核磁共振1H谱图解析与结构确定 ppt课件
合集下载
《核磁共振氢谱》PPT课件
3. 影响化学位移的因素:
= d + p + a + s H核外只有s电子,故d 起主要作用, a 和s对也有一定的 作用。
影响化学位移的因素---诱导效应
核外电子云的抗磁性屏蔽是影响质子化学位移的主要因素。
核外电子云密度与邻近原子或基团的电负性大小密切相关, 电负性强的原子或基团吸电子诱导效应大,使得靠近它们的 质子周围电子云密度减小,质子所受到的抗磁性屏蔽( d)
范德华效应
当两个原子相互靠近时,由于受到范德华力作用, 电子云相互排斥,导致原子核周围的电子云密度降低 ,屏蔽减小,谱线向低场方向移动,这种效应称为范 德华效应。
这种效应与相互影响的两个原子之间的距离密切相关 ,当两个原子相隔 0.17nm(即范德华半径之和)时 ,该作用对化学位移的影响约为 0.5,距离为 0 . 2 0 nm 时 影 响 约 为 0 . 2 , 当 原 子 间 的 距 离 大 于 0.25nm 时可不再考虑。
共轭效应
在共轭效应中,推电子基使H减小,拉电子基使H增
大。
(+1.43)
H
O CH 3 H
H
(+1.29)
H
(-1.10)
H
H
(-0.59)
H
O
H
(0.00)
H
(-0.21)
H
(-0.81)
相连碳原子的杂化态影响
碳碳单键是碳原子 sp杂化轨道重叠而成的,而碳碳双键和三键分别 是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近, 而离氢原子较远。所以杂化轨道中 s成分越多,成键电子越靠近碳 核,而离质子较远,对质子的屏蔽作用较小。
芳烃的各向异 8.9;环内H 在受到高度的屏蔽作 用,故 : -1.8
《HNMR图谱解析》PPT课件
8
7
6
5
4
3
2
1
0
图谱解析与结构确定(2) :
化合物 C10H12O2 3H 2H δ5.21
5H
2H
δ7.3
δ2.3
δ1.2
图谱解析与结构确定(3) :
化合物 C8H8O2,推断其结构
10
9
8
7
6
5
4
3
• =1+8+1/2(-8)=5
• δ=7-8芳环上氢,dd峰(对位取代)
O C H
• δ= 9.87—醛基上氢,
1H-NMR图谱解析
• 解析步骤(有分子式):
1. 根据分子式计算不饱和度(参见272页公式)
2. 由积分曲线或积分面积计算H的相对数目 3. 结构碎片判断(H数、化学位移、偶合常数) 4. 结构碎片连接 5. 推断完整结构 6. 结构验证:峰归属
图谱解析与结构确定(1) :
化合物 C10H12O2 2 2 5 3
• 低δ= 3.87 CH3上氢,低场移动,与电负性强 的元素相连: —O—CH3
• 正确结构:
H3CO
O C H
图谱解析与结构确定(4) :
C7H16O3,推断其结构 9
δ 3.38
δ 5.30 6
δ 1.37
1
C7H16O3, =1+7+1/2(-16)=0
a. δ3.38和δ 1.37 四重峰和三重峰 —CH2CH3相互偶合峰 b. δ3.38含有—O—CH2 —结构
结构中有三个氧原子,可能具有(—O—CH2 —)3
c. δ5.3CH上氢吸收峰,低场与电负性基团相连 正确结构:
O CH2CH3 HC O CH2CH3 O CH2CH3
核磁共振H谱图解析与结构确定
δ 7.3芳环上氢,单峰烷基单取代
ab
Oc
正确结构:
CH 2CH 2OC CH 3
δ3.0 δ 4.30
δ2.1
2020/7/2
谱图解析与结构确定(2)
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
2020/7/2
结构确定(2)
C7H16O3,u=1+7+1/2(-16)=0 u=1+n4 + 1/2(n3-n1)
2020/7/2
1H—NMR图谱的解析大体程序为: (1)首先注意检查TMS信号是否正常; (2)根据积分曲线算出各个信号对应的H数; (3)解释低磁场处(δ10~16)出现的—COOH及
具有分子内氢键缔合的—OH基信号; (4)参考化学位移、小峰数目及偶合常数,解释低
级偶合系统; (5)解释芳香氢核信号及高级偶合系统; (6)对推测出的结构,结合化学法或利用UV、IR、
化合物 C10H12O2
3
2
2
5
8
7
6
5
4
3
2020/7/2
2
1
0
谱图解析与结构确定(1)
u=1+10+1/2(-12)=5,
u=1+n4 + 1/2(n3-n1)
δ 3.0和δ 4.30三重峰和三重峰 O—CH2CH2—相互偶合峰
δ 2.1单峰三个氢,—CH3峰 结构中有氧原子,可能具有:
O C CH3
2020/7/2
一、谱图中化合物的结构信息
(1)峰的数目:标志分子中磁不等性质子的种类,
多少种;
(2)峰的强度(面积):每类质子的数目(相对),
《核磁共振氢谱解析》PPT课件
在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析
第一章核磁共振氢谱解析
1. 2. 2 分类讨论耦合常数
谱线裂分产生的裂距,反映两个核之间的作用力强弱,单位 Hz。与两核之间相隔的化学键数目关系很大:
nJ n化学键的个数。 2J 同碳上的氢,无耦合。不同种磁性核时,有耦合。 3J 相邻碳上的氢。如HA-CH2-CH2-HB, HA与HB的耦合。 4J 相隔4个化学键,耦合作用很弱。
也就是说在测定核磁共振氢谱时当使用非手性溶剂时这两个相同基团才会具有相同的化学位移数值当使用手性溶剂时这两个相同基团可能具有不同的化学位移数如果该分子存在分子内运动则对于每一种构象来说都应该存在平分xcx角的对称面这两个相同基团才是对映异位的在用非手性溶剂测定核磁共振谱时才会具有相同的化学位移数值
第一章 核磁共振氢谱的解析
耦合作用
每类氢核不总表现为单峰, 有时多重峰。
原因:相邻两个氢核之间的 自旋耦合(自旋干扰);
n+1 规律的内容是:如果所讨论基团的相邻基团含有n 个 氢原子, 所讨论的基团将被这个相邻的基团裂分为n+1 重峰. 一定要注意:n + 1 规律中的n是产生耦合裂分的磁性核的数 目,而不是所讨论的基团(在氢谱中就是所讨论的含氢的官能 团)的氢原子数目.
氢谱中很重要的一点是, 如果两个氢原子具有相同的化学 位移数值,在氢谱中它们之间的耦合裂分就不会反映出来; 反之,如果它们具有不同的化学位移数值,在氢谱中它们之 间的耦合裂分就会反映出来,而且由于它们仅相距两根化学 键,耦合常数为2J.
总之,无论是连接在同一个碳原子上的两个氢原子,还 是连接在同一个碳原子上的两个相同基团. 它们的化学位移 数值是否相等是不能简单地判定的.
核磁共振氢谱的主要参数有3个:化学位移、峰的裂分和偶合 常数J、峰面积. 核磁共振氢谱的横坐标是化学位移,也就是说化学位移是官能 团出峰位置的表征;核磁共振氢谱的纵坐标是谱峰的强度, 由于氢谱中的谱峰都有一定的宽度,因此以谱峰的面职的积分 数值来量度峰的大小. 从各峰组的积分数值比可以找到各峰组所对应的氢原子数目比. 如果测试的样品是混合物,用这种定量关系则可确定各组分的 定量比.
第四章6谱图解析与化合物结构确定
B A
5 6
9
读出ν 1ν 2 ……ν 7ν 8 JAB =1/3[(ν 1-ν 4)+ (ν 6-ν 8)] ν A =ν 3 ν B =1/2(ν 5 +ν 7 ) ν 1 –ν 2 = ν 3 –ν 4 = ν 谱线间距离的规律: ν 1 –ν 3 = ν 2 –ν 4 = ν ν 3 –ν 6 = ν 4 –ν 7 = ν 解析: (a) (b) (c) (d)
四、 谱图解析与结构确定
1.谱图中化合物的结构信息 (1)峰的数目:标志分子中磁不等性质子的种类,多少种; (2)峰的强度(面积):每类质子的数目(相对),多少个; (3)峰的位移( ):每类质子所处的化学环境,化合物中位置;
(4)峰的裂分数:相邻碳原子上质子数;
(5)偶合常数(J):确定化 合物构型。 不足之处: 仅能确定质子(氢谱)。
1
δ 5.30
9
6
δ 1.37 δ 3.38
正确结构:
O CH2CH3 HC O CH2CH3 O CH2CH3
ν1
C
νA ν2Байду номын сангаас
ν3 νB νAB
C
ν4
νA
νX
特点:四条谱线,A、B各两条,两线间隔等于偶合常数JAB; 四条谱线高度不相等,内侧两条线高于外测两条, ν A和ν B不在所属两线的中心,需计算求出。
AB系统
(a) JAB = ν1 -ν2 =ν3 -ν4 (b) △νAB = [( D +JAB )( D -JAB )]1/2 = [(ν1-ν4 )(ν2-ν3 )]1/2 C = 1/2 [(ν1-ν4 ) - △νAB ] νA = ν1 – C; νB = ν4 + C (c) 峰的强度比 I1=I4 I2=I3 I1 I4 D - JAB ν 2 -ν3 I2 = I3 = D +JAB = ν 1 -ν4 注意: 解析 A B 四重峰时谱线不能交叉,即1、2 线属于 A 核, 3、4 线属于B 核,2、3 线不能互换 124
5 6
9
读出ν 1ν 2 ……ν 7ν 8 JAB =1/3[(ν 1-ν 4)+ (ν 6-ν 8)] ν A =ν 3 ν B =1/2(ν 5 +ν 7 ) ν 1 –ν 2 = ν 3 –ν 4 = ν 谱线间距离的规律: ν 1 –ν 3 = ν 2 –ν 4 = ν ν 3 –ν 6 = ν 4 –ν 7 = ν 解析: (a) (b) (c) (d)
四、 谱图解析与结构确定
1.谱图中化合物的结构信息 (1)峰的数目:标志分子中磁不等性质子的种类,多少种; (2)峰的强度(面积):每类质子的数目(相对),多少个; (3)峰的位移( ):每类质子所处的化学环境,化合物中位置;
(4)峰的裂分数:相邻碳原子上质子数;
(5)偶合常数(J):确定化 合物构型。 不足之处: 仅能确定质子(氢谱)。
1
δ 5.30
9
6
δ 1.37 δ 3.38
正确结构:
O CH2CH3 HC O CH2CH3 O CH2CH3
ν1
C
νA ν2Байду номын сангаас
ν3 νB νAB
C
ν4
νA
νX
特点:四条谱线,A、B各两条,两线间隔等于偶合常数JAB; 四条谱线高度不相等,内侧两条线高于外测两条, ν A和ν B不在所属两线的中心,需计算求出。
AB系统
(a) JAB = ν1 -ν2 =ν3 -ν4 (b) △νAB = [( D +JAB )( D -JAB )]1/2 = [(ν1-ν4 )(ν2-ν3 )]1/2 C = 1/2 [(ν1-ν4 ) - △νAB ] νA = ν1 – C; νB = ν4 + C (c) 峰的强度比 I1=I4 I2=I3 I1 I4 D - JAB ν 2 -ν3 I2 = I3 = D +JAB = ν 1 -ν4 注意: 解析 A B 四重峰时谱线不能交叉,即1、2 线属于 A 核, 3、4 线属于B 核,2、3 线不能互换 124
核磁共振氢谱(1H NMR)
➢ 因交换缓慢,常可观察到与邻碳质子的耦合作用( J~8Hz)。
➢ 巯基质子与氘的交换是足够快的,因而可以用重水交 换而使其信号消除。
➢ 硫醇SH, δ= 1.2~1.6;硫酚SH,δ= 2.8~3.6;可变
第五十页,共53页。
第五十一页,共53页。
当结构中存在多个活泼氢(羧基、氨基、羟基等),若 相互之间交换速率快,只产生一个平均的活泼氢信号, 不发生偶合裂分。若交换慢,则表现为各自的吸收峰。
α-二酮只有稳定的烯醇式出现在NMR谱中。
第四十三页,共53页。
e) 羧酸
➢ 弱极性溶剂中,羧酸通常以稳定的氢键二聚体形式存在, 因此其质子吸收范围较窄(δ= 10.0~13.2)。极性溶剂使 二聚体部分断裂,吸收峰位移。
➢ 羧酸质子与水或醇的质子交换很快而给出一个单峰,吸收 峰的位置与浓度有关。
第二十七页,共53页。
(7)溶剂效应
由于溶质分子受到不同溶剂影响而引起的化学位移变化 称为溶剂效应。例如:
在氘代氯仿溶剂中,2.88;2.97。 逐步加入各向异性溶剂苯,和甲基的化学位移逐渐靠 近,然后交换位置。
第二十八页,共53页。
第二十九页,共53页。
➢ 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不
ab
cd
c 、 b 、d效应
第八页,共53页。
(2) 相连碳原子的杂化态影响
电负性:Csp > Csp2 > C sp3 乙烷 0.88; 乙烯 5.23; 乙炔 2.88
第九页,共53页。
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱导磁场, 这个磁场是各向异性的。在不同区域,磁场方向不一致。
➢ 巯基质子与氘的交换是足够快的,因而可以用重水交 换而使其信号消除。
➢ 硫醇SH, δ= 1.2~1.6;硫酚SH,δ= 2.8~3.6;可变
第五十页,共53页。
第五十一页,共53页。
当结构中存在多个活泼氢(羧基、氨基、羟基等),若 相互之间交换速率快,只产生一个平均的活泼氢信号, 不发生偶合裂分。若交换慢,则表现为各自的吸收峰。
α-二酮只有稳定的烯醇式出现在NMR谱中。
第四十三页,共53页。
e) 羧酸
➢ 弱极性溶剂中,羧酸通常以稳定的氢键二聚体形式存在, 因此其质子吸收范围较窄(δ= 10.0~13.2)。极性溶剂使 二聚体部分断裂,吸收峰位移。
➢ 羧酸质子与水或醇的质子交换很快而给出一个单峰,吸收 峰的位置与浓度有关。
第二十七页,共53页。
(7)溶剂效应
由于溶质分子受到不同溶剂影响而引起的化学位移变化 称为溶剂效应。例如:
在氘代氯仿溶剂中,2.88;2.97。 逐步加入各向异性溶剂苯,和甲基的化学位移逐渐靠 近,然后交换位置。
第二十八页,共53页。
第二十九页,共53页。
➢ 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不
ab
cd
c 、 b 、d效应
第八页,共53页。
(2) 相连碳原子的杂化态影响
电负性:Csp > Csp2 > C sp3 乙烷 0.88; 乙烯 5.23; 乙炔 2.88
第九页,共53页。
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱导磁场, 这个磁场是各向异性的。在不同区域,磁场方向不一致。
核磁共振氢谱图课件
号的灵敏度。
由于超导材料的零电阻特性,超 导核磁共振技术具有高稳定性、 高信噪比和高质量的实验数据。
超导核磁共振技术主要应用于高 分辨率的核磁共振实验,如蛋白
质结构解析等。
代谢组学中的核磁共振应用
代谢组学是一种研究生物体内代谢过程的学科。
核磁共振技术在代谢组学中具有广泛的应用,包括代谢产物的检测、代谢过程的解析等。
峰的位置
峰的移动
峰的强度与对称性
峰的强度
峰的强度反映了产生共振的氢原子的数量。一般来说,峰的强度越高,产生共振 的氢原子数量越多。通过对峰强度的分析,可以获得关于分子中氢原子分布的信 息。
峰的对称性
峰的对称性反映了氢原子在分子中的构型或构象。某些分子可能具有多个构型或 构象,这些构型或构象可以通过氢谱的峰对称性来区分。通过对峰对称性的分析, 可以获得关于分子构型或构象的信息。
核磁共振技术能够提供代谢产物的分子结构和含量信息,有助于深入了解代谢过程的变化和 疾病的发生机制。
CHAPTER
氢谱图实验操作与注意事项
实验操作流程与规范
实验准备 数据处理与分析
数据采集
样品处理 仪器调整
数据处理与分析方法
01
数据导入
02
基线校正
03
峰识别与标注
04
定量分析
实验误差与注意事项
氢谱图的发展与新技术
三维核磁共振技术
三维核磁共振技术是一种利用核磁共振现象对样品进行多维度分析的实验技术。 它能够提供分子的更多细节信息,包括分子的空间构型、相互作用等。
三维核磁共振技术广泛应用于结构生物学、化学、医学等领域。
超导核磁共振技术
超导核磁共振技术利用超导材料 作为射频线圈,提高核磁共振信
由于超导材料的零电阻特性,超 导核磁共振技术具有高稳定性、 高信噪比和高质量的实验数据。
超导核磁共振技术主要应用于高 分辨率的核磁共振实验,如蛋白
质结构解析等。
代谢组学中的核磁共振应用
代谢组学是一种研究生物体内代谢过程的学科。
核磁共振技术在代谢组学中具有广泛的应用,包括代谢产物的检测、代谢过程的解析等。
峰的位置
峰的移动
峰的强度与对称性
峰的强度
峰的强度反映了产生共振的氢原子的数量。一般来说,峰的强度越高,产生共振 的氢原子数量越多。通过对峰强度的分析,可以获得关于分子中氢原子分布的信 息。
峰的对称性
峰的对称性反映了氢原子在分子中的构型或构象。某些分子可能具有多个构型或 构象,这些构型或构象可以通过氢谱的峰对称性来区分。通过对峰对称性的分析, 可以获得关于分子构型或构象的信息。
核磁共振技术能够提供代谢产物的分子结构和含量信息,有助于深入了解代谢过程的变化和 疾病的发生机制。
CHAPTER
氢谱图实验操作与注意事项
实验操作流程与规范
实验准备 数据处理与分析
数据采集
样品处理 仪器调整
数据处理与分析方法
01
数据导入
02
基线校正
03
峰识别与标注
04
定量分析
实验误差与注意事项
氢谱图的发展与新技术
三维核磁共振技术
三维核磁共振技术是一种利用核磁共振现象对样品进行多维度分析的实验技术。 它能够提供分子的更多细节信息,包括分子的空间构型、相互作用等。
三维核磁共振技术广泛应用于结构生物学、化学、医学等领域。
超导核磁共振技术
超导核磁共振技术利用超导材料 作为射频线圈,提高核磁共振信
核磁共振氢谱解析PPT课件
核的自旋驰豫
• 驰豫过程可分为两种类型:自旋-晶格驰 豫和自旋-自旋驰豫。
驰豫过程:由激发态恢复到平衡态的过程
• 自旋晶格驰豫:核与环境进行能量交换。体系能 量降低而逐渐趋于平衡。又称纵向驰豫。速率 1/T1,T1为自旋晶格驰豫时间。
• 自旋自旋驰豫:自旋体系内部、核与核之间能量 平均及消散。又称横向驰豫。体系的做能量不变 ,速率1/T2,T2为自旋自旋时间。
化学等价质子与化学不等价质子的判断
• --- 可通过对称操作或快速机制(如构象转换) 互换的质子是化学等价的。
• --- 不可通过对称操作或快速机制(构象转换) 互换的质子是化学不等价的。
• --- 与手性碳原子相连的 CH2 上的两个质子是 化学不等价的。
对称轴旋转
对称操作 其他对称操作 (如对称面)
原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏, 当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分 布:
n+/n- 1+ ΔE / kT
式中:n+ ---- 低能态的核数
n- ---- 高能态的核数
k ----- Boltzmann 常数 T ----- 绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度ቤተ መጻሕፍቲ ባይዱ1.4092时,高低能态的核数只差10ppm
交变频率与分辨率的关系
Nuclei A B C
(ppm) 1.89 2.00 2.08
Interaction J (Hz)
AB
4
BC
8
核磁共振波谱的测定
• 样品:纯度高,固体样品和粘度大液体样品必须溶解。 • 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD,
核磁共振氢谱图怎么看PPT精品文档
20
5.3 帮助分析图谱的一些辅助手段
• 例:下面的化合物的1HNMR谱: •
O
O
• 当用CDCl3做溶剂时,异丙基的两个甲基以 及另一个甲基的峰重叠非常严重,不能区
分。如改用C6D6作溶剂,则三个甲基可以 获得较好的分离。
21
HO
OR OH O
OMe OH R=ribo
22
5.3 帮助分析图谱的一些辅助手段
• 5.3.1 重氢交换 • 活泼氢在溶液中可以进行不断的交换。
如果样品中含有活泼氢,在作完图谱后, 往样品管里滴加几滴重水,震荡,然后重 新作图,则相应的谱峰由于其活泼氢已被 氘交换而消失。由此可以完全确定活泼氢 的存在。
16
5.3 帮助分析图谱的一些辅助手段
• 5.3.2 重氢氧化钠交换
• 重氢氧化钠交换可以把羰基的α-氢交换 掉。这个方法对于测定化学结构有很大帮 助。
核(被照射核)为X。
28
5.4 双照射(双共振)技术
• 在双共振实验中,当被观测核与被干扰核 为同种类核时,称为同核双共振;如1H{1H}; 当被观测核与被干扰核为不同种类的核时, 称为异核双共振;如13C{1H}。
• 双共振技术的应用主要包括自旋去偶和核 的Overhauser效应(NOE)。
29
31
5.4 双照射(双共振)技术
• 以1-溴丙烷的双共振自旋去偶1HNMR谱 示意图为例:
32
33
5.4 双照射(双共振)技术
• 5.4.2 核的Overhauser效应(nuclear Overhauser effect, NOE)
• 如果分子内两组自旋核在空间的距离小 于5 (不一定相互偶合),那么,在双共 振实验中,当用照射射频照射其中的一组 核,使其共振饱和时,则可引起另一组核 的共振峰强度的增强。这种由于双共振引 起的谱峰强度增强的效应,称为核的 Overhauser效应。
5.3 帮助分析图谱的一些辅助手段
• 例:下面的化合物的1HNMR谱: •
O
O
• 当用CDCl3做溶剂时,异丙基的两个甲基以 及另一个甲基的峰重叠非常严重,不能区
分。如改用C6D6作溶剂,则三个甲基可以 获得较好的分离。
21
HO
OR OH O
OMe OH R=ribo
22
5.3 帮助分析图谱的一些辅助手段
• 5.3.1 重氢交换 • 活泼氢在溶液中可以进行不断的交换。
如果样品中含有活泼氢,在作完图谱后, 往样品管里滴加几滴重水,震荡,然后重 新作图,则相应的谱峰由于其活泼氢已被 氘交换而消失。由此可以完全确定活泼氢 的存在。
16
5.3 帮助分析图谱的一些辅助手段
• 5.3.2 重氢氧化钠交换
• 重氢氧化钠交换可以把羰基的α-氢交换 掉。这个方法对于测定化学结构有很大帮 助。
核(被照射核)为X。
28
5.4 双照射(双共振)技术
• 在双共振实验中,当被观测核与被干扰核 为同种类核时,称为同核双共振;如1H{1H}; 当被观测核与被干扰核为不同种类的核时, 称为异核双共振;如13C{1H}。
• 双共振技术的应用主要包括自旋去偶和核 的Overhauser效应(NOE)。
29
31
5.4 双照射(双共振)技术
• 以1-溴丙烷的双共振自旋去偶1HNMR谱 示意图为例:
32
33
5.4 双照射(双共振)技术
• 5.4.2 核的Overhauser效应(nuclear Overhauser effect, NOE)
• 如果分子内两组自旋核在空间的距离小 于5 (不一定相互偶合),那么,在双共 振实验中,当用照射射频照射其中的一组 核,使其共振饱和时,则可引起另一组核 的共振峰强度的增强。这种由于双共振引 起的谱峰强度增强的效应,称为核的 Overhauser效应。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苯环上的质子在低场出现。为什么? 为什么1H比6H的化学位移大?
2020/12/15
9
对比
2020/12/15
10
2. 谱图解析与结构确定
化合物 C10H12O2
3
2
2
5
8
7
6
5
4
3
2020/12/15
2
1
0
11
谱图解析与结构确定(1)
u=1+10+1/2(-12)=5,
u=1+n4 + 1/2(n3-n1)
质子a与质子 b所处的化学环境 不同,两个单峰。
单峰:没有相邻 碳原子(或相邻 碳原子无质子)
质子b直接与吸电子元素相连,产生去屏蔽效应, 峰在低场(相对与质子a )出现。
质子b也受其影响,峰也向低场位移。
2020/12/15
7
谱图解析( 3 )
裂分与位移
2020/12/15
8
谱图解析( 4 )
δ 3.0和δ 4.30三重峰和三重峰 O—CH2CH2—相互偶合峰
δ 2.1单峰三个氢,—CH3峰 结构中有氧原子,可能具有:
O C CH3ຫໍສະໝຸດ δ 7.3芳环上氢,单峰烷基单取代
ab
Oc
正确结构:
CH 2CH 2OC CH 3
δ3.0 δ 4.30
δ2.1
2020/12/15
12
谱图解析与结构确定(2)
19
谱图解析 (2)C8H14O4
( 1) 三种质子 4:4:6 (2) 裂分,有相邻质子;
(3) =1.3(6H) 两个 CH3 裂分
为3,相邻C有2H; CH3-CH2-
(4) =2.5(4H) ,单峰,
CO-CH2CH2-CO-
(5) =4.1(4H) 低场(吸电子),
两个2020-/1O2/1-5CH2-
化合物中位置; (4)峰的裂分数:相邻碳原子上质子数; (5)偶合常数(J):确定化合物构型。
不足之处:仅能确定质子(氢谱)。
2020/12/15
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
(5)解释芳香氢核信号及高级偶合系统;
(6)对推测出的结构,结合化学法或利用UV、IR、
MS等提供的信息进行确定。
2020/12/15
5
二、谱图解析
1. 谱图解析
2020/12/15
6个质子处 于完全相同 的化学环境, 单峰。
没有直接与 吸电子基团 (或元素) 相连,在高 场出现。
6
谱图解析( 2 )
结构中有三个氧原子,可能具有(—O—CH2)3
c. δ 5.3CH上氢吸收峰,低场与电负性基团相连
O CH2CH3
正确结构: HC O CH2CH3
O CH2CH3
2020/12/15
14
谱图解析与结构确定(3)
化合物 C10H12O2,推断结构
δ7.3
δ 5.21 5H
2H
δ2.3 δ1.2 2H 3H
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
1H—NMR图谱的解析大体程序为:
(1)首先注意检查TMS信号是否正常;
(2)根据积分曲线算出各个信号对应的H数;
(3)解释低磁场处(δ10~16)出现的—COOH及具 有分子内氢键缔合的—OH基信号;
(4)参考化学位移、小峰数目及偶合常数,解释低 级偶合系统;
CH
δ 3.87 CH3峰,向低场位移,与电负性基团相连
正确结构: H3CO
O CH
2020/12/15
18
三、联合谱图解析
(1)C6H12O
1700cm-1, C=0, 醛,酮
<3000 cm-1, -C-H 饱和烃
两种质子 1:3或3:9
-CH3 :-C(CH3)3 无裂分,无相邻质子
2020/12/15
a
Ob
正确:B
为什么? CH2 O C CH2CH3 B
2020/12/15
16
谱图解析与结构确定(4)
化合物 C8H8O2,推断其结构
10 9 8 7 6 5 4 3
2020/12/15
17
结构确定(4)
化合物 C8H8O2, u=1+8+1/2(-8)=5
7-8芳环上氢,四个峰对位取代 •δ 9.87—醛基上上氢,低场 O
第十一章 核磁共振波 谱分析法
第四节 谱图解析与化合物
结构确定
一、谱图中化合物的 结构信息 二、谱图解析 三、谱图联合解析
2020/12/15
1
一、谱图中化合物的结构信息
(1)峰的数目:标志分子中磁不等性质子的种类,
多少种;
(2)峰的强度(面积):每类质子的数目(相对),
多少个; (3)峰的位移( ):每类质子所处的化学环境,
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
2020/12/15
13
结构确定(2)
C7H16O3,u=1+7+1/2(-16)=0 u=1+n4 + 1/2(n3-n1)
a. δ3.38和δ 1.37 四重峰和三重峰 —CH2CH3相互偶合峰
b. δ 3.38含有—O—CH2结构
2020/12/15
15
结构确定(3)
化合物 C10H12O2, u=1+10+1/2(-12)=5
1) δ 2.32和δ 1.2—CH2CH3相互偶合峰 2) δ 7.3芳环上氢,单峰烷基单取代 3) δ 5.21—CH2上氢,低场与电负性基团相连
哪个正确? a O
b
CH2 C O CH2CH3 A
1700cm-1, C=0, 醛, 酮,排除羧酸,醇, 酚 <3000 cm-1, -C-H 饱和烃,无芳环
20