﹣1,1),把点A代入解析式可得:﹣k+2=0,解得:k=2,把点B代入解析式可得:﹣k+2=1,解得:k=1,所以k的取值范围为:1≤k≤2,故选B.二、填空题(共6小题,每小题3分,满分18分)9.比较大小:< 2 (填“<“,“=“或“>“).【分析】求出2=,根据>即可求出答案.【解答】解:∵2==,∴<2,故答案为:<.【点评】本题考查了实数的大小比较的应用,关键是求出2=,题目比较典型,难度不大.10.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为﹣3.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=ABOE,由于S=ABCD=3,得到四边形AEOB的面积=3,即可得到结论.平行四边形ABCD【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=ABOE,∵S=ABCD=3,平行四边形ABCD∴四边形AEOB的面积=3,∴|k|=3,∵<0,∴k=﹣3,故答案为:﹣3.【点评】本题考查了反比例函数系数k的几何意义,明确四边形AEOB的面积=S平行四边形ABCD是解题的关键.12.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为80°.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.13.如图,在平面直角坐标系中,直线y=x﹣3分别与x轴、y轴交于点A、B,点P的坐标为(0,4).若点M在直线AB上,则PM长的最小值为.【分析】根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即,解得:PM=.故答案为:【点评】本题考查的是一次函数图象上点的坐标特点以及三角形相似的性质与判定等知识点,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为2.【分析】连结BC交OA于D,如图,根据菱形的性质得BC⊥OA,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=BD,设BD=t,则OD=t,B(t,t),利用二次函数图象上点的坐标特征得t2=t,解得t1=0(舍去),t2=1,则BD=1,OD=,然后根据菱形性质得BC=2BD=2,OA=2OD=2,再利用菱形面积公式计算即可.【解答】解:连结BC交OA于D,如图,∵四边形OBAC为菱形,∴BC⊥OA,∵∠OBA=120°,∴∠OBD=60°,∴OD=BD,设BD=t,则OD=t,∴B(t,t),把B(t,t)代入y=x2得t2=t,解得t1=0(舍去),t2=1,∴BD=1,OD=,∴BC=2BD=2,OA=2OD=2,∴菱形OBAC的面积=×2×2=2.故答案为2.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=ab(a、b是两条对角线的长度).也考查了二次函数图象上点的坐标特征.三、解答题(共10小题,满分78分)15.先化简,再求值:(a﹣),其中a=﹣1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式==a+1,当a=﹣1时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,小丹获胜的情况有3种,∴P(小丹获胜)==.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.甲、乙两位同学为校艺术节制作彩旗,已知每小时甲比乙多制作5面彩旗,甲制作60面彩旗与乙制作50面彩旗所用时间相同.求甲每小时制作采取的数量.【分析】可设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,根据等量关系:甲做60面彩旗所用的时间=乙做50面彩旗所用的时间.由此可得出方程求解.【解答】解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,依题意有=,解得:x=25.经检验:x=25是原方程的解.x+5=25+5=30.答:甲每小时做30面彩旗.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.18.如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.【分析】(1)利用“平行四边形ADCN的对边相等”的性质可以证得CD=AN;(2)根据“直角△AMN中的30度角所对的直角边是斜边的一半”求得AN=2MN=2,然后由=4S△AMN=2.勾股定理得到AM=,则S四边形ADCN【解答】(1)证明:∵CN∥AB,∴∠1=∠2.在△AMD和△CMN中,,∴△AMD≌△CMN(ASA),∴AD=CN.又AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;(2)解:∵AC⊥DN,∠CAN=30°,MN=1,∴AN=2MN=2,∴AM==,∴S△AMN=AMMN=××1=.∵四边形ADCN是平行四边形,∴S=4S△AMN=2.四边形ADCN【点评】本题考查了平行四边形的判定与性质、勾股定理以及全等三角形的判定与性质.解题时,还利用了直角三角形的性质:在直角三角形中,30°角所对的直角边是斜边的一半.19.某校数学兴趣小组用测量仪器测量某大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,试求桥塔AB 的高度.(结果精确到0.1米)【参考数据:sin41.5°≈0.663,cos41.5°≈0.719,tan41.5°≈0.885】【分析】在Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.【解答】解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DEtan41.5°≈50×0.885≈44.25(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44.25+1=45.25≈45.3(米),∴桥塔AB的高度为45.3米.【点评】本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.20.长春市某校准备组织七年级学生游园,供学生选择的游园地点有:东北虎园、净月潭、长影世纪城,每名学生只能选择其中一个地点.该校学生会从七年级学生中随机抽取了a名学生,对他们选择各游园地点的情况进行了调查,并根据调查结果绘制成如下条形统计图.(1)求a的值;(2)求这a名学生选择去净月潭游园的人数的百分比.(3)按上述调查结果,估计该校七年级650名学生中选择去净月潭游园的人数.【分析】(1)将三个小组的频数相加即可求得a的值;(2)用去净月潭的人数除以总人数乘以100%即可求得百分比;(3)用学生总人数乘以选择净月潭的百分比即可求得人数.【解答】解:(1)a=12+18+20=50人;(2)选择去净月潭游园的人数的百分比为20÷50×100%=40%;(3)估计该校七年级650名学生中选择去净月潭游园的人数为650×40%=260人.【点评】本题考查了条形统计图的知识,解题的关键是正确的读图并从中整理出进一步解题的有关信息.21.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)图中a=40.(2)求出甲车行驶路程y(km)与时间x(h)之间的函数关系式.(3)当两车恰好相距50km时,直接写出甲车行驶的时间.【分析】(1)求出甲的速度,根据休息前后速度相同和距离等于速度乘时间求出a的值;(2)根据图象中自变量的取值范围分别求出各段的函数表达式;(3)分别从甲在乙前和甲在乙后两种情况列出方程,求出时间.【解答】解:(1)由题意得120÷(3.5﹣0.5)=40,a=1×40=40.故答案为:40;(2)当0≤x≤1时,设y与x之间的函数关系式为y=k1x,把(1,40)代入,得k1=40∴y=40x,当1<x≤时,y=40;当<x<7时,设y与x之间的函数关系式为y=k2x+b,由题意,得,解得.∴y=40x﹣20,∴y=,(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得,∴y=80x﹣160,当40x﹣20﹣(80x﹣160)=50时,解得:x=.当80x﹣160﹣(40x﹣20)=50时,解得:x=.当乙已经到达B地,甲在通往B的路上时,得260﹣(40X﹣20)=50,解得x=.∴当甲车行驶小时或小时或小时或小时,两车恰好相距50km.【点评】本题考查的是一次函数的综合应用,认真观察图象,从中获取正确的信息是解题的关键,注意待定系数法在解题中的运用,和分情况讨论思想的运用.22.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF 的数量关系.【分析】(1)根据正方形的性质和角平分线的性质解答即可;(2)①根据正方形的性质和旋转的性质证明△FOA≌△EOD,得到答案;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;③过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系,根据解答结果总结规律得到当BD=mBP时,PE与PF的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=mBP时,PE=(m﹣1)PF.【点评】本题考查的是正方形的性质和旋转变换,掌握旋转变换的性质、找准对应关系正确运用三角形全等和相似的判定和性质定理是解题的关键,正确作出辅助线是解答本题的重点.23.如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=ax2+经过A、B两点,点E是直线AB上方抛物线上的一点.(1)求抛物线所对应的函数表达式.(2)求△ABE面积的最大值,并求出此时点E的坐标.(3)过点E作y轴的平行线交直线AB于点M,连结CM.点Q在抛物线对称轴上,点P 在抛物线上.当以P、Q、C、M为顶点的四边形是平行四边形时,请直接写出点P的坐标.【分析】(1)由直线AB的解析式可求出点A、B的坐标,将A、B的坐标代入抛物线解析式即可得出关于a、c的二元一次方程,解方程即可得出结论;(2)过点E作EF⊥x轴于点F交直线AB与点M,设点E的坐标为(m,﹣m+3),点M的坐标为(m,﹣m+3),根据S△ABE=S△BEM+S△AEM即可得出S关于m的函数解析式,根据二次函数的性质即可解决最值问题;(3)根据(2)的结论可求出点M的坐标,设点P的坐标为(n,﹣n+3),Q点的坐标为(1,d),以P、Q、C、M为顶点的四边形是平行四边形分两种情况:①CM为对角线,根据中点坐标公式即可得出n的一元一次方程,解方程即可得出P点的坐标;②CM 为一条边,根据平行四边形的性质可依据PQ的横坐标之差等于CM的横坐标之差找出关于n的一元一次方程,解方程即可得出n值,由n值即可解决问题.【解答】解:(1)当x=0时,y=3,即B点的坐标为(0,3),当y=0时,有﹣x+3=0,解得x=4,即A点坐标为(4,0).将A、B点坐标代入抛物线的解析式,得,解得,故抛物线所对应的函数表达式为y=﹣x+3.(2)过点E作EF⊥x轴于点F交直线AB与点M,如图1所示.∵点E是直线AB上方抛物线上的点,∴设点E的坐标为(m,﹣m+3),点M的坐标为(m,﹣m+3),∴EM=﹣m+3﹣(﹣m+3)=﹣m,∴S△ABE=S△BEM+S△AEM=MEOA=×(﹣m)×4=﹣+3m=﹣(m﹣2)2+3,∴当m=2时,△ABE面积最大,且最大值为3,此时点E的坐标为(2,3).(3)抛物线的对称轴为x=﹣=1.设点P的坐标为(n,﹣n+3),Q点的坐标为(1,d).∵点E的坐标为(2,3),∴直线EM的解析式为x=2,∴点M的坐标为(2,).∵令y=0,则有﹣x+3=0,解得x=﹣2,或x=4,∴点C的坐标为(﹣2,0),当以P、Q、C、M为顶点的四边形是平行四边形时,分两种情况:①如图2所示,线段CM为对角线,且CM的中点为点N.∵点C(﹣2,0),点M(2,),∴点N的坐标为(0,).又∵点N为线段PQ的中点,∴有=0,解得n=﹣1,此时P点的坐标为(﹣1,);②线段CM为一条边时,PQ的横坐标之差等于CM的横坐标之差,即|1﹣n|=|2﹣(﹣2)|,解得:n=﹣3或n=5,此时点P的坐标为(﹣3,﹣)或(5,﹣).综上可知:点P的坐标为(﹣3,﹣),(5,﹣)和(﹣1,).【点评】本题考查了待定系数法求函数解析式、二次函数的性质、中点坐标公式、平行四边形的性质以及解一元一次方程,解题的关键:(1)待定系数法求函数解析式;(2)利用三角形的面积公式找出S关于m的函数关系式;(3)分两种情况考虑.本题属于中档题,(1)难度不大;(2)借助了二次函数的性质来解决最值问题,有点难度;(3)巧妙利用平行四边形的性质,找出关于n的一次方程,此问难度不小,易失分.24.如图①,在▱ABCD中,BE⊥AD于点E,且点E为AD中点,AD=BE=4,点P从点A 出发以每秒1个单位长度的速度沿射线AD方向运动.设点P的运动时间为t秒,点P出发后,过点P作AD的垂线,交折线AB﹣BC于点Q,以PQ为边向左作正方形PQMN.设正方形PQMN与▱ABCD重叠部分的面积为S.(1)求点N与点D重合时,t的值.(2)用含t的代数式表示线段EN的长.(3)当正方形PQMN与▱ABCD重叠部分不是正方形时,求S与t之间的关系式.(4)如图②,设点O为BE的中点,请直接写出点P的运动过程中,△OQM为等腰三角形时,t的值.【分析】(1)先求得tan∠A=2.从而得到PA=t,PD=QP=2t,最后依据PA+PN=4列方程求解即可;(2)①当0<t<时,EN=AE﹣PA﹣PN;当≤t<2时,EN=AN﹣AE=PA+PN﹣AE;当t≥2时,EN=AP+PN﹣AE;﹣S△FND;当2(3)①当0<t≤时,S=正方形的面积;②当<t≤2时.S=S正方形PQMN<t≤4时,S=梯形PQCD的面积;当4<t≤6时,S=△CQF的面积;当t>6时,S=0;(4)如图9所示:建立坐标系可得到Q(2﹣t,2t,),M(2﹣3t,2t),然后分为OM=OQ,MO=MQ,QO=QM三种情况,接下来依据两点间的距离公式列方程求解即可;如图10所示:当Q在BC上时,MQ=QO=4,在Rt△BOQ中,依据勾股定理可求得QB的长,然后可求得t的值【解答】解:(1)如图1所示:∵E是AD的中点,AD=4,∴AE=2.∵AE=2,BE=4,∠BEA=90°,∴tan∠A=2.又∵PA=t,∴QP=2t.∵PQMN为正方形,∴PD=2t.∴t+2t=4.解得:t=.(2)①当0<t<时,如图2所示:∵由(1)可知PA=t,NP=2t.∴EN=AE﹣PA﹣PN=2﹣t﹣2t=2﹣3t.当≤t<2时,如图3所示:∵由(1)可知PA=t,NP=2t.∴EN=AN﹣AE=PA+PN﹣AE=t+2t﹣2=3t﹣2.当t≥2时,如图4所示:∵PA=t,PN=4,∴EN=AP+PN﹣AE=t+4﹣2=t+2.综上所述,EN=.(3)①如图5所示:当0<t≤时,S=(2t)2=4t2;②如图6所示:当<t≤2时.∵NA=3t,AD=4,∴DN=3t﹣4.∴FN=2ND=2(3t﹣4).∴S=S﹣S△FND=(2t)2﹣×2×(3t﹣4)2=﹣5t2+24t﹣16.正方形PQMN当2<t≤4时,如图7所示:∵CQ=CB+EA﹣PA=6﹣t,DP=AD﹣AP=4﹣t,∴S=×4×(6﹣t+4﹣t)=﹣4t+20.当4<t≤6时,如图8所示:∵CQ=6﹣t,∴QF=12﹣2t.∴S=CQQF=×2×(6﹣t)2=t2﹣12t+36.当t>6时,S=0.综上所述S与t的函数为S=.(4)如图9所示:∵PA=t,PQ=QM=2t,∴Q(2﹣t,2t,),M(2﹣3t,2t).当OM=OQ时,由两点间的距离公式可知:2=(2﹣t)2+(2﹣2t)2.整理得:﹣2t(4﹣4t)=0.解得:t=1或t=0(舍去).当MO=MQ时.2=(2t)2.整理得:9t2﹣20t+8=0.解得:t=或t=.当QO=Q时(2﹣t)2+(2﹣2t)2=(2t)2.整理得:t2﹣12t+8=0.解得:t=6﹣2,t=6+2(舍去).如图10所示:当MQ=QO=4时.∵在Rt△BOQ中,QB===2.∴PA+QB+EA=2+2即t=2+2.综上所述,当t=1或t=2+2或t=6﹣2或t=或t=时,△MQO为等腰三角形.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了锐角三角形函数的定义、正方形的性质、正方形的面积、梯形的面积、三角形的面积,等腰三角形的定义,两点间的距离公式、一元二次方程、一元一次方程的解法,根据题意画出符合题意的图形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年吉林省长春市中考数学模拟试卷
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)的相反数是()
A.B.C.﹣4 D.4
2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()
A.B.C.D.
3.(3分)下列运算正确的是()
A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a3
4.(3分)不等式组的解集在数轴上表示正确的是()
A.B.C.
D.
5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()
A.6 B.8 C.10 D.12
6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()
A.7 B.8 C.12 D.13
7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()
A.130°B.120°C.110° D.100°
8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()
A.B.C.D.
二、填空题(本大题共6小题,每小题3分,共18分)
9.(3分)化简:﹣=.
10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.
12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)
13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是度.
14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交
两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.
三、解答题(本大题共10小题,共78分)
15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,
b=.
16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.
17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.
(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).
(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)
18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC 分别相交于点E、F,求证:四边形AECF是菱形.
19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)
【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】
21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC
的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.
【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE 的面积.
22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.
(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.
23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的
运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x (s).
(1)用含x的代数式表示线段AP的长.
(2)当点P在线段BA上运动时,求y与x之间的函数关系式.
(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.
24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x 轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.
(1)求直线AC对应的函数表达式(用含k的式子表示).
(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.
(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.
(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,
过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.
2017年吉林省长春市中考数学模拟试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)的相反数是()
A.B.C.﹣4 D.4
【解答】解:的相反数是,
故选:B.
2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()
A.B.C.D.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
3.(3分)下列运算正确的是()
A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a3
【解答】解:A、原式=a3,错误;
B、原式=a6,正确;
C、原式不能合并,错误;。

相关文档
最新文档