二叉树
二叉树知识点总结
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
二叉树概述
=0.xx =1; 若结点个数n=3,则有深度k=1,满足k=lb(3+1)-1=1。
二叉树概述
1.二叉树的定义
一、二叉树:是n(n≥0)个结点的有限集合。n=0的树称为空二叉树;n>0的二叉树由 一个根结点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成 。
逻辑结构: 一对二(1:2) 基本特征: ① 每个结点最多只有两棵子树(不存在度大于2的结点); ② 左子树和右子树次序不能颠倒。所以下面是两棵不同的树 注意:二叉树不是有序树
3.二叉树的性质
性质1 在一棵非空二叉树的第i层上至多有2i个结点(i≥0)。
性质2 深度为k的二叉树至多有2k+1-1个结点。 说明:深度k=-1,表示没有一个结点;深度k=0,表示只有一个根结点。
性质3 对于一棵非空的二叉树,如果叶结点个数为n0,度为2的结点数为n2, 则有 n0= n2+1。 证明:设n为二叉树的结点总数,n1为二叉树中度为1的结点个数,则有: n = n0 + n1 + n2
A
B
C
D
E
F
G
H I J K L MN O
A
B
C
D
E
F
G
H IJ
(a)满二叉树
(b)完全二叉树
问题:一个高度为h的完全二叉树最多有多少个结点?最少有多少个结点?
各种二叉树的介绍
各种二叉树的介绍
二叉树是一种常见的数据结构,每个节点最多只能有两个子节点,通常称为左子节点和右子节点。
根据二叉树的不同特性和限制,可以将其分为多种类型,包括普通二叉树、满二叉树、完全二叉树、平衡二叉树等。
普通二叉树:这是最基本的二叉树形式,每个节点最多有两个子节点,且没有特定的限制条件。
满二叉树:在满二叉树中,所有叶子节点都在最后一层,且节点总数为2^n-1,其中n为层数。
也就是说,除了叶子节点外,每个节点都有两个子节点。
完全二叉树:完全二叉树的所有叶子节点都在最后一层或倒数第二层,且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续。
如果将满二叉树从右至左、从下往上删除一些节点,剩余的结构就构成完全二叉树。
平衡二叉树(AVL树):平衡二叉树是一种特殊的二叉树,它要求每个节点的左子树和右子树的高度差绝对值不超过1,且每个子树也必须是一棵平衡二叉树。
这种树的查找效率通常高于普通二叉树,因此常用于需要频繁查找的场景。
此外,还有一些特殊的二叉树,如红黑树、B树、B+树等,它们具有不同的特性和应用场景。
红黑树是一种自平衡的二叉查找树,它的左右子树高度差有可能大于1,但通过对节点进行旋转和重新着色等操作,可以保持树的平衡性。
B树和B+树则常用于数据库和文件系统中,它们支持对节点进行分裂和合并操作,以满足快速查找、插入和删除数据的需求。
总之,二叉树是一种非常有用的数据结构,它可以用于实现各种算法和应用,如排序、搜索、压缩、加密等。
不同类型的二叉树具有不同的特性和应用场景,需要根据具体需求进行选择和使用。
二叉树基本知识
二叉树基本知识:
1.二叉树的定义:二叉树是每个结点最多有两个子树的树结构,它有五种基本形态:
二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
2.二叉树的性质:若规定根结点的层数为1,则一颗非空二叉树的第i层上最多有2^(i-1)
(i>0)个结点。
若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结
点数是2^K -1 (k >= 0)个。
对任何一颗二叉树,如果其叶子结点个数为n0,度为2的非叶子结点个数为n2,则有n0=n2+1。
3.二叉树的分类:二叉树有两大类,一是普通二叉树,二是特殊二叉树。
普通二叉树
是指除了满二叉树和完全二叉树之外的二叉树,特殊二叉树包括满二叉树和完全二叉树。
满二叉树是指所有层都完全填满的二叉树,而完全二叉树是指只有最下面两层结点度数可以小于2,并且最下面一层的叶子结点都位于本层中间位置的二叉树。
4.二叉树的遍历:二叉树的遍历主要有三种方法,分别是前序遍历、中序遍历和后序
遍历。
前序遍历是先访问根结点,然后遍历左子树,最后遍历右子树;中序遍历是先遍历左子树,然后访问根结点,最后遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根结点。
数据结构之二叉树(BinaryTree)
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
二叉树
我们也可以把递归过程改成用栈实现的非递归过程,下面给出先序 遍历的非递归过程: procedure inorder(bt:tree); var stack:array[1..n] of tree; {栈} top:integer; {栈顶指针} p:tree; begin top:=0; while not ((bt=nil)and(top=0)) do begin
• ⑴如果i=1,则结点i为根,无父结点;如果i>1,则其 父结点编号为trunc(i/2)。 • ⑵如果2*i>n,则结点i为叶结点;否则左孩子编号为 2*i。 • ⑶如果2*i+1>n,则结点i无右孩子;否则右孩子编号 为2*i+1。
存储结构
• 二叉树的存储结构和普通树的存储结构基本相同,有链 式和顺序存储两种方法。 • ⑴链式存储结构:有单链表结构或双链表结构,基本数 据结构定义如下: type tree=^node;{单链表结构} node=record data:char;{数据域} lchild,rchild:tree;{指针域:分别指向左、右孩子} end; var bt:tree;
• 输入: • 其中第一行一个整数n,表示树的结点数。接下来的n行 每行描述了一个结点的状况,包含了三个整数,整数之 间用空格分隔,其中:第一个数为居民人口数;第二个 数为左链接,为0表示无链接;第三个数为右链接。 • 输出: • 只有一个整数,表示最小距离和。
• • • • • • • •
样例 输入: 5 13 2 3 4 0 0 12 4 5 20 0 0 40 0 0
2、删除二叉树 procedure dis(var bt:tree); begin if bt<>nil then begin dis(bt^.lchild); dis(bt^.rchild); dispose(bt); end; end;
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
第五章二叉树
树为空
树为空
根的左右子 树都不空
二、二叉树的性质
第1层(根) 第2层 第3层
第4层
1、若层次从1开始,则第i层最多有2 i-1个结点 2、高度为h的二叉树最多有2h -1个结点 3、任何一棵二叉树,若叶子结点数为n0,度为2的结点数 为n2,则n0 = n2 + 1
5.2.2 二叉树的性质
二叉树具有下列重要性质: 性质1: 在二叉树的第i层上至多有2i-1个结点(i>=1)。
二叉树的二叉链表存储表示
Elem val(){return data;} void setVal(const Elem e){data=e;} inline BinTreeNode<Elem>* left(){return lchild;} inline BinTreeNode<Elem>* right(){return rchild;} void setLeft(BinTreeNode<Elem>* left){lchild=left;} void setRight(BinTreeNode<Elem>* right){rchild=right;} bool isLeaf()
Elem data; BinTreeNode * lchild; BinTreeNode * rchild; public:
BinTreeNode(){lchild=rchild=NULL;} BinTreeNode(Elem e,BinNodePtr*l=NULL,
BinNodePtr*r=NULL) {data=e; lchild=l; rchild=r;} ~BinTreeNode(){}
n0,度为2的结点数为n2,则n0=n2+1。
二 叉 树
下图是1.2中所示的完全二叉树的顺序存储示意图。
例如,bt[3]
3=/12, 即在bt[1]中,其左
孩子在bt[2i]=bt[6]中,右孩子在bt[2i+1]=bt[7]中。
目录
二 叉 树
2)一般二叉树的顺序存储 一般的二叉树采取的办法是按完全二叉树的形式补齐 二叉树所缺少的结点,对补齐后的二叉树进行编号,将二 叉树的原有结点按编号存储到一维数组中。 下图给出了一棵一般二叉树改造后的完全二叉树形态 和其顺序存储状态示意图。
目录
二 叉 树
2021年1月30日星期六
性质3 对于一棵非空的二叉树,如果叶子结点数 为n0,度数为2的结点数为n2,则有n0=n2+1。
性质4 具有n个结点的完全二叉树的深度k log2n +1。
性质5 对于具有n个结点的完全二叉树,如果按照 」 从上到下和从左到右的顺序对二叉树中的所有结点从1
则ki无左孩子结点,即ki是叶子结点。因此完全二叉
树中编号i> n / 2 的结点必定是叶子结点。 (3)若2i+1≤n,则ki的右孩子结点编号是2i+1;
否则ki无右孩子结点。
目录
二 叉 树
2021年1月30日星期六
可用一维数组bt[]存放一棵完全二叉树,将标号 为i的结点的数据元素存放在分量bt[i]中,bt[0]不 用或用来存储结点数目。
typedef struct BiTNode { // 结点结构
ElemType data;
2021年1月30日星期六
目录
二 叉 树
二叉树、树及有序树是有区别的,二叉树不是树的特 例,主要差别在于二叉树的子树有左右之分。
在有序树中,虽然一个结点的孩子之间是有左右次序 的,但若该结点只有一个孩子时,就无须区分其左右次序。
【数据结构】二叉树
【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。
所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。
)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。
说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。
也就是说,某个节点的⼦节点数可以是0,1或2。
由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。
但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。
不存在“中⼦节点”或者“单⼦节点”这种表述。
由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。
事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。
对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。
■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。
树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。
⼀个节点的⼦节点个数被称为“度数”。
正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。
节点与节点之间存在关联关系,这种关联关系的基本长度是1。
通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。
关于二叉树的计算总结
关于二叉树的计算总结
一、二叉树的概念
二叉树是指所有非空节点的度数最多为2的有序树,也叫二叉树、排序二叉树或二叉查找树。
由于二叉树的高效能,被广泛应用于信息存储、网络数据传输和多种问题的解决。
二叉树的结构主要可分为根节点,左子树,右子树三部分,每个节点最多可以有两个孩子,也可以没有孩子。
若节点有两个孩子,那么该节点的左孩子一定比该节点的右孩子小。
二、二叉树的性质
1、树种有n个节点,度数最大的节点有n0个:n0≤n;
2、除根节点外,其他节点的度数不超过2;
3、所有的叶子节点都在同一层上;
4、具有n个节点的完全二叉树的深度为log2n+1;
5、满二叉树:所有的叶子节点和度数为2的节点都存在,而且每一层上节点的数目都相等。
三、二叉树的存储形式
1、链式存储:每个结点由几个指针构成,指向其孩子和父亲。
访问任意结点只需按照指针顺序依次查找即可,效率较高,但需要额外的空间来存储指针。
2、顺序存储:根据二叉树的特点,将它转化为顺序存储,将其存入一个数组中,没有孩子的节点用空表示,可以大大减少存储空间,但需要知道节点的存储位置,以便快速访问。
数据结构二叉树知识点总结
数据结构二叉树知识点总结二叉树是指每个节点最多有两个子节点的树结构。
它是一种重要的数据结构,在算法和程序设计中被广泛应用。
下面是对二叉树的主要知识点进行详细总结。
1.二叉树的基本概念:-树节点:树的基本单元,包含数据项(节点值)和指向其他节点的指针。
-根节点:树的第一个节点。
-叶节点(又称为终端节点):没有子节点的节点。
-子节点:一些节点的下一级节点。
-父节点:一些节点的上一级节点。
-兄弟节点:拥有同一父节点的节点。
-深度:从根节点到当前节点的路径长度。
-高度:从当前节点到最远叶节点的路径长度。
2.二叉树的分类:-严格二叉树:每个节点要么没有子节点,要么有两个子节点。
-完全二叉树:除了最后一层外,其他层的节点数都达到最大,并且最后一层的节点依次从左到右排列。
-满二叉树:每个节点要么没有子节点,要么有两个子节点,并且所有叶节点都在同一层上。
-平衡二叉树:任意节点的两棵子树的高度差不超过13.二叉树的遍历:-前序遍历:根节点->左子树->右子树。
递归实现时,先访问当前节点,然后递归遍历左子树和右子树。
-中序遍历:左子树->根节点->右子树。
递归实现时,先递归遍历左子树,然后访问当前节点,最后递归遍历右子树。
-后序遍历:左子树->右子树->根节点。
递归实现时,先递归遍历左子树,然后递归遍历右子树,最后访问当前节点。
-层序遍历:从上到下,从左到右依次访问每个节点。
使用队列实现。
4.二叉查找树(BST):-二叉查找树是一种有序的二叉树,对于树中的每个节点,其左子树的节点的值都小于当前节点的值,右子树的节点的值都大于当前节点的值。
-插入操作:从根节点开始,递归地比较要插入的值和当前节点的值,根据比较结果向左或向右移动,直到找到插入位置为止。
-查找操作:从根节点开始,递归地比较要查找的值和当前节点的值,根据比较结果向左或向右移动,直到找到目标节点或到叶节点。
-删除操作:有三种情况:-被删除节点是叶节点:直接将其删除。
二叉树
6-2-2 二叉树的基本操作与存储实现
1、二叉树的基本操作 Initiate(bt)
Create(x, lbt, rbt)
InsertL(bt, x, parent) InsertR(bt, x, parent) DeleteL(bt,parent) DeleteR(bt,parent)
Search(bt,x)
BiTree DeleteL(BiTree bt, BiTree parent){ BiTree p; if(parent==NULL||parent->lchild==NULL){ cout<<“删除出错”<<endl; return NULL; } p=parent->lchild; parent->lchild =NULL; delete p; return bt ; }
a b c e 0 1 2 3 4 5 a b c d e ^ 6 7 8 9 10 ^ ^ ^ f g
d
f
g
特点:结点间关系蕴含在其存储位置中。浪费空间, 适于存满二叉树和完全二叉树。
二、链式存储结构 1、二叉链表存储法
A
B C E G D B A ^
lchild data rchild
F
^ C ^ typedef struct BiTNode { DataType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; ^ E
二叉树的五种基本形态
A
A
A B
A
B 空二叉树
B
C 左、右子树 均非空
只有根结点 的二叉树
右子树为空
左子树为空
05二叉树
}
if (Parent->Lchild == NULL) /* Parent所指结点左子树为空 */ Parent->Lchild = ptr;
else
{
/* Parent所指结点左子树非空 */
ptr->Lchild = Parent->Lchild;
Parent->Lchild = ptr;
}
二叉树可以是空的,空二叉树没有任何结 点; 二叉树上的每个结点最多可以有两棵子树, 这两棵子树是不相交的; 二叉树上一个结点的两棵子树有左、右之 分,次序是不能颠倒的。
图5-2 两棵不同的二叉树
从二叉树中的一个结点往下,到达它的 某个子、孙结点时所经由的路线,称为一条 “路径”。对于路径来说,从开始结点到终 止结点,中间经过的结点个数,称为路径的 “长度”。从根结点开始、到某个结点的路 径长度,称为该结点的“深度”。
一棵一般的二叉树,是由如下的3类结点组成的: 根结点——二叉树的起始结点; 分支(或内部结点)——至少有一个非空子树 (即度为1或2)的结点 叶结点——没有非空子树(即度为0)的结点。 有两种特殊的二叉树:满二叉树和完全二叉树。
所谓“满二叉树”,是指该二叉树的每 一个结点,或是有两个非空子树的结点,或 是叶结点,且每层都必须含有最多的结点个 数。
性质5-2 树高为k(k≥0)的二叉树, 最多有2k+1−1个结点。 【证明】由性质5-1可知,在树高为k的 二叉树里,第0层有20个结点,第1层有21个 结点,第2层有22个结点,„„,第k层有2k 个结点。因此,要求出树高为k的二叉树的 结点个数,就是求和:
20 + 21 + 22 +„+ 2k
数据结构与算法(3):二叉树
1.3.3 性质三
包含n个结点的二二叉树的高高度至至少为log2(n + 1);
证明:根据"性质2"可知,高高度为h的二二叉树最多有2{h}–1个结点。反之,对于包含n个节点的二二
叉树的高高度至至少为log2(n + 1)。
1.3.4 性质四
对任何一一颗二二叉树T,如果其终端结点数为n0 ,度为2的结点数为n2 ,则n0 = n2 + 1 证明:因为二二叉树中所有结点的度数均不不大大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度 结点数(n1)" + "2度结点数(n2)"。由此,得到等式一一。(等式一一) n = n0 + n1 + n2
}
还有一一种方方式就是利利用用栈模拟递归过程实现循环先序遍历二二叉树。这种方方式具备扩展性,它模拟 了了递归的过程,将左子子树不不断的压入入栈,直到null,然后处理理栈顶节点的右子子树。
java
public void preOrder(Node root){ if(root==null)return;
2. 叶子子数为2h 3. 第k层的结点数是:2k−1; 4. 总结点数是2k − 1,且总节点数一一定是奇数。
1.4.2 完全二二叉树
定义:一一颗二二叉树中,只有最小小面面两层结点的度可以小小于2,并且最下一一层的叶结点集中在靠左 的若干干位置上。这样现在最下层和次下层,且最小小层的叶子子结点集中在树的左部。显然,一一颗 满二二叉树必定是一一颗完全二二叉树,而而完全二二叉树未必是满二二叉树。
} root = s.pop(); root = root.right;//如果是null,出栈并处理理右子子树 } }
二叉树
7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。
二叉树的基本概念
二叉树的基本概念一、引言二叉树是计算机科学中最基础的数据结构之一,它是由节点和边组成的树形结构,其中每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。
本文将详细介绍二叉树的基本概念。
二、定义二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点。
通常将左子节点称为左子树,右子节点称为右子树。
三、基本术语1. 根节点:二叉树的顶层节点称为根节点。
2. 叶子节点:没有任何子节点的节点称为叶子节点。
3. 父节点和子节点:一个父亲可以有多个儿子,但是一个儿子只能有一个父亲。
4. 兄弟:具有相同父亲的两个或多个儿子称为兄弟。
5. 深度:从根到某个节点所经过的边数称为该节点的深度。
6. 高度:从某个节点到其所有后代中深度最大者加一(即包括该结点)称为该结点所在的二叉树的高度。
四、分类1. 满二叉树:一棵深度为k且有2^k-1个节点的二叉树称为满二叉树。
2. 完全二叉树:对于一棵深度为k的,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1至n的节点一一对应时,称之为完全二叉树。
3. 平衡二叉树:平衡二叉树也称为AVL树,是一种自平衡的排序二叉搜索树。
它具有以下性质:左右子树高度差不超过1,并且左右子树也是平衡二叉树。
五、遍历遍历是指按照某种顺序访问每个节点。
常见的遍历方式有三种:1. 前序遍历(Pre-order):先访问当前节点,再依次遍历左子树和右子树。
2. 中序遍历(In-order):先依次遍历左子树,再访问当前节点,最后遍历右子树。
3. 后序遍历(Post-order):先依次遍历左子树和右子树,最后访问当前节点。
六、应用1. 搜索算法:在搜索算法中,二叉树被广泛应用于二分查找。
2. 排序算法:在排序算法中,二叉树被广泛应用于堆排序和快速排序。
3. 编译器:在编译器中,二叉树被广泛应用于语法分析和代码生成。
七、总结本文介绍了二叉树的基本概念、术语、分类、遍历以及应用。
理论基础 —— 二叉树
【二叉树的定义】( binary tree)是 n 个结点的有限集合,该集合或为空集(空二叉树),或由一个根结点与两棵互不相二叉树(右子树的二叉树构成。
交的,称为根结点的左子树左子树、右子树二叉树的特点是:每个结点最多有两棵子树,故二叉树中不存在度大于 2 的结点二叉树是有序的,其次序不能任意颠倒,即使树中的某个结点只有一棵子树,也要区分它是左子树还是右子树二叉树具有以下 5 种基本形态:【特殊的二叉树】在实际应用中,常会用到以下几种特殊的二叉树。
1.斜树右斜树左斜树,所有的结点都只有右子树的二叉树称为右斜树所有的结点都只有左子树的二叉树称为左斜树在斜树中,每层只有一个结点,因此斜树的结点个数与其深度相同2.满二叉树满二叉树。
在一棵二叉树中,若所有的分支结点都存在左子树和右子树,且所有的叶子都在同一层上,则称为满二叉树其特点是:叶子只能出现在最下一层只有度为 0、度为 2 的结点满二叉树在同样深度的二叉树中结点个数、叶结点个数最多。
由于满二叉树的特性可知:满二叉树在同样深度的二叉树中结点个数、叶结点个数最多。
3.完全二叉树对一棵具 n 个结点的二叉树按层序编号,若编号为 i 的结点与同样深度的满二叉树中编号 i 的结点在二叉树中的满二叉树是完全二叉树位置完全相同,则称为完全二叉树完全二叉树,那么显然有:满二叉树是完全二叉树其特点是:叶结点只能出现在最下两层,且最下层的叶结点都集中在二叉树左侧连续的位置若有度为 1 的结点,只可能有一个,且其只有左孩子深度为 k 的完全二叉树在 k -1 层上行一定是满二叉树简单来说,在满二叉树中,从最后一个结点开始,连续去掉任意个的结点,即是一棵完全二叉树【二叉树的性质】1.二叉树二叉树的第 i 层上行最多有个结点2.二叉树中,最多有个结点,最少有 k 个结点在一棵深度为 k 的二叉树推论:深度为 k 且具个结点的二叉树一定是满二叉树,但深度为 k 具有 k 个结点的二叉树不一定是斜树3.具有 n 个结点的二叉树二叉树,其分支数:B=n-1,对于任意一个结点,每度贡献一个分支,即:度为 0 的结点贡献 0 个分支,度为 1 的结点贡献 1 个分支,度为 2 的结点贡献 2 个分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学信息学院
©版权所有,转载或翻印必究
Page 15
4.2 二叉树的性质
二叉树的高度定义为二叉树中层数最 大的叶结点的层数加1
二叉树的深度定义为二叉树中层数最 大的叶结点的层数
北京大学信息学院
©版权所有,转载或翻印必究
Page 16
4.3 二叉树的抽象数据类型
定义了二叉树的逻辑结构之后,我们需要考虑在二叉树逻辑 结构之上的各种可能运算,这些运算应该适合二叉树的各种
北京大学信息学院
©版权所有,转载或翻印必究
Page 26
4.4 周游二叉树
二叉树周游
4.4.1 深度优先周游二叉树 4.4.2 非递归深度优先周游二叉树 4.4.3 广度优先周游二叉树
北京大学信息学院
©版权所有,转载或翻印必究
Page 27
深度优先周游二叉树
我们变换一下根结点的周游顺序,可以得到 以下三种方案:
全二叉树的概念
北京大学信息学院
©版权所有,转载或翻印必究
Page 7
完全二叉树
北京大学信息学院
©版权所有,转载或翻印必究
Page 8
扩充二叉树
当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶
对于原来二叉树里度数为1的分支结点,在它下面 增加一个空树叶
对于原来二叉树的树叶,在它下面增加两个空树叶
北京大学信息学院
©版权所有,转载或翻印必究
Page 2
4.1 二叉树的概念
4.1.1 二叉树的定义及相关概念 4.1.2 满二叉树
完全二叉树 扩充二叉树
北京大学信息学院
©版权所有,转载或翻印必究
Page 3
二叉树的定义
二叉树由结点的有限集合构成:
或者为空集 或者由一个根结点及两棵不相交的分别称作这个根的左
因此T中空子树数目等于T中结点数加1。
北京大学信息学院
©版权所有,转载或翻印必究
Page 13
4.2 二叉树的性质
3.任何一颗二叉树,度为0的结点比度为2的结点多一个
证明:设有n个结点的二叉树的度为0、1、2的结点数
分别为=n0,n1,n2,则
n = n0 + n1 + n2
(公式4.3)
设边数为e。因为除根以外,每个结点都有一条边进入,故
北京大学信息学院
©版权所有,转载或翻印必究
Page 29
子树和右子树的二叉树(它们也是结点的集合)组成
这是个递归的定义。二叉树可以是空集合,因此根
可以有空的左子树或右子树,或者左右子树皆为空
北京大学信息学院
©版权所有,转载或翻印必究
Page 4
二叉树的五种基本形态
(a)空 (b)独根 (c)空右 (d)空左 (e)左右都不空
北京大学信息学院
©版权所有,转载或翻印必究
//返回二叉树根结点
BinaryTreeNode<T>* Root(){return root;};
//返回current结点的父结点
BinaryTreeNode<T>* Parent(BinaryTreeNode<T>* current);
//返回current结点的左兄弟
BinaryTreeNode<T>* LeftSibling(
n = e + 1。由于这些边是有度为1和2的的结点射出的,
因此e = n1+ 2·n2,于是 n = e + 1= n1 + 2·n2 + 1
因此由公式(1)(2)得
(公式4.4)
n0 + n1 + n2 = n1 + 2·n2 + 1 即 n0 = n2 + 1
北京大学信息学院
©版权所有,转载或翻印必究
void CreateTree(const T& elem,
BinaryTree<T>& leftTree, BinaryTree<T>& rightTree); //前序周游二叉树或其子树 void PreOrder(BinaryTreeNode<T>* root); //中序周游二叉树或其子树 void InOrder(BinaryTreeNode<T>* root);
Page 14
4.2 二叉树的性质
4. 二叉树的第i层(根为第0层,i≥1)最多有2i 个结点
5. 高度为k(深度为k-1。只有一个根结点的二叉 树的高度为1,深度为0)的二叉树至多有2k-1个 结点
6. 有n个结点(n>0)的完全二叉树的高度为 ⎡log2 (n+1)⎤ (深度为⎡log2 (n+1)⎤ - 1)
//删除二叉树或其子树
void DeleteBinaryTree(BinaryTreeNode<T>* root);
};
北京大学信息学院
©版权所有,转载或翻印必究
Page 25
4.4 周游二叉树
周游 系统地访问数据结构中的结点。 每个结点都正好被访问到一次。
周游一棵二叉树的过程实际上就是把二 叉树的结点放入一个线性序列的过程, 或者说把二叉树进行线性化
有n(总结点数= m(叶)+b(分支)
(公式4.1)
∵ 每个分支,恰有两个子结点(满),故有2*b条边; 一颗二叉树,除根结点外,每个结点都恰有一条边联接 父结点,故共有n-1条边。即n - 1 = 2b (公式4.2)
∴由(公式4.1),(公式4.2)得 n-1=m+b-1 = 2b,得出
m(叶) = b(分支)+ 1
每个元素结点都有leftchild()和rightchild()左右子结点 结构
另外每个结点还包含一个数据域value()。
为了强调抽象数据类型与存储无关,我们并没有具
体规定该抽象数据类型的存储方式
北京大学信息学院
©版权所有,转载或翻印必究
Page 18
3
4.3 二叉树的抽象数据类型
template <class T>
北京大学信息学院
©版权所有,转载或翻印必究
Page 22
4.3 二叉树的抽象数据类型
public:
BinaryTree(root=NULL);
//构造函数
~BinaryTree() {DeleteBinaryTree(root);};//析构函数
bool isEmpty() const;
//判定二叉树是否为空树
Page 5
满二叉树
如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作 满二叉树
北京大学信息学院
©版权所有,转载或翻印必究
Page 6
1
完全二叉树
若一颗二叉树
最多只有最下面的两层结点度数可以小于2 最下面一层的结点都集中在该层最左边的若干位置上,
则称此二叉树为完全二叉树 在许多算法和算法分析中都明显地或隐含地用到完
应用 :
二叉树的某些运算是针对整棵树的
初始化二叉树
合并两棵二叉树
二叉树的大部分运算都是围绕结点进行的
访问某个结点的左子结点、右子结点、父结点
访问结点存储的数据。
北京大学信息学院
©版权所有,转载或翻印必究
Page 17
4.3 二叉树的抽象数据类型
二叉树结点抽象数据类型BinaryTreeNode是带有 参数 T 的模板,T是存储在结点中的数据类型
private: //二叉树根结点指针
BinaryTreeNode<T>* root; //从二叉树的root结点开始 //查找current结点的父结点
BinaryTreeNode<T>*
GetParent(BinaryTreeNode<T>* root,
BinaryTreeNode<T>* current);
① 前序周游(tLR次序):访问根结点;前 序周游左子树;前序周游右子树。
② 中序周游(LtR次序):中序周游左子 树;访问根结点;中序周游右子树。
③ 后序周游(LRt次序):后序周游左子 树;后序周游右子树;访问根结点。
北京大学信息学院
©版权所有,转载或翻印必究
Page 28
深度优先周游二叉树
深度周游如下二叉树
北京大学信息学院
©版权所有,转载或翻印必究
Page 12
2
4.2 二叉树的性质
2.满二叉树定理推论:一个非空二叉树的空子树(指针) 数目等于其结点数加1。
证明:设二叉树T,将其所有空子树换为树叶,记新 的 扩充满二叉树为T’。所有原来T的结点现在是T’的分支结 点。根据满二叉树定理,新添加的树叶数目等于T结点 个数加1。而每个新添加的树叶对应T的一个空子树。
第四章 二叉树
任课教员:张铭、赵海燕、冯梅萍、王腾蛟 /mzhang/DS/ 北京大学信息科学与技术学院 ©版权所有,转载或翻印必究
主要内容
4.1 二叉树的概念 4.2 二叉树的主要性质 4.3 二叉树的抽象数据类型 4.4 周游二叉树 4.5 二叉树的实现 4.6 二叉搜索树 4.7 堆与优先队列 4.8 Huffman编码树
BinaryTreeNode<T>* current);
北京大学信息学院
©版权所有,转载或翻印必究
Page 23
4.3 二叉树的抽象数据类型
//返回current结点的右兄弟
BinaryTreeNode<T>* RightSibling(