涉县一中2018-2019学年高三上学期11月月考数学试卷含答案
涉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数y=的图象大致为( )A. B. C. D.2. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?3. 函数y=2|x|的图象是( )A. B. C. D.4. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .106. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=7.若函数是R 上的单调减函数,则实数a 的取值范围是( )A .(﹣∞,2) B.C .(0,2) D.8. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .29. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣310.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 11.若向量=(3,m),=(2,﹣1),∥,则实数m 的值为( ) A.﹣ B. C .2D .612.已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1 B.C .3D .2二、填空题13.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15.椭圆C :+=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.18.曲线y=x+e x 在点A (0,1)处的切线方程是 .三、解答题19.已知函数f (x )=(Ⅰ)求函数f (x )单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.20.已知在四棱锥P ﹣ABCD 中,底面ABCD 是边长为4的正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,E 、F 、G 分别是PA 、PB 、BC 的中点. (I )求证:EF ⊥平面PAD ;(II )求平面EFG 与平面ABCD 所成锐二面角的大小.21.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.22.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.23.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.24.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.涉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.2.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.3.【答案】B【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.4. 【答案】【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A所以BD ⊥平面PAC (II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB 与AC 所成的角为θ,则cos θ=|(III )由(II )知,设,则设平面PBC 的法向量=(x ,y ,z )则=0,所以令,平面PBC 的法向量所以,同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力5. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.6. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 7. 【答案】B【解析】解:∵函数是R 上的单调减函数,∴∴ 故选B【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.8. 【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.9. 【答案】A【解析】解:∵条件p :x 2+x ﹣2>0, ∴条件q :x <﹣2或x >1 ∵q 是p 的充分不必要条件 ∴a ≥1 故选A .10.【答案】B 【解析】11.【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.12.【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D .【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.二、填空题13.【答案】2,21+. 【解析】∵22212112221012a a a a a a +=+⋅+=++=,∴122a a +=,而222123121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,∴12321a a a ++≤,当且仅当12a a +与3a 1.14.【答案】 甲 .【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= [(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是= [(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.15.【答案】.【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.16.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.17.【答案】7 14⎛⎤ ⎥⎝⎦,【解析】18.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.(Ⅱ)∵f(A)=sin(+),∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,∴则sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴cosB=,又0<B<π,∴B=.∴可得0<A<,∴<+<,∴sin(+)<1,故函数f (A )的取值范围是(1,).【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.20.【答案】【解析】解:(I )证明:∵平面PAD ⊥平面ABCD ,AB ⊥AD , ∴AB ⊥平面PAD , ∵E 、F 为PA 、PB 的中点, ∴EF ∥AB ,∴EF ⊥平面PAD ; (II )解:过P 作AD 的垂线,垂足为O , ∵平面PAD ⊥平面ABCD ,则PO ⊥平面ABCD . 取AO 中点M ,连OG ,EO ,EM , ∵EF ∥AB ∥OG ,∴OG 即为面EFG 与面ABCD 的交线又EM ∥OP ,则EM ⊥平面ABCD .且OG ⊥AO , 故OG ⊥EO∴∠EOM 即为所求 在RT △EOM 中,EM=OM=1∴tan ∠EOM=,故∠EOM=60°∴平面EFG 与平面ABCD 所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.21.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,.22.【答案】(1)详见解析;(2【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VCBC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得2d =12分 设BE 与平面BCD 所成角为θ,∵8BC ==,BE =,则sin d BE θ==.…………15分 23.【答案】【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME ⊥AC ,EF ⊥BC ,连结FM ,易证FM ⊥BC , ∴∠MFE 为二面角M ﹣BC ﹣D 的平面角, 设∠CAM=θ,∴EM=2sin θ,EF=,∵tan ∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.。
涉县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A.(-∞ B.(-∞ C. D.)+∞2. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( ) A .4320 B .﹣4320 C .20 D .﹣20 3. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( ) A .1 B .3 C .5 D .不确定 4. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0 B .∃x ∉R ,x 2+1≥0 C .∀x ∈R ,x 2+1<0 D .∀x ∈R ,x 2+1≥0 5. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0. 其中正确结论的序号是( ) A .①③ B .①④ C .②③ D .②④ 6. 已知11x yi i =-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i - 7. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最 小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π 8.已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为 A 、6π B 、3π C 、56π D 、23π 9. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( ) ①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 10.已知向量,且,则sin2θ+cos 2θ的值为( )A .1B .2 C. D .3 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中正确命题的个数是()A.0 B.1 C.2 D.3 12.下列函数在其定义域内既是奇函数又是增函数的是()A. B. C. D.二、填空题13.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.14.命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是.15.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.17.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.18.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.三、解答题19.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.20.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.21.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.22.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.23.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.24.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.涉县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13. {a|或} .14..15. (±,0) y=±2x .16. 15017.4818.:. 三、解答题19.20.(1)3,2,1;(2)710 . 21.22.23.24.(1)90=甲x ,90=乙x ,5242=甲s ,82=乙s ,甲单位对法律知识的掌握更稳定;(2)21.。
涉县高中2018-2019学年高三上学期11月月考数学试卷含答案
涉县高中2018-2019学年高三上学期11月月考数学试卷含答案 班级__________ 姓名__________ 分数__________一、选择题1. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 2. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A. B.C .D.3. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件4. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( ) A.B.C.D.5. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.6. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( ) A.B.C.D.7. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,28. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 39. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.4510.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .11.给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错12.已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5二、填空题13.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.16.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 17.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .18.已知关于 的不等式在上恒成立,则实数的取值范围是__________三、解答题19.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.20.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一个周期内的图象时,1,x 2,x 3的值,并写出函数f (x )的解析式;(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.21.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.22.在等比数列{a n}中,a2=3,a5=81.(Ⅰ)求a n;(Ⅱ)设b n=log3a n,求数列{b n}的前n项和S n.23.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.24.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.涉县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围. 2. 【答案】A【解析】解:设AB 的中点为C ,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a ≤﹣1或a ≥1,因为<1,所以﹣<a <,所以实数a 的取值范围是,故选:A .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.3. 【答案】C【解析】解:若双曲线C 的方程为﹣=1,则双曲线的方程为,y=±x ,则必要性成立,若双曲线C 的方程为﹣=2,满足渐近线方程为y=±x ,但双曲线C 的方程为﹣=1不成立,即充分性不成立,故“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.4. 【答案】C【解析】解:设A 表示“甲同学收到李老师所发活动信息”,设B 表示“甲同学收到张老师所发活动信息”,由题意P (A )==,P (B )=,∴甲冋学收到李老师或张老师所发活动通知信息的概率为:p (A+B )=P (A )+P (B )﹣P (A )P (B )==.故选:C .【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.5. 【答案】B【解析】由复数的除法运算法则得,i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=,所以21z z 的虚部为54.6. 【答案】 D【解析】解:设|PF 1|=t , ∵|PF 1|=|PQ|,∠F 1PQ=60°, ∴|PQ|=t ,|F 1Q|=t ,由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|, 由对称性可知,PQ 垂直于x 轴,F 2为PQ 的中点,|PF 2|=,∴|F 1F 2|=,即2c=,由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t=t ,∴椭圆的离心率为:e===.故选D .7.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.8.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.9.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.10.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.11.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.12.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.二、填空题13.【答案】{a|或}.【解析】解:∵二次函数f (x )=x 2﹣(2a ﹣1)x+a+1 的对称轴为 x=a ﹣,f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a ﹣≥2,或a ﹣≤1,∴a ≥,或 a ≤,故答案为:{a|a ≥,或 a ≤}.【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.14.【答案】 {1,6,10,12} .【解析】解:要使f A (x )f B (x )=﹣1, 必有x ∈{x|x ∈A 且x ∉B}∪{x|x ∈B 且x ∉A} ={6,10}∪{1,12}={1,6,10,12,}, 所以A △B={1,6,10,12}. 故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 15.【答案】 6【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6.16.【答案】1ln 2【解析】 试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.17.【答案】【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以为面AEF 与面ABC 所成的二面角的平面角。
涉县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某几何体的三视图如图所示,则它的表面积为( )A. B. C. D.2. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .43. 已知集合,则A0或 B0或3C1或D1或34. 若a 是f (x )=sinx ﹣xcosx 在x ∈(0,2π)的一个零点,则∀x ∈(0,2π),下列不等式恒成立的是( ) A. B .cosa≥C.≤a ≤2πD .a ﹣cosa ≥x ﹣cosx5.经过两点,的直线的倾斜角为( )A .120°B .150°C .60°D .30°6. 已知i是虚数单位,则复数等于( ) A.﹣+i B.﹣+i C.﹣i D.﹣i班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( ) A .(0,1)∪(2,3) B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)8. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)9. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =10.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)11.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .12.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.14.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .15.抛物线C1:y2=2px(p>0)与双曲线C2:交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则=.16.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是.17.如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.18.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题19.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.20.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值;(Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.21.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,过点(1,2)P -的直线l 的倾斜角为45.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B .(1(222.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象ππ(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.23.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.24.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))涉县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S侧面=×π×12+×2×2+×π×=2+.故选A.【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.2.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.3.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
涉县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.2. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm3. 已知复数,,,是虚数单位,若是实数,则( )11i z a =+232i z =+a ∈R i 12z z a = A . B . C .D .23-13-13234. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为()A .相离B .相切C .相交D .不能确定5. 底面为矩形的四棱锥P ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π6. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .或36+C .36﹣D .或36﹣7. 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )21A .B .C .或D .或21-1-21-108. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则()A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=29. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <310.已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是()A .2B .C .D .11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=()A .(1,2)B .[1,2]C .[1,2)D .(1,2]二、填空题13.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)14.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 . 15.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 . 16.抛物线y=4x 2的焦点坐标是 . 17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ;①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值;③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交;④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2. 18.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .三、解答题19.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]A B A =U21.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.22.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.23.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.24.如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.(1)求证:EF∥平面PBC;(2)求E到平面PBC的距离.涉县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D .21132244428233V =π⨯⨯-⨯⨯⨯=π-2. 【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.3. 【答案】A【解析】,1232(32)i z z a a =-++∵是实数,∴,∴.12z z 320a +=23a =-4. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02 >4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交,故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题. 5. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b ,则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =S 矩形ABCD ·PO13=abR ≤R 3.1323∴R 3=18,则R =3,23∴球O 的表面积为S =4πR 2=36π,选A.6. 【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D7. 【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x 解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]8. 【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B 9. 【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是,x <1是x >2的既不充分也不必要条件,x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.10.【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知z max=2×1+1=3,z min=2a+a=3a,由6a=3,得a=.故选:B.【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题. 11.【答案】C【解析】解:若不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,则根据题意需分两种情况:①当a2﹣4=0时,即a=±2,若a=2时,原不等式为4x﹣1≥0,解得x≥,故舍去,若a=﹣2时,原不等式为﹣1≥0,无解,符合题意;②当a2﹣4≠0时,即a≠±2,∵(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,∴,解得,综上得,实数a的取值范围是.则当﹣1≤a≤1时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C .【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想. 12.【答案】D【解析】解:A={x|x 2+x ﹣6≤0}={x|﹣3≤x ≤2}=[﹣3,2],要使函数y=有意义,则x ﹣1>0,即x >1,∴函数的定义域B=(1,+∞),则A ∩B=(1,2],故选:D .【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y 以及利用不等式的解法求出集合A 是解决本题的关键,比较基础 二、填空题13.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10af x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.14.【答案】 6 【解析】解:根据题意,得;∵f (2x )=2f (x ),∴f (34)=2f (17)=4f ()=8f ()=16f ();又∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|,∴f ()=1﹣|﹣3|=,∴f (2x )=16×=2;当2≤x ≤4时,f (x )=1﹣|x ﹣3|≤1,不存在;当4≤x ≤8时,f (x )=2f ()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.15.【答案】 [0,2] .【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题16.【答案】 .【解析】解:由题意可知∴p=∴焦点坐标为故答案为【点评】本题主要考查抛物线的性质.属基础题.17.【答案】 ②③④ 【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.18.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.三、解答题19.【答案】【解析】解:(1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2,(k 1,k 2≠0;x ≥0)由图知f (1)=,∴k 1=又g (4)=,∴k 2=从而f (x )=,g (x )=(x ≥0)(2)设A 产品投入x 万元,则B 产品投入10﹣x 万元,设企业的利润为y 万元y=f (x )+g (10﹣x )=,(0≤x ≤10),令,∴(0≤t ≤)当t=,y max ≈4,此时x=3.75∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.20.【答案】(1)或;(2).1a =5a =-3a >【解析】(2) .{}{}1,2,1,2A A B ==U ①无实根,, 解得; ()()22,2150B x a x a =∅+-+-=0∆<3a >② 中只含有一个元素,仅有一个实根, B ()()222150x a x a +-+-=故舍去;{}{}0,3,2,2,1,2a B A B ∆===-=-U ③中只含有两个元素,使 两个实根为和, B ()()222150x a x a +-+-=需要满足方程组无根,故舍去, 综上所述]()2212121=a 5a ⎧+=--⎪⎨⨯-⎪⎩3a >考点:集合的运算及其应用.21.【答案】【解析】解:(1)设M (x ,y ),A (x 1,y 1)、B (x 2,y 2),则x 12﹣y 12=2,x 22﹣y 22=2,两式相减可得(x 1+x 2)(x 1﹣x 2)﹣(y 1+y 2)(y 1﹣y 2)=0,∴2x (x 1﹣x 2)﹣2y (y 1﹣y 2)=0,∴=,∵双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F (2,0),∴,化简可得x 2﹣2x ﹣y 2=0,(x ≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A (x 1,y 1),B (x 2,y 2),l AB :y=k (x ﹣2)由已知OA ⊥OB 得:x 1x 2+y 1y 2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解23.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.24.【答案】【解析】(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)解:在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面ABCD又面PBC∩面ABCD=BC,FH⊥BC,FH⊂面ABCD∴FH⊥面PBC又EF||平面PBC,故点E到平面PBC的距离等于点F到平面PBC的距离FH.在直角三角形FBH中,∠FBC=60°,FB=,FH=FBsin∠FBC=a,故点E到平面PBC的距离等于点F到平面PBC的距离,等于a.。
涉县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
涉县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A.B.C .2D .42. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、783. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 4. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.5. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A .(0,) B .(0,] C.(,] D .[,1)6. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位: 小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 7. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .48. 已知i为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限9. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.7班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞B 、)0,2012(-C 、)2016,(--∞D 、)0,2016(-11.奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( )A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,12.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x f x x a a x=+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.14.若等比数列{a n }的前n 项和为S n ,且,则= .15.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .18.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.三、解答题19.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.20.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.21.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n项的乘积为,求的最大值.22.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.23.已知函数f (x )=|2x ﹣a|+|x ﹣1|. (1)当a=3时,求不等式f (x )≥2的解集;(2)若f (x )≥5﹣x 对∀x ∈R 恒成立,求实数a 的取值范围.24.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.涉县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意; 故选A .2. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-3. 【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.4. 【答案】D 【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.5.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+﹣2×××cos∠F1PF2,由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),即<4c2<,∴<<1,即<e2<1,∴<e<1;当P与两焦点F1,F2共线时,可得a+c=2(a﹣c),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.6.【答案】15【解析】7.【答案】A【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题.8.【答案】A【解析】解:==1+i,其对应的点为(1,1),故选:A.9. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。
2018-2019学年河北省邯郸市涉县第一中学高三数学文期末试题含解析
2018-2019学年河北省邯郸市涉县第一中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中的系数为()A.-150 B.150 C.300 D.-300参考答案:答案:B2. 已知命题p:x∈R,x2+x一6<0,则命题P是()A.x∈R,x2+x一6>0 B.x∈R.x2+x一6>0C.x∈R,x2+x一6>0 D. x∈R.x2+x一6<0参考答案:B略3. 设,则 ( )A. B. C. D.参考答案:C4. 已知双曲线的右焦点F,直线与其渐近线交于A,B两点,与轴交于D点,且△为钝角三角形,则离心率取值范围是() A. () B.(1,) C.() D.(1,)参考答案:D略5. 已知对数函数是增函数,则函数的图象大致是()参考答案:B因为函数是增函数,所以,函数,所以选B.6. 在平面直角坐标系xOy中,已知四边形 ABCD是平行四边形, =(1,﹣2),=(2,1)则?=()A.5 B.4 C.3 D.2参考答案:A【考点】9R:平面向量数量积的运算.【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得, ==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.7. 下列命题中,x,y为复数,则正确命题的个数是①若,则;②若,,,且,则;③的充要条件是.A.0 B.1 C.2 D.3参考答案:A①若,则,是错误的,如;②若,,,且,则,是错误的,因为两个虚数不能比较大小;的充要条件是,是错误的,因为当x+yi=1+i时,x可为i,y可以为-i. 故答案为:A8. 已知为三条不同的直线,且平面,平面,①若与是异面直线,则至少与中的一条相交;②若不垂直于,则与一定不垂直;③若a//b,则必有a//c;④若,则必有.其中正确的命题的个数是()A.0B.1C.2D.3参考答案:C略9. 下列选项叙述错误的是()A.命题“若x≠l,则x2﹣3x+2≠0”的逆否命题是“若x2﹣3x+2=0,则x=1”B.若p∨q为真命题,则p,q均为真命题C.若命题p:?x∈R,x2+x+1≠0,则?p:?x∈R,x2+x+1=0D.“x>2”是“x2﹣3x+2>0”的充分不必要条件参考答案:B【考点】命题的真假判断与应用.【分析】A“若p则q,“的逆否命题为“若﹣p则﹣q“.故A正确;B p∨q为真命题说明p和q中至少有一个为真;C是全称命题与存在性命题的转化;D从充要条件方面判断.【解答】解:A原命题为“若p则q,“,则它的逆否命题为“若﹣p则﹣q“.故正确;B当p,q中至少有一个为真命题时,则p∨q为真命题.故错误.C正确.D 由x2一3x+2>0解得x<1或x>2显然x>2?x<1或x>2但x<1或x>2不能得到x>2故“x>2”是“x2一3x+2>0”的充分不必要条件,故正确.故选B【点评】本题主要考查了四种命题的关系、充要条件的转化、全称命题与存在性命题的相互转化.10. 已知集合,,若,则满足条件的集合的个数为()(A)4 (B)3 (C)2 (D)1参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量a=(,1),b=(0,-1),c=(k,).若(a-2b)与c共线,则k=_____.参考答案:112. 有下列四个命题:①若,则函数的最小值为;②已知平面,,直线,,若,,,则∥;③在△ABC中,和的夹角等于;④等轴双曲线的离心率为2。
涉县二中2018-2019学年高三上学期11月月考数学试卷含答案
涉县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④2. 如图,棱长为的正方体中,是侧面对角线上一点,若 1111D ABC A B C D -,E F 11,BC AD 1BED F 是菱形,则其在底面上投影的四边形面积( )ABCD A .B .C.D12343. 以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.4. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}5. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是()A .a <1<bB .a <b <1C.1<a <b D .b <1<a 6. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A .B .C .D .6班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.8. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( )A .B .C .D .9. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .201522015320152320152210.三角函数的振幅和最小正周期分别是( )()sin(2)cos 26f x x x π=-+A B C D 2ππ2ππ11.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、、,则( )1S 2S 3S A . B . C .D .123S S S <<123S S S >>213S S S <<213S S S >>12.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=()A .1B .2C .3D .4二、填空题13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.14.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.15.已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,ABC D -O ABC ∆DBC ∆3=AB ,,则球的表面积为.3=AC 32===BD CD BC O 16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 . 17.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.18.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .三、解答题19.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.20.(1)直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).若l 在两坐标轴上的截距相等,求a 的值;(2)已知A (﹣2,4),B (4,0),且AB 是圆C 的直径,求圆C 的标准方程.21.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).22.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.23.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.24.已知函数().()()xf x x k e =-k R ∈(1)求的单调区间和极值;()f x (2)求在上的最小值.()f x []1,2x ∈(3)设,若对及有恒成立,求实数的取值范围.()()'()g x f x f x =+35,22k ⎡⎤∀∈⎢⎥⎣⎦[]0,1x ∀∈()g x λ≥λ涉县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题. 2. 【答案】B 【解析】试题分析:在棱长为的正方体中,,设1111D ABC A B C D -11BC AD ==AF x =x =解得,即菱形的边长为,则在底面上的投影四边形是底边x =1BED F =1BED F ABCD 为,高为的平行四边形,其面积为,故选B.3434考点:平面图形的投影及其作法.3. 【答案】D4. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M ,∴集合N 不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础. 5. 【答案】A【解析】解:由f (x )=e x +x ﹣2=0得e x =2﹣x ,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.6.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.7.【答案】B8. 【答案】C【解析】解:∵f (x )≤0⇔x 2﹣x ﹣2≤0⇔﹣1≤x ≤2,∴f (x 0)≤0⇔﹣1≤x 0≤2,即x 0∈[﹣1,2],∵在定义域内任取一点x 0,∴x 0∈[﹣5,5],∴使f (x 0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键 9. 【答案】C 【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =g 201521...T a a a =g ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.10.【答案】B 【解析】()sincos 2cossin 2cos 266f x x x xππ=-+31cos 222sin 2)22x x x x ==-,故选B .6x π=+11.【答案】A 【解析】考点:棱锥的结构特征.12.【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b ,即a=1,b=0.∴a+b=1.故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题. 二、填空题13.【答案】【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.14.【答案】 4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.15.【答案】16π【解析】如图所示,∵,∴为直角,即过△的小圆面的圆心为的中点,222AB AC BC +=CAB ∠ABC BC O 'ABC △和所在的平面互相垂直,则球心O 在过的圆面上,即的外接圆为球大圆,由等边三角DBC △DBC △DBC △形的重心和外心重合易得球半径为,球的表面积为2R =24π16πS R ==16.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p ,∴,解得0≤a ≤2,则实数a 的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题 17.【答案】 24 【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC 中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.18.【答案】 .【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G是△ABC的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G是△ABC的重心,得到=(+),也是解答本题的关键. 三、解答题19.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.20.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.21.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.22.【答案】【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),消去参数,得x+y﹣=0,直线l的直角坐标方程为x+y﹣=0,∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).∴(x+)2+(y+)2=r2(r>0).∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)圆心C到直线x+y﹣=0的距离为d==2,又∵圆C上的点到直线l的最大距离为3,即d+r=3,∴r=3﹣2=1.【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识. 23.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,∴AF∥HE,∵AF ⊄平面REC 1,HE ⊂平面REC 1∴AF ∥平面REC 1.…(2)等边△ABC 中,高AF==,所以EH=AF=由三棱柱ABC ﹣A 1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B 的距离等于∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1可得S △=BC 1•EH=××=,而S △ABE =AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S △×d=S △ABE ×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A 到平面BEC 1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题. 24.【答案】(1)的单调递增区间为,单调递减区间为,()f x (1,)k -+∞(,1)k -∞-,无极大值;(2)时,时1()(1)k f x f k e -=-=-极小值2k ≤()(1)(1)f x f k e ==-最小值23k <<,时,;(3).1()(1)k f x f k e -=-=-最小值3k ≥2()(2)(2)f x f k e ==-最小值2e λ≤-【解析】(2)当,即时,在上递增,∴;11k -≤2k ≤()f x []1,2()(1)(1)f x f k e ==-最小值当,即时,在上递减,∴;12k -≥3k ≥()f x []1,22()(2)(2)f x f k e ==-最小值当,即时,在上递减,在上递增,112k <-<23k <<()f x []1,1k -[]1,2k -∴.1()(1)k f x f k e-=-=-最小值(3),∴,()(221)xg x x k e =-+'()(223)xg x x k e =-+由,得,'()0g x =32x k =-当时,;32x k <-'()0g x <当时,,32x k >-'()0g x >∴在上递减,在递增,()g x 3(,2k -∞-3(,)2k -+∞故,323()()22k g x g k e -=-=-最小值又∵,∴,∴当时,,35,22k ⎡⎤∈⎢⎥⎣⎦[]30,12k -∈[]0,1x ∈323()()22k g x g k e -=-=-最小值∴对恒成立等价于;()g x λ≥[]0,1x ∀∈32()2k g x e λ-=-≥最小值又对恒成立.32()2k g x e λ-=-≥最小值35,22k ⎡⎤∀∈⎢⎥⎣⎦∴,故.132min (2)k ek --≥2e λ≤-考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.。
涉县一中2018-2019学年上学期高三数学10月月考试题
3 2
【方法点睛】本题通过 “三次函数 f x ax bx cx d a 0 都有对称中心 x0 , f x0
”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应 耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事” ,逐条分析、验证、运算, 使问题得以解决.本题的解答就是根据新结论性质求出 f x 性和的. 第Ⅱ卷(非选择题共 90 分) 10.【答案】 【解析】解析 : 选 B.设点 P(m,n)是函数图象上任一点,P 关于(-1,2)的对称点为 Q(-2-m,4-n) , km+b n= m+1 则 ,恒成立. k(-2-m)+b 4-n= -1-m 由方程组得 4m+4=2km+2k 恒成立, ∴4=2k,即 k=2, -4+b 2x+b ∴f(x)= ,又 f(-2)= =3, x+1 -1 ∴b=1,故选 B. 11.【答案】 【解析】解析:选 C.设 D 点的坐标为 D(x,y),
C.y=± x
D.y=±
x
9. 设函数 y f '' x 是 y f ' x 的导数.某同学经过探究发现,任意一个三次函数
f x ax3 bx 2 cx d a 0 都有对称中心 x0 , f x0 ,其中 x0 满足 f '' x0 0 .已知函数
第 4 页,共 17 页
22.已知命题 p:∀x∈[2,4],x2﹣2x﹣2a≤0 恒成立,命题 q:f(x)=x2﹣ax+1 在区间 p∨q 为真命题,p∧q 为假命题,求实数 a 的取值范围.
涉县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在2. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .23.不等式恒成立的条件是( )A .m >2B .m <2C .m <0或m >2D .0<m <24. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .5. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( ) A.12 B.12- C. 34 D .0 6. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.B.C.D.7.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i8. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0} B .{3,0,1}C .{3,0,2}D .{3,0,1,2}9. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .410.若复数z 满足i 1i z =--,则在复平面内,z 所对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 11.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.3 B.4 C.5 D.612.函数f(x)=1﹣xlnx的零点所在区间是()A.(0,)B.(,1) C.(1,2) D.(2,3)二、填空题13.已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为.14.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.15.(﹣)0+[(﹣2)3]=.16.设x,y满足的约束条件,则z=x+2y的最大值为.17.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.18.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.三、解答题19.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.20.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.21.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.22.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.23.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.24.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.涉县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.2.【答案】A【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2;故选A.【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题3.【答案】D【解析】解:令f(x)=x2+mx+=(x+)2﹣+则f min(x)=﹣+.∵恒成立,∴﹣+>0解得0<m<2.故选D.【点评】本题考查了函数恒成立问题,是基础题.4.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
涉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .2. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )A .64πB .16πC .12πD .4π3. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .54. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .135. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D6.已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞-- ),3()1,35(+∞-- ),3[]1,35[+∞-- ),3()1,2(+∞-- 7. △ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为()A .﹣3B .﹣C .D .38. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于()A .B .C .D .9. 已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC M O A B .C D .34π3π10.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________ADCBA .8B .5C .9D .2711.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )A .10B .9C .8D .512.已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)二、填空题13.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .14.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是 .15.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)16.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=o2BC =M BC 1sin 3BAM ∠=AC 17.在中,角、、所对应的边分别为、、,若,则_________18.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 三、解答题19.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.20.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.21.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.22.如图所示,在边长为的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.23.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈(1)当时,求的单调区间;1m =()f x(2)令,区间,为自然对数的底数。
涉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .562. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除 3. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .4. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④5.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A.B.C.D.6. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能7. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A.B.C .D.8. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1)D .(1,e )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .610.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 11.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D1012.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .56二、填空题13.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.14.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.15.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .16.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .17.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .18.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 .三、解答题19.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.20.已知y=f (x )的定义域为[1,4],f (1)=2,f (2)=3.当x ∈[1,2]时,f (x )的图象为线段;当x ∈[2,4]时,f (x )的图象为二次函数图象的一部分,且顶点为(3,1). (1)求f (x )的解析式; (2)求f (x )的值域.21.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.22.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.23.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.24.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.涉县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】考点:1.斜率;2.两点间距离.2.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.3.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.4.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f(0)<0,f(1)>0,f(3)<0,∴f(0)f(1)<0,f(0)f(3)>0.故选:C.5.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.6.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.7.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.8.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.9.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.10.【答案】C【解析】解:∵a=ln2<lne即,b=5=,c=xdx=,∴a,b,c的大小关系为:b<c<a.故选:C.【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.11.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个12.【答案】B【解析】解:由等差数列的性质可得:a 3+a 5=2a 4,a 7+a 13=2a 10,代入已知可得3×2a 4+2×3a 10=24,即a 4+a 10=4,故数列的前13项之和S 13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.二、填空题13.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.14.【答案】15【解析】由条件知5000.9ekP P -=,所以5e 0.9k-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729ekt P P -=,∴315e 0.7290.9e ktk --===,所以15t =小时.15.【答案】 ∃x 0∈R ,都有x 03<1 .【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.故答案为:∃x 0∈R ,都有x 03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.16.【答案】 [﹣,] .【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.17.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)18.【答案】.【解析】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.三、解答题19.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.20.【答案】【解析】解:(1)当x∈[1,2]时f(x)的图象为线段,设f(x)=ax+b,又有f(1)=2,f(2)=3∵a+b=2,2a+b=3,解得a=1,b=1,f(x)=x+1,当x∈[2,4]时,f(x)的图象为二次函数的一部分,且顶点为(3,1),设f(x)=a(x﹣3)2+1,又f(2)=3,所以代入得a+1=3,a=2,f(x)=2(x﹣3)2+1.(2)当x∈[1,2],2≤f(x)≤3,当x∈[2,4],1≤f(x)≤3,所以1≤f(x)≤3.故f(x)的值域为[1,3].21.【答案】(1)22143x y+=;(2)点R在定直线1x=-上.【解析】试题解析:(1)由12e =,∴2214e a =,∴2234a b ==解得2,a b ==,所以椭圆C 的方程为22143x y +=.设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得1121221212011224424()41()814x x x x x x x x x x x x x x x λλ++⋅-+++===+-++++又2212122226412322424()24343434k k x x x x k k k ---++=⨯+⨯=+++,212223224()883434k x x k k -++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.22.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
涉县民族中学2018-2019学年高三上学期11月月考数学试卷含答案
涉县民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数,则要得到其导函数的图象,只需将函数()cos(3f x x π=+'()y f x =()y f x =的图象()A .向右平移个单位 B .向左平移个单位2π2πC. 向右平移个单位D .左平移个单位23π23π2. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=()A .2B .C .3D .3. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围()A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]4. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)5. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)6. 命题“∃x 0∈R ,x 02+2x 0+2≤0”的否定是( )A .∀x ∈R ,x 2+2x+2>0B .∀x ∈R ,x 2+2x+2≥0C .∃x 0∈R ,x 02+2x 0+2<0D .∃x ∈R ,x 02+2x 0+2>07. 已知集合,,则( ){2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B =I A . B .C .D .{2,1,1}--{1,1,2}-{1,1}-{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.8. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M9. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为()A .14B .18C .21D .27 10.若函数是R 上的单调减函数,则实数a 的取值范围是()A .(﹣∞,2)B .C .(0,2)D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}12.集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A .B .C .D .M P N =⊆N P M =⊆M N P =⊆M P N==二、填空题13.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .14.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .15.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .16.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 17.已知双曲线的左焦点在抛物线的准线上,则.1163222=-py x px y 22==p18.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .三、解答题19.已知函数,(其中常数m >0)(1)当m=2时,求f (x )的极大值;(2)试讨论f (x )在区间(0,1)上的单调性;(3)当m ∈[3,+∞)时,曲线y=f (x )上总存在相异两点P (x 1,f (x 1))、Q (x 2,f (x 2)),使得曲线y=f (x )在点P 、Q 处的切线互相平行,求x 1+x 2的取值范围.20.已知S n 为等差数列{a n }的前n 项和,且a 4=7,S 4=16.(1)求数列{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .21.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个)2345加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a ,其中b==,a=﹣b .23.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.24.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.涉县民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:函数,所以函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以将函数函数的图象上所有的点向左平移个单位长度得到()cos 3f x x π⎛⎫=+ ⎪⎝⎭()y f x =2π,故选B.5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭考点:函数的图象变换.()sin y A x ωϕ=+2. 【答案】B【解析】解:双曲线C :x 2﹣=1(b >0)的顶点为(±1,0),渐近线方程为y=±bx ,由题意可得=,解得b=1,c==,即有离心率e==.故选:B .【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题. 3. 【答案】C【解析】解:f (x )=x 2﹣2x+3=(x ﹣1)2+2,对称轴为x=1.所以当x=1时,函数的最小值为2.当x=0时,f (0)=3.由f (x )=3得x 2﹣2x+3=3,即x 2﹣2x=0,解得x=0或x=2.∴要使函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a ≤2.故选C .【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法. 4. 【答案】A【解析】解:设g (x )=,则g (x )的导数为:g ′(x )=,∵当x >0时总有xf ′(x )﹣f (x )<0成立,即当x >0时,g ′(x )<0,∴当x >0时,函数g (x )为减函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数,∴x <0时,函数g (x )是增函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )<g (2),解得:0<x <2,x <0时,由f (x )>0,得:g (x )>g (﹣2),解得:x <﹣2,∴f (x )>0成立的x 的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A . 5. 【答案】D【解析】解:因为f (x )为偶函数,所以f (x )=f (|x|),因为f (x )在(﹣∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,由f (﹣1)<f (lg x ),得|lg x|>1,即lg x >1或lg x <﹣1,解得x >10或0<x <.故选:D .【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题. 6. 【答案】A【解析】解:因为特称命题的否定是全称命题,所以,命题“∃x 0∈R ,x 02+2x 0+2≤0”的否定是:∀x ∈R ,x 2+2x+2>0.故选:A .【点评】本题考查命题的否定全称命题与特称命题的否定关系,基本知识的考查. 7. 【答案】C【解析】当时,,所以,故选C .{2,1,1,2,4}x ∈--2log ||1{1,1,0}y x =-∈-A B =I {1,1}-8. 【答案】B【解析】解:根据题意得:x+1≥0,解得x ≥﹣1,∴函数的定义域M={x|x ≥﹣1};∵集合N 中的函数y=x 2≥0,∴集合N={y|y ≥0},则M ∩N={y|y ≥0}=N .故选B 9. 【答案】A【解析】解:由等差数列的通项公式可得,a 3+a 4=2a 1+5d=9,a 1+d=3解方程可得,a 1=2,d=1∴a 1a 6=2×7=14故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题 10.【答案】B【解析】解:∵函数是R 上的单调减函数,∴∴故选B【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况. 11.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M ∩N ,∵全集U=R ,M={x|x >2},N={0,1,2,3},∴∁M ={x|x ≤2},∴∁M ∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键. 12.【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±±L L M P N =⊆考点:两个集合相等、子集.1二、填空题13.【答案】 .【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.14.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.15.【答案】 .【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G是△ABC的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G是△ABC的重心,得到=(+),也是解答本题的关键. 16.【答案】 ①②⑤ 【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾;假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力. 17.【答案】4【解析】,∴.223(162p p+=4p =18.【答案】 10 .【解析】解:由z=3﹣i ,得z •=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.三、解答题19.【答案】【解析】解:(1)当m=2时,(x >0)令f ′(x )<0,可得或x >2;令f ′(x )>0,可得,∴f (x )在和(2,+∞)上单调递减,在单调递增故(2)(x>0,m>0)①当0<m<1时,则,故x∈(0,m),f′(x)<0;x∈(m,1)时,f′(x)>0此时f(x)在(0,m)上单调递减,在(m,1)单调递增;②当m=1时,则,故x∈(0,1),有恒成立,此时f(x)在(0,1)上单调递减;③当m>1时,则,故时,f′(x)<0;时,f′(x)>0此时f(x)在上单调递减,在单调递增(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2)即⇒∵x1≠x2,由不等式性质可得恒成立,又x1,x2,m>0∴⇒对m∈[3,+∞)恒成立令,则对m∈[3,+∞)恒成立∴g(m)在[3,+∞)上单调递增,∴故从而“对m∈[3,+∞)恒成立”等价于“”∴x1+x2的取值范围为【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键 20.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,依题意得…(2分)解得:a 1=1,d=2a n =2n ﹣1…(2)由①得…(7分)∴…(11分)∴…(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题. 21.【答案】(1)的单调递增区间为,单调递减区间为;(2)或;(3)()f x (0,)+∞(,0)-∞1a >0a <证明见解析.【解析】试题解析: (1).'()1xf x e =-令,得,则的单调递增区间为;]'()0f x >0x >()f x (0,)+∞令,得,则的单调递减区间为.'()0f x <0x <()f x (,0)-∞(2)记,则,()()()F x f xg x =-21()2xx F x e x a a e=--+-.1'()2x xF x e e =+-∵,∴,1220xx e e +-≥='()0F x ≥∴函数为上的增函数,()F x (,)-∞+∞∴当时,的最小值为.[]0,2x ∈()F x 2(0)F a a =-∵存在,使得成立,[]0,2x ∈()()f x g x <∴的最小值小于0,即,解得或.1()F x 20a a -<1a >0a <(3)由(1)知,是函数的极小值点,也是最小值点,即最小值为,0x =()f x (0)1f a =+则只有时,函数由两个零点,不妨设,1a <-()f x 12x x <易知,,10x <20x >∴,1222()()()()f x f x f x f x -=--2222()()xx e x a e x a -=-+-++2222x x e e x -=--令(),()2xxh x e ex -=--0x ≥考点:导数与函数的单调性;转化与化归思想.22.【答案】【解析】解:(1)作出散点图如下:…(3分)(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)=54,x i y i=52.5∴b==0.7,a=3.5﹣0.7×3.5=1.05,∴所求线性回归方程为:y=0.7x+1.05…(10分)(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴加工10个零件大约需要8.05个小时…(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.23.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE ⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.24.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.。
涉县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
涉县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若,则 1sin()34πα-=cos(2)3πα+= A 、 B 、 C 、 D 、78-14-14782. i 是虚数单位,=()A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i3. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .14. 若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( )A .±1B .﹣1C .0D .15. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .6. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)7. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.8. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=u u u r u u u u r 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________若,则该双曲线的离心率为( )12PF F∆C.D.1+1+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.9. 已知集合,,则( ){| lg 0}A x x =≤1={|3}2B x x ≤≤A B =I A .B .C .D .(0,3](1,2](1,3]1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.10.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小.其中正确的说法的个数是( )A .1B .2C .3D .411.已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能12.如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为()A1-B1C. 1- D 1-二、填空题13.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .14.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点. 15.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函()f x xlnx ax =-+()0e ,数,函数,当时,函数g (x )的最大值M 与最小值m 的差为,则a 的值()22xa g x e a =-+[]03x ln ∈,32为______.18.已知曲线y=(a﹣3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则a 的范围为 .三、解答题19.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.20.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.21.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率. 22.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.23.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.(Ⅰ)求A,B;(Ⅱ)若A∪B=B,求实数a的取值范围.24.(本小题满分12分)已知圆,直线()()22:1225C x y -+-=.()()():211740L m x m y m m R +++--=∈(1)证明: 无论取什么实数,与圆恒交于两点;m L (2)求直线被圆截得的弦长最小时的方程.C L涉县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-2. 【答案】D 【解析】解:,故选D .【点评】本小题考查复数代数形式的乘除运算,基础题. 3. 【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos (45°﹣15°)=cos30°=.故选:C .【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.4. 【答案】B【解析】解:因为复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,所以a 2﹣1=0且a ﹣1≠0,解得a=﹣1.故选B .【点评】本题考查复数的基本概念的应用,实部为0并且虚部不为0,是解题的关键. 5. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小.即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 6.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.7.【答案】C【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形OA OC 112-π的面积为,所求概率为.OAC ππππ12112-=-=P 8. 【答案】D【解析】∵,∴,即为直角三角形,∴,120PF PF ⋅=u u u r u u u u r12PF PF ⊥12PF F ∆222212124PF PF F F c +==,则,12||2PF PF a -=222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-.所以内切圆半径2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-12PF F ∆,外接圆半径.由题意,得,整理,得12122PF PF F F r c +-==-R c=c -=,∴双曲线的离心率,故选D.2()4ca=+1e =+9. 【答案】D【解析】由已知得,故,故选D .{}=01A x x <£A B =I 1[,1]210.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确.故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题. 11.【答案】D【解析】解:如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AA 1∩平面ABCD=A ,BB 1∩平面ABCD=B ,AA 1∥BB 1;AA 1∩平面ABCD=A ,AB 1∩平面ABCD=A ,AA 1与AB 1相交;AA 1∩平面ABCD=A ,CD 1∩平面ABCD=C ,AA 1与CD 1异面.∴直线a ,b 都与平面α相交,则a ,b 的位置关系是相交、平行或异面.故选:D .12.【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.二、填空题13.【答案】 2 .【解析】解:∵复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题. 14.【答案】 ②④ 【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=>1,满足;综上可得:当k>0时,函数有4个零点.故③错误,④正确.故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.15.【答案】 3 .【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.16.【答案】 cm 2 .【解析】解:如图所示,是正六棱台的一部分,侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1,则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.根据正六棱台的性质得OC=,O 1C 1==,∴CC 1==.又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .∴正六棱台的侧面积:S=.==(cm 2).故答案为:cm 2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养. 17.【答案】52【解析】,因为在上是增函数,即在上恒成立,()1ln f x x a =--+'()f x ()0e ,()0f x '≥()0e ,,则,当时,,ln 1a x ∴≥+()max ln 1a x ≥+x e =2a ≥又,令,则,()22xa g x e a =-+x t e =()[]2,1,32a g t t a t =-+∈(1)当时,,,23a ≤≤()()2max 112a g t g a ==-+()()2min 2a g t g a ==则,则,()()max min 312g t g t a -=-=52a =(2)当时,,,3a >()()2max 112a g t g a ==-+()()2min 332a g t g a ==-+则,舍。
涉县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
1. 若 f x 是定义在 , 上的偶函数, x1 , x2 0, x1 x2 ,有 ( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ ) B. f 1 f 2 f 3 D. f 3 f 2 f 1 ) D. )
第 5 行的第 1、3 个数分别为 所以 z= . + =1.
所以 x+y+z= + 故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力. 8. 【答案】A 【解析】解析 : 本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆 C 的方程为 ( x 3) ( y 1) 4 ,直线 l 的普通方程为 y 3 tan ( x 1) ,直线 l 过定点 M (1, 3) ,∵
)=f( )=2× = ,
【解析】解:将(2, )代入函数 f(x)得: 解得:m=﹣1; 故答案为:﹣1.
=2m,
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题. 16.【答案】a= ,b= .
【解析】解:由 5,10,17,a﹣b,37 知, a﹣b=26, 由 3,8,a+b,24,35 知, a+b=15, 解得,a= 故答案为: ,b= , ; .
涉县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
涉县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)2. 设P是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .133. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)4. 复数z 满足z (l ﹣i )=﹣1﹣i ,则|z+1|=( )A .0B .1C.D .25f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .56. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .7. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a9. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .10.已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .211.“方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要12.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-2二、填空题13.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .14.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .15.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .16.已知(x 2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .18.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .三、解答题19.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围20.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.21.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .22.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.23.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n24.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.涉县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.2.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.3.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.4.【答案】C【解析】解:∵z(l﹣i)=﹣1﹣i,∴z(1﹣i)(1+i)=﹣(1+i)2,∴2z=﹣2i,∴z=﹣i,∴z+1=1﹣i,则|z+1|=,故选:C.【点评】本题考查了复数的化简与模的计算.5.【答案】C【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f(x)的图象如图所示:因为f(0)=f(3)=2,1<a<2,所以函数y=f(x)﹣a的零点的个数为4个.故选:C.【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.6.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.7.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.8.【答案】C【解析】考点:等差数列的通项公式. 9. 【答案】A【解析】解:由函数的图象可得A=1, =•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得 sin (2×+φ)=1,结合,可得φ=,故有,故选:A .10.【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 11.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.12.【答案】B 【解析】考点:向量共线定理.二、填空题13.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 14.【答案】345【解析】考点:点关于直线对称;直线的点斜式方程. 15.【答案】 8 .【解析】解:∵抛物线y 2=8x=2px ,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10, ∴x=8,故答案为:8. 【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.16.【答案】 45 .【解析】解:第三项的系数为C n 2,第五项的系数为C n 4,由第三项与第五项的系数之比为可得n=10,则T i+1=C 10i(x 2)10﹣i(﹣)i =(﹣1)i C 10i=,令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C 108=45,故答案为:45.17.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.18.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).三、解答题19.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人, 一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A ,B ,一周课外阅读时间在[2,4)的学生为C ,D ,E ,从5人中选取2人,得到基本事件有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共有10个基本事件, 记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M , 其中事件M 包含AC ,AD ,AE ,BD ,BC ,BE ,共有6个基本事件,所以P (M )==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t 0,即一周课外阅读时间未达到t 0的学生占20%, 由(Ⅰ)知课外阅读时间落在[0,2)的频率为P 1=0.02, 课外阅读时间落在[2,4)的频率为P 2=0.03, 课外阅读时间落在[4,6)的频率为P 3=0.05,课外阅读时间落在[6,8)的频率为P 1=0.2, 因为P 1+P 2+P 3<0.2,且P 1+P 2+P 3+P 4>0.2, 故t 0∈[6,8),所以P 1+P 2+P 3+0.1×(t 0﹣6)=0.2, 解得t 0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.20.【答案】【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 221)(2-+=,当0=a 时,x x x f ln 2)(-=,则x x f 12)('-=.令012)('=-=x x f ,得21=x .…………2分 所以的变化情况如下表:所以当2=x 时,)(x f 的极小值为2ln 1)21(+=f ,函数无极大值.………………5分21.【答案】【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.22.【答案】【解析】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,x1+x2=b﹣1,x1x2=1,∵x>0,设μ(x)=x2﹣(b﹣1)x+1,则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)=ln﹣(﹣),∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣(1+)=<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,由x1+x2=b﹣1,x1x2=1,可得t+≥,∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,故g(x1)﹣g(x2)的最小值为﹣2ln2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.23.【答案】【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,解得x=a,即每年拆除的旧住房面积是am2(Ⅱ)设第n年新建住房面积为a,则a n=所以当1≤n≤4时,S n=(2n﹣1)a;当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.24.【答案】【解析】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.。
涉县高中2018-2019学年上学期高三数学期末模拟试卷含答案
涉县高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e =2. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .33. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .4. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍C.不变D.缩小到原来的165. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n -B .122n +- C .21n - D .121n +-6. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)7. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .8. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .9. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种10.已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .11.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .12.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?二、填空题13.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .14.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .15.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元. 17.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前16项和为.18.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是.三、解答题19.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?20.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.21.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.24.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.涉县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 2. 【答案】B【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .4. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 5. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .6. 【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k∈(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A7.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.8.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).9.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.10.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.11.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.12.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.二、填空题13.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.14.【答案】.【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.15.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 16.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 17.【答案】 546 .【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16) =(1+2+...+8)+(2+22+ (28)=+=36+29﹣2 =546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.18.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.三、解答题19.【答案】【解析】解:(1)(x∈N*) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.20.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f (x )有最小值,当时,f (x )有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.…21.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=,2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.22.【答案】【解析】解:(1)设等比数列{a n }的公比为q ,由a 2是a 1和a 3﹣1的等差中项得:2a 2=a 1+a 3﹣1,∴,∴2q=q 2,∵q ≠0,∴q=2,∴;(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1. n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q2+4q+4=0,解得q=﹣2.24.【答案】【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,∴f(1)=1,∴切点为(1,1)∵f′(x)=﹣1﹣=,∴f′(1)=﹣2,∴切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0;(Ⅱ)f(x)的定义域是(0,+∞),f′(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2﹣x+2在(0,+∞)2个解,故,解得:0<a<.。
涉县第一中学2018-2019学年上学期高三数学10月月考试题
涉县第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 2. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣iB.﹣﹣i C.+iD.﹣+i3. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. B. C. D.4. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .45. 若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .12C .1 D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.6. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0 C .a >0,△≥0D .a >0,△>07.设集合,则A ∩B 等于( ) A .{1,2,5} B .{l ,2,4,5} C .{1,4,5}D .{1,2,4}8. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥9. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.10.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .11.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能12.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .二、填空题13.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .14.已知一个算法,其流程图如图,则输出结果是 .15.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.三、解答题17.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).18.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n =,数列{b n }的前n 项和为S n .①证明:b n+1+b n+2+…+b 2n <②证明:当n ≥2时,S n 2>2(++…+)19.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.20.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.(本小题满分12分) 已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈). (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.涉县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]2.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.3.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.4. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n(n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.5. 【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .6. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A .7. 【答案】B 【解析】解:∵集合,当k=0时,x=1;当k=1时,x=2; 当k=5时,x=4; 当k=8时,x=5, ∴A ∩B={1,2,4,5}. 故选B .【点评】本题考查集合的交集的运算,是基础题.解题时要认真审题,注意列举法的合理运用.8. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 9. 【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 10.【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.11.【答案】D 【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.12.【答案】C【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.二、填空题13.【答案】4π 【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++. 14.【答案】 5 .【解析】解:模拟执行程序框图,可得 a=1,a=2不满足条件a 2>4a+1,a=3不满足条件a 2>4a+1,a=4不满足条件a 2>4a+1,a=5满足条件a 2>4a+1,退出循环,输出a 的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.15.【答案】217【解析】16.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 三、解答题17.【答案】【解析】解:(1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题设f (x )=k1x ,g (x )=k 2,(k 1,k 2≠0;x ≥0)由图知f (1)=,∴k 1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.18.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n ≥2时,S n 2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.19.【答案】(1)0.3a =;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.20.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 21.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x )×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.22.【答案】【解析】(1)∵211()2x f x x x +==+,∴11()2n n na f a a +==+.即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,∴1()(22)(1)22n n a a n n nS n n ++===+, ∴1111(1)1n S n n n n ==-++. (8分) ∴1231111n n T S S S S =++++11111111()()()()1223341n n =-+-+-++-+ 111n =-+1n n =+. (12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉县一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )
A .1
B .
C .2
D .4 2. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )
A .1
B .2
C .3
D .4
3. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )
A .
B .
C .0
D .﹣
4. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且
•=4,则实数a
的值为( )
A .
或﹣
B .
或3
C .
或5
D .3
或5
5. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 6. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
7. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )
A .
B .
C .
D .6
8. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
9. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )
A .0
B .
C .
D .
10.已知F 1、F 2是椭圆的两个焦点,满足
=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .(0,]
C .(0,
)
D .[
,1)
11.某程序框图如图所示,该程序运行后输出的S 的值是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .﹣3 B
.﹣ C
. D .2
12.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.
二、填空题
13.设,y x 满足约束条件2110y x x y y ≤⎧⎪
+≤⎨⎪+≥⎩
,则3z x y =+的最大值是____________.
14.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
15.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD
的中点,MN =m 与n 所成角的余弦值是
______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
16.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________. 17.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.
18.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
三、解答题
19.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2
=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程
(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.
20.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,4
5a b a b x ++⎡⎤
∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.
21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.
22.数列{a n }满足a 1=
,a n ∈(﹣
,
),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
23.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.
24.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
涉县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13.73
14.
(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值
范围为.
2
2
y
x
B
15.5 1617.48
18. ∃x 0∈R ,都有x 03<1 .
三、解答题
19.
20.(1)在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫
∞ ⎪⎝⎭
上单调递增.(2)7b e a ≤<
21.
22.23.24.。