七年级数学湘教版第一单元复习
湘教版数学七年级上册第1章小结与复习说课稿
湘教版数学七年级上册第1章小结与复习说课稿一. 教材分析湘教版数学七年级上册第1章小结与复习主要是对第一章的知识点进行梳理和复习,包括有理数的认识、整数的运算、分数的运算、百分数的运算以及方程的解法等内容。
这部分内容是初中的基础,对于学生来说是非常重要的。
教材通过例题和练习题的形式,让学生巩固所学知识,并且通过小结与复习,使学生对整个章节的知识有一个清晰的认识。
二. 学情分析七年级的学生已经初步掌握了有理数的知识,对于整数的运算、分数的运算、百分数的运算以及方程的解法也有一定的了解。
但是,部分学生在运算过程中可能会出现粗心大意的情况,导致计算错误。
此外,学生对于一些概念的理解可能还不够深入,需要通过复习和练习来加深理解。
三. 说教学目标1.知识与技能目标:通过本节课的复习,使学生对第一章的知识点有一个清晰的认识,能够熟练运用所学知识解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生自主学习、合作学习的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 说教学重难点1.教学重点:对第一章的知识点进行复习,使学生对整数的运算、分数的运算、百分数的运算以及方程的解法有一个清晰的认识。
2.教学难点:对于一些概念的理解,以及在一些复杂运算中避免出现错误。
五. 说教学方法与手段1.教学方法:采用自主学习、合作学习、讨论交流等教学方法,引导学生主动参与课堂,提高学生的学习兴趣。
2.教学手段:利用多媒体课件、黑板等教学手段,直观地展示教学内容,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引发学生对第一章知识的回忆,激发学生的学习兴趣。
2.自主学习:学生自主复习第一章的知识点,通过教材和练习题进行自我检测。
3.合作学习:学生分组讨论,共同解答一些综合性的问题,加深对知识点的理解。
4.讨论交流:学生分享自己的学习心得和方法,互相借鉴,提高学习效果。
2022年新湘教版七年级数学上知识点总结
新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数旳基本概念1.正数:不小于0旳数叫做正数;例如:3, 32,0.32负数:不不小于0旳数叫做负数。
例如:51,04.0,2---备注:在正数前面加“-”旳数是负数;“0”既不是正数,也不是负数。
(我们把正数和0统称为非负数)2.有理数:整数和分数统称有理数。
(有理数是指有限小数和无限循环小数。
牢记:不是有理数π)3.数轴:规定了原点、正方向和单位长度旳直线。
性质:(1)在数轴上表达旳两个数,右边旳数总比左边旳数大;(2)正数都不小于0,负数都不不小于0;正数不小于一切负数;(3)所有有理数都可以用数轴上旳点表达。
4.相反数:只有符号不同旳两个数,其中一种是另一种旳相反数。
例如:5与-5 。
性质:(1)数a 旳相反数是-a (a 是任意一种有理数) 。
例如: )1()1+-+x x 的相反数是((2)0旳相反数是0;(3)若a 、b 互为相反数,则a+b=0;5.倒数 :乘积是1旳两个数互为倒数 。
性质:(1)a 旳倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;6、倒数与相反数旳区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数; (2)符号上:互为相反数(除0外)旳两数旳符号相反;互为倒数旳两数符号相似;(3)a 、b 互为相反数,则 a+b=0;a 、b 互为倒数则 ab=1;(4)相反数是自身旳数是0,倒数是自身旳数是±1 。
7.绝对值:一种数a 旳绝对值就是数轴上表达数a 旳点与原点旳距离。
性质:(1)数a 旳绝对值记作︱a ︱。
例如:1212-的绝对值表示为-(2)若a >0,则︱a ︱= a ;即正数旳绝对值是它自身。
若a <0,则︱a ︱= -a ;负数旳绝对值是它旳相反数;若a =0,则︱a ︱=0;0旳绝对值是0.(3) 对任何有理数a,总有︱a ︱≥0.8.有理数大小旳比较:(1)可通过数轴比较:在数轴上旳两个数,右边旳数总比左边旳数大;正数都不小于0,负数都不不小于0;正数不小于一切负数;(2)两个负数,绝对值大旳反而小。
七年级湘教版第一章知识点
七年级湘教版第一章知识点
七年级湘教版第一章知识点主要包括了:
1. 数的认识
在数学中,数是一个基础概念。
在第一章中,我们学习了自然数、零和整数等不同类型的数,了解了数的大小关系和数轴的基
本使用方法。
2. 有理数的认识
在数学中,有理数是指可以表示为两个整数比的数,包括正数、负数、分数和零。
在第一章中,我们学习了有理数的概念、加减
乘除运算规则以及绝对值的概念和使用方法。
3. 等式的认识
等式是数学中的一个重要概念,指两个数或者两个式子用等号
连接起来的表达式。
在第一章中,我们学习了等式的概念和表示
方法,了解了等式左右两边的数或式子相等的含义。
4. 数量关系的认识
数量关系是指数与数之间的大小关系和计算关系。
在第一章中,我们学习了大小关系的表示方法和比较方法,了解了数的四则运
算和运算法则,并掌握了简单应用题的解题方法。
5. 图形的认识
图形是数学中的一个重要概念,指平面上由点、线、面组成的
形状。
在第一章中,我们学习了点、线、面等基本图形的概念和
特征,并学习了简单的测量和图形变换方法。
6. 统计图表的认识
统计图表是指用图形来表示某些数据和信息的方式。
在第一章中,我们学习了直方图、折线图、饼图等不同类型的统计图表,
掌握了读取和分析图表的方法。
以上就是七年级湘教版第一章知识点的概述,通过对这些知识点的学习,我们能够掌握数学中的基础概念和相关运算法则,为后续学习打下扎实的基础。
湘教版七年级数学上册知识点
七年级上册 第一章 有理数1、 具有相反意义的量:零上与零下;存入与支出;运进与运出。
(用正负号表示)2、 有理数大小比较方法:正数都大于零;负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小(负得越多,反而越小)。
数轴上的点,右边的总比左边的大。
3、 零既不是正数也不是负数。
分数可以写成有限小数或无限循环小数。
4、 正整数、零和负整数统称为整数;正分数和负分数统称为分数;整数的分数统称为有理数。
5、 任何有理数都可以用数轴上唯一的一个点一表示。
数轴上的点不一定是有理数。
6、 数轴:规定了原点、正方向、单位长度的直线叫数轴。
7、 相反数:只有符号不同的两个数互为相反数;0的相反数是0。
8、 相反数的表示方法:在一个数前加“-”号,表示这个数的相反数。
9、 绝对值:数轴上表示一个数的点与原点的距离。
叫做这个数的绝对值。
10、一个正数的绝对值等于它的本身; 一个负数的绝对值等于它的相反数;0的绝对值等于0; 互为相数的两个数的绝对值相等。
11、有理数的加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0 ;一个数与0 相加,仍得这个数。
12、如果两个数的和等于0 ,那么这两个数互为相反数。
13、加法交换律: a + b = b + a 加法结合律:(a + b ) + c = a + ( b+ c ) 分配律:a (b +c ) = ab+ac14、有理数的减法:减去一个数,等于加上这个数的相反数。
15、代数和书写要注意:式子的第一个数前的“+”号可省略;式子中有连续两个符号在一起,后面一个符号及数要添括号;连续两个符号中有“+”号,可省略一个“+”;代数和中任何一个数前可添括号和“+”号。
16、有理数的乘法:○1同号两数相乘得正,并把绝对值相乘;异号两数相乘得负,并把绝对值相乘;○2任何数与0相乘都得0;○3几个不等于0的数相乘,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;○4几个数相乘,有一个因数为0时,积为0。
湘教版数学七年级上册第1章小结与复习教学设计
湘教版数学七年级上册第1章小结与复习教学设计一. 教材分析湘教版数学七年级上册第1章主要包括有理数、整式的加减、一元一次方程等内容。
这一章是初中数学的基础,对于学生掌握数学概念、逻辑思维能力培养具有重要意义。
通过对本章的学习,学生可以掌握有理数的基本概念、运算规则,了解整式的加减法则,熟练解一元一次方程。
二. 学情分析七年级的学生刚进入初中,对于数学的学习还处在适应阶段。
他们在小学阶段已经接触过一些数学知识,但仍然缺乏系统的数学思维和方法。
因此,在教学过程中,需要关注学生的个体差异,因材施教,激发学生的学习兴趣,培养他们的数学思维能力。
三. 教学目标1.知识与技能:使学生掌握有理数的基本概念、运算规则,了解整式的加减法则,熟练解一元一次方程。
2.过程与方法:通过自主学习、合作探讨,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 教学重难点1.重点:有理数的运算规则、整式的加减法则、一元一次方程的解法。
2.难点:有理数的混合运算、一元一次方程的解法。
五. 教学方法1.情境教学法:通过生活实例引入数学概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探究问题,培养学生的数学思维能力。
3.合作学习法:学生进行小组讨论,提高学生的沟通与合作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示数学概念。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入数学概念,激发学生的学习兴趣。
例如,讲解购物时如何计算价格,引入有理数的概念。
2.呈现(10分钟)讲解有理数的基本概念、运算规则,展示整式的加减法则。
通过讲解和示范,让学生初步掌握有理数的运算方法。
3.操练(10分钟)让学生进行有理数的运算练习,巩固所学知识。
可以学生进行小组讨论,互相批改,共同提高。
湘教版七年级上册数学知识点总结
湘教版七年级上册数学知识点总结第一章有理数1.0既不是正数,也不是负数。
2.负数大于,正数小于。
3.正整数、零和负整数统称为整数4.正分数、负分数统称为分数;5.分数和整数统称为有理数。
6.任何有理数都可以用数轴上唯一的一个点表示。
7.数轴的三要素:原点、单位长度、正方向。
8.0的相反数是。
9.正数的绝对值等于本身;负数的绝对值等于它的相反数;的绝对值等于;互为相反数的两个数的绝对值相等。
10.正数大于一切负数。
11.两个负数,绝对值大的反而小。
12.在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数大。
13.加法法则:①同号两数相加,取相同的符号,并且把它们的绝对值相加。
②异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并且用绝对值大的减去绝对值小的。
③互为相反数的两个数相加得。
④一个数与相加,任得这个数。
14.加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。
15.减法法则:减去一个数,即是加上这个数的相反数。
16.乘法法则:①同号两数相乘得正数,并且把绝对值相乘。
②任何数与相乘都得。
③异号两数相乘得负数,并且把绝对值相乘。
17.乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法关于加法的分派律:a×(b±c)=a×b±a×c18.同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。
19.0除以任何一个不等于的数都得。
20.除以一个非零数即是乘上这个数的倒数。
21.n个相同的因式的乘积运算,叫做乘方,乘方运算的结果叫做幂。
22.在an中,a叫做底数,n叫做指数。
23.把一个绝对值大于10的数记作a×10n其中a是整数数位只要一位的数,这类记数法叫做科学记数法。
24.先算乘方,再算乘除,最后算加减,如果有括号。
湘教版初中数学知识点归纳
湘教版初中数学知识点归纳湘教版初中数学知识点归纳七年级上册第一章有理数1.1 具有相反意义的量1.2 数轴、相反数与绝对值1.3 有理数大小的比较1.4 有理数的加法和减法1.5 有理数的乘法和除法1.6 有理数的乘方1.7 有理数的混合运算第二章代数式2.1 用字母表示数2.2 列代数式2.3 代数式的值2.4 整式2.5 整式的加法和减法第三章一元一次方程3.1 建立一元一次方程模型3.2 等式的性质3.3 一元一次方程的解法3.4 一元一次方程模型的应用第四章图形的认识4.1 几何图形4.2 线段、射线、直线4.3 角第五章数据的收集与统计5.1 数据的收集与抽样5.2 统计图七年级下册第一章二元一次方程组1.1 建立二元一次方程组1.2 二元一次方程组的解法1.3 二元一次方程组的应用1.4 三元一次方程组第二章整式的乘法2.1 整式的乘法2.2 乘法公式第三章因式分解3.1 多项式的因式分解3.2 提公因式法3.3 公式法第四章相交线与平行线4.1 平面上两条直线的位置4.2 平移4.3 平行线的性质4.4平行线的判定4.5垂线4.6 两条平行线间的距离第五章轴对称与旋转5.1 轴对称5.2 旋转5.3 图形变换的简单应用八年级上册第一章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程第二章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作图第三章实数3.1 平方根3.2 立方根3.3 实数第四章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组第五章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法八年级下册第一章直角三角形1.1 直角三角形的性质与判定(1)1.2 直角三角形的性质与判定(2)1.3 直角三角形全等的判定1.4 角平分线的性质第二章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形第三章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和评议的坐标表示第四章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图像4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用第五章频数及其分布5.1 频数与频率5.2 频数直方图九年级上册第一章反比例函数1.1 反比例函数1.2 反比例函数的图像和性质1.3 反比例函数的应用第二章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程根的判别式2.4 一元二次方程根与系数的关系2.5 一元二次方程的应用第三章图形的相似3.1 比例函数3.2 平行线分线段成比例3.3 相似的图形3.4 相似三角形的判定与性质3.5 相似三角形的应用3.6 位似第四章锐角三角函数4.1 正弦和余弦4.2 正切4.3 解直角三角形4.4 解直角三角形的应用第五章用样本推断总体5.1 总体平均数与方差的估计5.2 统计的简单应用九年级下册第一章二次函数1.1 二次函数1.2 二次函数的图像与性质1.3 不共线三点确定二次函数的表达式1.4 二次函数与一元二次方程的连续1.5 二次函数的应用第二章圆2.1 元的对称性2.2 圆心角、圆周角2.3 垂径定理2.4 过不共线三点作圆2.5 直线与圆的位置关系2.6 弧长和扇形面积2.7 正多边形与圆第三章投影与视图3.1 投影3.2 直棱柱、圆锥的侧面展开图3.3 三视图第四章概率4.1 随机事件与可能性4.2 概率及其计算4.3 用频率估计概率。
湘教版七年级上册数学知识点总结归纳
第一章知识归纳一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数。
4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称。
只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0。
在一个数前面添上“-”号,表示这个数的相反数。
5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
新湘教版七年级数学上知识点总结
新湘教版七年级数学上知识点总结新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数的基本概念2.1正数:大于。
的数叫做正数;例如:3,3,0.32负数:小于0的数叫做负数。
例如:一2、9。
4备注:在正数前面加的数是负数;“0”既不是正数,也不是负数。
(我们把正数和。
统称为非负数)2.有理数:整数和分数统称有理数。
(有理数是指有限小数和无限循环小数。
切记:杯是有理数)6整数正分数负分数J正整数1正分数箕整数正整数整缴有王里缴分数正有王里.育王里缴等负有理缴3.数轴:规定了愿直、正方向和单位长度的直线。
性质:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于(),负数都小于0;正数大于一切负数;所有有理数都可以用数轴上的点表示。
4.相反数:只有如殳不同的两个数,其中一个是另一个的相反数。
例如:5与一5。
性质:数a的相反数是-a(a是任意一个有理数)。
例如:(_ 1)的相反数是一(工1) 0的相反数是0;若a、b互为相反数,则a b=();5,倒数:乘积是1的两个数互为倒数。
性质:a的倒数是(aO);()没有倒数;若a与b互为倒数,则ab=l;6、倒数与相反数的区别和联系:。
与互为相反数;。
与(a_()互为倒数;a符号上:互为相反数(除()外)的两数的符号相反;互为倒数的两数符号相同;a、b互为相反数,则a b=();a、b互为倒数则ab=l;相反数是本身的数是0,倒数是本身的数是1。
7,绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
性质:数a的绝对值记作。
例如:一12的绝对值表示为HZ若a(),则二a;即正数的绝对值是它本身。
若aV(),则=-a;负数的绝对值是它的相反数;若a=(),则=();()的绝对值是0.对任何有理数%总有_).8.有理数大小的比较:可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于(),负数都小于0;正数大于一切负数;两个负数,绝对值大的反而小。
湘教版七年级上册数学复习资料 - 第一章
第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识结构图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类典例分析:1.把下列各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----&&。
整数有 分数有负数有 有理数有 2.如果a ,b 是互为相反数,c ,d 是互为倒数,x 的绝对值等于2,那么b a cdx x 24--+ 的值是 ;反思:3.若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1-C .0D .4点评:一个数的绝对值是指数轴上表示这个数的点到 的距离,所以某数的绝对值是非负数。
几个非负数的和等于零,则这几个非负数同时为零。
4.实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD . 不能判断点评:有理数大小比较:正数 零 负数,两个负数, 大的反而小;数轴上表示的两个数 边的数总比 边的数大。
5.某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:比前一天的产量多的记为正数,比前一天产量少的记为负数。
请算出本星期最后一天星期日的产量是 台,本星期的总产量是 台,星期 的图1产量最多,星期 的产量最少。
第二课 有理数的加、减、乘、除、乘方知识结构图有理数的混合运算乘方:科学记数法乘除法法则的统一除法乘法加减法法则的统一减法加法⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎭⎬⎫典例分析:1.已知A 地的海拔高度为–53米,B 地比A 地高30米,则B 地的海拔高度为( )A 、–83米B 、–23米C 、30米D 、23米2. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<反思:有理数加减乘除的运算法则3.两个非0有理数的和为0,则它们的商是( ) A 、0 B 、1- C 、1+ D 、无法确定4.下列计算结果是72的是( )A ()293-÷- B.()()2293-÷- C. ()()3223--⨯- D. ()()3223--⨯-反思:5.国家体育场“鸟巢”的建筑面积达258000m2,它用科学记数法表示应为( )m2.6.下面说法中错误的是( ).A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104什么是有效数字?第三课 有理数的加减乘除乘方混合运算典例分析:1.计算:()377604126⎛⎫+-⨯- ⎪⎝⎭()110.53 2.75742⎛⎫⎛⎫---+-+ ⎪ ⎪⎝⎭⎝⎭(-45)×513-(-35)×(-513)-513×(-135) –81÷124×49[]42)3(18)2(2÷⨯--+- ()()3223145-+⨯---⨯反思:运算顺序是怎样的?有哪些简便运算?2. 日常生活中我们使用的数是十进制数(即数的进位方法是“逢十进一”),而计算机使用的数是二进制数,即数的进位方法是“逢二进一”。
湘教版初中数学知识点总复习资料
教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第三单元函数第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123OM (x,y)M1(x+a,y) M2(x+a,y+b)3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.y=k2x+by=k1x+b3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线知识点四:命题与证明9.命题与证明(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.例:下列命题是假命题的有(③)①相等的角不一定是对顶角;②同角的补角相等;③如果某命题是真命题,那么它的逆命题也是真命题;④若某个命题是定理,则该命题一定是真命题.第15讲一般三角形及其性质一、知识清单梳理知识点一:三角形的分类及性质关键点拨与对应举例1.三角形的分类(1)按角的关系分类(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形失分点警示:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系.例:等腰三角形两边长分别是3和6,则该三角形的周长为15.2.三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段四线性质(1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解. 角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半5.三角形中内、外角与角平分线的规律总结如图①,AD平分∠BAC,AE⊥BC,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B);如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二:三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形(1)性质:①边角关系:三边相等,三角都相等且都等于60°.即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,例:把长为10cm的线段进行黄金分21P COBAPCO BADABC abcDABC abcFEDCBAl5l4l3l2l1ODCBAEDCBA分割那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形FEDCBAFEDCBAFEDCBA。
湘教版七年级数学第一章复习资料
湘教版七年级数学第一章复习资料第一章有理数1.1 正数与负数①在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
②大于0的数叫正数。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
用m/n(其中m,n是整数,n≠0)表示有理数。
通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
2024秋季新教材湘教版七年级上册数学第1章 小结与复习课件
(3) 一般地,如果 a 表示一个数,则 ①当 a 是正数时,|a| = a; ②当 a = 0 时,|a| = 0; ③当 a 是负数时,|a| = -a.
6. 倒数 若两个有理数的乘积等于 1,则把其中一个数叫作 另一个数的倒数,也称它们互为倒数,0 没有倒数. 7. 有理数大小的比较 (1) 正数大于负数,0 大于负数;
(36)
注意符号问题
= 7 (36) 3 (36) 5 (36) 5 (36)
12
4
6
18
= 21 - 27 + 30 - 10= 14.3 Nhomakorabea2
1 12
1 12
=2 1 1 12 12
= -2×12×12
先确定商的符号, 再把绝对值相除
= -288.
(4)
(24
)
2
2 3
考点四 相反数、倒数、绝对值
例4 填表
数
3.5 -3.5 0
| -2 | -2
1 3 5
1 3
0.5
相反数 -3.5 3.5 0 -2 2 13 1 -0.5
53
倒数
2 7
2 7
没有
0.5
-0.5
5 8
-3
2
绝对值 3.5 3.5 0
2
2
13 5
1 3 0.5
针对训练
4.
-1 3
的倒数是
-3
;-1 1
七年级上册数学(湘教版)
第1章 有理数
小结与复习
÷
要点梳理
一、正数和负数 1. 大于 0 的自然数和分数(或小数)就是正数;
湘教版七年级数学上册第1章有理数复习知识要点及复习题1指导课件
3. 规定了原点、正方向和单位长度的直线叫做数 轴.数轴上,点的位置决定数的 符号 和绝对值 的大小.
4. 只有符号不同的两个数互为相反数。它们的绝 对值 相等 ,相加结果为 0 .0的相反数是0.
5. 表示一个数的点与原点的距离叫做这个数的绝 对值。正数的绝对值是它 本身 ,负数的绝 对值是它的 相反数 ,0的绝对值是 0 .
-0.5 2 3
1 1 34
0
4.填空: (1)绝对值最小的正整数是
绝对值最小的负整数是 (2)互为相反数的两数之和为
互为倒数的两数之积为 (3)相反数与它本身相等的数是
倒数与它本身相等的数是
, ;
, ;
, .
5.比较下列各数的大小:
(1) 3与 5;
(2) 7 与 1 ; 2 2
(3) 0.1与 0.01; (4) 2 与 3 . 3 5
18. 把-1,+2,-3,+4,-5,+6,-7,+8,-9填 入如图所示的方框内,使得每行、每列、每条对 角线的三个数均满足: (1)三个数的乘积都是负数; (2)三个数的绝对值的和都相等。
提示:
根据第(1)个要求,则每行、每列、每条对角 线填1个或3个负数;根据第(2)个要求,则先要确 定正中间一个数,再根据绝对值大配小的方法确 定每行、每列、每条对角线所填的数。
参考答案:
+6 -7 +2 -1 -5 -9 +8 -3 +4
下列各组数中相等的一组数是 ( C )
A. -∣-5∣和+∣+5∣ C. -(-5)和+∣-5∣
B. -(-5)和-(+5) D. +(-5)和+∣-5∣
湘教版七年级上册数学第1章小结与复习
71 =-1+6=6;
(3)33×-133-2÷-123.
解:原式=27×-217-2×(-8)
=-1+16=15.
方法指导: 有理数的混合运算要先算乘方,再算乘除,最后
算加减. (1)交换加数的位置时,要连同符号一起交换; (2)在运用有理数的加法运算律简化运算时,一
情景导入
构建知识结构图:
有理数的分类
相关概念数相轴反数
有理数
绝对值
有理数大小的比较
加、减运算 有理数的运算乘、除运算
混合运算
乘方运算(科学记数法)
自学互研
知识模块一 与有理数有关的概念
【例1】 分类:在1,-0.1,-789,25,9%,0,
1
7
-3.14,-23,-1,8 中,
正整数有:__1_,__2_5__;负整数有:_-__7_8_9_,__-__1_;整
第1章小结与复习
复习目标
1.整理有理数有关概念和有理数加、减、乘、除、 乘方运算法则、运算律等有关知识. 2.学会进行有理数的加、减、乘、除、乘方及混合 运算. 3.培养并提高正确迅速的运算能力. 【学习重点】 有理数的概念和有理数加、减、乘、除、乘方运算. 【学习难点】 负数和有理数加、减、乘、除、乘方运算法则的理 解.
【例2】 在数轴上标出下列各点:-2.5,|-2.5|, -1,0,1,并用“<”把它们连起来.
-2.5<-1<0<1<|-2.5|.
【例3】 有理数a,b,c在数轴上的位置如图所示, 用“<”将a,b,c三个数连接起来___c_<_a_<_b____.
注意: (1)0即不是正数也不是负数; (2)数轴是一条直线,由原点、正方向、单位长度三 要素确定,三者缺一不可; (3)把一个绝对值大于10的数用科学记数法表示成 a×10n的形式时,一定要注意1≤|a|<10. (4)有理数的减法可以转化为加法,有理数的除法可 以转化为乘法,有理数的乘方实质是求几个相同因数 的乘积.
湘教版七年级上册数学复习资料
第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识构造图热身练习: 1.假如+ 20%表示增添 20%,那么- 6%表示 ( ) .A .增添 14%B .增添 6%C .减少 6%D .减少 26%2.假如A .(2 ,则“ ”内应填的实数是()) 133B .2C .2.23 3D3231的相反数是 ___ ____ ,— 2 的倒数是 ,| —11|=。
234.若 。
典例剖析:1. 把以下各数填入表示它所在的数集中: 。
整数有分数有2 负数有是互为相反数,, 有理数有的绝对值等于,那么 假如a ,b c d 是互为倒数,x 2.x 4cdx 2 a b 的值是;反省:3. 若,则的值为()A .B .C . 0D . 4评论:一个数的绝对值是指数轴上表示这个数的点到 的距离,因此某数的绝对值是非负数。
几个非负数的和等于零,则这几个非负数同时为零。
4. 实数 a 、 b 在数轴上的地点如图 1 所示,则 a 与 b 的大小关系是( )图 1A .a > bB . a = b C. a < b D . 不可以判断评论:有理数大小比较:正数零负数,两个负数,大的反而小;数轴上表示的两个数边的数总比 边的数大。
礼拜一二三四五六 日5. 某 增减 / –1 +3–2 +4+7–5 –10 工 厂在 上一 星期的礼拜日生 了100 台彩 ,下表是本礼拜的生 状况:比前一天的 量多的 正数,比前一天 量少的 数。
算出本礼拜最后一天礼拜日的 量是 台,本礼拜的 量是 台,礼拜 的量最多,礼拜 的 量最少。
反 :1. 假如水位高升 3m 水位 化 作 +3m , 水位降落 5 米 水位 化 作:2. 大于– 3 且不大于 2 的所有整数写出来是3. 将有理数 0,22 ,,-4 ,按从小到大的 序摆列,用“”号 接起来7<_____________ ______.4.已知有理数 a 、b 在数 上的地点如 所示,以下 正确的选项是( )A 、b <aB 、 ab <0C 、 b — a > 0D 、a+b >0 5.与 a-b 互 相反数的是 ( )A .a+bB .a-bC . -a-bD .b-a 6 若 a 0 , b 0 ,且 a b , 用“<”号 接 a , b ,- a ,- b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、解下列方程组:
Image
( 其中 为常数)
C:7、代数式 是4,试求
,当
时,它的值是7;当 时代数式 的值。
时,它的值
第3课时
课题:二元一次方程组复习(三 ) 课型:复习 授课班级: 141班 备课人:唐思梁 参与备课:罗海建、吴小珍、杨焕良、杨树 华 复习目标:
A层、能根据具体问题中的等量关系,列出二元一次方程组,解决简 单的实际问题; B层、根据其实际意义,检验结果是否合理; C层、掌握列二元一次方程组解决简单的实际问题的关键。 复习重点:列出二元一次方程组,解决简单的实际问题。 复习难点:弄清数量关系,找出等量关系。 教学过程: 一、知识梳理 1、行程问题:路程=速度×时间; 2、工作量问题: 工作量=工作效率×时间 (总工作量看作1) 3、利率问题: 利润=售价-进价(成本) 利润=进价×利润率 4、银行存款问题: 利息=本金×利率 年利率=月利率×12 5、等积变换问题: 形变面积(或体积)不变。 二、师生互动 1、例.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行 车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学 校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速 度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公 里? 分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的 转变导致时间的不 同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同 的过程列 两个方程,组成方程组 解:设平路长为x公里,坡路长为y公里
二元一次方程组复习
第1课时
课题:二元一次方程组复习(一) 课型:复习 授课班级: 141班 备课人:唐思梁 参与备课:罗海建、吴小珍、杨焕良、杨树 华 复习目标 A层、使学生准确理解二元一次方程、二元一次方程组及其解的概 念,并熟练地运用代入法、加减法解方程组; B层、通过列方程组解应用题,提高学生的分析与综合的能力; C层、进一步理解消元法解方程组所体现的化归思想方法。 复习重点:进一步复习巩固解一次方程组的基本思想和基本方法. 复习难点:列一次方程组解应用题。 教学过程: 一、知识梳理 1、本章的主要内容是什么? 2、什么叫二元一次方程和二元一次方程组?它们一般分别可有多少解? 举例说明。 3、到目前为止,我们学过的解二元一次方程组的方法有几种?一般地 说,在什么情况下采用哪种方法比较简单?举例说明。 4、二元一次方程组的解法体现的基本思想是什么?其作用是什么? 5、列二元一次方程组解应用题的一般步骤是什么? 6、问题中未知数的个数与所列方程个数有何关系? 二、师生互动 1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。 2、在x+3y=3中,若用x表示y,则y=__ ___,用y表示x,则x=_ _____。 3、已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次 方程;当k=______时,方程为二元一次方程。 4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ __;当y=0时,则 x= ____。 5、方程2x+y=5的正整数解是___ ___。
2、若3a7xby+7和-7a2-4yb2x是同类项,则x=_________,y=___________. 3、若方程组 是多少? 与方程组 的解相同,则a,b的值分别
4、若 及 都是方程ax+by+2=0的解,试判断 ax+by+2=0的又一个解?
是否为方程
C层:1、解方程组: (1) (2)
2、一列快车长306米,一列慢车长344米两车相向而行,从相遇到离 开需13秒若两车同向而行,快车从追及慢车到离开慢车需65秒求 快、慢车的速度分别是多少?
3、已知方程ax+by=11,它的解是
求a,b的值
4、某眼镜厂有工人25个,每人每天平均生产镜架72个或镜片96片;为了使 每天生产的镜架和镜片刚好配套,问如何分配工人?
三、拓展提高
1.某工程队共有55人,每人每天平均可挖土2.5立方米或运土3立方米,为 合理分配劳动力,使挖出的土及时运走,应分配挖土和运土的人数各是多 少人?
2、甲、乙两人从相距36千米的两地匀速相向而行,如果甲比乙先2小 时,那么他们在乙出发后经2.5时相遇;如果乙比甲先2时,那么在甲出 发后经3小时相遇。试求甲、乙两人每小时各走多少千米?
9、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为 66分,合格生平均成绩为76分,不及格生平均成绩为52分,则
这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。
5、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年 后获利45元,问两种债券各有多少?
6、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个 中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料 每瓶各多少元?
7、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先 乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后 两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/ 时,求A点距北山站的距离。
4、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆 小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多 少吨垃圾。
5、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一 场得0分。若有一支球队最终的积分为18分,那么这个球队平几场?
B层:1、现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两 箱共102个,B、C两箱共106个,求每箱各有多少个?
5、当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方 程)有相同的解,求a的值.
6、如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满 足什么条件?
7、二元一次方程组的解x,y的值相等,求k.
8、已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多 少?
(3)甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千 米乙再动身,则乙走小时后恰好与甲同时到达B地;如果甲先走1小时, 那么乙用小时可追上甲,求两人的速度及AB两地的距离。 (4,12千 米/小时,9千米)
(4)铜和锌合成黄铜124克,由实验室测定8.9克铜在水中减轻1克, 70克锌在水中减轻10克,12.4克黄铜在水中减轻1.5克,问124克黄 铜、锌各多少克? (124克黄铜中含铜89克勤克俭,含锌35克)
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) A、10x+2y=4 4、若是 A、1 与 B、-1 B、4x-y=7 C、20x-4y=3 D、15x-3y=6 ) 同类项,则 C、-3 的值为 (
D、以上答案都不对
5、在方程(k2-4)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则 k值为 ) A、2 6、若 A、 7、在方程 B、-2 C、2或-2 D、以上答案都不对. )
依题意列方程组得: 解这个方程组得: 答:夏令营到学校有9公里 2、探究解题 (1)小红到邮局寄挂号信,需要邮资3元8角,小红有票额为6角和8角 的邮票若干张,问寄这封挂号信各需要每种邮票多少张? 解:设需6角的邮票x张,需8角的邮票y张,依题意列方程
(2)有两种酒精,一种浓度是60%,另一种浓度为90%,现在要配制成 浓度为70%的洒精300克,问:每种需各取多少克?(200克,两人骑自行车分别从甲乙两地相向而 行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们 所行的路程正好相等。求A、B两人骑自行车的速度。
3、已知甲、乙两种商品的原价和为200元。因市场变化,甲商品降价 10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提 高了5%。求甲、乙两种商品的原单价各是多少元。
四、总结归纳 列方程解应用题,第一步——读题、设未知数,第二步——找数量关 系,根据数量关系列方程(组),第三步——解方程(组),第四步 ——检验、作答。 五、课堂检测 A层:1、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的 人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求 三种队各有多少人?
6、已知是方程组的解,求、的值。
三、归纳总结 1、“元”即方程中的未知数,二元一次方程就含有两个不同的未知 数,且每一个未知的次数是1,两个不同的二元一次方程构成一个二 元一次方程组。 2、目前,我们已经学习了用加减消元法、代入法解二元一次方程 组。 3、所得的解要代入原方程组检验。
四、课堂检测 A:1、方程组的解是______________。 2、两数和是16,两数差是2,则这两数的积是_____________。 3、若2x-3y=5,则6-4x+6y=_____________; B:4、当a=2、b=1时,方程组的解为: 5、求满足方程组 的值。 中 值是 值的3倍的 的值,并求
6、若(4x-3)2+|2y+1|=0,则x+2=_____ 7、方程组 。 8、若 时,关于 的二元一次方程组 的一个解为
_。
,那么这个方程组的另一个解是
的解互为倒数,则
三、拓展提高 1、方程2x-3y=5,xy=3, 中是二元一次方程的有( ,3x-y+2z=0, )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( A、1个 B、2个 C、3个 ) D、4个
是二元一次方程组的解,则这个方程组是( B、 C、 D、
中,用含 的代数式表示 ,则 =
8、已知x=3-k,y=k+2,则y与x的关系是( )