WS-ReplicationResource Replicated Resources in Grid Environments.

合集下载

tomcat配置文件server文件详解

tomcat配置文件server文件详解

一个虚拟主机 ) appBase应用程序基本目录,即存放应用程序的目录 unpackWARs如果为true ,则tomcat 会自动将WAR 文件解压,否则不解压,直接从WAR 文件中运行应用程序 Logger ( 表示日志,调试和错误信息)className指定logger 使用的类名,此类必须实现org 。

apache 。

catalina.Logger 接口 prefix 指定log 文件的前缀 suffix 指定log 文件的后缀 timestamp如果为true ,则log 文件名中要加入时间,如下例:localhost_log 。

2001—10-04.txt Realm ( 表示存放用户名,密码及role 的数据库)className指定Realm 使用的类名,此类必须实现org.apache 。

catalina.Realm 接口 Valve ( 功能与Logger 差不多,其prefix 和suffix 属性解释和Logger 中的一样)className 指定Valve 使用的类名,如用org.apache.catalina.valves 。

AccessLogValve 类可以记录应用程序的访问信息 directory指定log 文件存放的位置 pattern有两个值,common 方式记录远程主机名或ip 地址,用户名,日期,第一行请求的字符串,HTTP 响应代码,发送的字节数。

combined 方式比common 方式记录的值更多<Server>元素它代表整个容器,是Tomcat 实例的顶层元素.由org.apache 。

catalina.Server 接口来定义.它包含一个〈Service>元素.并且它不能做为任何元素的子元素.< Server port ="8005" shutdown ="SHUTDOWN” debug =”0" >1〉className指定实现org。

--cluster-replicas详解

--cluster-replicas详解

--cluster-replicas详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!--cluster-replicas详解:优化Redis集群性能的利器Redis作为一款高性能的内存数据库,在大规模应用中扮演着关键角色。

k8s 多副本 原理

k8s 多副本 原理

k8s 多副本原理
Kubernetes(k8s)多副本的原理主要基于以下步骤:
1. 部署(Deployment):在Kubernetes中,要实现多副本,通常会使用Deployment资源。

Deployment是一种控制器,用于管理ReplicaSet和Pod。

2. 副本集(ReplicaSet):ReplicaSet是Kubernetes中的一个资源对象,它根据提供的Pod模板定义创建多个具有相同配置的Pod副本。

通过设置合适的副本数量,可以确保服务的高可用性和容错性。

3. 自动扩缩容:Kubernetes还提供了自动扩缩容功能,可以根据资源使用情况自动增加或减少Pod副本数量。

这可以通过Horizontal Pod Autoscaling组件实现,该组件可以根据CPU使用情况等指标动态调整Pod数量。

总的来说,Kubernetes通过Deployment、ReplicaSet和自动扩缩容机制实现了多副本功能,从而提高了服务的可用性和容错性。

k8sapiserver启动参数

k8sapiserver启动参数

k8sapiserver启动参数Kubernetes API Server(k8sapiserver)是Kubernetes集群中的一个核心组件,负责提供Kubernetes API,并与其他组件进行通信。

它为集群中的其他组件提供了一种统一的方式来与Kubernetes进行通信和交互。

在启动k8sapiserver时,可以配置一些参数来定制其行为。

下面将详细介绍一些常用的k8sapiserver启动参数。

1. --advertise-address:该参数用于指定API Server向集群中的其他组件宣告自己的地址。

默认情况下,它将使用节点的IP地址。

可以将其设置为特定的IP地址,以确保其他组件能够正确访问API Server。

2. --allow-privileged:该参数用于启用或禁止容器的特权模式。

如果设置为true,则允许容器在特权模式下运行。

这意味着容器可以访问主机上的设备和文件系统。

默认情况下,该参数设置为false。

3. --audit-log-maxage:该参数用于设置审计日志的最大保留时间。

可以通过设置一个整数值(以天为单位)来控制保留多长时间的审计日志。

超过指定时间的日志将被自动删除。

4. --authentication-mode:该参数用于选择API Server的身份验证模式。

可以使用以下选项之一:'Webhook'、'ClientCertificate'、'Anonymous'、'Node'、'ServiceAccount'。

默认情况下,API Server使用'BABasicAuth'作为身份验证模式。

5. --authorization-mode:该参数用于选择API Server的授权模式。

可以使用以下选项之一:'AlwayAllow'、'Webhook'、'RBAC'、'ABAC'、'Node'。

k8s冲突检测原理

k8s冲突检测原理

k8s冲突检测原理Kubernetes(K8s)是当今最流行的容器编排系统之一,它提供的冲突检测机制是非常关键的。

在这篇文章中,我们将探讨K8s冲突检测原理及其基本步骤。

K8s冲突检测主要涉及以下三个方面:1. 命名冲突:命名空间、标签、注释等命名空间是K8s中的一种资源,可用于将各种资源进行分组。

在同一命名空间中,资源名称必须唯一。

如果两个资源的名称相同,则这将导致冲突。

为了避免这种情况的发生,K8s要求在同一命名空间中不能使用相同的资源名称。

标签/注释是K8s中的另一种元数据,它们用于标识和描述资源。

在命名空间中,标签和注释也必须唯一。

如果同一个命名空间中有两个相同的标签或注释,这也将导致冲突。

2. 状态冲突:Pod的状态Pod是K8s中最基本的运行单元,它由一个或多个容器组成。

Pod 的状态包括:Pending、Running、Succeeded、Failed和Unknown。

在实际运行中,如果有两个Pod的状态相同,并且它们属于同一名称空间,那么这将会导致冲突。

例如,如果有两个Pod的状态均为Running且属于同一命名空间,则这两个Pod将同时尝试使用相同的资源(如共享存储等),这将导致资源冲突和应用程序故障。

3. 版本冲突:资源版本K8s是分布式系统,资源分布在不同的节点中。

在K8s中,资源包含一组字段,比如metadata、status、spec等。

其中metadata包含资源的名称和版本信息。

当K8s中有两个资源的名称相同但版本不同时,将出现版本冲突。

例如,如果一个RC(Replication Controller)的版本为1,并且其Pod副本数为3,而另一个RC的版本为2,则这两个RC将冲突,因为它们都针对同一个Pod资源。

基本步骤:K8s的冲突检测过程需要以下三个基本步骤:1. 定位资源冲突:K8s首先会检查每个资源的元数据,以确定资源是否具有相同的名称和版本。

2. 标记资源:如果两个或多个资源具有相同的名称和版本,则K8s会将其中一个或多个资源标记为“冲突”。

CKA考试题库

CKA考试题库

CKA考试题库第一题:关于RBAC权限控制解答:第二题:查看Pod的CPU解答:第三题:配置网络策略NetworkPolicy解答:第四题:暴露服务Service解答:1.修改front-end deploymentkubectl edit deployment front-end2.暴露服务kubectl expose deployment front-end --target-port=80 --port=80 --name=front-end-svc --type=NodePort检查curl [cluster-ip]第五题:创建ingress解答:第六题:扩容Deployment的副本数量解答:第七题:调度pod到指定节点解答:第八题:查看可用节点数量解答:第九题:创建多容器pod解答:第十题:创建PV解答:第十一题:创建PVC解答:spec:volumes:- name: task-pv-storagepersistentVolumeClaim:claimName: pv-volume containers:- name: web-serverimage: nginx:1.16volumeMounts:- mountPath:"/usr/share/nginx/html "name: task-pv-storage2.运行pvc.yamlkubectl apply -f pvc.yaml3.修改大小kubectl edit pvc pv-volume --record检查kubectl get pvc pv-volume第十二题:查看pod日志解答:第十三题:使用sidecar代理容器日志解答:第十四题:升级集群解答:第十五题:备份还原ETCD解答:第十六题:排查集群中的故障节点解答:第十七题:节点维护解答:。

kubectl scale deployment 参数

kubectl scale deployment 参数

kubectl scale deployment 参数
在Kubernetes中,我们可以使用 kubectl 命令来对Deployment 进行扩容或缩容操作。

下面是 kubectl scale deployment 的常用参数:
- --replicas:指定 Deployment 的副本数。

例如,kubectl scale deployment nginx --replicas=3 将 nginx Deployment 的副本数设置为 3。

- --current-replicas:显示当前 Deployment 的副本数。

- --resource-version:可以指定 Deployment 对象的资源版本号,用于更新 Deployment。

- --timeout:指定扩容或缩容操作的超时时间。

需要注意的是,进行扩容或缩容操作时,Kubernetes 只会通过创建新的 Pod 或删除现有 Pod 的方式来调整 Deployment 的副本数。

因此,如果需要对 Deployment 中的容器进行扩容或缩容操作,需要在容器中手动配置。

以上就是 kubectl scale deployment 常用的参数。

在实际使用中,可以根据需要对参数进行调整,以实现对 Deployment 的灵活控制。

- 1 -。

replication client和replication slave权限

replication client和replication slave权限

replication client和replication slave权限1. 引言1.1 概述引言部分旨在介绍本文的主题和背景,为读者提供对replication client和replication slave权限的基本了解。

本文将探讨这两种权限的定义、作用以及权限控制方式,并通过示例与应用场景展示其实际运用。

1.2 文章结构本文共分为五个部分,每个部分都涵盖了特定内容。

首先是引言部分,主要介绍文章的主题和目的,以及文章所包含的章节结构。

其后是replication client权限部分,我们将详细解释replication client权限的定义、作用和控制方式,并给出一些相关示例和应用场景。

然后是replication slave权限部分,我们会介绍replication slave权限的定义、作用和控制方式,并提供相应示例和实际应用场景。

接下来是区别与联系部分,我们将比较并说明replication client和replication slave在功能、权限方面的差异,并阐述它们之间的关系。

最后是结论部分,总结讨论结果并给出对客户端和从库权限区别及作用的实际应用建议。

1.3 目的本文旨在帮助读者深入了解并弄清楚replication client和replication slave这两种权限在数据库中扮演的角色和作用。

通过详细介绍其定义、功能和权限控制方式,读者将更好地理解这两种权限的区别并能根据实际需求合理运用。

同时,本文还将通过实例和应用场景的展示,帮助读者更好地了解其具体应用,并提供相应的建议以指导实际操作中的权限管理。

2. replication client权限:2.1 定义与作用:Replication client是指可以访问数据库复制功能的客户端程序或用户。

客户端通过使用replication client权限来控制对数据库复制功能的访问和操作权限。

该权限的作用在于允许客户端执行与数据库复制相关的操作,例如启动、停止或监视复制进程,设置和修改复制参数,以及查看复制状态等。

redis replication使用场景及作用

redis replication使用场景及作用

redis replication使用场景及作用Redis Replication 使用场景及作用1. 什么是 Redis Replication?Redis Replication 是 Redis 数据库的一种特性,它允许将一个Redis 数据库的数据复制到其他的 Redis 实例上。

这样的复制过程可以是一主多从的形式,也可以是一对一的形式。

2. Redis Replication 的作用Redis Replication 在实际的开发中有着广泛的应用场景,它的主要作用有:高可用性通过将主数据库的数据复制到从数据库上,当主数据库出现故障时,可以将从数据库切换为主数据库,从而实现高可用性。

这样的设计可以避免数据丢失,保证系统的可用性。

负载均衡通过将数据复制到多个从数据库上,可以将请求分摊到多个节点上,从而实现负载均衡。

这样的设计可以提高系统的性能和吞吐量,避免单点故障。

数据备份通过复制数据到其他节点上,可以实现数据的备份。

当主节点的数据发生意外丢失时,可以从备份节点恢复数据,避免数据的永久性丢失。

3. Redis Replication 的使用场景Redis Replication 可以应用于以下场景:高并发读取场景当系统面临高并发读取的场景时,可以通过多个从数据库提供读取操作,从而提高系统的读取性能。

主数据库负责处理写入操作,从数据库负责处理读取操作,从而实现读写分离。

数据分析场景在数据分析场景中,通常需要对海量数据进行处理和分析。

通过将数据复制到多个从数据库上,可以同时进行多个不同的分析任务,提高数据处理的效率。

多地域访问场景在多地域访问的场景中,通过将数据复制到不同地域的从数据库上,可以将数据近距离地提供给用户。

这样可以减少网络延迟,提高用户访问的速度和体验。

4. 如何配置 Redis Replication?配置 Redis Replication 需要以下步骤:1.启动主数据库,并开启 Replication 功能。

replication manager 操作命令

replication manager 操作命令

replication manager 操作命令全文共四篇示例,供读者参考第一篇示例:Replication Manager是一个用于管理数据库复制的工具,可以通过Replication Manager来实现数据库备份、恢复、监控和管理等操作。

在使用Replication Manager时,我们需要掌握一些基本的操作命令,以便更好地管理数据库的复制。

本文将介绍一些常用的Replication Manager操作命令,帮助读者更好地理解和使用这一工具。

一、启动和停止Replication Manager1. 启动Replication Manager启动Replication Manager需要使用如下命令:repmgr -d /path/to/repmgr.conf standby三、数据库备份和恢复四、监控数据库复制状态五、管理数据库复制六、操作数据库切换2. 自动切换数据库Replication Manager还支持自动切换数据库操作,可以通过配置replication设置来实现数据库主从的自动切换。

七、其他操作命令第二篇示例:Replication Manager(复制管理器)是一种用于管理数据库复制的工具,它可以帮助用户轻松地创建、监控和管理数据库复制工作。

在进行数据库复制操作时,操作命令是非常重要的,下面将介绍一些常用的Replication Manager操作命令,帮助用户更好地利用这个强大的工具。

1. 创建复制任务要创建一个新的复制任务,可以使用以下命令:```repcli CREATE_REPLICATION_TASK -taskName <任务名称> -sourceDSN <源数据库DSN> -targetDSN <目标数据库DSN>-tableList <需要复制的表清单>```在这个命令中,-taskName指定了任务的名称,-sourceDSN指定了源数据库的DSN,-targetDSN指定了目标数据库的DSN,-tableList指定了需要复制的表清单。

k8s中常用的注解

k8s中常用的注解

k8s中常用的注解Kubernetes(K8s)是一个用于自动化容器化应用程序部署、扩展和运维的开源平台。

在K8s中,注解是一种可用于向资源对象添加元数据的机制,以提供额外的信息和指导。

注解不同于标签,它们通常不用于资源的选择和筛选,而是用于提供关于资源的辅助信息。

以下是Kubernetes中一些常用的注解,它们为用户提供了更多控制和定制化的选项。

1.kubectl.kubernetes.io/last-applied-configuration:–描述:记录了最后一次应用于该资源的kubectl命令及其配置信息。

这对于跟踪资源变更历史很有用。

2.kubectl.kubernetes.io/restartedAt:–描述:标记了最后一次重启该资源的时间戳。

有助于监控和调试应用程序的重启频率。

3.deployment.kubernetes.io/revision:–描述:用于Deployment资源,指示该部署的修订版本。

在滚动更新中,每次更新都会导致修订版本的递增。

4.helm.sh/chart:–描述:用于Helm Charts,标识该资源所属的Helm Chart的名称和版本。

有助于跟踪和管理应用的版本。

5.kubectl.kubernetes.io/managed-by:–描述:标记了管理该资源的工具或系统。

例如,标记为Helm表示由Helm管理,而标记为kubectl表示通过kubectl手动管理。

6.prometheus.io/scrape:–描述:用于Prometheus监控,指示是否应该对该资源进行抓取。

若值为true,Prometheus将尝试从该资源中获取指标。

7.prometheus.io/port:–描述:用于Prometheus监控,指定了抓取指标时使用的端口号。

8.sidecar.istio.io/inject:–描述:用于Istio服务网格,指示是否应该为该资源注入Istio sidecar容器。

Replication步骤

Replication步骤

做Replication的步骤1)如果目标数据库不存在,就在目标数据库上新建目标数据库2)在大的数据库上做Replication前面的步骤:①在源数据库的服务器上建一New Publication,在publication上右击新建Publication,点击下一步,选择要做的publication项目,如果做的是数据库,就选择数据库,在New Publication Wizard中要选择事务日志Transactional publication,它是把表中有变化的数据更新到目标数据库中,快照Snapshot publication是把订阅者的数据表在更新前都删掉,所以我们一般选择Transactional publication。

在Artical,选择表做下一步。

完成了一个pulication后,右击刚建的replication,在properieties中添加表添加列,添加时间等。

此时一个publication的准备工作就做好了。

②现在做的是publication的链接,new subscription,选要链接的publication后,下一步,到了new subscription Wizard这一步,选择的数据库是目标数据库,下一步security中填写信息后,注,用户名密码是拥有publication的服务器,下一步,在initalize subsription 中选择at first snapchronization,这是第一次同步数据。

Replication就完成了,定时查看。

修改replication的时间是在SQL server Agent 里的jobs,找到相应的replication修改时间。

在replication上右击后选择launch replication monitor,打开replication的界面,。

rocketmq-replicator用法

rocketmq-replicator用法

RocketMQ Replicator 是阿里云开源的用于在不同 RocketMQ 集群之间进行数据复制的工具。

它能够实现 RocketMQ 集群之间的消息复制和同步。

以下是 RocketMQ Replicator 的一般用法:1. 下载和部署首先,你需要下载 RocketMQ Replicator 的二进制文件,并解压到你的服务器上。

可以从官方 GitHub 仓库获取最新版本。

2. 配置文件在解压后的 RocketMQ Replicator 目录中,有一个conf目录,里面包含了配置文件。

你需要修改配置文件以适应你的复制需求。

•replicator.properties:主要配置复制的源和目标 RocketMQ 集群信息、复制策略等。

•logback_replicator.xml:日志配置文件。

3. 修改配置文件打开conf/replicator.properties文件,根据你的需求修改以下关键配置项:请替换YOUR_SOURCE_CLUSTER_ID、YOUR_SOURCE_NAMESRV_ADDR、YOUR_DEST_CLUSTER_ID、YOUR_DEST_NAMESRV_ADDR为你实际的RocketMQ 集群配置。

4. 启动 RocketMQ Replicator在解压后的 RocketMQ Replicator 目录中,执行以下命令启动 Replicator:5. 监控和管理RocketMQ Replicator 提供了一个简单的 Web 界面,用于监控和管理。

你可以通过修改conf/application.properties中的配置来更改端口等信息。

6. 其他命令RocketMQ Replicator 还提供了其他一些命令,例如停止 Replicator、查看状态等:这是一个简单的 RocketMQ Replicator 的使用示例。

具体的配置和使用细节可以参考 RocketMQ Replicator 的文档或代码库。

深入解析MySQLreplication协议

深入解析MySQLreplication协议

深⼊解析MySQLreplication协议Why最开始的时候,只是简单的抽象的代码,提供⼀个基本的mysql driver以及proxy framework,但做到后⾯,笔者突然觉得,既然研究了这么久mysql client/server protocol,⼲脆顺带把replication protocol也给弄明⽩算了。

现在想想,幸好当初决定实现了replication的⽀持,不然后续这个⾃动同步MySQL到Elasticsearch的⼯具就不可能在短时间完成。

其实MySQL replication protocol很简单,client向server发送⼀个MySQL binlog dump的命令,server就会源源不断的给client发送⼀个接⼀个的binlog event了。

Register⾸先,我们需要伪造⼀个slave,向master注册,这样master才会发送binlog event。

注册很简单,就是向master发送COM_REGISTER_SLAVE命令,带上slave相关信息。

这⾥需要注意,因为在MySQL的replication topology中,都需要使⽤⼀个唯⼀的server id来区别标⽰不同的server实例,所以这⾥我们伪造的slave也需要⼀个唯⼀的server id。

Binlog dump最开始的时候,MySQL只⽀持⼀种binlog dump⽅式,也就是指定binlog filename + position,向master发送COM_BINLOG_DUMP命令。

在发送dump命令的时候,我们可以指定flag为BINLOG_DUMP_NON_BLOCK,这样master在没有可发送的binlog event之后,就会返回⼀个EOF package。

不过通常对于slave来说,⼀直把连接挂着可能更好,这样能更及时收到新产⽣的binlog event。

在MySQL 5.6之后,⽀持了另⼀种dump⽅式,也就是GTID dump,通过发送COM_BINLOG_DUMP_GTID命令实现,需要带上的是相应的GTID信息,不过笔者觉得,如果只是单纯的实现⼀个能同步binlog的⼯具,使⽤最原始的binlog filename + position就够了,毕竟我们不是MySQL,解析GTID还是稍显⿇烦的。

redis-replicator原理

redis-replicator原理

redis-replicator原理
Redis-replicator是Redis的一种复制插件,其原理主要是通过读取主节点(master)的写操作日志(RDB或AOF文件),并将这些日志应用到从节点(slave)上,从而保持主从节点数据的一致性。

具体来说,当主节点产生一份全量数据的快照时,Redis-replicator会将这个快照发送给从节点。

同时,从产生快照时刻起,主节点会记录新接收到的写命令。

当快照发送完成后,主节点将累积的写命令发送给从节点,从节点则根据这些写命令更新本地数据。

这样,主从数据就保持了一致性。

在复制过程中,如果主节点有多个从节点,Redis-replicator会将写操作日志同时发送给多个从节点,确保每个从节点都收到相同的日志信息。

如果有新的从节点加入,Redis-replicator会将之前缺失的写操作日志补发给这个新节点,使其与其它从节点保持同步。

此外,Redis-replicator还支持断点续传、无磁盘化复制等功能,可以有效地提高复制的可靠性和效率。

replication manager切换原理

replication manager切换原理

replication manager切换原理replication manager切换原理是指在数据库系统中,如何实现高可用性的数据复制以及在主节点发生故障时如何无缝地切换到备用节点。

在分布式环境中,使用复制集群可以提高系统的可用性和性能。

replication manager切换原理的关键在于以下几个步骤:1. 主节点监测:replication manager会定期检查主节点的健康状态。

如果主节点发生故障,replication manager会立即察觉到并开始切换过程。

2. 从节点选择:在主节点故障后,replication manager会从备用节点中选择一个合适的节点作为新的主节点。

通常选择的主节点是最优的备用节点,具备足够的处理能力和存储能力来接管主节点的工作负载。

3. 数据同步:一旦新的主节点被选定,replication manager会确保所有的备用节点都与新的主节点进行数据同步。

这包括将主节点上的所有更新操作同步到备用节点,以保持数据的一致性。

4. 客户端重定向:在主节点切换完成后,replication manager会通知所有的客户端切换到新的主节点。

这需要对客户端进行重定向,使其连接到新的主节点,并继续正常的操作。

5. 故障修复:一旦主节点恢复正常,replication manager会检测到并将其重新配置为主节点的一部分。

这将重新启动数据复制过程,以确保所有的节点都保持一致。

总结而言,replication manager切换原理通过监测主节点的状态,选择合适的备用节点,进行数据同步,并重定向客户端的连接来实现主节点切换。

这种切换方法确保了数据库系统在主节点故障的情况下仍能提供高可用性和可靠的数据访问。

PersistentVolume的回收策略

PersistentVolume的回收策略

PersistentVolume的回收策略PersistentVolume可以有各种回收策略,包括Retain、Recycle和Delete。

对于动态供应的持久卷,默认的回收策略是Delete。

这意味着当⽤户删除相应的PersistentVolumeClaim时,动态供应的卷将⾃动删除。

如果卷中包含宝贵的数据,这种⾃动⾏为可能不合适。

在这种情况下,使⽤Retain策略更合适。

使⽤Retain策略,如果⽤户删除PersistentVolumeClaim,则不会删除相应的PersistentVolume。

相反,它被移动到 Released阶段,在那⾥它的所有数据都可以⼿动恢复。

[root@k8s-master1 opt]# kubectl get pv --all-namespacesNAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-1a6ba283-b16a-4cb4-b4a7-b4506534a9a9 20Gi RWO Delete Bound kube-system/prometheus-data-prometheus-0 managed-nfs-storage 26d pvc-33a6230c-481f-4d61-aff6-89d95bef74d9 4Gi RWO Delete Bound kube-system/alertmanager managed-nfs-storage 26dpvc-685576e3-cca1-4f6d-86b1-2e4395c6d499 5Gi RWO Delete Bound kube-system/grafana-data-grafana-0 managed-nfs-storage 26d [root@k8s-master1 opt]# kubectl patch pv pvc-685576e3-cca1-4f6d-86b1-2e4395c6d499 -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'persistentvolume/pvc-685576e3-cca1-4f6d-86b1-2e4395c6d499 patched[root@k8s-master1 opt]# kubectl get pv --all-namespacesNAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-1a6ba283-b16a-4cb4-b4a7-b4506534a9a9 20Gi RWO Delete Bound kube-system/prometheus-data-prometheus-0 managed-nfs-storage 26d pvc-33a6230c-481f-4d61-aff6-89d95bef74d9 4Gi RWO Delete Bound kube-system/alertmanager managed-nfs-storage 26dpvc-685576e3-cca1-4f6d-86b1-2e4395c6d499 5Gi RWO Retain Bound kube-system/grafana-data-grafana-0 managed-nfs-storage 26d。

2.2Pod的状态描述

2.2Pod的状态描述

2.2Pod的状态描述Pod有以下⼏个状态:Pending 等待中Running 运⾏中Succeeded 正常终⽌Failed 异常停⽌Unkonwn 未知状态PendingPod已经被创建,但还没有完成调度,或者说有⼀个或多个镜像正处于从远程仓库下载的过程。

处在这个阶段的Pod可能正在写数据到etcd中、调度、pull镜像或启动容器。

Running该 Pod 已经绑定到了⼀个节点上,Pod 中所有的容器都已被创建。

⾄少有⼀个容器正在运⾏,或者正处于启动或重启状态。

SucceededPod中的所有的容器已经正常的执⾏后退出,并且不会⾃动重启,⼀般会是在部署job的时候会出现。

FailedPod 中的所有容器都已终⽌了,并且⾄少有⼀个容器是因为失败终⽌。

也就是说,容器以⾮0状态退出或者被系统终⽌。

UnkonwnAPI Server⽆法正常获取到Pod对象的状态信息,通常是由于其⽆法与所在⼯作节点的kubelet通信所致。

⽤⼀张图来表⽰Pod的各个状态Pod 的详细的状态说明状态描述CrashLoopBackOff容器退出,kubelet正在将它重启InvalidImageName⽆法解析镜像名称ImageInspectError⽆法校验镜像ErrImageNeverPull策略禁⽌拉取镜像ImagePullBackOff正在重试拉取RegistryUnavailable连接不到镜像中⼼ErrImagePull通⽤的拉取镜像出错CreateContainerConfigError不能创建kubelet使⽤的容器配置CreateContainerError创建容器失败m.internalLifecycle.PreStartContainer执⾏hook报错RunContainerError启动容器失败PostStartHookError执⾏hook报错ContainersNotInitialized容器没有初始化完毕ContainersNotRead容器没有准备完毕ContainerCreating容器创建中PodInitializing pod 初始化中DockerDaemonNotReady docker还没有完全启动NetworkPluginNotReady⽹络插件还没有完全启动Terminating终⽌容器。

kafka副本复制原理

kafka副本复制原理

kafka副本复制原理Kafka副本复制是指数据在Kafka集群中的多个副本之间的同步复制过程。

副本复制是Kafka实现高可用性和数据容错的关键机制之一。

Kafka的副本复制原理如下:1. Leader-Follower模型:每个分区都有一个leader副本和多个follower副本。

producer和consumer只与leader副本进行交互,follower副本只是被动地从leader副本复制消息。

2. 副本同步:当producer发送消息到leader副本时,leader副本会将消息写入本地磁盘,并向所有follower副本发送复制请求。

follower副本通过与leader副本保持心跳连接来接收并处理复制请求。

3. ISR机制:Kafka维护一个称为ISR(In-Sync Replica)的集合,它包含了与leader副本保持同步的所有follower副本。

只有ISR集合中的副本才能成为新的leader副本。

4. 副本选举:如果leader副本发生故障或不可用,Kafka会从ISR集合中选举一个新的leader副本。

选举过程中需要考虑副本的数据同步进度,仅选举进度最大的副本作为新leader。

5. 副本同步策略:Kafka支持两种副本同步策略,即同步复制和异步复制。

同步复制要求所有follower副本在写入消息之前都确认已复制该消息,确保数据一致性,但会增加写入延迟;异步复制不要求follower副本立即确认复制,会减少写入延迟,但会增加数据丢失的风险。

通过上述机制,Kafka实现了高可用性和数据容错。

当leader副本失败时,能够自动选举新的leader副本继续提供服务,保证了Kafka集群的可用性;同时,通过副本复制,即使出现副本故障或数据丢失,仍然可以从其他副本中恢复数据,保证了数据的安全性和一致性。

k8s日志解决方案

k8s日志解决方案

k8s日志解决方案《k8s日志解决方案》在Kubernetes(K8s)集群中,日志管理是一个至关重要的环节。

由于K8s的分布式架构和容器化部署特性,日志的收集、存储、检索和分析都面临着一系列挑战。

为了解决这些问题,我们需要采用一种高效、可靠的日志解决方案。

首先,我们需要考虑日志的收集方式。

通常情况下,K8s集群中的每个节点都会产生大量的日志,包括应用程序日志、容器日志、系统日志等。

为了有效地收集这些日志,我们可以使用Fluentd、Fluent Bit等开源日志收集工具,将日志发送到集中式的存储系统中,如Elasticsearch、Kafka等。

这样可以方便地对日志进行统一管理和分析。

其次,我们需要考虑日志的存储和检索。

对于大规模的K8s集群来说,快速的日志检索是非常重要的。

我们可以使用Elasticsearch等分布式日志存储系统,将日志按照时间序列进行索引,以便快速地进行查询和分析。

此外,我们还可以使用Kibana、Grafana等工具对日志进行可视化展示,帮助我们更直观地了解整个集群的运行状态。

最后,我们还需要考虑日志的监控和告警。

K8s集群中的日志预警是非常重要的,它可以帮助我们及时发现集群中的异常情况,并采取相应的处理措施。

我们可以使用Prometheus、Alertmanager等工具对日志进行实时监控,并设置相应的告警规则,当集群出现问题时能够第一时间收到通知。

总的来说,K8s日志解决方案需要综合考虑日志的收集、存储、检索和监控等多个方面。

通过合理地选择和部署相应的工具和技术,我们可以有效地解决K8s集群中的日志管理难题,保障集群的稳定和可靠运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WS-ReplicationResource: Replicated Resources in GridEnvironments.Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez21IMCS, Imbert Management Consulting SolutionsC/ Fray Juan Gil 7, 28002 Madrid , Spainmso@imcs.es2Facultad de Informática – Universidad Politécnica de MadridCampus de Montegancedo S/N28.660 Boadilla del Monte, Madrid, Spain{pherrero, mperez, ascampos}@fi.upm.esAbstract. This paper presents the √N + ROWA model that is been develop atthe Universidad Politécnica de Madrid with the aim of replicating informationin Grid environments and optimizing the number of messages to be exchangedin the process. Our approach is one of the key stones of a new grid service(WS-ReplicationResource) that in the near future will provide Grid systemswith a high level of transancionality of actions to be carried out inside theenvironment.1. IntroductionThe last tendencies of WSRF (Web Services Resource Framework) specifications oriented towards Grid Computing Systems development and their implementation in Globus Toolkit 4 (GT4) [13] will mark, in the near future, the main development lines around middleware to support Grid applications based on the OGSA standard [1].OGSA enumerate those characteristics that Grid systems have to possess. The high-availability1 plays an important role among all these characteristics. The replication concept is close related to the availability concept, being one of the techniques more employed for failure recovery.The WS-ResourceProperties specification [2], as a part of WSRF specifications, define an standard way to exchange messages that could allow a client consult or update the values of the properties associated to each specific resource.A resource could be defined as the Web Service (WS) that having a set of properties, defined by the WS-ResourceProperties, and being its state the combination of all the values associated to all these properties at a given moment, can maintain this state through the WS-Addressing [14]1 OGSA specification, point 2.102 Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez2To have the information related to each of these specific resources replicated will be quite useful not just to allow a high availability in the system but also to design new collaborative models as well as to introduce complex negotiation models and mechanisms based on agents.On the other hand, this model of synchronisation could be extended to high-scale transactional systems as component integrated inside a framework, such as DCP-Grid[11, 12].In this paper we present our specification, the one we have called WS-ReplicationResource, extending all the functionalities of WS-ResourceProperties to allow the replication of the properties of a WS through the nodes connected to a Grid infrastructure.This paper has been organized as follows. The next section exposes the motivation of this work. The paper continues with a brief discussion about the related work on the area, our approach and the scalability of the system under our approach. The paper concludes with a section to present the paper’s conclusions and the ongoing and future work.2. MotivationFour operations are defined in the WS-ResourceProperties specification to access to the resource’s properties:1. GetResourceProperty: to obtain the property’s value2. GetMultipleResourceProperty: to obtain the value associated to several properties in just one operation.3. SetResourceProperties: to create update properties in just one resource.4. QueryResourceProperties: to carry out some queries, related to a specific resource’s properties, through XPath [15].Taking into account all these operations, our motivation is to propose a decentralised scenario in which each of the nodes could be the queries’ or updates receptor over an specific replicated resource, having an idea about which of the resource’s properties could be accessed at a given moment and making all this possible in an autonomous way.Figure 1 presents the initial scenario to be solved taking into account i nodes N={N 1,N 2,N 3, …, N i }. Each of these nodes could also be the receptor of reading requests as well as writing. In order to ensure the casual order (fairness)[10] of the actions to be carried out, we could represent each of the actions as a tuple (a, t), where ‘a’ represents the action to be carried out in the moment ‘t’. In this way, if A is a sequences of 4 actions (N=4), A could be represented as:A={ (a1,t1), (a2,t2), (a3,t3) ,(a4,t4) }(1)The casual order would imply to introduce new constraints such as: 111,2,3...i i i i i N t t A before A ++∀=<→ (2)WS-ReplicationResource: Replicated Resources in Grid Environments. 3 In the figure 1 it is possible to appreciate the problematic situation caused by action3 due to its counter’s value which should be 10. The casual order in the execution of reading writing operations could be solved by a controlled access to the resources in mutual exclusion.Fig. 1. Scenario: Four actions are brought about a replicated resource, WS-ReplicationResource must ensure the causal order3. Related WorkOne of the first algorithms utilised for the access in a mutual exclusion is the Ricart y Agrawala algorithm [3]. Ricart and Agrawala's Algorithm solves the synchronization problem in distributed systems. This algorithm insures that only one process will be allowed in a critical region at a time. It works by a using a system of messages and acknowledgements. The sending of a message is assumed to be reliable; that is, every message is acknowledged. The algorithm works as follows:When a process wants to enter a critical region, it builds a message containing thename of the critical region it wants to enter, its process number and the current time.It then sends the message to all the other processes including itself. When a process receives a request message from another process, the action it takes depends on itsstate with respect to the critical region named in the message. There are three possible states:•If the receiver is not in the critical region and does not want to enter it, it sends back an OK message to the sender (shown as Ready state inworkbench).4 Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez2•If the receiver is already in the critical region, it does not reply. Instead, it queues the request (shown as In CS state in workbench).•If the receiver wants to enter the critical region, but has not yet done so, it compares the timestamp in the incoming message with the one contained inthe message that it has sent everyone. The lowest one wins. If the incomingmessage is lower, the receiver sends back an OK message. If its ownmessage has a lower timestamp, the receiver queues the incoming messageand sends nothing (shown as waiting state in workbench).After sending out requests asking permission to enter a critical region, a process sits back and waits until everyone else has given permission. As soon as all the permissions are in, it may enter the critical region. When it exits the critical region, it sends OK messages to all processes on its queue and deletes them all from the queue. This algorithm will grow up proportionally to the number of nodes needed because it would be necessary: 2*(N-1) messages, being N the number of nodes, to became to an agreement in the critical section; (N-1) messages to let the rest of the nodes know that I would like to access to the critical section; and (N-1) answers from he rest of the nodes to give the final approval.The algorithms based on Quorums [8], are the optimised option to access to critical sections in distributed systems, where Quorum could be defined as:“Let S = {S1, S2, …} be a set of sites. A quorum system Q is a set of subsets of S with pair-wise non-null intersection. Each element of Q is called a quorum”.For example, if we have four sites, S1, S2, S3 and S4. A possible quorum system then consists of these three quorums: {S1, S2, S3}, {S2, S3, S4} and {S1, S4}, although there are many other possible quorum systems for these four sites.In systems based on Quorums a process can access to the critical section if an only if it obtains the premise of all the elements of its own Quorum. This is a way of reducing, considerably, the number of messages.Quorums could be combined with the ROWA technique [5] (Read One-Write All). This technique introduces a difference in between writing and reading operations as follow:•Read Operations: read from any site. If a site is down, try another site.•Write operations: write to all sites. If any site rejects the write, abort the transaction.But the ROWA technique is not working if one of the repliques fails, and therefore the combination with Quorums is one of the techniques more useful.As for the combination Quorums + ROWA [6], it is important to highlight that in this case there are two different kinds of Quorums: writing (wq) and reading (rq). Both of them will have the following constraints in the Read-One-Write-All (ROWA) approach:•Logical read on data item x is converted to physical read on any of its copies (“read one”)•Logical write of x is translated to physical write on all of the copies of x.On the other hand, the different topologies and negotiation politics inside the Quorums allow to distinguish among numerous types of different Quorums, being some of them:WS-ReplicationResource: Replicated Resources in Grid Environments. 5 • Majority o Consensus [8]: Uses voting to reach consensus. Each site has anassigned weight (number of votes), and quorums are defined so that number of needed votes exceeds half of the total (majority). If n be the sum of all assigned weights, then read (rq) and write (wq) quorums must then fulfill these constraints:2 * |wq| > n and |rq| + |wq| > nand the Minimum quorum sizes that work:|wq|=n/2+1 |rq|=n/2• Tree: A generalization of Majority Quorum. The main idea is to organize thesites into a hierarchy. This hierarchy is represented as a complete tree where physical sites appear at the leaves of the tree. At each level (starting at the root level) of the tree, a majority of tree nodes must be chosen. For each node chosen at level i, a majority of nodes at level i+1 must be chosen. A write quorum consists of the root of the tree, a majority of its children, a majority of the children of each children, etc. A read quorum consists of the root of the tree. If the root is unavailable, the read quorum consists of a majority of its children, and so recursively [9]• Grid: There are different kinds of Grid quorum, such as the rectangular or thetriangular. In the rectangular,, a read quorum consists of an element of each column (|rq| = c) A write quorum requires an entire column and one element from each of the remaining columns (|wq| = r + c - 1) If the grid is a square |rq| = vn |wq| = 2 * vn -1 [7]Finally, the √N algorithm, being N the number of nodes, is based on the association of nodes in N minimum subsets with no null intersection (between each two of them) [4]:,1,,i j i j i j N S S ∀≤≤≠∅I (3)Taking into account the different methods and algorithms presented here, in the next section we will introduce our approach which is based on the association of two of these algorithms: √N algorithm [4] and the ROWA technique [5].4. The √N + ROWA ModelInitially we will identify two components to be introduced inside each and every node to be aware of those nodes that are in the system and are part of the S i Quorum. Once a node has this information, it can subscribe itself, through the WS-Notification [17], to one of the properties content inside WS-ReplicationResource specification. This property will be working as traffic light (mutex) to control the access to the resource through the model we are going to describe in this section (see figure 3).6 Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez2Fig. 2. The √N + ROWA model architectureOur approach, the one we called √N+ ROWA model, takes into account the √N protocol [4] and applying the ROWA protocol to control the access based on the different types of operations (writing and reading). It makes also distinguish in between the reading and the writing quorums (rq and wq respectively). On the other hand, in order to replicate the data through the nodes, our approach will consider two key factors:a) The impact that the “laze propagation ” technique will have over the model b) The scalability of the systemIn our model, when an i-node wish to carry out an writing operation, it requires the votes of the quorum S i and the writing information will be replicated only in those elements of its quorum. In order to carry out a writing/reading operation over S j being i ≠j and i j z S S N =I , the node N z will have to send S j the updated modifications over the synchronised element before giving S j its vote.In the figure 4, it is possible to appreciate the “Lazy Propagation” effect because the operation 1 (write request over the node 2), which requires the obtaining of wq, repliques the writing operation only to the rest of the S 2 nodes (operation 2). In this moment t_counter is increased in the S 2 nodes. When the node 4 receives a read request (operation 3), and while this node is negotiating this request, the nodes 4 and 2 detect t_counter 2 > t_counter 4 and therefore they would need to update their values (operation 4). Something similar would happen if the node 1 receives a writing request, operation 6.WS-ReplicationResource: Replicated Resources in Grid Environments. 7Fig. 3. √N+ ROWA model interaction based on S1...S4 Quorums and 4 nodesTaking into account all this possible situations, we could define that a system is replicabily stable if:,1,__i j i j i j N t counter t counter ∀≤≤→= (4)Although the system stability is an important issue in this kind of systems, another important factor is to keep this system stability while the system scalability increases. In the next section, we will present a study that we have performed with the aim of modelling not just reading/writing operations to be carried out in the system, but also the cost of the replication model to became as stable as we have defined in this paper by the formulas 3 and 4.5. ScalabilityOur first work hypothesis, in this study, will be that there are not possible collisions in the system, leaving this case of study as future research work, and the second one will be that the time to process one operation is much lower that the number of transactions per unit of time. That is:_()0.proc n pet t p colision sg <<<→ (5)This implies that the system has time enough to recover from a lock for accessing to a resource before receiving another request.8 Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez2The average of messages to be sent would be the addition of (k-1) from the operation request, (k-1) answers, (k-1) to the replication (only in a writing request) and (k-1) only if the last operation was carried out in another Quorum (see equation6). To see equation 6 demonstrations go to [4](1)(1)()(1)(_)()(1)m k k p w k p change q p w k =−+−+−+− (6) Being p(change_q) the probability that two sequential operations are executed in different quorums, p(w) the probability that that the operation is writing and k the quorum length.Moreover, if N is the number of nodes and K is the size of the intersection set no linear between each of them, then the equation 7 will complement to the previous one:21N k k =−+[4] (7)On the other hand, if want that the computational process will take advantage of the balance capability, the likelihood of Quorum’s change p(change_q) should follow the equation 8:1(_)N p change q N −= (8)Equations 6, 7 and 8 will allow us to obtain a the average message exchange as a function of the quorum length and, if the likelihood for a writing request is p(w) = 0.2, we could represent this function as it is showed in figure 5. The average message exchange for different quorums’ length is showed in table 1.Fig. 4. Average message exchange applying a lazy propagation for those Quorums whichlength is 0..100WS-ReplicationResource: Replicated Resources in Grid Environments. 9 Number Nodes Quorum Length (K) Messages Exchange381 20 421561 40 863541 60 1306321 80 174 Table 1. Average message exchange for different quorums’ length.In the table 1 it is possible to appreciate the system scalability. When the numberof nodes is close to 381, the average of messages to be exchanged to access to the exclusion mutual area is close to 42, being this value quite acceptable. However, if the number of nodes increases to 1561 (four times), the number of messages to be exchanged will be double. As it is possible to appreciate in the table 1 and figure 4,the number of messages to be exchanged is proportional to the Quorums’ length (K). However, the quorums’ length will be almost the square root of the number of nodes (scalability) (see equation 7).6. Conclusions and Future WorkThis paper describes a model that is been carried out at the UniversidadPolitécnica de Madrid with the aim of replicating the information optimizing the number of messages to be exchanged as well as their use to built Grid environments based on WSRF specifications. The approach presented in this paper will be one ofthe pillars of a new grid service: WS-ReplicationResource.As ongoing work, we are currently working on its implementation and in a near future we are planning the deployment in a large scale grid infrastructure, providinghigh level of transancionality of actions to be carried out inside the environment. References1.Foster, I. et al: The Open Grid Services Architecture, Version 1.0./documents/GWD-I-E/GFD-I.030.pdf Consulted in June2005.2.Graham S., Treadwell J.: Web Services Resource Properties 1.2 (WS-ResourceProperties), Working Draft 04, 10 June 2004. http://docs.oasis-/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf3.Ricart G., Agrawala A.K: An optimal algorithm for mutual exclusion in computernetworks. Commun. ACM 24, 627-628, Jan. 1981.4.M. Maekawa: "A sqrt(N) algorithm for mutual exclusion in decentralized systems",ACM Transactions on Computer Systems, Vol.3, No. 2, pp.145-159. 1985.5.R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, B. Kemme. How to Select aReplication Protocol According to Scalability, Availability, and CommunicationOverhead. 20th IEEE Int. Conf. on Reliable Distributed Systems, SRDS'01, pp. 24-33, New Orleans, Oct. 2001.10 Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, Alberto Sanchez26.P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control andRecovery in Database Systems. Addison Wesley, Reading, MA, 1987.7.Shun Yan Cheung, Mostafa H. Ammar, Mustaque Ahamad: The Grid Protocol: AHigh Performance Scheme for Maintaining Replicated Data. IEEE Trans. Knowl.Data Eng. 4(6): 582-592, 1992.8.R. H. Thomas. A Majority Consensus Approach to Concurrency Control forMultiple Copy Databases. ACM Transactions on Database Systems, 4(9):180–209, June 1979.9.D. Agrawal and A. E. Abbadi. The Tree Quorum Protocol: An Efficient Approachfor Managing Replicated Data. In Proc. Of the 16th VLDB Conf., Brisbane, Australia, 1990.10.K. Birman, Building Secure and Reliable Network Applications, ch. 18, Manning,1996.11.Manuel Salvadores, Pilar Herrero, María S. Pérez , Víctor Robles DCP-Grid, AFramework for Concurrent Distributed Transactions on Grid Environment The First International Workshop on “Knowledge and Data Mining Grid” (KDMG’05) On the 3RD Atlantic Web Intelligence Conference 2005 (AWIC'05), LNAI 3528- 0498, Lodz, Polonia 2005.12.Manuel Salvadores, Pilar Herrero, María S. Pérez , Víctor Robles DCP-Grid, AFramework for Conversational Distributed Transactions on Grid Environment International Workshop on Grid Computing Security and Resource Management (GSRM'05) In conjunction with the International Conference on Computational Science 2005(ICCS 2005), LNCS 3516, Emory University Atlanta, USA, May 200513.Globus Alliance, Globus Toolkit: /toolkit/ Consulted in June2005.14.Worl Wide Web Consortium, WS-Addressing: /Submission/ws-addressing/ Consulted in June 2005.15.World Wide Consortium, XPath: /TR/xpath Consulted in June2005.16.Birman, K., "The process group approach to reliable distributed computing".Communications of the ACM, December 1993.17.WS-Notification, IMB Developer Works http://www-/developerworks/library/specification/ws-notification/ Consulted in June 2005.。

相关文档
最新文档