2018-2019长春市小学毕业数学总复习小升初模拟训练试卷5-7(共3套)附详细试题答案

合集下载

【3套试卷】长春市小升初第一次模拟考试数学试题含答案

【3套试卷】长春市小升初第一次模拟考试数学试题含答案

新小升初数学试卷及答案(人教版)(1)小升初模拟训练(二)一、选择题1.下面说法正确的是()A. 把一个小数精确到百分位,也就是保留两位小数B. 小数除以小数,商一定是小数C. 91.4里面有914个0.012.微机课上,笑笑坐在微机教室的第4列第2行,用数对(4,2)表示,明明坐在笑笑正后方的第一个位置上,明明的位置用数对表示是( )。

A. (5,2)B. (4,3)C. (3,2)D. (4,1)3.清平中心小学98班有52人,彭老师至少要拿()作业本随意发给学生,才能保证至少有有个学生拿到2本或2本以上的本子.A. 53本B. 52本C. 104本4.下面()杯中的饮料最多。

A. B. C.5.某教育局装备科购进96台电脑,按4∶5∶3分发给第一、第二和第三小学,三所小学各发到电脑多少台?正确的解答是()A. 第一小学:22台第二小学:45台第三小学:29台B. 第一小学:32台第二小学:40台第三小学:24台C. 第一小学:30台第二小学:50台第三小学:16台D. 第一小学:20台第二小学:60台第三小学:20台6.一瓶橙汁有150毫升,求“ 瓶有多少毫升”就是求()A. 150的是多少B. 150减去是多少C. 150加是多少7.你估计小刚有多高?()。

A. 1米25厘米B. 2米52厘米C. 80厘米8.甲、乙两个等高的圆锥,甲圆锥的底面半径是乙圆锥底面半径的3倍,则甲圆锥体积是乙圆锥体积的( )倍。

A. 3B. 9C. 279.在3.145、3.14、π、3.14%中,最大的数是()。

A. 3.145B. 3.14C. πD. 3.14%10.如果把3∶7的前项加上9,要使它的比值不变,后项应()A. 加上9B. 加上21C. 减去911.蔬菜批发站把一批菜按4∶5∶3的比卖给甲、乙、丙三个餐厅,丙餐厅比乙餐厅少买60千克,这批菜一共有()A. 300千克B. 603千克C. 360千克D. 306千克二、判断题12.分母是7的真分数都不能化成有限小数.13.把一根长40厘米的铁丝围成一个长方形,如果长和宽都是质数,那么它的面积一定是51平方厘米。

【3套试卷】长春市小升初第一次模拟考试数学试题含答案(1)

【3套试卷】长春市小升初第一次模拟考试数学试题含答案(1)

新小升初数学模拟试题一、细心琢磨·正确填空1.电梯上升3层可以记作+3,下降5层可以记作________.2.5400 =________ L=________ mL3.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是________立方米,圆锥的体积是________立方米.4.甲、乙两数的比是5:4,甲数比乙数多________(填分数),乙数比甲数少________ %.5.用合适的单位名称填空。

电线杆高约5________;数学书封面面积约312________;课桌面长约87________。

6.把20克糖溶解在装有180克水的杯子中,糖与水的最简整数比是________,这杯溏水的含糖率是________ %。

7.同时掷两个骰子,取两个数的和定输赢,如果老师选双数,学生选单数,掷20次,他们赢的可能性________。

8.下表中是三种交通工具的一般行驶速度.解答下面问题时,如果除不尽保留两位小数.(1)算出每种车平均每分钟行驶________千米、________千米、________千米(按题目顺序回答)(2)摩托车的速度是电动车的________倍?(3)小汽车的速度是摩托车的________倍?9.一块梯形菜地,上底是45米,下底是63米,高是25米,如果每100平方米施化肥0.85千克,这块地共施化肥________千克。

(得数保留两位小数)10.按规律填数.1,2,4,7,________、________、________、________.二、仔细推敲·认真判断11.比例里两个内项的积减去两个外项的积,差等于零.12.两个奇数的和是偶数,两个奇数的积是合数.13.长方形的内角和是三角形内角和的2倍。

14.所有正数都比负数大。

15.长方形的周长比正方形的周长大。

三、反复比较·慎重选择16.下面的说法正确的是()A. 一个数的倒数一定比这个数小B. 大圆的圆周率比小圆的圆周率大C. 用110粒种子做发芽实验,全部发芽,这些种子的发芽率是110%D. 比的前项和后项同时乘或除以相同的数(0除外),比值不变17.一头牛重500千克,两头牛重()吨.A. 500B. 2C. 118.小学生上学实行新的收费标准后,每人每学期要交课本费75元,作业本费15元,三(1)班有学生48人,这个班的学生每学期入学一共要交()A. 4800元B. 4500元C. 4320元19.一个梯形的上底是3米,下底是10米,高是下底的2倍,这个梯形的面积是()。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷7-8(共2套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷7-8(共2套)附详细试题答案

小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b2=a1+a2,…,b k =a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷4-5(共2套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷4-5(共2套)附详细试题答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)。

2018--2019学年度小升初数学模拟试卷及答案(3)

2018--2019学年度小升初数学模拟试卷及答案(3)

2018--2019学年度小升初数学模拟试卷及答案(3)班级姓名成绩1.(4分)198厘米= 分米= 米, 15日= 小时,650公顷= 平方千米.2.(2分)学校举行庆祝“六一”文艺表演,从晚上7时30分开始,经过1小时20分结束,结束时是时分.3.(1分)小红三次考试的平均成绩是92分,已知第一次和第二次的平均成绩是91,她的第三次成绩是分.(2分)用一根长28厘米的铁丝围成一个正方形,正方形的边长是,4.面积是.5.(2分)十亿五千九百四十万写作,四舍五入到“亿”位约是.6.(2分)10个0.1是,8.5里有个十分之一.7.(1分)近似数3.0的取值范围是.8.(1分)照样子填一填:下午2时15分.9.(2分)小明买2只鸡的钱可以买6条鱼,买3条鱼的钱可买l0本一样的书,买30本书的钱可以买只鸡.(1分)一件衣服单价100元,先降低10%,再提价10%,现在是元.10.11.(1分)一个分数约分之后是,原分数的分子与分母的和是72,则原分数是.12.(1分)一根2米长的圆柱体木材,锯成3段小圆柱后,它们的表面积总和比原来增加了12.56平方分米,原来这根木材的体积是立方分米.13.(1分)如图,把一个平行四边形分成四个三角形,其中三角形甲的面积是15平方厘米,三角形乙的面积占平行四边形面积的,平行四边形的面积是平方厘米.14.(1分)一个正方形的边长是4米,它的周长和面积相等..(判断对错)15.(1分)10.20读作:十点二十..(判断对错)16.(1分)一个数除以8,有余数,那么余数最大可能是7..(判断对错).17.(1分)用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米..(判断对错)18.(1分)1000千克的棉花比一吨的铁轻..(判断对错)19.(1分)篮球场长是28米,宽是15米,半个球场的面积是()平方米.A.210B.240C.8620.(1分)下列年份中是闰年的是()A.2006B.2007C.2008D.200921.(1分)250×8的积的末尾有()个0.A.1B.2C.322.(1分)4包同样的饼干重1千克,2袋同样的盐也是重1千克,1包盐与()饼干同样重.A.4包B.5包C.3包D.2包23.(1分)钟面上,时针的转速与分针的转速之比是()A.1:60B.1:12C.12:1D.60:124.(10分)直接写出得数.1÷0.375= +1= ×24= += 3×﹣×3=360×0.02= 10÷= ﹣= 476×3≈ 412÷7≈25.(12分)能简算的要简算(1)(2)1.2﹣3.79+8.8(3)÷〔(+)×〕(4)7.8÷[32×(1﹣)+3.6].26.(9分)求未知数x的值(1)x﹣x=4.9(2)0.36×5﹣x=(3):0.8=x:48.27.(3分)看图列式计算:求如图椭圆形操场的周长和面积:28.(3分)看图填空(单位:厘米):圆的周长是,半圆的周长是,长方形的周长是.29.(2分)给如图涂上颜色表示0.3的部分.30.(3分)图中每一方格代表1平方厘米,请在图上分别画出3个不同的长方形,使它们的面积都是12平方厘米.31.(4分)只列式,不计算(1)男生有28人,女生人数是男生人数的,女生有多少人?(2)一件衣服售价400元,比原价降低了20%,原价是多少元?32.(5分)5箱蜜蜂一年可以酿375千克的蜂蜜.照这样计算,24箱蜜蜂2年可以酿多少千克的蜂蜜?33.(5分)张老师家新买的一套住房,平面图如图:(单位:米)(1)请你算一算这套住房一共有多少平方米?(2)对厨房之外的地面进行简单的装修,铺上边长是50厘米的正方形地板砖要288块(墙体占地面积忽略不计),如果换成边长是60厘米的正方形地板砖,需要地板砖多少块?34.(5分)一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥形铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥形铅锤的底面积是多少平方厘米?35.(5分)一个长方体木块的长、宽、高分别是5厘米、4厘米、3厘米.如果用它锯成一个最大的正方体,体积要比原来减少百分之几?36.(3分)甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现金是其余三人所支付现金总数的,乙支付的现金比其他三人所支付的现金总数少50%,丙支付的现金占其他三人所支付的现金总数的,那么丁支付的现金是多少元?参考答案1.19.8;1.98;360;6.5.【解析】试题分析:(1)把198厘米换算成分米数,用198除以进率10得19.8分米;再把19.8分米换算成米数,用19.8除以进率10得1.98米;(2)把15日换算成小时数,用15乘进率24得360小时;(3)把650公顷换算成平方千米数,用650除以进率100得6.5平方千米.解:(1)198厘米=19.8分米=1.98米;(2)15日=360小时;(3)650公顷=6.5平方千米.故答案为:19.8,1.98,2,15,360,6.5.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率;把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.20时50分.【解析】试题分析:晚上7时30分用24时计时法是19时30分,用开始的时刻19:30加上经过的时间就是结束的时刻.解:晚上7时30分用24时计时法是19时30分19时30分+1小时20分=20时50分.答:结束时刻是20时50分.故答案为:20,50.点评:本题的时刻都在同一天之内,开始的时刻+经过的时间=结束的时刻.3.94【解析】试题分析:根据“平均成绩×测验次数=总成绩”分别求出前三次考试的成绩和及前两次考试的成绩和,进而根据“前三次考试的成绩和﹣前两次考试的成绩和=第三次考试的成绩”进行解答即可.解:92×3﹣91×2,=276﹣182,=94(分);答:第三次得94分;故答案为:94.点评:解答此题的关键:先根据平均成绩、测验次数和总成绩三者之间的关系求出三次考试的成绩和及前两次考试的成绩和,再相减.4.7厘米;49平方厘米.【解析】试题分析:根据正方形的周长公式:a=C÷4可求出正方形的边长,再根据正方形的面积公式:S=a2,即可求出正方形的面积.解:28÷4=7(厘米),7×7=49(平方厘米),答:这个正方形的边长是7厘米,面积是49平方厘米;故答案为:7厘米;49平方厘米.点评:此题主要考查正方形的周长和面积公式的灵活应用.5.1059400000,11亿.试题分析:这是一个十位数,最高位十亿位上是1,亿位和千万位上都是5,百位上是9,十万位上是4,其余位上都是0,写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;四舍五入到“亿”位就是省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.解:十亿五千九百四十万写作:1059400000;1059400000≈11亿;故答案为:1059400000,11亿.点评:本题主要考查整数的写法、改写和求近似数,注意改写和求近似数时要带计数单位.6.1,85.【解析】试题分析:(1)每相邻两个计数单位间的进率是10,小数点后的计数单位从左到右依次是十分位,百分位,千分位….据此可解答.(2)求8.5里面有几个十分之一(0.1),用除法解答即可.解:(1)10个0.1是 1;(2)8.5÷0.1=85.故8.5里有 85个十分之一.故答案为:1,85.点评:(1)本题考查了学生对小数的计数单位及单位间进率知识的掌握情况.(2)解答此题用根据求一个数里面含有几个另一个数,用除法解答即可.7.2.95~3.04.【解析】试题分析:要考虑3.0是一个两位数的近似数,有两种情况:“四舍”得到的3.0最大是3.04,“五入”得到的3.0最小是2.95,由此解答问题即可.解:“五入”得到的3.0最小是2.95,因此这个数必须大于或等于2.95;“四舍”得到的3.0最大是3.04,因此这个数小于等于 3.04.所以取值范围为:大于或等于2.95,并且小于等于3.04;故取值范围为:2.95~3.04.点评:取一个数的近似数,有两种情况:“四舍”得到的近似数比原数小,“五入”得到的近似数比原数大,根据题的要求灵活掌握解答方法.8.上午8时30分.【解析】试题分析:把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.解:照样子填一填:下午2时15分上午8时30分;故答案为:上午8时30分.点评:此题考查了把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.9.3.试题分析:买2只鸡的钱可以买6条鱼,那么1只鸡就可以买3条鱼,也就可以买10本书,所以30本书就可以买3只鸡.解:6÷2=3(条);3条鱼=10本数=1只鸡,30÷10=3(只);答:买30本书的钱可以买3只鸡.故答案为:3.点评:本题把鱼作为中间量,从中找出1只鸡的价钱相当于多少本书,再根据除法的意义求解即可.10.99.【解析】试题分析:要据题意要把这件衣服的单价看作是单位“1”,先降低10%,就是原价的(1﹣10%),再提价10%,就是原价(1﹣10%)的(1+10%),然后再根据分数乘法的意义进行列式解答.解:100×(1﹣10%)×(1+10%),=100×0.9×1.1,=99(元).答:现在是99元.故答案为:99.点评:本题的关键是第一次降价,是把这件衣服的单价100看作单位“1”,再提价,是把降价后的价格100×(1﹣90%)看作单位“12”,然后再根据分数乘法的意义列式解答.11..【解析】试题分析:根据“一个分数约分之后是”,可求出分子与分母的总份数,再根据“原分数的分子与分母的和是72”,就是原分数的分子占和72的,分母占和72的,进而写出原分数即可.解:总份数:5+7=12(份),原分数的分子:72×=30,原分数的分母:72×=42或72﹣30=42,原来的分数是:;故答案为:.点评:此题属于按比例分配的应用题,解决关键是要找准被分配的总量是多少,然后搞清是按什么比例进行分配的,再用按比例分配的方法解答.12.62.8.【解析】试题分析:首先要明确的是:将这根木材锯成3段小圆柱后,增加了4个底面,增加的面积已知,于是就可以求出这根木材的底面积,从而利用圆柱的体积V=Sh,即可求出这根木材的体积.解:2米=20分米,12.56÷4=3.14(平方分米),3.14×20=62.8(立方分米);答:原来这根木材的体积是62.8立方分米.故答案为:62.8.点评:解答此题的关键是明白:将这根木材锯成3段小圆柱后,增加了4个底面,求出木材的底面积,即可利用圆柱的体积公式求解.13.150.【解析】试题分析:由图意和乘法分配律可知:甲的面积+乙的面积=平行四边形的面积×,由此可以求出甲的面积占平行四边形的面积的分率,又由于甲的面积是15平方厘米,进而可求出平行四边形的面积.解:由分析可得平行四边形的面积是:15÷(﹣),=15÷,=150(平方厘米).答:平行四边形的面积是150平方厘米.故答案为:150.点评:此题主要考查平行四边形的面积,三角形的面积.由等底的图形面积大小及乘法分配律的应用得到甲的面积+乙的面积=平行四边形的面积×是解题的关键.14.错误【解析】试题分析:面积单位和周长单位是两种不同的计量单位,无法比较.解:边长4米的正方形面积和周长无法比较.故答案为:错误.点评:考查了正方形的周长和面积的比较,是基础题型,比较简单.15.错误.【解析】试题分析:根据小数的读法:整数部分按整数的读法来读,小数点读作点,小数部分要依次读出每个数字.解:10.20读作:十点二零故答案为:错误.点评:此题考查小数的读法,注意小数点后面数的读法.16.错误.【解析】试题分析:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,由此可以进行判断.解:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,而不是可能是7,所以此题说法错误.故答案为:错误.点评:在有余数的除法中,余数必须比除数小.17.正确.【解析】试题分析:在拼图中无论怎样拼,它们的面积不变,改变的只是它们的形状和周长,据此可判断.解:因在拼图中无论怎样拼,它们的面积不变,所以用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米.故答案为:正确.点评:本题考查了学生拼组图形时,面积不变的知识.18.错误【解析】试题分析:1000千克=1吨,棉花和铁都是1000千克(或1吨),质量相同,一样重.解:1吨=1000千克棉花和铁都是1000千克(或1吨),一样重.故答案为:错误.点评:铁和棉花的名数相同,就是质量相同,由于铁和棉花的密度不同,相同质量的铁和棉花体积不同,不要被这一表象所迷惑.19.A.【解析】试题分析:根据长方形的面积公式S=ab,求出整个篮球场的面积,再除以2求出半个球场的面积.解:28×15÷2,=420÷2,=210(平方米),答:半个球场的面积是210平方米;故选:A.点评:本题主要是灵活利用长方形的面积公式S=ab解决问题.20.C.【解析】试题分析:用选项中的年份除以4,看是否有余数,有余数就是平年,没有余数就是闰年.解:2006÷4=501…2,2007÷4=501…3,2008÷4=502.2009÷4=502…1;2008能被4整除,2008年就是闰年,2006、2007、2009不能被4整除,就是平年.故选:C.点评:闰年的判断方法:普通年份看是否能被4整除,如果能,就是闰年,否则就是平年;整百的年份看是否能被400整除,如果能,就是闰年,否则就是平年21.C.【解析】试题分析:要求250×8的积的末尾有几个0,可以先计算出得数,进而确定积末尾的0的个数.解:因为250×8=2000;所以250×8,积的末尾有3个0.故选:C.点评:此题考查积末尾有0的乘法,看积的末尾有几个0,一定要先计算再确定,不能只看两个因数的末尾的0的个数,就加以判断.22.D.【解析】试题分析:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,所以1包盐与2包饼干同样重,据此解答即可.解:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,4÷2=2,所以1包盐与2包饼干同样重.故选:D.点评:此题主要考查简单的等量代换问题,解答此题的关键是判断出2包盐与4包饼干同样重.23.B.【解析】试题分析:分针转1圈是1小时,它走了60个小格,1小时时针走5小格,用时针走的格数比分针走的格数即可.解:5:60=1:12;故选B.点评:本题也可以这样想:时针1小时走1大格,分针1小时走12大格,它们的速度比就是1:12.24.;2;20 ;;0;7.2 ;25 ;;1440 ;60;【解析】试题分析:按照小数、分数四则运算的计算法则直接计算即可;最后两题,利用整数运算的估算方法计算.解:1÷0.375=+1=2×24=20 +=3×﹣×3=0360×0.02=7.2 10÷=25 ﹣=476×3≈1440 412÷7≈60点评:掌握四则运算的计算法则是正确计算的前提,注意估算取整的方法.25.16 ;6.21 ;;0.5;【解析】试题分析:(1)运用乘法交换律与结合律简算.(2)运用加法交换律与结合律简算.(3)先算小括号内的,再算中括号内的,最后算括号外的.(4)先算小括号内的,再算中括号内的乘法,然后算中括号内的加法,最后算括号外的除法.解:(1)=(×)×(8×1.25)=×10=16(2)1.2﹣3.79+8.8=(1.2+8.8)﹣3.79=10﹣3.79=6.21(3)÷[(+)×]=÷[×]=÷=×=(4)7.8÷[32×(1﹣)+3.6]=7.8÷[32×+3.6]=7.8÷[12+3.6]=7.8÷15.6=0.5点评:查了小数、分数的四则运算,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.26.(1)x=10.5;(2)x=1.6;(3)x=10【解析】试题分析:(1)运用乘法分配律改写成(﹣)x=4.9,即x=4.9,根据等式的性质,两边同乘即可;(2)先求出0.36×5=1.8,原式变为1.8﹣x=,根据等式的性质,两边同加上x,得0.6+x=1.8,两边同减去0.6,再同乘即可;(3)先根据比例的性质改写成0.8x=×48,再根据等式的性质,两边同除以0.8即可.解:(1)x﹣x=4.9,(﹣)x=4.9,x=4.9,x×=4.9×,x=10.5;(2)0.36×5﹣x=,1.8﹣x=,1.8﹣x+x=+x,0.6+x=1.8,0.6+x﹣0.6=1.8﹣0.6,x=1.2,x×=1.2×,x=1.6;(3):0.8=x:48,0.8x=×48,0.8x÷0.8=8÷0.8,x=10.点评:此题考查了根据等式的性质解方程,即等式两边同加、同减、同乘或同除以一个数(0除外),等式的左右两边仍相等;注意等号上下要对齐.27.周长是400.96m,面积是9615.36m2.【解析】试题分析:(1)椭圆形操场的周长等于两个圆弧的长加上长方形的两条长,即半径是32米的圆的周长加上长方形的两条长.(2)椭圆形操场的面积等于长方形的面积加上两个半圆,即长方形的面积加上半径是32米的圆的面积.解:(1)椭圆形操场的周长为:2×3.14×32+100×2=200.96+200=400.96(m)(2)椭圆形操场的面积为:3.14×322+100×(32×2)=3215.36+6400=9615.36(m2)答:椭圆形操场的周长是400.96m,面积是9615.36m2.点评:此题主要考查了组合图形的周长和面积的求法,解答此题的关键是熟练掌握长方形、圆的周长和面积公式.28.9.42厘米,7.71厘米,21厘米.【解析】试题分析:根据:圆的周长=2πr,半圆的周长=πr+2r,分别求出圆的周长和半圆的周长;然后求出长方形的长和宽,根据:长方形的周长=(长+宽)×2,即可求出长方形的周长.解:圆的周长:2×3.14×1.5=9.42(厘米);半圆的周长:3.14×1.5+2×1.5=7.71(厘米);长方形的周长:(1.5×5+1.5×2)×2=10.5×2=21(厘米)答:圆的周长是9.42厘米,半圆的周长是7.71厘米,长方形的周长是21厘米;故答案为:9.42厘米,7.71厘米,21厘米.点评:明确圆的周长和长方形的周长的计算方法,是解答此题的关键;应明确:半圆的周长即圆周长一半加上一条直径的和.29.【解析】试题分析:根据小数的意义可知0.3,表示把一个整体平均分成10,表示其中三份的数.据此解答.解:点评:本题主要考查了学生对小数意义的掌握情况.30.【解析】试题分析:依据长方形的面积公式可得:长方形的长和宽分别为12厘米与1厘米的长方形和6厘米与2厘米的长方形和长和宽分别为4厘米与3厘米的长方形的面积是12平方厘米,依据长方形的长和宽即可画出符合要求的长方形.解:如图所示,即为所要求画的面积为12平方厘米的长方形:点评:解答此题的关键是,先依据长方形的面积,确定出长方形的长和宽,从而画出符合要求的图形.31.(1)20人(2)500元.【解析】试题分析:(1)求女生有多少人,就是求28的是多少,用28×解答.(2)把原价看作单位“1”,现价是原价的1﹣20=80%.现在的售价是400元,就是原价的80%是400元.求原价是多少,用除法即可.解:(1)28×=20(人)答:女生有20人.(2)400÷(1﹣20%)=400÷0.8=500(元)答:原价是500元.点评:本题考查分数的乘法和除法的意义及应用.32.3600千克【解析】试题分析:根据“照这样计算”是指每箱蜜蜂每年酿蜂蜜数量一定,先求每箱蜜蜂每年酿蜂蜜的数量乘24,求出24箱蜜蜂1年可以酿蜂蜜的重量,然后乘2即可.解:375÷5×24×2=75×24×2=3600(千克).答:24箱蜜蜂2年可以酿3600千克蜂蜜.点评:先求出每箱蜜蜂酿蜂蜜数量是解决此题的关键.33.78.28平方米;200块【解析】试题分析:(1)观察图形可知,这套住房的面积是长5+7=12米,宽3+3=6米的长方形答面积与直径是6﹣2=4米的半圆的面积之和,据此利用长方形和半圆的面积公式计算即可解答.(2)先计算出厨房之外的地面的总面积,然后求出后来正方形地板砖的面积,用厨房之外的地面的总面积除以后来正方形地板砖的面积,即可求出所需的块数.解:(5+7)×(3+3)+3.14×()2÷2=12×6+3.14×4÷2=72+6.28=78.28(平方米);答:这套房子的总面积是78.28平方米.(2)288×(50×50)÷(60×60)=288×2500÷3600=200(块)答:需要200块.点评:此题主要考查组合图形的面积的计算方法,明确包括哪几部分面积是解决本题的关键.34.18.84平方厘米【解析】试题分析:圆锥铅锤的体积等于圆柱容器水面下降的那部分水的体积,先根据圆柱的体积公式,求出容器中水下降的体积(即圆锥的体积),已知圆锥的高是6厘米,用体积×3,再除以高即可求出底面积.由此列式解答解:容器水下降的体积:3.14×62×0.5,=3.14×36×0.5,=56.52(立方厘米);圆锥的底面积是:56.52×3÷9=18.84(平方厘米),答:圆锥的底面积是18.84平方厘米.点评:此题解答关键是理解容器中水下降的那部分水的体积等于圆锥的体积,利用圆柱、圆锥的体积计算方法解决问题.35.55%.【解析】试题分析:抓住正方体的特征,这个最大的正方体的棱长就是这个长方体最短的棱长,利用长方体和正方体的体积公式即可解决问题.解:5×4×3=60,3×3×3=27,(60﹣27)÷60,=33÷60,=0.55,=55%,答:体积要比原来减少55%.点评:正确找出这个最大正方体的棱长是解决本题的关键.36.910元【解析】试题分析:甲支付的现金是其余三人所支付现金总数的,那么甲:其余=1:4,那么甲就付了全部的,同理可得乙占全部的,丙占全部的,那么丁就占全部的:1﹣﹣,用总钱数乘丁占的分数就是丁付的钱数.解:甲:其余三人=1:4,甲占总数的,乙:其余三人=(1﹣50%):1=1:2,那么乙占总数的,丙:其余三人=1:3,丙占总数的,丁应支付现金:4200×(1﹣﹣)=4200×,=910(元);答:丁付的现金是910元.点评:本题先通过甲、乙、丙与它们之外的三人之间的关系找出它们分别占总数的几分之几,总数减去这三人的就是丁的.。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷19-21(共3套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷19-21(共3套)附详细试题答案

小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷19-20(共2套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷19-20(共2套)附详细试题答案

小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.。

2018-2019年长春市小升初数学模拟试卷整理(4)附答案附答案

2018-2019年长春市小升初数学模拟试卷整理(4)附答案附答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷17-19(共3套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷17-19(共3套)附详细试题答案

小升初数学综合模拟试卷17一、填空题:2.有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11359,那么其中最小的四位数是______.人数增加了______%.4.20个鸭梨和16个苹果分放两堆,共重11千克,如果从两堆中分别取4个鸭梨和4个苹果相交换,两堆重量就相同了.每个苹果比鸭梨重______千克.5.图中长方形内画了一些直线,已知边上有三块面积分别是15,34,47,那么图中阴影部分的面积是_______.6.某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是星期______.7.有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是_______.8.一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是_______.9.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空先后各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,那么米老鼠拿出互换的泡泡糖共______个.10.某种表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表时间正确的时刻是_______月______日______时.二、解答题:1.计算:3.A、B、C、D、E是从小到大排列的五个不同的整数,把其中每两个数求和,分别得出下面8个和数(10个和数中有相同的和数):17,22,25,28,31,33,36,39,求这五个整数的平均数.4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车.小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分遇到迎面开来的一辆电车;小张每隔5分遇到迎面开来的一辆电车;小王每隔6分遇到迎面开来的一辆电车.已知电车行驶全程是56分,那么小张与小王在途中相遇时他们已行走了多少分?答案一、填空题:2.2039根据题设可知,在四个不同的数字中,必有数字0,否则两个四位数之和不为11359.可以看出,0在最大四位数的个位上,且9在最大四位数的千位上.于是可推出最小四位数的个位是9,百位是0,千位是2,最后推出十位是3.所以最小四位数是2039.3.60%4.0.125千克根据题设可知,16个梨、4个苹果和4个梨、12个苹果重量相同.由此可推出12个梨与8个苹果重量相同.即24个梨与16个苹果重量相同.所以1个鸭梨重(11÷(20+24)=)0.25千克,1个苹果重(0.25×12÷8=)0.375千克.1个苹果比1个鸭梨重(0.375-0.25=)0.125千克.5.96因为三角形BCE的面积是长方形ABCD面积的一半,且三角形AFD与三角形BCF的面积和也是长方形ABCD面积的一半.所以阴影部分面积为(15+47+34=)96.6.三若一年有365天,则全年有52个星期零1天,若全年有53个星期二,且元旦不是星期二,则元旦必为星期一,该年为闰年,有366天,下一年有365天.(366+365)÷7=104 (3)所以下一年最后一天是星期三.7.1,7,13,19因为四个数中任意两个数之和是2的倍数,所以这四个数同奇、同偶.因为四个数中任意三个数之和是3的倍数,所以这四个数被3除余数相同.由此可知,这四个数被6除余数相同,为使四个数尽量小,可取1,7,13,19.正方形内分割线上的每个小线段都同时属于两个长方形,正方形边上的每个小线段只属于一个长方形.设正方形边长为a,则[(4+5)×2+4]×a=3322a=339.410(1)按规则机器猫应给孙悟空多少个甜饼?(2)按规则米老鼠应给机器猫多少个泡泡糖?(3)按规则米老鼠应给孙悟空多少个泡泡糖?(4)米老鼠共拿出多少个泡泡糖?170+240=410(个)10.8月2日9时7月29日零点至8月5日上午7点共(24×7+7=)175小时.设标准时间的速度为1,则这种表的速度为这种表与标准时间共同需要经过因为105=24×4+9,所以此时是8月2日上午9时.二、解答题:1.12.1000袋3.14.2因为A+B最小,A+C次小;D+E最大,C+E次大.所以有A+B=17D+E=39由此可知:B=C-5,D=C+3.可以看出,B、D同奇同偶,所以B+D是偶数.在已知条件中,剩下的偶数只有28,于是B+D=28.由于B+D=C-5+C+3=28,所以C=15.于是A=7,B=10,D=18,E=21.五个数的平均数为(7+10+15+18+21)÷5=14.24.60分设甲、乙两地距离为1,则电车之间的车距为小张的速度为小王的速度为小张与小王相遇所需时间为小升初数学综合模拟试卷18一、填空题:2.将1997加上一个整数,使和能被23与31整除,加的整数要尽可能小,那么所加的整数是______.看过的还多48页,这本书共有______页.4.如图,每一横行、每一竖行和对角线上三个数之和均相等,则x=______.5.下面的字母算式中,每一个字母代表一个数字,不同的字母代表不同的数字.如果CHINA代表的五位数能被24整除,那么这个五位数是______.6.有四个数,每次选取其中两个数,算出它们的和,再减去另外两个数的平均数,用这种方法计算了六次,分别得到以下六个数:43、51、57、63、69、78.那么原来四个数的平均数是_______.7.有一枚棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步,跳到2号位置;第二次跳两步,跳到4号位置;第三次跳三步,又跳到1号位置;……,这样一直进行下去,______号位置永远跳不到.这样的分数中最小的一个是______.9.如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发______秒之后追上甲.10.把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面是红色的小长方体恰好是12块,那么至少要把这个大长方体分割成_______个小长方体.二、解答题:1.计算:2.一件工作,甲独做要8小时完成,乙独做要12小时完成.如果先由甲工作1小时,然后由乙接替甲工作1小时,再由甲接替乙工作1小时,……,两人如此交替工作那么完成任务时共用了多少小时?3.如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯4.一个自然数除以6得到的商加上这个数除以7的余数,其和是11,求所有满足条件的自然数.答案一、填空题:2.142因为1997与所求整数之和是23与31的公倍数,所以有23×31=713713×3=21392139-1997=142142为所加整数.3.24016+48+16=80(页)所以这本书共有4.22为方便起见,原图中的空格用字母表示,如图所示.可以看出,每一横行、每一竖行及对角线上的三个数之和为(x+7+10=)x+17 显然a3=17+x-x-1=16a1=17+x-10-16=x-9a2=17+x-(x-9)-1=25a5=17+x-10-25=x-18所以x+(x-9)+(x-18)=x+172x=44x=225.17208显然C=1,K=9,且百位向千位进1.因为在十位上,N=9(个位向十位进1),或N=0,由于K=9,所以N=0.在百位上,由于百位向千位进1,所以O=5,6,7,8.试验:若O=5,则I=0,与N=0重复.1+2+0+8=11,所以H=7(1,4已被取过).所以五位数是17208.因为在四个数中每次选取两个数求和,计算六次,等于每个数计算了三次,即四数之和的3倍.每次计算两个数的平均数,计算六次,等于四数之7.3号、6号经试验可以发现,棋子每次跳到的位置依次是2、4、1、5、4、4、5、1、4、2、1、1、2、4、1、…每12次为一个循环,所以3、6号位置永远跳不到.此分数的分子应是5、15、21的公倍数,分母是28、56、20的公约数.为使这样的分数取最小,则分子是5、15、21的最小公倍数为105,分母是9.250V甲=60米/分=1米/秒,V乙=90米/分=1.5米/秒.根据题意可知,乙为追上甲,需要多走100米还要多转一个转弯,但在转弯处还要耽误10秒钟,此时甲又多走出10米,所以甲、乙的距离差为(100+10=)110米,乙追上甲时共行了1.5×110÷(1.5-1)=330(米)由此可知,乙需拐三次弯,需要30秒,所以乙追上甲时共需时间110÷(1.5-1)+30=250(秒)10.20因为只有两个面是红色的小长方体位于棱上(除去棱的端点),为使分割的块数尽量少,可使12条棱中有8条棱只有端点的两个小长方体,另外4条棱的中间分别有(12÷4=)3个小长方体,所以共分割成小长方体的个数为(3+2)×2×2=20(个)二、解答题:1.33.23设上底长为2a,下底长为3a,三角形AOD的高为h,则三角形BCO的高为因为三角形AOD面积为10,可知ah=10所以梯形面积为故阴影面积为45-(10+12)=234.(34,40,46,52,58,64,70)一个数除以7的余数有7种可能:6,5,4,3,2,1,0.若余数为6,则这个数除以6的商为(11-6=)5,这个数在30~36之间,此区间中只有34被7除余6.若余数为5,则这个数除以6的商为(11-5=)6,这个数在36~42之间,此区间中只有40被7除余5.依此类推,可以得到相应的其余几个数。

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷24-26(共3套)附详细试题答案

2018-2019长春市小学毕业数学总复习小升初模拟训练试卷24-26(共3套)附详细试题答案

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b2=a1+a2,…,b k =a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.。

相关文档
最新文档