初三数学竞赛题【精选】[1]

合集下载

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(满分120分,考试时间120分)学校 班级 姓名一、选择题:(每小题5分,共30分)1.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )条 (A )4 (B )3 (C )2 (D )1 2.方程13++x x -y=0的整数解有( )组 (A )1 (B )2 (C )3 (D )4 3.如图,若将图(a )的正方形剪成四块,恰能拼成图(b)的矩形,设a=1,则这个正方形的面积为( )(A )2537+ (B )253+(C )251+ (D )21(+)24.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( )(A )-6<a <-211 (B )-6≤a <-211 (C )-6<a ≤-211 (D )-6≤a ≤-2115.已知四边形ABCD ,从下列条件:(1)AB ∥CD (2)BC ∥AD (3)AB =CD (4)BC =AD (5)∠A =∠C (6)∠B =∠D中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )种(A )4 (B )9 (C )13 (D )15 6.已知x 、y 、z 都是实数,且x 2+y 2+z 2=1,则m=xy+yz+zx ( )(A)只有最大值 (B )只有最小值 (C )既有最大值又有最小值 (D )既无最大值又无最小值 二、填空题:(每小题5分,共30分)jab a b ⅠⅡⅢⅣⅣⅢⅡⅠ(b)(a)ba7.已知x=1313+-,y=1313-+, 则x 4+y 4等于 .8.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花 元.9.若1≤p ≤20, 1≤q ≤10,且方程4x 2-px+q=0的两根均为奇数,则此方程的根为 . 10.在1、2、……,2003中有些正整数n ,使得x 2+x -n 能分解为两个整系数一次式的乘积,则这样的n 共有 个.11.已知如图所示,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为 .12.若关于x 的方程rx 2-(2r+7)x+r+7=0的根是正整数,则整数r 的值可以是 .三、解答题:(每小题15分,共60分)13.已知a 、b 、c满足方程组2848a b ab c +=⎧⎪⎨-+=⎪⎩, 试求方程bx 2+cx-a=0的根.PNMBOA14.已知两个二次函数y1 和y2,当x=a(a>0)时,y1取得最大值5,且y2=25. 又y2的最小值为-2,y1+y2=x2+16x+13. 求a的值及二次函数y1、y2的解析式.15.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.ND CMAB16.如图所示,四边形ABCD 是矩形,甲、乙两人分别从A 、B 同时出发,沿矩形按逆时针方向前进,即按A →B →C →D →……顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由。

九年级数学竞赛试题及答案

九年级数学竞赛试题及答案

九年数学竞赛试题一、选择题(每小题7分,共42分)1.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点.设k 为整数,当直线y=x-2与y=kx+k的交点为整点时,k的值可以取( )(A)4个(B)5个(C)6个(D)7个2.如图,AB是⊙O的直径,C为AB上的一个动点(C点不与A、B重合),CD⊥AB,AD、CD分别交⊙O于E、F,则与AB·AC相等的一定是( )(A)AE·AD(B)AE·ED(C)CF·CD(D)CF·FD3.在△ABC与△A′B′C′中,已知AB<A′B′,BC<B′C′,CA<C′A′.下列结论:(1)△ABC的边AB上的高小于△A′B′C′的边A′B′上的高;(2)△ABC的面积小于△A′B′C′的面积;(3)△ABC的外接圆半径小于△A′B′C′的外接圆半径;(4)△ABC的内切圆半径小于△A′B′C′的内切圆半径.其中,正确结论的个数为( )(A)0 (B)1 (C)2 (D) 44.设,那么S与2的大小关系是( )(A)S=2 (B)S<2(C)S>2 (D)S与2之间的大小与x的取值有关5.折叠圆心为O、半径为10cm的圆纸片,使圆周上的某一点A与圆心O重合.对圆周上的每一点,都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线上点的全体为( )(A)以O为圆心、半径为10cm的圆周(B)以O为圆心、半径为5cm的圆周(C)以O为圆心、半径为5cm的圆内部分 (D)以O为圆心,半径为5cm的圆周及圆外部分6.已知x,y,z都是实数,且x2+y2+z2=1,则m=xy+yz+zx( )(A)只有最大值 (B)只有最小值(C)既有最大值又有最小值 (D)既无最大值又无最小值二、填空题(每小题7分,共56分)7.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于______.8.如图3,在△ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N,则AN:AB的值为______.9.如图,取一张长方形纸片,它的长AB=10cm,宽BC=5cm,然后以虚线CE(E点在AD上)为折痕,使D点落在AB边上.则AE=_____cm,∠DCE=______°.10.如图4,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD:DB=2:3,AC=10,sinB的值为_____11.直角三角形ABC中,∠A=90°,AB=5cm,AC=4cm,则∠A的平分线AD的长为______cm.12.如图,⊙C通过原点,并与坐标轴分别交于A,D两点.已知∠OBA=30°,点D的坐标为(0,2),则点A,C的坐标分别为A( , );C( , ).13.若关于x的方程rx2-(2r+7)x+(r+7)=0的根是正整数,则整数r的值可以是______.14.将2,3,4,5,…,n(n为大于4的整数)分成两组,使得每组中任意两数之和都不是完全平方数.那么,整数n可以取得的最大值是______.三、解答题(每题13分,共52分)15.九年(1)班尚剩班费m(m为小于400的整数)元,拟为每位同学买1本相册.某批发兼零售文具店规定:购相册50本起可按批发价出售,少于50本则按零售价出售,批发价比零售价每本便宜2元,班长若为每位同学买1本,刚好用完m元;但若多买12本给任课教师,可按批发价结算,也恰好只要m元.问该班有多少名同学?每本相册的零售价是多少元?16.已知关于x的方程x2+4x+3k-1=0的两个实根的平方和不小于这两个根的积;反比例函数的图像的两个分支在各自的象限内,点的纵坐标y随点的横坐标x的增大而减小.求满足上述条件的k的整数值.17.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.18.如图,在△ABC中,BC=6,AC=4,∠C=45°,P为BC上的动点,过P作PD∥AB交AC于点D,连结AP,△ABP、△APD、△CDP的面积分别记为S1,S2,S3,设BP=x.(1)试用x的代数式分别表示S1,S2,S3;(2)当P点位于BC上某处使得△APD的面积最大时,你能得出S1、S2、S3之间或S1、S2、S3两两之间的哪些数量关系(要求写出不少于3条)?九年数学竞赛试题答案一、选择题1.A2.A3.A4.D5.D6.C二、填空题7.377 8.1:39.,30 10.11.12.(,0),(,1) 13.0,1或7 14.2815.设该班共有x名同学,相册零售价每本y元.由题设,得xy=(x+12)(y-2),①且整数x满足38<x<50.②由①得12y-2x-24=0,y=+2,xy=+2x.③由③及xy=m为整数,知整数x必为6的倍数,再由②,x只可能为42或48.此时相应的y为9或10.但m<400,∴x=42,y=9.答:(略).16.由题意,方程x2+4x+3k-1=0①有实数根,故△=42-4(3k-1)≥0,解之,得k≤.②设x1,x2为①的根,由根与系数关系知x1+x2=-4,x1·x2=3k-1,因≥x1x2,故(x1+x2)2-3x1x2≥0,即(-4)2-3(3k-1)≥0,∴k≤.③又由当x>0或x<0时,分别随x值增大而减小,知1+5k>0,即k>-.④综合②③④,得-<k≤.∴满足题中条件的k可取整数值为0, 1.17.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529.②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5.③由①,②,③得:④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186.得54<y<.由于y是整数,得y=55,从而得x=76.答:略.18.(1)由题意知:BP=x,0<x<6,且有,故AD=·BP=x=x.过P作PM⊥AC交AC于M点,过A作AN⊥BC交BC于N点,则PM=PC·sinC=(BC-PB)sin45°=(6-x),S2=S△APD=AD·PM=·x·(6-x)=2x-x2;又AN=AC·sinC=4·sin45°=4,故S1=S△ABP=BP·AN=2x;S3=S△CDP=CD·PM=(AC-AD)·PM=(4-x)·(6-x)=(6-x)2.(2)因为S2=2x-x2=3-(x-3)2,所以当x=3时,S2取最大值S2=3,此时S1=6,S3=3,因此,S1,S2,S3之间的数量关系有S1=S2+S3,S2=S3,S1=2S2,S1=2S3.(以上4个关系只要写出3个即可)。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

初中九年级数学竞赛试题

初中九年级数学竞赛试题

初中九年级数学竞赛试题一、选择题(每题5分,共30分)1. 若关于公式的一元二次方程公式的常数项为公式,则公式的值等于()A. 公式B. 公式C. 公式或公式D. 公式解析:对于一元二次方程公式,常数项公式。

因为常数项为公式,所以公式。

分解因式得公式,解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式。

所以公式,答案为B。

2. 抛物线公式与公式轴的交点坐标为()A. 公式和公式B. 公式和公式C. 公式和公式D. 公式和公式解析:要求抛物线与公式轴的交点,令公式,即公式。

分解因式得公式。

解得公式或公式。

所以交点坐标为公式和公式,答案为A。

3. 已知反比例函数公式的图象经过点公式,则这个函数的图象位于()A. 第一、三象限B. 第二、三象限C. 第二、四象限D. 第三、四象限解析:因为反比例函数公式的图象经过点公式,把公式代入公式得公式。

因为公式,所以函数图象位于第二、四象限,答案为C。

二、填空题(每题5分,共30分)1. 方程公式的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______。

解析:解方程公式,分解因式得公式,解得公式或公式。

当底为公式,腰为公式时,满足三角形三边关系(公式),此时周长为公式。

当底为公式,腰为公式时,公式,不满足三角形三边关系,舍去。

所以周长为公式。

2. 若公式,公式,则公式______。

解析:根据完全平方公式公式。

已知公式,公式,则公式。

三、解答题(每题20分,共40分)1. 已知二次函数公式的图象经过点公式,公式,公式。

(1)求二次函数的表达式。

(2)设该二次函数的对称轴与公式轴交于点公式,连接公式,求公式的面积。

解析:(1)因为二次函数公式的图象经过点公式,公式,公式。

把公式,公式,公式分别代入公式得:公式将公式代入公式由公式得公式,将其代入公式得:公式公式公式,解得公式。

把公式代入公式得公式。

所以二次函数的表达式为公式。

(2)对于二次函数公式,对称轴为公式,所以公式。

初三数学竞赛试卷带答案

初三数学竞赛试卷带答案

一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. -√2B. 0.5C. 3D. 2/32. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 4B. -4C. 3D. 13. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^34. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 若等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则公差d为()A. 2C. 4D. 5二、填空题(每题5分,共20分)6. 若一个数的平方等于它本身,则这个数是_______。

7. 二项式定理中,(x + y)^n展开式中,x的系数是_______。

8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = _______。

9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为_______。

10. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为_______。

三、解答题(每题10分,共30分)11. 解方程:3x^2 - 5x + 2 = 0。

12. 已知函数y = 2x - 3,求证:对于任意实数x1,x2,都有y1 + y2 ≥ 2y。

13. 在△ABC中,AB = AC,点D是边BC上的一点,且BD = DC。

若∠ADB = 40°,求∠A的度数。

答案一、选择题1. A2. A3. D4. A5. A二、填空题6. 07. C_n^1 x^(n-1) y9. -510. 28三、解答题11. 解:分解因式得 (3x - 2)(x - 1) = 0,所以 x = 2/3 或 x = 1。

12. 证明:设x1 < x2,则y1 = 2x1 - 3,y2 = 2x2 - 3。

初三数学竞赛试题及参考答案

初三数学竞赛试题及参考答案

全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里。

不填、多填或错填得零分)1、方程组⎩⎨⎧=+=+6||12||y x y x 的解的个数为( )A 、1B 、 2C 、3D 、4答案:A解析:若0≥x ,则⎩⎨⎧=+=+6||12y x y x ,于是6||-=-y y ,显然不可能若0 x ,则⎩⎨⎧=+=+-6||12y x y x于是18||=+y y ,解得9=y ,进而求得3-=x 所以,原方程组的解为⎩⎨⎧=-=93y x ,只有1个解. 故选(A ).2、口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )A 、 14B 、 16C 、18D 、20答案:B解析:用枚举法:红球个数 白球个数 黑球个数 种 数5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 4 3 4,5,6,7 3,2,1,0 4 2 5,6,7,8 3,2,1,0 4 所以,共16种. 故选(B ).3、已知ABC ∆为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与ADE ∆的外接圆的半径相等,则⊙O 一定经过ABC ∆的( )A 、内心B 、外心C 、重心D 、垂心 答案:B解析: 如图,连接BE∵ABC ∆为锐角三角形 ∴BAC ∠,ABE ∠均为锐角又∵⊙O 的半径与ADE ∆的外接圆的半径相等,且DE 为两圆的公共弦 ∴ABE BAC ∠=∠∴BAC ABE BAC BEC ∠=∠+∠=∠2 若ABC ∆的外心为1O 则BAC C BO ∠=∠21∴⊙O 一定过ABC ∆的外心 故选(B ). 4、已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( )A 、0B 、1C 、2D 、3 答案:D解析:设0x 是它们的一个公共实数根,则02=++c bx ax ,02=++a cx bx ,02=++b ax cx把上面三个式子相加,并整理得()()01020=++++x x c b a因为0432112002+⎪⎭⎫ ⎝⎛+=++x x x所以0=++c b a于是()()33333333222=+-=+-+=++=++abcb a ab abc b a b a abc c b a ab c ca b bc a 故选(D ).5、方程256323+-=++y y x x x 的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无穷多 答案:A解析:原方程可化为()()()()()2113212++-=++++y y y x x x x x因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的。

初三数学竞赛试题(含答案)-

初三数学竞赛试题(含答案)-

初三数学竞赛试题 班级 姓名 一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30角的直角三角形(如图),它的斜边AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。

如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。

依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C sin c B sin b +的值是等于 。

初三数学竞赛试题试卷

初三数学竞赛试题试卷

一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 22. 已知a、b、c是等差数列,且a+b+c=0,则下列哪个选项一定成立?A. a=0B. b=0C. c=0D. a+b+c=03. 在直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标是:A. (1,-1)B. (1,2)C. (0,2)D. (0,1)4. 已知函数f(x)=x^2-4x+4,则f(2)的值为:A. 0B. 2C. 4D. 65. 在三角形ABC中,角A、角B、角C的对边分别为a、b、c,且a=5,b=8,c=10,则角C的度数是:A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共25分)6. 若一个等差数列的前三项分别为2,5,8,则这个数列的公差是______。

7. 已知函数f(x)=3x-2,若f(x)的值域为[1,5],则x的取值范围是______。

8. 在直角坐标系中,点P(3,4)关于原点的对称点坐标是______。

9. 已知二次函数y=x^2-4x+4,其顶点坐标是______。

10. 在等腰三角形ABC中,若AB=AC,且AB=8,则底边BC的长度是______。

三、解答题(每题20分,共60分)11. (解答题)已知数列{an}的前三项分别为1,4,7,且满足an+1=2an+3,求:(1)数列{an}的通项公式;(2)数列{an}的前n项和Sn。

12. (解答题)在直角坐标系中,已知点A(1,2),点B(3,5),点C(x,y),若△ABC的面积为6,求点C的坐标。

13. (解答题)已知函数f(x)=ax^2+bx+c,若f(1)=2,f(2)=6,且函数的图像开口向上,求函数f(x)的解析式。

年初三数学竞赛试题及答案

年初三数学竞赛试题及答案

年初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1003. 一个数的60%加上它的40%等于这个数的:A. 100%B. 80%C. 60%D. 40%4. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 9/105. 一个数除以3的商是15,这个数是多少?A. 45B. 54C. 60D. 406. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 167. 一个班级有21个男生和9个女生,男生人数占全班的百分比是多少?A. 70%B. 75%C. 80%D. 85%8. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28B. 30C. 35D. 429. 一个数的1/3加上它的1/4等于7/12,这个数是多少?A. 12B. 3C. 4D. 910. 一个长方体的长是15cm,宽是10cm,如果高增加5cm,体积将增加多少立方厘米?A. 750B. 500C. 375D. 250二、填空题(每题4分,共20分)11. 一个数的1/2与它的1/3的和是5/6,这个数是_________。

12. 一本书的原价是x元,打7折后售价为0.7x元,如果售价是21元,那么原价是_________元。

13. 一个长方形的长是14cm,宽是长的1/2,这个长方形的面积是_________平方厘米。

14. 一个数的3倍加上这个数的2倍等于36,这个数是_________。

15. 一个数的75%是45,那么这个数的50%是_________。

三、解答题(共两题,每题25分)16. 一个长方体的长、宽、高分别是12cm、10cm和8cm,求这个长方体的表面积和体积。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333D. π答案:B2. 一个数的立方等于该数本身,这个数是?A. 1B. -1C. 0D. 1或-1或0答案:D3. 如果一个三角形的两边长分别为3和4,那么第三边的长可能是?A. 1B. 7C. 5D. 以上都有可能答案:C4. 一个数列的前三项是2,4,8,那么第四项是?A. 16B. 32C. 64D. 128答案:A5. 一个圆的直径是10,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C6. 一个等腰三角形的底边长为6,腰长为5,那么它的高是?A. 4B. 3C. 2D. 1答案:B二、填空题(每题5分,共30分)1. 一个数的平方等于9,这个数是______。

答案:±32. 一个矩形的长是宽的两倍,如果宽是4,那么面积是______。

答案:323. 一个等差数列的前三项是2,5,8,那么第10项是______。

答案:274. 一个二次函数的顶点是(0, -1),且通过点(1, 2),那么它的解析式是______。

答案:y = x^2 - x - 15. 一个圆的半径是5,那么它的周长是______。

答案:10π6. 一个直角三角形的两条直角边长分别为3和4,那么斜边长是______。

答案:5三、解答题(每题10分,共40分)1. 已知一个等比数列的前三项分别是1,2,4,求该数列的第10项。

答案:第10项是1024。

2. 一个矩形的长是宽的三倍,如果宽是5,求矩形的面积。

答案:矩形的面积是75。

3. 一个二次函数的图像通过点(-2, 10)和(1, 5),且顶点在y轴上,求该二次函数的解析式。

答案:二次函数的解析式为y = -x^2 + 4x + 6。

4. 一个直角三角形的两条直角边长分别为6和8,求该三角形的斜边长和面积。

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题(含答案)初三数学竞赛选拔试题(含答案)一、选择题1. 若 3x + 2 = 17,则 x 的值是A. 5B. 7C. 9D. 112. 在一个几何图形中,有一个正方形,边长为 x 厘米,另有一个等腰直角三角形,直角边的长为 y 厘米。

已知正方形的面积是等腰直角三角形面积的 20 倍,下列等式成立的是A. x² = 20y²B. x² + y² = 20C. 20x² = y²D. x + y = 203. 若 a² - b² = 15 且 a + b = 5,则 a 的值是A. 10B. 5C. 3D. -104. 某校参加比赛的男女生比例为 5:3 ,男生比女生多 48 人,那么该校一共有多少学生?A. 320B. 480C. 800D. 9605. 以下各数中,最小的是A. -0.5B. -1/2C. -50%D. 1/-2二、填空题6. 将 120 分钟化为小时的形式,填入空白:____小时。

7. 三个角相加是 180°,如果有两个角是 50°和 80°,那么第三个角的度数是____°。

8. 分数 7/10 是小数____。

9. 甲、乙两地相距 150 公里,有两辆车同时相向而行,如果两车速度一样,则若干小时后两车相遇,填入空白:____小时。

10. (-a) ×(-a) ×(-a) ×(-a) ×(-a) ×(-a)表示的结果是____。

三、解答题11. 某衣服打对折后价格为 420 元,原价是多少元?12. 小丽拥有一些小球,其中有红球、蓝球和绿球。

红球比蓝球的 3 倍多 2 个,蓝球比绿球的 2 倍少 4 个。

如果小丽总共有 51 个球,求小丽拥有的绿球数量。

13. 若 a + b = 5 ,a - b = 3 ,求 a 和 b 的值。

初三数学竞赛试题及答案精选

初三数学竞赛试题及答案精选

全国初中数学联赛试题第一试一、选择题1.已知a=355,b=444,c=533,则有[ ]A.a<b<c B.c<b<a C.c<a<b D.a<c<bA.1 B.2 C.3 D.43.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S △CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[ ]A.a>0且b>0 B.a<0且b>0C.a>0且b<0 D.a<0且b<0二、填空题1.在12,22,32…,952这95个数中,十位数字为奇数的数共有____个。

4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.第二试一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。

二、在坐标平面上,纵坐标与横坐标都是整数理由。

三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和。

初中数学联赛参考答案第一试一、选择题1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有c=(53)11=12511<24311=(35)11=a<25611=(44)11=b。

选C。

利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。

2.讲解:这类方程是熟知的。

先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。

九年数学竞赛试题及答案

九年数学竞赛试题及答案

九年数学竞赛试题及答案试题:九年数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是8,这个数是多少?A. 16B. 64C. -64D. 正负84. 下列哪个分数是最接近0.75的?A. 3/4B. 7/9C. 4/5D. 5/65. 如果x=2,y=3,那么x+y的值是多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共10分)6. 一个数的立方是-27,这个数是______。

7. 一个圆的半径是5厘米,那么它的面积是______平方厘米。

8. 如果一个数的绝对值是5,那么这个数可以是______或______。

9. 一个数的倒数是1/4,这个数是______。

10. 一个数的平方是25,这个数可以是______或______。

三、解答题(每题5分,共20分)11. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的体积。

12. 一个班级有40名学生,其中男生占60%,求这个班级有多少名男生。

13. 一个数列的前三项是2,4,6,求这个数列的第10项。

14. 一个等差数列的首项是3,公差是2,求这个数列的前10项的和。

四、应用题(每题10分,共20分)15. 某工厂生产一批零件,每个零件的成本是5元,如果生产1000个零件,总成本是多少?16. 一个农场有一块长方形的土地,长是200米,宽是150米。

如果每公顷土地的年租金是2000元,那么这块土地一年的租金是多少?答案:1. B2. A3. B4. A5. C6. -37. 78.58. 5, -59. 410. 5, -511. 60立方厘米12. 24名男生13. 2214. 16515. 5000元16. 60000元结束语:本次九年数学竞赛试题涵盖了基础数学知识,包括算术、几何、代数和应用题,旨在考察学生的数学基础和解决问题的能力。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

烟台初三数学竞赛试题及答案

烟台初三数学竞赛试题及答案

烟台初三数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √2答案:D2. 如果一个二次方程的判别式小于0,那么这个方程:A. 有两个实数根B. 没有实数根C. 有一个实数根D. 有无穷多个实数根答案:B3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是答案:A4. 一个等差数列的第5项是10,第1项是2,那么这个数列的公差d 是多少?A. 1B. 2C. 3D. 4答案:B5. 下列哪个是正比例函数?A. y = 3x + 2B. y = 2xC. y = 3x^2D. y = 1/x答案:B二、填空题(每题2分,共10分)6. 若一个直角三角形的两条直角边分别为3和4,则斜边的长度是________。

答案:57. 一个数的立方根是2,则这个数是________。

答案:88. 一个多项式P(x) = ax^3 + bx^2 + cx + d,如果P(1) = 5,P(-1) = -3,那么a + b + c + d = ________。

答案:29. 一个圆的半径是7,那么它的面积是________。

答案:153.94(π取3.14)10. 如果一个函数f(x) = kx + b,当k = 0时,这个函数是________。

答案:常数函数三、解答题(每题10分,共30分)11. 已知一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边长。

答案:根据勾股定理,另一条直角边长为√(13^2 - 5^2) = 12。

12. 某工厂生产一批产品,已知其生产成本为C,销售价格为P,利润为R。

已知当生产量为100件时,利润为200元。

当生产量增加到200件时,利润为500元。

求成本C和价格P的表达式。

答案:设成本为C,价格为P,利润为R = P - C。

根据题意,有方程组:100P - 100C = 200200P - 200C = 500解得:P = 3C,即价格是成本的3倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

亲爱的同行们,这不是病毒,这只是写在前面的话,答案在下面!一个倍感悲凉的数学竞赛辅导老师一年一度的全国初中数学竞赛又结束了,学生考完后带他们去吃了顿便饭,看到他们虽然考得一塌糊涂但是终于解放了的开心又带着一丝无奈的神情,我感到很揪心!下午一回到家,把儿子撂在一边,花了2个半钟终于全部做完,虽然感觉解题能力比起三年前已大打折扣,但还能全部做完并全部做对,还是感到一丝欣慰,毕竟还没有那么老去!然而,当我上各大数学论坛浏览今天的竞赛消息时,却再一次发现了令人震惊的网上预知竞赛题的事情(上一次是三年前的时候,后来因做班主任歇了2年没带竞赛),我不禁悲从中来,花那么多心血去辅导学生数学竞赛知识,却没有别人弄几道全真题来的便宜!这是什么世界啊?要知道,我的学生都是农村中学的,他们很多人连十字相乘法与切割线定理都是手把手教会的啊!以后真的不想再带竞赛了,因为,我只是一个普通而平凡的数学老师!我所能靠的只是自己的良心!在这场不公平的比赛中,失败注定伴我左右!附网上论坛地址:/bbs1/dispbbs.asp?boardid=13&Id=15523中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2【答】C .解:由题设知a ≥3,所以,题设的等式为20b ++=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A)12 (B)12 (C )1 (D )2 【答】A .解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即11a a a =+,所以, 210a a --=.由0a >,解得a = 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故S △ABC =12×8×4=16. 5.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为( ).(A )2组 (B )3组 (C )4组 (D )无穷多组【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x ==.所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得 ()()250003000k x y k x y k +++=, 则 237501150003000x y +==+. 7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G两点,连接FG 交AB 于点H ,则AH AB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A , AH AF AF AE=. 而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10.解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 .故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以E F B F A C B C=, 即 201520x x -=, 解得607x =.所以7CE ==. 10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .【答】2-. 解:设报3的人心里想的数是x ,则报5于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是 16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以4x x =--,解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x .(1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值.解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以 2221212121[()()]2c x x x x x x ==+-+ =221[(21)(23)]2t t t --+-=21(364)2t t -+. ② ………………5分把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③ ………………10分t 的取值应满足2221223t t x x +-=+≥0, ④ 且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 2-t ≤2+所以,t 的取值范围为22-≤t ≤22+⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在22-t ≤22+22t =-时,2min 3111(21)2224c -=--+=. ………………20分 12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和. 解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分又02009a <<,所以0110k = ,,,.因此,满足条件的所有可能的正整数a 的和为 11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分 因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CD DF BE AB=⋅. 同理可得 CE EG AD AB =⋅. ………………10分 又因为tan AD BE ACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅DF EG =. ………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠.又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<= ; 且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n = ,,,.即 12()1n i i a a a a b n +++-=- . 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-,从而 1()j i n a a --. ………………5分 由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分 由于 ()()()112211n n n n n a a a a a a a ----=-+-++-≥()()()2111(1)n n n n -+-++-=- ,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+, 982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分。

相关文档
最新文档