RADIO COMPACT STRUCTURE IN OQ208
Sennheiser MKH 8000系列微声头说明书
Discoverthe Soul ofSound.MKH 8000 Series MicrophonesSennheiser has taken its sophisticated MKH series of radio-frequency condenser microphones one step further: the MKH 8020, MKH 8040, MKH 8050 and MKH 8090 fulfil the most exacting demands on sound quality and versatility. Extremely low inherent self-noise, an exceptionally wide frequency response for high sampling rate digital audio formats and a very compact design make them an ideal choice for the most demanding classical music recordings, for broadcast use and for stage and film applications.Sound with a Soul:Sennheiser’s MKH 8000 Series MicrophonesA Superb Synthesis of Sound Aesthetics and Engineering Perfection.Contents 04 Features 05 Microphones06 Broadcast Shotgun Microphones 06 Special Modules07 Microphones and accessories overview 08 Accessories 10 Technical dataThe MKH 8000 series has been designed to capture the soul of sound, reproducing the music with an unprecedented warmth and trans p arency. Without taking away from the unique clarity that MKH s ymmetrical microphones are famous for, the 8000 series has a natural subtle warmth that has to be heard to be appreciated. Voices will sound rich and detailed; piano, strings and wind instruments will have that special ‘character’, while percussive instruments benefit from a fast attack and a dynamic, powerful reproduction.MKH 8000 SERIES MICROPHONES 02 03FeaturesThat Make a DifferenceModular design: Extremely compact and elegant, the MKH 8000 seriesinvisible on stage.Extremely low inherent self-noise: While the inherentdiaphragm condenser microphones.Accurate directional patterns: All directional patterns have— n ow close to the theoretical ideal.Intelligent accessories: A wide range of accessories enables thea Special symmetrical capsule: The MKH capsules incorporate athe music lost to other microphones — f or instance, the subtle harmonics in an much more.Extended high-frequency response: The acousticsampling rates.Nextel ® coating: All MKH 8000 Series microphones and accessoriesare coated with black Nextel ®, ensuring that there will be no disturbing reflec-tions even in the brightest of film and television lights.idealMKH 8000 seriesfront plate diaphragmback plateMKH 8020 MKH 8040 MKH 8050 MKH 8090MicrophonesMKH 8000 SERIES MICROPHONES 04 05Broadcast Shotgun MicrophonesSpecial ModulesMKH 8060shoot or a studio production: the MKH 8060 shortits strengths as a professional shotgun microphone:from the side without coloration.MZD 8000completely preserved.MKH 8070for major broadcast and sporting events. Featuringextreme directivity and a pronounced lobar pick-upconditions.MZF 8000wind and handling.Super-cardioid/lobarpick-up patternExtremely low distortionIdeal for camera mountingdue to compact design2-channel 24-bitA/D converterSuitable for all MKH 8000Series microphonesExternal synchronization viaAES 42, Mode 2Lobar pick-up patternThe specialist for far awaysources of soundEnhanced directivityExtremely low inherent noiseComplex acoustic details arepreservedHigh quality 10 dB padp rotects against overdrivingVery compact designMicrophones and Accessories OverviewMZH 8020MZT 8000MZT 8001MZQ 8001MZH 8000MZG 8000MZL 8003MZS 31MZL 8010MZE 8120MZE 8120MZE 8120MZE 8060MZEF 8120MZE 8030MZEF 8060MZE 8015MZEF 8030MZFS 8000 MZH 8040MZH 8050MZF 8000 *Screw filter module MZF 8000 atsuitable place between microphonehead and XLR module.*MZF 8000MZD 8000MZX 8000 *MZQ 8000MZS 8000MZH 8090MZW 8000audio signalmounting accessoriesMKH 8000 SERIES MICROPHONES 06 07Table StandsMZT 8000Classic metal table stand, sturdy and robust.MZT 8001Elegant table stand with acrylic base.AccessoriesMZE 8120120 cmMZE 806060 cmMZEF 803030 cmMZEF 806060 cmMZEF 8120120 cmMZE 803030 cmMZE 801515 cmFloor Stand ComponentsMZE 8015, MZE 8030 MZE 8060, MZE 8120 extension tubesSpecial bar that carries the audio signal. The microphone head is a ttached to the front, the XLR module to the end. Available in lengths of 15, 30, 60 and 120 cm.MZGE 8000, MZGE 8002 bar connectorsJoins vertical bars with one or two extension tubes.MZEF 8030, MZEF 8060, MZEF 8120 vertical barsAvailable in lengths of 30, 60 or 120 cm; standard 3/8" thread.MZFS 8000 floor standHeavy design; insensitive to structure-borne noise.Mounting AccessoriesRemote CablesMKH 8000 SERIES MICROPHONES 08 0990 °0 °125 Hz 125 Hz 125 Hz 250 Hz 250 Hz 250 Hz 500 Hz 500 Hz 500 Hz 1,000 Hz1,000 Hz1,000 Hz2,000 Hz 2,000 Hz 2,000 Hz 8,000 Hz 8,000 Hz 8,000 Hz 4,000 Hz 4,000 Hz 4,000 Hz 16,000 Hz 16,000 Hz 16,000 Hz 32,000 Hz32,000 Hz32,000 Hz30°30°30°0°0°0°180°180°180°150°150°150°120°120°120°60°60°60°90°90°90°000555101010151515202020252525dBdBdB30°30°30°0°0°0°180°180°180°150°150°150°120°120°120°60°60°60°90°90°90°–20–30–40–50–60–70dBv 101001,00010,00020,00050,000100,000H z–20–30–40–50–60–70dBv 101001,00010,00020,00050,000100,000H z–20–30–40–50–60–70dBv 101001,00010,00020,00050,000100,000H zPick-up pattern omni-directional cardioid super-cardioid Frequency response 10 – 60,000 Hz 30 – 50,000 Hz30 – 50,000 HzSensitivity in free field, no load (1kHz)–30 dBV/Pa (31 mV/Pa)–34 dBV/Pa (20 mV/PA)–34 dBV/Pa (20 mV/PA)Sound pressure level 138 dB142 dB142 dBEquivalent noise level 10 dB (A) (A-weighted, DIN 651), 21 dB (CCIR-weighted, CCIR 268-3)13 dB (A) (A-weighted, DIN 651), 22 dB (CCIR-weighted, CCIR 268-3)13 dB (A) (A-weighted, DIN 651), 22 dB (CCIR-weighted, CCIR 268-3)Output signal balanced, transformerless, floating balanced, transformerless, floating balanced, transformerless, floating Output impedance25 Ω25 Ω25 ΩMin. terminating impedance 1,000 Ω1,000 Ω1,000 ΩPhantom power supply 48 V ± 4 V 48 V ± 4 V 48 V ± 4 V Supply current 3.3 mA 3.3 mA 3.3 mA Diameter19 mm19 mm19 mmLength of microphone module 41 mm(74 mm including XLR module)41 mm(74 mm including XLR module)41 mm(74 mm including XLR module)Weight25 g(55 g including XLR module)25 g(55 g including XLR module)25 g(55 g including XLR module)Nominal frequency response at 1 m distance Technical DataMKH 8020MKH 8050MKH 8040Product90 °0 °125 Hz 125 Hz 250 Hz 250 Hz 500 Hz 500 Hz 1,000 Hz1,000 Hz 2,000 Hz 2,000 Hz 8,000 Hz 8,000 Hz 4,000 Hz 4,000 Hz 16,000 Hz 16,000 Hz 32,000 Hz30°30°0°0°180°180°150°150°120°120°60°60°90°90°00551010151520202525dBdB30°30°0°0°180°180°150°150°120°120°60°60°90°90°–10–10–20–20–30–30–40–40–50–50–60–60dBv dBv 50501001002002005005001,0001,0002,0002,0005,0005,00010,00010,00020,00020,000H zH z–20–30–40–50–60–70dBv 101001,00010,00020,00050,000100,000H z125 Hz 250 Hz 500 Hz 1,000 Hz 2,000 Hz 8,000 Hz 4,000 Hz 16,000 Hz 30°0°180°150°120°60°90°0510152025dB30°0°180°150°120°60°90°MKH 8090MKH 8070MKH 8060ProductPick-up pattern super-cardioid/lobar lobarwide cardioid Frequency response 50 – 25,000 Hz45 – 20,000 Hz30 – 50,000 HzSensitivity in free field, no load (1kHz)–24 dBV/Pa (63 mV/PA)–19 dBV/Pa (112 mV/PA)–34 dBV/Pa (20 mV/PA)Sound pressure level 129 dB124 dB142 dBEquivalent noise level 11 dB (A) (A-weighted, DIN 651), 23 dB (CCIR-weighted, CCIR 268-3)8 dB (A) (A-weighted, DIN 651), 21 dB (CCIR-weighted, CCIR 268-3)13 dB (A) (A-weighted, DIN 651), 23 dB (CCIR-weighted, CCIR 268-3)Output signal balanced, transformerless, floating balanced, transformerless, floating balanced, transformerless, floating Output impedance25 Ω25 Ω25 ΩMin. terminating impedance 2,000 Ω2,000 Ω2,000 ΩPhantom power supply 48 V ± 4 V 48 V ± 4 V 48 V ± 4 V Supply current 3.3 mA 3.3 mA 3.3 mA Diameter19 mm19 mm19 mmLength of microphone module 145 mm(178 mm including XLR module)432 mm(465 mm including XLR module)41 mm(74 mm including XLR module)Weight80 g(112 g including XLR module)300 g(332 g including XLR module)25 g(55 g including XLR module)Nominal frequency response at 1 m distance MKH 8000 SERIES MICROPHONES 10 11521472 09/14 P r i n t e d i n G e r m a n y . S e n n h e i s e r a n d e v o l u t i o n a r e r e g i s t e r e d T r a d e m a r k s o f S e n n h e i s e r e l e c t r o n i c G m b H & C o . K G .。
该项目历时十余年,是一项庞大而复杂的系统工程,涉及面
1、项目名称:低噪安全乘用车关键技术及产业化2、推荐单位意见低噪与安全是自主品牌乘用车与欧美日品牌差距最大的技术短板,其关键技术长期被封锁与垄断。
该项目在突破复杂系统声品质目标分解与低噪声设计、乘员临撞本能反应模拟与多工况碰撞安全目标并行设计等一系列关键重大难题的基础上,成功创建声品质导向的低噪性能开发技术和面向乘员保护的安全性能开发技术,并结合数十项自主知识产权技术建立起完备的乘用车研发支撑环境与性能开发体系,包括首创的设计专家系统、试验数据管理系统、模拟乘员本能反应的假人装置、偏置碰台车试验系统、涵盖上万指标的三级目标体系和三千余项开发规范与标准等。
应用该项目技术成功塑造长安汽车品牌低噪安全新形象。
获发明专利及软件著作权50余项,发表论文近百篇。
该项目历时十余年,是一项庞大而复杂的系统工程,涉及面广,技术复杂程度和难度很大,突破了关键技术瓶颈,部分成果纳入国家标准,打破国外封锁与垄断,达到国际先进水平。
开发了涵盖轿车、SUV、MPV的全系列乘用车产品,树立自主品牌新标杆,近三年累计新增销售额1831.8亿元、利润219.8亿元,并面向行业提供40余款汽车的低噪安全性能开发技术服务,取得重大经济和社会效益,对中国汽车技术进步与产业升级起到重要的示范和引领作用,对提升自主品牌市场竞争力和汽车强国地位起到关键作用。
推荐该项目为国家科学技术进步奖一等奖。
3、项目简介在汽车产品中,乘用车品质要求最严苛、市场规模最大、竞争最激烈。
噪声和安全是自主品牌与国外品牌差距最大的技术短板,是乘用车品质的集中体现,也是消费者最关注和最易感知的性能,对决胜市场竞争至关重要。
打破欧美日对低噪声高安全关键技术的垄断和封锁、建立自主的高品质乘用车性能研发体系、赢得乘用车市场竞争,是中国汽车工业由大做强的必由之路,符合《中国制造2025》和供给侧改革的国家战略需求。
该项目在国家863、973计划支持下,依托长安汽车和中国汽研组建“汽车噪声振动与安全技术国家重点实验室”,历时十余年,突破声品质开发和乘员保护技术瓶颈,建立起完备的乘用车研发体系,开发出涵盖两厢与三厢轿车、SUV、MPV的全系列乘用车产品,成功塑造长安“低噪、安全”品牌形象,助推长安乘用车销量近两年持续位居自主品牌第一、研发实力自2009年起持续排名中国汽车行业第一。
ERWEKA ZT Series 产品说明书
I ntroducing theZ T SeriesThe new generation of disintegration testing – from manual to fully automated2From manual to fully automated –ERWEKA ZT SeriesThe ERWEKA disintegration testers enable easy andconvenient determination of the disintegration timeof tablets and other solid dosage forms. The broadrange of ERWEKA disintegration testers comprisesall types of test equipment from the manual ZT 121light and the ZT 220/320 series up to our fully auto-mated disintegration testers of the ZT 720 series.Our compact entry-level device ZT 121 light withone test station and the disintegration testers of theZT 220 and ZT 320 series with up to 4 test stationsOptions for ZT Seriesare perfectly suited for the manual determinationof the disintegration of test samples. The ZT 720series automatically detects the disintegration ofsamples by using magnetic sensors.Versatile options and accessories ensure flexibilityand enable the adaption to your specific needs. Oursales team will be pleased to discuss the configu-ration best suited to your laboratory.AutoBasket type A(w ith 6 test tubes,for ZT 720 series only)Quick Clean Basket type A( w ith 6 test tubes ortype B with 3 test tubes)Basket type A(w ith6 test tubes ortype B with 3 test tubes)Different coloured discs for type A and B baskets,non-magnetic and magnetic for AutoBasketsAuxiliary tubes for granule testing,JP pharmacopoeia confirmAutoBasket type B(w ith 3 test tubes,for ZT 720 series only)3ZT SeriesCompact disintegration testing – ZT 120 light series1 or two parallel test station 30 ± 1 strokes/min.55 ±2 mm stroke heightFunction keys and 2x LED display for entering nominal bath temperature and required run-time Starts/stops to counting run-time automatically when basket rack is loweredIntegrated flow-through heating system (accuracy ± 0.2 °C)Temperature range 30 - 50 °C Run time up to 9 h, 59 min, 59 s ± 1 s Manual lift-in and -out of the baskets100 %USP / EP / JP compliant Easy control via a large LED display Compact entry-level deviceCompact disintegration testing – ZT 120 light seriesThe ERWEKA ZT 120 light series are the perfect entry-level disintegration tester with one or two simultaneously motor driven USP/EP/JP compliant test station. The compact unit of our light series are equipped with an integrated flow-through heater and a moulded one-piece PET water bath (no leak-ing / breaking, easy to clean) with cover.The ZT 121 light can be easily operated via a mem-brane keypad. Defined test run parameters such as run time and water bath temperature are entered with symbol keys and the actual values are then shown on large and bright LED displays. The run-time counter automatically starts as soon as the basket rack assembly is lowered into the test media.Highlights■External electronic temperature sensor PT 100 ■ Q uick Clean Basket type A (6 test tubes)100 % USP compliantTechnical DataOptions■Water stabiliser with colour indicator ■Qualification documents IQ/OQ/PV ■ERWEKA IQ/OQ/PV service at customer site ■Maintenance serviceAvailable with 1 or 2teststations4Sample collector FRL 6/7/8545ZT SeriesAsynchronous disintegration testing – ZT 320 Series1 to 4 test racks 30 ± 1 strokes/min 55 ±2 mm stroke heightLED display to show remaining run-time and actual bath temperatureIntegrated flow-through heating system (accuracy ± 0.2 °C)Temperature range 30 - 50 °C Run time up to 99 h, 59 min, 59 s ± 1 s Manual lift-in and -out of the baskets RS 232 interfaceU SB-A printer interface for documentation print out 100 %USP / EP / JP compliant 1 to 4asynchronous test stationsTool freeassembly and disassemblyContinuous heating of water bath by flow-through heater Asynchronous disintegration testing – ZT 320 SeriesTechnical DataOptions■ A utomated lift-in and -out of the basket rackassembly/ies on start / completion of the pre-set run-time of each test station ■ B asket rack assembly type A (6 test tubes) ortype B (3 test tubes) 100 % USP compliant ■ M edia pre-heat and disintegration rack storagecontainer located in the water bath (ZT 321 and 323 only) ■ Q uick-Clean-Basket (100 % USP/EP/JP compli-ant) for fast cleaning of the test stations ■Water stabiliser with colour indicator ■Qualification documents IQ/OQ/PV ■ERWEKA IQ/OQ/PV service at customer site ■Maintenance serviceThe test stations of our ZT 320 series are driven individually. Each test station is controlled by its own keypad. After programming the required test run-time, the basket rack assembly with its loaded samples is automatically lowered into the media. On completion of the preset run-time or when the stop button is pressed, the basket rack is raised from the media to prevent further disintegration of the samples (optional).6Automated disintegration testing – ZT 720 SeriesThe ERWEKA ZT 720 Series automatically deter-mines the disintegration time of samples by using a unique system of magnets and sensors. The ZT 720 is available with one (ZT 721) or two (ZT 722) individually driven test stations and is equipped with an integrated flow-through heater.Its temperature sensor PT 100 allows constant control of the water bath temperature. The ZT 720 series is controlled through an intuitive 7" touch-screen and is capable of storing and retrieving up to 200 products/methods with results and parameters.Intuitive navigation due to user-friendly menu structurewith a 7" integrated touchscreen display for convenient and easy operation. Access is password protected.Touch displayLift drive with stepper motor for direct speed control. Automated lift-in and lift–out of the basket rack at start/completion of the pre-set run-time.Speed controlAutomated determination of the disintegration time of each sample by built-in sensors within the AutoBasket.AutoBasketEffortless cleaning is easily possible due to the remova-ble acrylic water bath, equipped with an outlet valve.Acrylic water bathSelect the basket type for your individual need: Basket type A comes with 6 test tubes for stan-dard tablets, basket type B contains 3 test tubes for bigger tablets (according to USP/EP standards).Options■ A utoBasket type A (6 tubes) & Type B (3 tubes) ■Additional vessel for pre-heating (ZT 721 only) ■ D isc remover for removal of type A discs ■Mesh 10 or 40 sieves for AutoBasket type A & B ■IQ/OQ/PV documents and validation service ■Printer7ZT SeriesAutomated disintegration testing – ZT 720 SeriesTest stations 1 (ZT 721) or 2 (ZT 722)Touch display 7"Memory function 4 GB memory for 200 products/methods and approx. 1 million test results Lift drive Step motor Speed 30 ± 1 mm/min Height of stroke 55 ± 2 mmHeatingIntegrated flow through heating system Temperature control External PT 100 temperature sensor Automatic determination ofthe disintegration time AutoBasket type A (6 test tubes) orAutoBasket type B (3 test tubes plus discs)Power consumption 230 V /115 V 1750 W attVoltage ± 10 %230 V AC / 50 Hz - 60 Hz 115 V AC / 50 Hz - 60 Hz Interfaces USB A, USB B and LAN Printer interface for Oki laser printer / HP laser printer Dimension:width / depth / height weight397 mm / 365 mm / 667 mm 30 - 35 kgAutoBasket for automated testing uses a magnetic guided disc and sensors under the USP/EP compliant sievesDuring the development of the ZT 720 touch dis-play we focused on the features which users find most important: Easy and fast creation of meth-ods, quick launching of tests and documentation of test results. The intuitive touch display enables easy operation of all functions.ZT 720 is equipped with 4 GB memory to store up to 200 products/methods and about 1 million test results, which can be displayed and exported at any time, ensuring that no test results are lost. Comprehensive integrated calibration functions guarantee accurate results and document each calibration process: Maximum convenience com-bined with an extensive feature set.Highlights■ I ntuitive navigation due to user-friendly menustructure ■ 4 GB memory for methods and test results ■ D ata export option: USB or LAN interface exportsdata in XML or CSV format ■ I nterconnect your systems: Load data from onesystem to another via USB/SD interface ■ A utomatic store function of test results after each test ■Back-up function through USB/SD-Card ■ C ustomizable IQ/OQ/PV validation interval periodsThe new ZT 720 Series touch displayTechnical DataTechnical specifications of products described arestated without warranty and subject to change at any time without further notice. v.1.3.3.20ContactE-Mail:****************Tel.: +49 6103 92426-200Fax: +49 6103 92426-999***************************************/erweka.gmbhAre you curious and want to find out more?Head over to our website and download our product brochures, watch videos of our equipment in action or find the ERWEKA dealer of your country.E-Mail:****************Telefon: +49 6103 92426-200Fax: +49 6103 92426-999ERWEKA GmbH Pittlerstr. 4563225 Langen Germany。
日本铁木兰音频牛参数
Audio Transformers
This product is an ultra compact audio frequency transformer, which is 0.25 cubic inches, for use on the printed circuit board. It is packed in a selfextinguishing plastic case. The pins are plated with gold, and the core is more compact than DL core and their performance is very excellent. • Operating temperature: 130°C MAX. • Dielectric Strength: AC150Vr.m.s. 1minute • Thermal Shock: -55°C~+130°C • Frequency range: 400Hz~250KHz, ±2dB • Distortion: 7% MAX. • Insertion loss: 3dB MAX. • Minimum ordering quantity: 5pcs
Stock Mark • marks are available from standing stock and others are for production after receipt of the order. Pleasecontact us in regards to samples. Delivery time will be advised by our sales dept. or distributor on enquiry. Catalog No. Indicates each product number. Ending with W means lapping terminals and with S shows electrostatic shield with independent terminals. Maximum Level Indicate maximum output. dBm is used for below 1.5W and W (watt) for above 1.5W. Impedance Normal impedance is show. Marks used in the impedance have following meanings: Unbarance Current In case with a center tap, unbalanced part of DC current that runs from CT to both ends are shown.
某型号直升机超短波电台电磁干扰问题研究
河南科技Henan Science and Technology 电气与信息工程总第816期第22期2023年11月某型号直升机超短波电台电磁干扰问题研究张海路杰沈凌志(昌河飞机工业集团有限责任公司,江西景德镇333000)摘要:【目的】对某型号直升机在试飞过程中因超短波电台干扰空调工作而产生的故障进行分析,为解决直升机电磁兼容问题提供建议。
【方法】通过对相关系统原理及故障机理进行分析,以故障树形式来梳理故障产生的原因,并在直升机上逐一进行验证,最终定位故障点,并采取有效的排故措施。
【结果】可从根本上解决该型机超短波电台干扰空调工作的共性问题,并根据电磁兼容性问题发生的基本原因,对三个基本解决方法进行优化。
【结论】在试飞过程中,直升机上常见的故障与电磁干扰有关,而在生产制造过程中对直升机进行电磁兼容试验是十分重要的,充分的试验可提前发现电磁兼容性问题,并在地面解决,从而避免后续试飞过程中出现故障,保证试飞任务的顺利完成,提高直升机生产质量。
关键词:直升机;超短波;空调;故障;电磁兼容中图分类号:V217.33文献标志码:A文章编号:1003-5168(2023)22-0004-04 DOI:10.19968/ki.hnkj.1003-5168.2023.22.001The Research on an Optimized Method of the Fault on Electromagnetic Interference of Ultra-Short Wave Radio of a Certain HelicopterZHANG Hai LU Jie SHEN Lingzhi(Changhe Aircraft Industries Group Co.,Ltd.,Jingdezhen333000,China)Abstract:[Purposes]This paper aims to analyze the failure of a helicopter caused by ultra-short wave radio interference with air conditioning during flight test,and to provide suggestions for solving the prob⁃lem of helicopter electromagnetic compatibility.[Methods]Through the analysis of the relevant system principle and fault mechanism,the causes of the fault are sorted out in the form of fault tree,and verified one by one on the helicopter.Finally,the fault point is located and effective troubleshooting measures are taken.[Findings]It can fundamentally solve the common problem that the ultra-short wave radio in⁃terferes with the air conditioning work of the machine,and optimize the three basic solutions according to the basic causes of the electromagnetic compatibility problem.[Conclusions]In the process of flight test,the common faults on helicopters are related to electromagnetic interference.It is very important to carry out electromagnetic compatibility test on helicopters in the process of production and manufactur⁃ing.Sufficient test can find electromagnetic compatibility problems in advance and solve them on the ground,so as to avoid faults in the subsequent flight test process,ensure the smooth completion of flight test tasks,and improve the production quality of helicopters.Keywords:helicopter;ultra-short wave;air-conditioner;fault;electromagnetic compatibility收稿日期:2023-06-02作者简介:张海(1992—),男,本科,工程师,研究方向:直升机无线电系统方。
武器装备体系弹性技术研究综述
对武器装备体系的研究也得到了充足而迅猛的发展$要素 员'是系统对缺陷*干扰做出响应和恢复的能力'是装备体
协同作战框架下的装备体系具有可动态重构的系统特性' 系在遭受一定干扰下'通过动态重构调整其资源配置模式*
收稿日期$%$$ %< <<#修回日期$%$$ %@ $##网络优先出版日期$%$$ << %#$ 网 络 优 先 出 版 地 址 B**C%#D.)85.D08.+*&D5,)&3+*204&<<8$!$$8E98$%$$<<%#8<>!#8%<$8B*,4 基金项目国家自然科学基金 资 !#$<%<$#%" 助课题 $通讯作者8 引用格式陈志伟'焦健'赵廷弟'等8武器装备体系弹性技术研究综述 系 (:)8 统工程与电子技术'$%$&'!"!#"%$%>@=$%##8
HJ-9IB0A+0<'$':GNK:02.&'$ 'IJNK E0./30&'HJL:02(;.!
!ON2+./++(V!54)(. G(4(/*"#-+4),)1)('D$*)#Q(4)(*+<$%5)("#+,"/%2+,3(*4,)5'?,0/+9O8O:R';#,+/# :N?,0/+-+4),)1)($&;$+)*$%B("#+$%$H5'?,0/+9O88\b';#,+/#
一种格里高利型卫星通信天线的设计
互联网+通信nternet Communication一种格里高利型卫星通信天线的设计□李印涛张义坡中国电子科技集团公司第五十四研究所【摘要】小型卫星通信车载天线要求具有高效率、低副瓣和小型化的特点。
采用格里高利型双偏置天线形式对于单偏置天线更有优势,更容易实现紧凑的结构,满足小型卫星通信车载站的要求。
在天线设计时进行了赋形设计,并使用商用仿真软件进行了仿真计算,利用该方法设计了一种双偏置卫星通信天线。
经实测结果表明,设计的天线电气性能优良,具有良好的实用性。
【关键词】格里高利型双偏置天线赋形设计仿真计算Design of a Gregorian Antenna for Satellite CommunicationL i Yin-tao Zhang Yi-Po(The54th Research Institute of CETC,Shijiazhuang Hebei050081)ABSTRACT Small satellite communication vehicle antenna should have the characteristics of high efficiency,low sidelobe and miniaturization.The form of Gregory double offset antenna is more advantageous for single offset antenna,and it is easier to achieve compact structure,which can meet the requirements of small satellite communication vehicle station.At the time of antenna design,the shaping design is carried out,and the simulation calculation is carried out by using commercial software.A double offset satellite communication antenna is designed by using this method.The experimental results show that the designed antenna has excellent electrical performance and good practicability.Key words Gregorian Antenna,Shape design,simulation calculation.引言:随着科技发展,卫星通信车载站以其机动灵活的特点在卫星通信领域得到广泛的应用,而车载站要求天线具有小型化、高增益、低副瓣的特点。
有限阵列孔径下的中低频声源识别与声场重构方法
利用阵列信号处理技术对信号进行空间滤波,消除噪声和其他干扰信号,提高声源识别的准确性和可靠性。
基于机器学习的声源识别方法
特征提取
通过机器学习算法对阵列信号进行特 征提取,提取出与声源相关的特征信 息。
分类器设计
利用提取的特征信息设计分类器,对 声源进行分类和识别。
基于深度学习的声源识别方法
随着技术的发展,有限阵列孔径下 的中低频声源识别与声场重构方法 将不断得到改进和完善,未来研究 方向包括提高定位精度、拓展应用 领域等。
研究目标与内容
研究目标:针对有限阵列孔径下的中低频声源识别与声场 重构方法,提出一种有效的方法,提高声源定位精度和声 场重构质量。
研究内容
1. 有限阵列孔径下的中低频声源信号稀疏性研究;
04
实验验证与分析
实验数据来源与预处理
数据来源
实验数据来源于实际声源信号采集,包括中低频声源信号的 采集和处理。
数据预处理
对采集的声源信号进行预处理,包括去噪、滤波等操作,以 提高信号质量。
实验结果展示与分析
结果展示
通过有限阵列孔径下的中低频声源识别 与声场重构方法,得到声源的位置、强 度等信息。
优化
通过改进阵列信号处理算法,提 高了声源识别的准确性和声场重 构的精度。
声源识别性能提升
针对中低频声源,提出了一种基 于有限阵列孔径的声源识别方法 ,有效提高了声源识别的性能。
声场重构技术突破
通过研究有限阵列孔径下的声场 重构方法,实现了对声场的准确 重构,为后续的声源定位和识别 提供了有力支持。
有限阵列孔径下的中低频声 源识别与声场重构方法
汇报人: 2023-12-21
目录
• 引言 • 有限阵列孔径下的声源识别方
eq2082
eq2082简介eq2082 是一种基于水声、电声和光声技术的多通道均衡器。
通过对音频信号进行频率响应调整,eq2082能够从根本上改善音频设备的音质表现。
本文将介绍eq2082的基本原理、应用场景以及特点。
基本原理eq2082基于频域均衡 (FEQ) 技术,通过音频信号的频率响应调整来改善音质。
它可以将音频信号中的某些频段进行增强或减弱,以达到更好的听音效果。
具体来说,eq2082可以对音频信号进行以下三种类型的均衡调整:1.低频均衡 (Low Frequency EQ):通过增强或减弱低频信号的幅度,调整低频响应,增加低音的深度和力度。
2.中频均衡 (Mid Frequency EQ):通过增强或减弱中频信号的幅度,调整中频响应,增加人声或乐器的明亮度和清晰度。
3.高频均衡 (High Frequency EQ):通过增强或减弱高频信号的幅度,调整高频响应,增加音乐细节的展现和空气感。
eq2082能够对多路音频信号进行独立的均衡调整,每个信号通道都可以设定不同的均衡参数。
应用场景eq2082广泛应用于音响系统、录音棚和房间音频调整等场景。
下面列举了一些典型的应用场景:音响系统调校在音响系统调校中,eq2082可以帮助调整音响系统的频率响应,消除声音中的共振或峰值,以实现更平衡、更自然的音质效果。
根据实际情况,可以通过修改低频、中频和高频均衡参数来改变音响系统的声音特性。
录音棚音频处理在录音棚中,eq2082可以用来调整各种乐器、人声的频率响应,以达到更好的录音效果。
比如,对于一些需要加强低音的乐器,可以通过增加低频均衡参数来突出其低音;对于唱歌者的人声,可以通过增加中频均衡参数来增强人声的清晰度。
房间音频优化在家庭或会议室等房间中,eq2082可以用来优化音频系统的输出效果。
通过调整低频均衡参数,可以减少房间内低频噪音的共振;通过调整高频均衡参数,可以增加音频的细节和立体感。
特点eq2082具有以下几个特点:•多通道支持:eq2082可以支持多路音频信号输入和输出,实现独立的均衡调整。
声发射检测技术(AE)对钢制平底常压储罐的检测方法及效果
声发射检测技术(AE)对钢制平底常压储罐的检测方法及效果储存液体化工物料常用的钢制平底常压储罐,广泛运用于化工、储运行业的各个生产单位。
此类设备的特点是高度高(绝大多数高于10 米)、直径大(8 米以上)、储量大(500m3 以上),经常用于储存易燃易爆、或具有腐蚀性、有污染的化学品,危险性大;数量相对集中,一旦发生事故,后果十分严重。
因此,如何保证储罐安全运行就显得格外重要。
为了避免事故的发生,使用单位设定了严格的管理和检查制度,来保证储罐的安全;部分企业还定期停罐,置换清理,并邀请检测单位前来对内部进行检测。
但由于储罐结构的特殊性,其底板在储罐内部存有物料时,一面接触物料,一面紧贴基础,无法进行观察;入罐检查时,也只能对底板接触物料的一面进行宏观检查,反面的情况只能以无损检测手段检测,检测结果不够直观。
而对一个储罐进行清罐、置换,需要耗费大量人力、财力和时间,使用单位很难接受。
同时,储罐的连续运行特性导致很难对其进行停罐检查。
底板在储罐运行时,需要承担大量物料的重载,一旦存在缺陷,在自身结构形状和所受重力的联合作用下,很容易造成应力集中,使得缺陷不断扩展,直至形成泄漏,导致事故的产生。
因此,如何在储罐运行期间对其整体安全性进行确认,就成为了使用单位和检验单位共同的一大难题。
为了达到这个目的,我们采用了声发射检测这种新型技术。
声发射是指固体材料在断裂时释放储存的能量产生弹性波的现象。
声发射检测(AE),1950 年由德国人J.Kaiser 开始研究,1964 年美国应用于检验产品质量,从此获得迅速发展。
材料的弹塑性形变、裂纹扩展、应力腐蚀等,都有声发射现象,检测到声发射信号,就可以连续监视材料内部变化的整个过程。
声发射检测的原理是从声发射源发射的弹性波传播到达材料的表面,引起可以用传感器探测的表面位移,传感器将材料的机械振动转换为电信号,然后再被放大、处理和记录,人们根据观察到的声发射信号进行分析与推断以了解材料产生声发射的机制。
装甲车内背景下的语音端点检测的改进
装甲车内背景下的语音端点检测的改进杨龙;陈建明【摘要】以模拟装甲车内部环境噪声对带噪语音进行端点检测,旨在通过设计良好的端点检测算法来提高后续语音增强的效果.从实战角度出发,语音端点检测的需求为较高的准确性和实时性以及鲁棒性.结合语音信号特性,采取以谱减法作为预处理的基础上通过能熵比对带噪语音进行端点检测,通过实验仿真的方式证明其可行性.【期刊名称】《电声技术》【年(卷),期】2015(039)010【总页数】5页(P47-51)【关键词】语音端点检测;能熵比;谱减预处理【作者】杨龙;陈建明【作者单位】装甲兵工程学院信息工程系,北京100072;装甲兵工程学院信息工程系,北京100072【正文语种】中文【中图分类】TP391语音端点检测(Video Activity Detection,VAD)技术是指在复杂的语音通信环境中区分出语音信号和非语音信号并能准确标记出语音段起始点和终止点的方法。
目前,它已成为语音增强、语音识别、合成等相关处理的必备的前端支持,高效的语音端点检测技术不但减少了后续语音信号处理的运算量,还大大提高了处理的精度和通信系统的质量。
在装甲车内的通信环境下,由于背景噪声复杂,主要包括发动机的噪声、装甲车行驶履带以及气流的噪声和车内部件的声音等,形成的带噪语音信噪比较低,不易被接收者辨识。
必须在语音通信中加入语音增强技术,为了减少语音增强的计算量以提高效率,稳健并具有较高鲁棒性的语音端点检测技术也必不可少。
噪声中的语音检测是一个比安静环境中的语音检测复杂的问题。
噪声环境下的语音端点检测比安静条件下复杂。
当输入信噪比较低时,更大可能会产生漏检,因此,大量研究者在低信噪比条件下的语音端点检测算法投入了大量的研究。
传统的端点检测方法,如短时能量、过零率检测等,在平稳噪声或高信噪比条件下检测效果较好,低信噪比时极易发生漏检或虚检情况。
因为装甲车内部的噪声频谱复杂且时变性强,并且根据实战需要,语音通信的实时性要求较高。
一种采用机器学习的氦语音识别方法
一种采用机器学习的氦语音识别方法李冬梅;李明;郭莉莉;张士兵【期刊名称】《电讯技术》【年(卷),期】2022(62)9【摘要】为了解决传统氦语音处理技术存在的处理速度慢、计算复杂、操作困难等问题,提出了一种采用机器学习的氦语音识别方法,通过深层网络学习高维信息、提取多种特征,不但解决了过拟合问题,同时也具备了字错率(Word Error Rate,WER)低、收敛速度快的优点。
首先自建氦语音孤立词和连续氦语音数据库,对氦语音数据预处理,提取的语音特征主要包括共振峰特征、基音周期特征和FBank(Filter Bank)特征。
之后将语音特征输入到由深度卷积神经网络(Deep Convolutional Neural Network,DCNN)和连接时序分类(Connectionist Temporal Classification,CTC)组成的声学模型进行语音到拼音的建模,最后应用Transformer语言模型得到汉字输出。
提取共振峰特征、基音周期特征和FBank 特征的氦语音孤立词识别模型相比于仅提取FBank特征的识别模型的WER降低了7.91%,连续氦语音识别模型的WER降低了14.95%。
氦语音孤立词识别模型的最优WER为1.53%,连续氦语音识别模型的最优WER为36.89%。
结果表明,所提方法可有效识别氦语音。
【总页数】7页(P1215-1221)【作者】李冬梅;李明;郭莉莉;张士兵【作者单位】南通大学信息科学技术学院【正文语种】中文【中图分类】TN912.3;TP181【相关文献】1.一种基于机器学习的经济数据识别方法2.一种基于机器学习的人脸情绪识别方法研究3.一种集成多个机器学习模型的复合材料结构损伤识别方法4.一种基于机器学习的贫困家庭识别方法5.一种基于机器学习的LTE高铁故障识别方法与实例因版权原因,仅展示原文概要,查看原文内容请购买。
一种被动雷达导引头外场噪声模拟方法
一种被动雷达导引头外场噪声模拟方法
龚汉华;李凯;张司兴
【期刊名称】《教练机》
【年(卷),期】2016(000)003
【摘要】针对实验室半实物仿真环境下,被动雷达导引头输出信号与外场试验环境下输出信号存在较大差别的问题,提出了一种在半实物仿真中模拟被动雷达导引头外场噪声的方法,仿真结果表明,该方法能较好地进行外场噪声模拟,提高了半实物仿真置信度.
【总页数】3页(P54-56)
【作者】龚汉华;李凯;张司兴
【作者单位】中航工业洪都,江西南昌330024;中航工业洪都,江西南昌330024;中航工业洪都,江西南昌330024
【正文语种】中文
【相关文献】
1.一种模拟人耳实现噪声分类的方法 [J], 郭伟;左曙光;李徐钢
2.一种从被噪声污染的图像中提取模拟波形的方法 [J], 辛守庭;张洁;杨志民
3.一种被动雷达导引头外场噪声模拟方法 [J], 龚汉华;李凯;张司兴;
4.一种结合噪声辅助技术和现场数据的模拟电路实时可靠度预测方法 [J], 闫理跃;王厚军;刘震
5.一种自适应模拟舰船噪声重构方法(英文) [J], 张立杰;黄建国;张群飞
因版权原因,仅展示原文概要,查看原文内容请购买。
两种声衬阻抗提取方法的对比
两种声衬阻抗提取方法的对比
徐健;薛东文;杨嘉丰
【期刊名称】《科学技术与工程》
【年(卷),期】2022(22)13
【摘要】航空发动机短舱声衬是发动机最重要的降噪装置,为建立精确、关联声衬结构和声学性能的阻抗模型,需要精细化分析声衬声阻抗提取技术。
对比分析了2种声衬阻抗提取技术(当地阻抗提取方法和直接提取方法)的差异。
应用同一个流管声学试验平台制造偏差可控的声衬试验件,并进一步通过阻抗测量的重复性试验,保证了两种阻抗提取方法对比的基础。
应用两种阻抗测量方法分别提取了单自由度声衬和双自由度声衬的声阻抗。
结果表明:2种阻抗提取方法测量结果在中、高频段内相互吻合,在低频范围内存在显著差异。
对比分析可见:相比于直接提取方法,当地阻抗提取方法适用的频率范围更宽,能够反映声衬的局域声阻抗特性,对声衬的尺度限制小,但需要破坏声衬的物理结构,且适用于传统声衬结构;相比于当地阻抗提取方法,直接提取方法测量了声衬的整体阻抗特性,在中、高频段内能够获得精确的阻抗结果,不需要破坏声衬的物理结构,而更为广泛地适用于板型吸声材料。
【总页数】8页(P5498-5505)
【作者】徐健;薛东文;杨嘉丰
【作者单位】中国飞机强度研究所航空发动机强度研究室;航空声学与振动航空科技重点实验室
【正文语种】中文
【中图分类】V235.13
【相关文献】
1.在线测量声衬声阻抗的双传声器法
2.复合材料声衬声阻抗性能测试试验研究
3.现场测量管道声衬声阻抗的双传声器法实验研究
4.提取流管实验装置中声衬声阻抗的模态方法
5.高速气流环境下的管道声衬阻抗模型研究
因版权原因,仅展示原文概要,查看原文内容请购买。
一种小型化低功耗的机载处理模块设计
一种小型化低功耗的机载处理模块设计
郭京;沈华;张晓曦;高毅;亢晓丽
【期刊名称】《航空计算技术》
【年(卷),期】2018(48)5
【摘要】随着嵌入式航电的快速发展,航电处理模块的功能和性能越来越强大,但与此同时,高性能也带来了功耗的攀升.高功耗不仅会影响元器件的使用寿命,更会导致故障频发.所以,机载处理模块需要满足高性能低功耗的特点.另一方面,由于航电设备越来越精密化,航电设备需要在有限的机载物理空间具有尽可能多的功能,机载处理模块的设计准则也需要小型化.为了满足航电系统小型化低功耗的设计要求,设计一种低功耗高性能处理模块,通过选择合理的处理器芯片、优化电路设计等方法来达到小型化低功耗的设计要求,经过测试对比验证了设计的有效性.
【总页数】3页(P279-281)
【作者】郭京;沈华;张晓曦;高毅;亢晓丽
【作者单位】航空工业西安航空计算技术研究所,陕西西安710068;航空工业西安航空计算技术研究所,陕西西安710068;航空工业西安航空计算技术研究所,陕西西安710068;航空工业西安航空计算技术研究所,陕西西安710068;航空工业西安航空计算技术研究所,陕西西安710068
【正文语种】中文
【中图分类】TP311.5
【相关文献】
1.低功耗小型化时频模块的设计 [J], 谢鹏
2.一种模块化小型化的机载卫星通信设备 [J], 高文生;何巍
3.一种机载低功耗数字地图模块的设计与实现 [J], 詹思维
4.一种小型化低功耗电流采样电路设计 [J], 张纯亚;刘松
5.一种小型化低功耗电流采样电路设计 [J], 张纯亚;刘松
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The Astrophysical Journal,621:L13–L16,2005March1᭧2005.The American Astronomical Society.All rights reserved.Printed in U.S.A.RADIO COMPACT STRUCTURE IN OQ208Guiying Xie,1,2D.R.Jiang,1and Z.-Q.Shen1Received2004October10;accepted2005January18;published2005January27ABSTRACTIn light of the newly detected proper motions in two lobes of the gigahertz-peaked spectrum source OQ208, we introduced the Doppler effect into thefit to the observed spectral turnovers.It shows that two models containing the same beaming parameters but having quite different absorption mechanisms canfit two lobes equally well.In one model,only FFA(free-free absorption)is needed.In the other model,both the SSA(synchrotron self-absorption)in two lobes and an extra FFA toward the southwest lobe are required.Our analysis cannot unam-biguously distinguish between two models.Although the FFA process is invoked in both models,the geometry of the absorbing gas could be quite different.However,the beaming effects in both models are eventually the same,with an intrinsically symmetrical advance speed of≈0.33c for the two-sided lobes and an inclination angle of≈33Њfor the radio jet emission to the observer’s line of sight.Subject headings:galaxies:active—galaxies:individual(OQ208)—radio continuum:galaxies1.INTRODUCTIONThe radio source OQ208(1404ϩ286),at,isz p0.0768 one of the closest GPS(gigahertz-peaked spectrum)sources with a spectral peak at6GHz(de Vries et al.1997).Its host galaxy Mrk668is classified as a Seyfert1galaxy(de Grijp et al.1992)or a broad-line radio galaxy(Marziani et al.1993), which shows broad optical recombination lines.Thefirst published VLBI image of OQ208showed a struc-ture extended in the north-south direction(Charlot1990). Zhang et al.(1994)found it to extend6mas at a position angle of∼Ϫ145Њ.The source is widely used as the VLBI calibrator because of its stableflux density and compact ter VLBI observations(Kameno et al.2000;Fey et al.1996; Stanghellini et al.1997)revealed a double structure separated by∼7mas in northeast–southwest(NE-SW)direction.Ex-tremely stableflux densities and steep spectra above the peak frequency indicate that these two components are microlobes or hot spots.The15GHz VLBI observations discovered a weak core located between the two minilobes and confirmed that OQ208is a compact symmetric object(CSO;Kellermann et al.1998;Stanghellini et al.2001).Kameno et al.(2000)published the high-resolution VLBI Space Observatory Programme image of OQ208at1.66GHz and found that the two lobes are highly asymmetric with aflux density ratio about60:1,larger than those at higher frequencies. The apparent spectra of the two components are peaked at a few gigahertz.To explain the low-frequency cutoff seen in the spectra of two lobes,Kameno et al.(2000)fitted the spectra of the two components of OQ208with the SSA(synchrotron self-absorp-tion)and FFA(free-free absorption)models,respectively.Their results showed that the FFA model is likely to occur toward the SW component,while either the SSA or FFA model is possible for the NE component.But the intrinsicflux densities of the two components are quite different(theflux density ratio is10and 48for FFA and SSA,respectively)in their two models.They also discussed the Doppler effect.If the bright NE component is Doppler-boosted,it should have a blueshifted spectrum.Con-1Shanghai Astronomical Observatory,Chinese Academy of Sciences,80Nan-dan Road,Shanghai200030,China;gyxie@,djiang@, zshen@.2Graduate School of the Chinese Academy of Sciences,Beijing100039, China.sidering that the observed peak frequency of the NE component is lower than that of the SW component,and the extreme stability of the totalflux density at1.4GHz(Stanghellini et al.1997), they ruled out the beaming model.They explained the spectra of the two components in OQ208as an asymmetric FFA with an intrinsically asymmetricflux density.In the unified scheme,the jet and counterjet should be es-sentially the same.Observationally,we have seen nearly sym-metric structure at large scale for many lobe-dominated active galactic nuclei.If the emission of hot spots is caused by the interaction between the jet and the ambient medium and if the distribution of the circumnuclear medium in OQ208is very asymmetric,the intrinsicflux density of the two components may be very different,but we have not seen any observational evidence of this kind of distribution.So we prefer a beaming model to explain the asymmetricflux density of the two com-ponents in OQ208.The discussion by Kameno et al.(2000) about the beaming model is incomplete.If FFA toward both NE and SW components were the same,the Doppler-boosted NE component would have a blueshifted spectrum relative to that of the SW component.However,if there is a difference in the FFA of the two components,the observed spectrum will be modified.The peak frequency of the spectrum of the SW component with more FFA will move to the higher frequency.The proposed beaming model is further supported by the de-tection of a proper motion(Kellermann et al.2004).In this Letter we present an improved model of OQ208that can explain the observed radio properties.Throughout this Letter we use the following cosmological parameters:km sϪ1MpcϪ1,,andH p70Q p0.3Q p0m L .The spectra index is defined by the relation.a0.7S∝nn2.MODELS AND RESULTSIn our analysis,the same data published by Kameno et al.(2000)are used.They are theflux densities of both the NE and SW lobe components measured atfive frequencies,1.66,2.32,4.99,8.55,and15.3GHz.Recently,Kellermann et al.(2004)obtained the proper-motion measurements of four components in the radio compact structure of OQ208based on10epoch VLBI observations at15GHz.The apparent transversal veloc-ities of the two components B and C in the NE lobe areand(with c being the speed of light),(0.2ע0.1)c(0.3ע0.2)crespectively,and the other two components D and E in the SWL13L14XIE,JIANG,&SHEN Vol.621TABLE1Spectral Fit for Two ModelsModelS(Jy)v(deg)b S tfNtfts2x/dof FFAϩbeaming...... 6.52ע0.4532.5ע2.00.33ע0.0113.21ע0.57.77ע0.10…8.30/6SSAϩbeaming......0.208ע0.00333.8ע2.20.33ע0.0111.3ע0.3…28.2ע2.08.89/6Fig.1.—Spectra of the NE and SW components at1.66,2.32,4.99,8.55,and15.3GHz.The solid and dashed lines indicate thefitted spectra for theFFAϩbeaming and SSAϩbeaming models,respectively.The redshift correc-tion is applied to thefitting lines.Data are from Kameno et al.(2000).lobe have the apparent transversal velocities and(0.0ע0.1)c,respectively.Because the emission in the SW lobe(0.1ע0.1)cis relatively weak,and thus may have large uncertainties in themeasured proper motions,we decided to use the averaged propermotion of the two components in the NE lobe to incorporateinto the following spectralfit as a constraint on the two beamingparameters v(the angle between jet axis and the line of sight)and b(the jet velocity in units of c)using the following equation:,where the measured proper mo-b p(b sin v)/(1Ϫb cos v)apption is the averaged value of the two componentsb p0.25app(components B and C in Table2of Kellermann et al.2004)in the NE lobe of OQ208.To explain the low-frequency cutoff seen in the spectra ofthe two lobes and the big difference in the observedflux den-sities of the two components in OQ208,two possible modelsof quite different absorption mechanisms are considered.Therelativistic beaming effect is always taken into account in thefitting of the two models.In both models,the intrinsic radio spectra and the radiofluxdensities of the two lobes are assumed to be the same,and thespectral index of for the optically thin synchrotrona pϪ1.2radiation is assumed.But there are different FFA opacities inthe ambient plasma due to a slant jet axis against the line ofsight.For the same reason,the NE and SW lobes have differentDoppler factors,andd p1/[g(1Ϫb cos v)]d p1/[g(1ϩNE SW,respectively,where g(p)is the bulk21/2b cos v)][1/(1Ϫb)]Lorentz factor of the jet.2.1.FFAϩBeaming ModelFirst,only the FFA effect is considered.Assuming that theintrinsic emission of the lobes is optically thin,we obtain theobservedflux density at the observing frequency n(in units ofgigahertz)asan(1ϩz)3Ϫ2.1S p(1ϩz)d S exp{Ϫt[n(1ϩz)]},(1)n0f[]dwhere is the intrinsicflux density at1GHz in the sourceSrest frame,is the FFA coefficient at1GHz in the galaxytfframe,z is the redshift,and d is the Doppler factor and is equalto and for the NE and SW lobes,respectively.d dNE SWThe observational data of the NE lobe and the SW lobe canbe combined,since the intrinsicflux densities of the twoSlobes,the viewing angle v,and the jet velocity b are the same.There are10data points measured atfive frequencies:1.66,2.32,4.99,8.55and15.3GHz.There seem to befive parametersinvolved in thefitting,i.e.,,v,b,,and.Here,is theN S NS t t t0f f fFFA opacity toward the NE lobe,and is the FFA opacityStftoward the SW lobe.However,with the above equation of,two spectra of both the NE andb p(b sin v)/(1Ϫb cos v)appSW lobes can be jointlyfitted by four independent parameters:,v(b),,and.Thefitting results are shown in Table1N SS t t0f fand Figure1.2.2.SSAϩBeaming ModelSecond,we consider that there exists an intrinsic SSA effectand that the two lobes have the same SSA opacity of the syn-chrotron emission in the source rest frame.Obviously,the SSAmodel by itself is inadequate,since the beaming effect wouldresult in a higher peak frequency in the NE lobe than that inthe SW lobe,which is just opposite to the observed spectra(Kameno et al.2000).To shift the peak frequency of the SWlobe to a higher frequency,an asymmetrical FFA distributionwith more absorption toward the SW lobe is needed.For thesimplest case,only an extra FFA in the SW lobe emission isintroduced in combination with the intrinsic SSA in the twolobes.In this model the observedflux density at the observingfrequency n(in units of gigahertz)for the NE lobe is2.5n(1ϩz)3S p(1ϩz)d Sn NE0[]dNEaϪ2.5n(1ϩz)#1ϪexpϪt,(2)s[]{}()dNEwhile for the SW lobe2.5n(1ϩz)3Ϫ2.1S p(1ϩz)d S exp{Ϫt[n(1ϩz)]}n SW0f[]dSWaϪ2.5n(1ϩz)#1ϪexpϪt,(3)s[]{}()dSWwhere is the intrinsic SSA coefficient at1GHz in the sourcetsNo.1,2005RADIO COMPACT STRUCTURE IN OQ 208L15rest frame and the definitions of the other parameters are the same as those in equation (1).In this case,the number of fitting parameters is also four,i.e.,,v (b ),,and .The fitted S S t t 0s f parameters and the spectra are given in Table 1and Figure 1,respectively.For the error estimation,we know that the best-fit modelshould have reduced x 2’s,,equal to unity with22x p x /dof n min a deviation of ,where dof is the degree of freedom.1/2(2/dof)However,in many cases,the value for at is larger than 22x x n min 1.0(Bietenholz et al.1996).So,we scale up the 68.3%con-fidence region of parameter space,as an increase of from 2x to with instead of 1.0.By 22222x x ϩ᭝x ᭝x p x /dof min minmin projecting this confidence contour onto the axis of the param-eter of interest,we can finally obtain the 1standard error for that single parameter.3.DISCUSSIONparison between Two ModelsStatistically,both models fit the observed spectral data equally well and thus are indistinguishable.In general,SSA and FFA are two main competing mechanisms that explain the spectral turnovers seen in the GPS radio sources.The anticorrelation between the peak frequency and the overall linear size of the source (Fanti et al.1990;O’Dea &Baum 1997;Snellen et al.2000)indicates that the SSA process is related to the observed peak frequency.However,it has been pointed out that the FFA process,through the ionized gas surrounding the radio source,can also explain the relationship between turnover frequency and size (Bicknell et al.1997).Furthermore,the measured steeper-than-2.5low-frequency spectral index is inconsistent with the SSA model alone.The optical observations (de Vries et al.2000)also support the existence of a very dense ionized medium sur-rounding the GPS sources.In the case of OQ 208,a simple SSA-only model is clearly ruled out,but a modified SSA model with partial FFA toward the receding SW lobe is still a likely process responsible for the spectral turnovers in two lobes.So,at present,it is difficult to decide which model is better.Because the ex-pected low-frequency measurements can be significantly differ-ent,future high-resolution observations at lower frequencies will be crucial in distinguishing between the two models.3.2.The Beaming Effect of Two ModelsThe fitted beaming parameters in both models are nearly the same no matter which absorption mechanism is invoked.The advance speed of the lobes is about 0.33c ,and the inclination angle of the radio jet is around 33Њ.Stanghellini et al.(1997)mentioned that the optical image of the galaxy has an axial ratio of 0.7,which corresponds to an inclination of 45Њwith respect to the plane of the sky.Given the large uncertainty of the value in the optical image,the 33Њviewing angle derived from the radio emission is in reasonable agreement with the optical result.This means that the radio axis is likely to be in alignment with the optical axis in OQ 208.This further supports the beaming model.If the advance speed b of the lobes is a constant,the radio activity age t in the compact region of OQ 208will be given by ,where mas is the angular sep-t p v D /2b c sin v v p 7T A T aration of the two lobes and Mpc is the angular D p 300A diameter distance of the source.It is about 92years.If this is confirmed,OQ 208would be the youngest CSO known so far (Polatidis &Conway 2003;Taylor et al.2000).3.3.About the FFA AbsorberThe introduction of the Doppler effect can naturally account for the large ratio in the observed flux density of the two components but will result in a differential Doppler shift of the SSA spectral components;thus,the asymmetric FFA is inev-itable in order to explain that the beamed peak frequency of the approaching NE lobe is lower than that of the receding SW lobe in OQ 208.However,the absorber responsible for the FFA process might be different in the two models,reflecting the difference in the distribution of the ionized gas.In the FFA-only model,both the the NE and SW lobes undergo the free-free absorption,although the amount is different.This means that the absorber may have a more or less spherically symmetric distribution,for example,the clouds in the narrow-line region,with the different FFA opacities in the two lobes mainly the result of the difference in the path length along the line of D L sight.Here is given by .This gives D L D L p v D /tan v T A pc with in OQ 208.D L ∼15.9v p 33ЊBut in our SSA model,only an extra FFA toward the SW lobe is needed,and the emission from the NE lobe is free of any FFA process.As such,the absorbing plasma could be distributed in a disk or torus perpendicular to the jet,which just obscured the receding SW lobe emission.The difference in the FFA opacity between the NE and SW lobes can be used to estimate the electron density of the FFA plasma in a few parsecs from the SW lobe.We assume that the plasma distributes homogeneously along the absorption path,the difference in the FFA opacity is given by (Kamenoet al.2000),where and are the Ϫ3/22Dt p 0.46T n D L T n f e e e e electron temperature (K)and the electron density (cm Ϫ3)of the ambient plasma,respectively.The electron density of the FFA absorber is for the first model 343/4Ϫ3n p 0.86#10(T /10)cm e e and for the second model.343/4Ϫ3n p 1.24#10(T /10)cm e e 3.4.About the Assumption That the Two Lobes AreIntrinsically Identical In fact,the lobe pointed toward us is seen to be quite older than that pointed away from us.At an inclination angle of 33Њwith a projected distance between the two lobes of ≈10pc (Kameno et al.2000),the age difference is about 50years.The electronic cooling age of SSA at the source rest frame can be estimated by (Rybicki &Lightman 1979)118.7#10t p .(4)sy 3/21/23/2B n sin am Applying and GHz for the SSA ϩbeaming B ∼10mG n ≈2.49m model (see §4.1),we have yr.For the FFA ϩbeaming t Ӎ550sy model,we assumed that the synchrotron emission is still op-tically thin at 1GHz,so the corresponding magnetic field B and turnover frequency are much smaller than the ones de-n m rived from the SSA model.The resultant cooling time for the FFA model would be much longer than 550yr.Thus,we con-clude that the assumption is reasonable that the two lobes with an age difference of ≈50yr are intrinsically identical.4.SOME PHYSICAL PARAMETERS ESTIMATED FROMSSA ϩBEAMING MODELThe following discussion is based on the assumption that the SSA ϩbeaming model is correct.L16XIE,JIANG,&SHEN Vol.6214.1.The Magnetic Field in the LobesWe use the spectrum of the lobe in the source rest frame and the redshift correction to determine the turnover frequency GHz and the corresponding peak flux density n ≈2.49ע0.02m Jy.Adopting an angular size of mas S ≈1.37ע0.04v ≈1.63m from the 2.3GHz VLBI measurement (Fey et al.1996),we can obtain the equipartition magnetic field B ∼10ע1mGfrom the relation .1/52/5Ϫ4/51/5n ∼8B S v (1ϩz )m m 4.2.Mass in the LobeWe have obtained the optical depth of the SSA in the lobes at 1GHz and the magnetic field within from the SSA ϩbeaming model.So it is possible to estimate the electron density and the mass of the lobe under some assumptions.Assuming that the number density of the relativistic electron is distributed as a power-law function of energy in the OQ 208lobes,it is given by .The optical depth of the SSA in the Ϫp n (E )dE p n E dE 0lobes is given by ,where is the absorption co-t p k L k s n lobe n efficient of the synchrotron emission.Assuming that the ge-ometry of the lobes is a uniform sphere with the radius R with the averaged absorption length of the lobe ,we can L ∼4R /3lobe derive the normalized constant .Ϫ9Ϫ3n ∼1.30#10cm 0The number density of the relativistic electron is n n pe e .The minimum energy of the emitting electron1Ϫp[n /(p Ϫ1)]E 0min is .We cannot determine whether the emitting gas is a 2g m c e ,min e plasma or an electron-position pair,and we assumed that the emitting gas is composed of the plasma.In this case,a value of g p e ,min (Falcke &Biermann 1996)may be reasonable,and thus the 100number density of the relativistic electron is .The Ϫ3n ∼3.5cm e number of electrons in one lobe can be estimated as N ∼e ,and the mass of a lobe as ,which gives 3(4/3)p R n M Ӎm N e lobe p e .If the mass of the two lobes was supplied by a M ∼0.6M lobe ,jet,the mass ejection rate in the jet would be about Ϫ21.3#10.Ϫ1M yr , 4.3.The Jet PowerThe integrated radio luminosity of the two lobes is 421.2#10ergs s Ϫ1,the kinetic power of the two lobes is about 434.0#10ergs s Ϫ1,and the internal energy of the density of the relativistic electrons and magnetic fields in the two lobes is about 4.88#ergs cm Ϫ3,which corresponds to a variation of the internalϪ410energy in the two lobes per unit time of ∼ergs s Ϫ1.So 436.9#10the jet power is larger than ergs s Ϫ1,since the power 441.1#10of the expansion of hot spots is not included.4.4.The Accretion RateFor OQ 208,the bolometric luminosity can be estimated from its optical luminosity by the equation (Kaspi et L Ӎ9l L bol l ,5100al.2000),where can be estimated from the V magnitude L l ,5100.With mag (Ve ´ron-Cetty &Ve ´ron 2000),after m m p 15.35V V the Galactic extinction correction (mag)and K -cor-A p 0.061V rection (),we obtained ergs s Ϫ1.45a p Ϫ1L Ӎ1.73#10opt bol The accretion rate is given by .Therefore,2˙˙MM p L /h c bol the accretion rate in OQ 208would be Ϫ1˙M Ӎ0.27M yr ,(assuming ).Comparing this with the above mass ejec-h p 0.1tion rate in the jet,about 4.8%of the accreting material is ejected by the jet.5.CONCLUSIONSTo explain the asymmetric flux densities of the two lobes in OQ 208,we incorporate the beaming model into the two most plausible models,FFA-only and modified SSA plus partial FFA toward the receding lobe.In the FFA ϩbeaming model,the intrinsic emission from the two lobes is the optically thin syn-chrotron emission,and it undergoes different FFA.In the SSA ϩbeaming model,the intrinsic emission from the two lobes is the synchrotron emission with self-absorption,and the emis-sion from the SW lobe further undergoes an extra FFA that could be due to the ionized gas in a disk or torus perpendicular to the jet.It is clear that our spectral fit with both models does not favor one model over another as the dominant process for the observed spectral turnover.Future high-resolution obser-vations at lower frequencies are necessary to further differ-entiate these two models.However,the fitted beaming param-eters from the two models are almost the same.The advance speed of the lobes is around 0.33c ,and the inclination angle of the radio jet is around 33Њ.We thank S.Kameno,who kindly provided us with the mul-tifrequency data on OQ 208.We thank the anonymous referee for insightful comments and constructive suggestions.This work is supported by the National Natural Science Foundation of China (10373019,10333020and G1999075403).REFERENCESBicknell,G.V .,Dopita,M.A.,&O’Dea,C.P.1997,ApJ,485,112Bietenholz,M.F.,et al.,1996,ApJ,457,604Charlot,P.1990,A&A,229,51de Grijp,M.H.K.,Keel,W .C.,Miley,G.K.,Goudfrooij,P.,&Lub,J.1992,A&AS,96,389de Vries,W .H.,Barthel,P.D.,&O’Dea,C.P.1997,A&A,321,105de Vries,W .H.,O’Dea,C.P.,Barthel,P.D.,Fanti,C.,Fanti,R.,&Lehnert,M.D.2000,AJ,120,2300Falcke,H.,&Biermann,P.L.1996,A&A,308,321Fanti,R.,Fanti,C.,Schilizzi,R.T .,Spencer,R.E.,Nan Rendong,Parma,P.,van Breugel,W .J.M.,&Venturi,T .1990,A&A,231,333Fey,A.L.,Clegg,A.W .,&Fomalont,E.B.1996,ApJS,105,299Kameno,S.,Horiuchi,S.,Shen,Z.Q.,Inoue,M.,Kobayashi,H.,Hirabayashi,H.,&Murata,Y .2000,PASJ,52,209Kaspi,S.,Smith,P.S.,Netzer,H.,Maoz,D.,Jannuzi,B.T .,&Giveon,U.2000,ApJ,533,631Kellermann,K.I.,Vermeulen,R.C.,Zensus J.A.,&Cohen,M.H.1998,AJ,115,1295Kellermann,K.I.,et al.2004,ApJ,609,539Marziani,P.,Sulentic,J.W .,Calvani,M.,Perez,E.,Moles,M.,&Penston,M.V .1993,ApJ,410,56O’Dea,C.P.,&Baum,S.A.1997,AJ,113,148Polatidis,A.G.,&Conway,J.E.2003,Publ.Astron.Soc.Australia,20,69Rybicki,G.B.,&Lightman,A.P.1979,Radiation Processes in Astrophysics (New York:Wiley-Interscience)Snellen,I.A.G.,Schilizzi,R.T .,Miley,G.K.,de Bruyn,A.G.,Bremer,M.N.,&Ro ¨ttgering,H.J.A.2000,MNRAS,319,445Stanghellini,C.,Bondi,M.,Dallacasa,D.,O’Dea,C.P.,Baum,S.A.,Fanti,R.,&Fanti,C.1997,A&A,318,376Stanghellini,C.,Dallacasa,D.,O’Dea,C.P.,Baum,S.A.,Fanti,R.,&Fanti,C.2001,A&A,377,377Taylor,G.B.,Marr,J.M,Pearson,T .J.,&Readhead,A.C.S.2000,ApJ,541,112Ve ´ron-Cetty,M.-P.,&Ve ´ron,P.2000,in A Catalogue of Quasars and Active Nuclei (Garching:ESO)Zhang,F.J.,Ba ˚a ˚th,L.B.,&Spencer,R.E.1994,A&A,281,649。