中考数学填空选择知识点专题训练二
四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类②
四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类②一.立方根(共1小题)1.(2023•泸州)8的立方根是 .二.估算无理数的大小(共1小题)2.(2023•自贡)请写出一个比小的整数 .三.实数的运算(共2小题)3.(2023•广安)定义一种新运算:对于两个非零实数a、b,a※b=+.若2※(﹣2)=1,则(﹣3)※3的值是 .4.(2023•凉山州)计算(π﹣3.14)0+= .四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= .五.完全平方式(共1小题)6.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是 .六.提公因式法与公式法的综合运用(共1小题)7.(2023•眉山)分解因式:x3﹣4x2+4x= .七.因式分解的应用(共1小题)8.(2023•凉山州)已知x2﹣2x﹣1=0,则3x3﹣10x2+5x+2027的值等于 .八.约分(共1小题)9.(2023•自贡)化简:= .九.根与系数的关系(共2小题)10.(2023•遂宁)若a、b是一元二次方程x2﹣3x+1=0的两个实数根,则代数式a+b﹣ab 的值为 .11.(2023•眉山)已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为 .一十.一元一次不等式组的整数解(共2小题)12.(2023•宜宾)若关于x的不等式组所有整数解的和为14,则整数a的值为 .13.(2023•凉山州)不等式组的所有整数解的和是 .一十一.函数自变量的取值范围(共1小题)14.(2023•广安)函数y=的自变量x的取值范围是 .一十二.一次函数图象上点的坐标特征(共3小题)15.(2023•眉山)如图,在平面直角坐标系xOy中,点B的坐标为(﹣8,6),过点B分别作x轴,y轴的垂线,垂足分别为点C,点A,直线y=﹣2x﹣6与AB交于点D,与y轴交于点E,动点M在线段BC上,动点N在直线y=﹣2x﹣6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为 .16.(2023•广安)在平面直角坐标系中,点A1、A2、A3、A4…在x轴的正半轴上,点B1、B2、B3…在直线y=x(x≥0)上,若点A1的坐标为(2,0),且△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,则点B2023的纵坐标为 .17.(2023•南充)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则+的值是 .一十三.反比例函数图象上点的坐标特征(共1小题)18.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1 y2(填“>”或“<”).一十四.反比例函数与一次函数的交点问题(共1小题)19.(2023•达州)如图,一次函数y=2x与反比例函数y=的图象相交于A、B两点,以AB为边作等边三角形ABC,若反比例函数y=的图象过点C,则k的值为 .一十五.三角形内角和定理(共1小题)20.(2023•遂宁)若三角形三个内角的比为1:2:3,则这个三角形是 三角形.一十六.平面展开-最短路径问题(共1小题)21.(2023•广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm 的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为 cm.(杯壁厚度不计)一十七.垂径定理(共1小题)22.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,取1.73)一十八.翻折变换(折叠问题)(共1小题)23.(2023•凉山州)如图,在Rt△ABC纸片中,∠ACB=90°,CD是AB边上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB,若BC=2,则CA′= .一十九.概率公式(共1小题)24.(2023•南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 个.四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类②参考答案与试题解析一.立方根(共1小题)1.(2023•泸州)8的立方根是 2 .【答案】2.【解答】解:∵23=8,∴8的立方根是2.故答案为:2.二.估算无理数的大小(共1小题)2.(2023•自贡)请写出一个比小的整数 4(答案不唯一) .【答案】4(答案不唯一).【解答】解:∵42=16,52=25,而16<23<25,∴4<<5,∴比小的整数有4(答案不唯一),故答案为:4(答案不唯一).三.实数的运算(共2小题)3.(2023•广安)定义一种新运算:对于两个非零实数a、b,a※b=+.若2※(﹣2)=1,则(﹣3)※3的值是 ﹣ .【答案】﹣.【解答】解:∵2※(﹣2)=1,∴=1,∴x﹣y=2.∴(﹣3)※3==﹣(x﹣y)=2=﹣.故答案为:﹣.4.(2023•凉山州)计算(π﹣3.14)0+= .【答案】.【解答】解:原式=1+﹣1=.故答案为:.四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= 3a2 .【答案】3a2.【解答】解:7a2﹣4a2=(7﹣4)a2=3a2,故答案为:3a2.五.完全平方式(共1小题)6.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是 ±2 .【答案】±2.【解答】解:∵y2﹣my+1是完全平方式,y2﹣2y+1=(y﹣1)2,y2﹣(﹣2)y+1=(y+1)2,∴﹣m=﹣2或﹣m=2,∴m=±2.故答案为:±2.六.提公因式法与公式法的综合运用(共1小题)7.(2023•眉山)分解因式:x3﹣4x2+4x= x(x﹣2)2 .【答案】x(x﹣2)2.【解答】解:原式=x(x2﹣4x+4)=x(x﹣2)2.故答案为:x(x﹣2)2.七.因式分解的应用(共1小题)8.(2023•凉山州)已知x2﹣2x﹣1=0,则3x3﹣10x2+5x+2027的值等于 2023 .【答案】2023.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴3x3﹣10x2+5x+2027=3x(x2﹣2x)﹣4(x2﹣2x)﹣3x+2027=3x×1﹣4×1﹣3x+2027=3x﹣4﹣3x+2027=2023,故答案为:2023.八.约分(共1小题)9.(2023•自贡)化简:= x﹣1 .【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.九.根与系数的关系(共2小题)10.(2023•遂宁)若a、b是一元二次方程x2﹣3x+1=0的两个实数根,则代数式a+b﹣ab 的值为 2 .【答案】2.【解答】解:∵a、b是一元二次方程x2﹣3x+1=0的两个实数根,∴a+b=3,ab=1,∴a+b﹣ab=3﹣1=2.故答案为:2.11.(2023•眉山)已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为 6 .【答案】6.【解答】解:∵方程x2﹣3x﹣4=0的根为x1,x2,∴x1+x2=3,x1•x2=﹣4,∴(x1+2)•(x2+2)=x1•x2+2x1+2x2+4=﹣4+2×3+4=6.故答案为:6.一十.一元一次不等式组的整数解(共2小题)12.(2023•宜宾)若关于x的不等式组所有整数解的和为14,则整数a的值为 2或﹣1 .【答案】2或﹣1.【解答】解:,解不等式①得:x>a﹣1,解不等式②得:x≤5,∴a﹣1<x≤5,∵所有整数解的和为14,∴不等式组的整数解为5,4,3,2或5,4,3,2,1,0,﹣1,∴1≤a﹣1<2或﹣2≤a﹣1<﹣1,∴2≤a<3或﹣1≤a<0,∵a为整数,∴a=2或a=﹣1,故答案为:2或﹣1.13.(2023•凉山州)不等式组的所有整数解的和是 7 .【答案】7.【解答】解:,解不等式①得:x>,解不等式②得x≤4,∴不等式组的解集为﹣<x≤4,由x为整数,可取﹣2,﹣1,0,1,2,3,4,则所有整数解的和为7,故答案为:7.一十一.函数自变量的取值范围(共1小题)14.(2023•广安)函数y=的自变量x的取值范围是 x≥﹣2且x≠1 .【答案】见试题解答内容【解答】解:根据题意得:,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.一十二.一次函数图象上点的坐标特征(共3小题)15.(2023•眉山)如图,在平面直角坐标系xOy中,点B的坐标为(﹣8,6),过点B分别作x轴,y轴的垂线,垂足分别为点C,点A,直线y=﹣2x﹣6与AB交于点D,与y轴交于点E,动点M在线段BC上,动点N在直线y=﹣2x﹣6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为 (﹣8,6)或(﹣8,) .【答案】(﹣8,6)或(﹣8,).【解答】解:①点N在AB下方时,过点N作PQ⊥y轴交y轴于点P,交BC于点Q,∴∠APQ=∠NQM=90°,∵△AMN是以点N为直角顶点的等腰直角三角形,∴AN=NM,∠ANM=90°,∴∠ANP+∠MNQ=∠NMQ+∠MNQ,∴∠ANP=∠NMQ,∴△APN≌△NQM(AAS),∴AP=NQ,NP=MQ,设N(t,﹣2t﹣6),∴NP=MQ=﹣t,OP=﹣2t﹣6,又∵NQ=AP=8﹣NP=8+t,∴8+t﹣2t﹣6=6,∴t=﹣4,CM=MQ+CQ=MQ+OP=﹣t﹣2t﹣6=6,∴M(﹣8,6);②点N在AB上方时,过点N作PQ⊥y轴交y轴于点P,交直线BC于点Q,同理得△APN≌△NQM(AAS),∴AP=NQ,NP=MQ,设N(t,﹣2t﹣6),∴NP=MQ=﹣t,OP=﹣2t﹣6,又∵NQ=AP=8﹣NP=8+t,∴﹣2t﹣6﹣(8+t)=6,∴t=﹣,CM=CQ﹣MQ=OP﹣MQ=﹣2t﹣6+t=,∴M(﹣8,).故答案为:(﹣8,6)或(﹣8,).16.(2023•广安)在平面直角坐标系中,点A1、A2、A3、A4…在x轴的正半轴上,点B1、B2、B3…在直线y=x(x≥0)上,若点A1的坐标为(2,0),且△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,则点B2023的纵坐标为 ×22022 .【答案】×22022.【解答】解:设等边△B n A n A n+1的边长为a n,∵△B n A n A n+1是等边三角形,∴△B n A n A n+1的高为a n•sin60°=a n,即B n的纵坐标为a n,∵点A1的坐标为(2,0),∴a1=2,a2=2+2=4,a3=2+a1+a2=8,a4=2+a1+a2+a3=16,…,∴a n=2n,∴B n的纵坐标为×2n﹣1,当n=2023时,∴B n的纵坐标为×22022,故答案为:×22022.17.(2023•南充)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则+的值是 1 .【答案】1.【解答】解:∵直线y=kx﹣2k+3,∴当x=0时,y=﹣2k+3;当y=0时,x=;∴点A的坐标为(,0),点B的坐标为(0,﹣2k+3),∴OA=,OB=﹣2k+3,∴+=+=﹣==1,故答案为:1.一十三.反比例函数图象上点的坐标特征(共1小题)18.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1 > y2(填“>”或“<”).【答案】>.【解答】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.一十四.反比例函数与一次函数的交点问题(共1小题)19.(2023•达州)如图,一次函数y=2x与反比例函数y=的图象相交于A、B两点,以AB为边作等边三角形ABC,若反比例函数y=的图象过点C,则k的值为 ﹣6 .【答案】﹣6.【解答】解:由题意,建立方程组,∴或.∴A(1,2),B(﹣1,﹣2).∴A、B关于原点对称.∴AB的垂直平分线OC过原点.∵直线AB为y=2x,∴直线OC为y=﹣.∴可设C(a,﹣).又△ABC为等边三角形,∴AC=AB.∴根据两点间的距离公式可得:.∴a=±2.∴C(2,﹣)或(﹣2,).将点C代入y=得,k=﹣6.故答案为:﹣6.一十五.三角形内角和定理(共1小题)20.(2023•遂宁)若三角形三个内角的比为1:2:3,则这个三角形是 直角 三角形.【答案】直角.【解答】解:设这个三角形最小的内角是x°,则另外两内角的度数分别为2x°,3x°,根据题意得:x+2x+3x=180,解得:x=30,∴3x°=3×30°=90°,∴这个三角形是直角三角形.故答案为:直角.一十六.平面展开-最短路径问题(共1小题)21.(2023•广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm 的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为 10 cm.(杯壁厚度不计)【答案】10.【解答】解:如图:将杯子侧面展开,作B关于EF的对称点B′,连接B′A,则B′A即为最短距离,B′A===10(cm).故答案为:10.一十七.垂径定理(共1小题)22.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O 到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 184 名观众同时观看演出.(π取3.14,取1.73)【答案】184.【解答】解:过O作OD⊥AB,D为垂足,如图,∴AD=BD,OD=5m,∵cos∠AOD===,∴∠AOD=60°,AD=OD=5m,∴∠AOB=120°,AB=10m,∴S阴影部分=S扇形OAB﹣S△OAB=﹣×10×5=π﹣25≈61.4(m2),∴61.4×3≈184(人).∴观看马戏的观众人数约为184人.故答案为:184人.一十八.翻折变换(折叠问题)(共1小题)23.(2023•凉山州)如图,在Rt△ABC纸片中,∠ACB=90°,CD是AB边上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB,若BC=2,则CA′= 2 .【答案】2.【解答】解:设CA'交AB于O,如图:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB,∴∠A=∠ACD,由翻折的性质可知∠ACD=∠A'CD,AC=CA',∴∠A=∠ACD=∠A'CD,∵A'C⊥AB,∴∠AOC=90°,∴∠A'CD+∠ACD+∠A=90°,∴∠A=∠ACD=∠A'CD=30°,在Rt△ABC中,tan A=,∴tan30°=,∴AC=2,∴CA'=2,故答案为:2.一十九.概率公式(共1小题)24.(2023•南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 6 个.【答案】6.【解答】解:设红球有x个,根据题意得:=0.6,解得:x=6,经检验x=6是原方程的根,则袋中红球有6个.故答案为:6.。
中考数学填空题专项练习经典测试(含答案解析)(2)
一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.实数大小比较(共2小题)1.(2022•临沂)比较大小: (填“>”,“<”或“=”).2.(2021•临沂)比较大小:2 5(选填“>”、“=”、“<”).二.规律型:数字的变化类(共1小题)3.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, =n2.三.提公因式法与公式法的综合运用(共2小题)4.(2022•临沂)因式分解:2x2﹣4x+2= .5.(2021•临沂)分解因式:2a3﹣8a= .四.函数值(共1小题)6.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:①当x<﹣1时,x越小,函数值越小;②当﹣1<x<0时,x越大,函数值越小;③当0<x<1时,x越小,函数值越大;④当x>1时,x越大,函数值越大.其中正确的是 (只填写序号).五.平行四边形的判定(共1小题)7.(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是 (填上所有符合要求的条件的序号).六.菱形的性质(共2小题)8.(2023•临沂)若菱形的两条对角线长分别为6和8,则该菱形的面积为 .9.(2021•临沂)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是 (只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.七.剪纸问题(共1小题)10.(2023•临沂)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是 .八.坐标与图形变化-平移(共1小题)11.(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A(0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是 .九.中心对称(共1小题)12.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 .一十.条形统计图(共1小题)13.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 .山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.实数大小比较(共2小题)1.(2022•临沂)比较大小: < (填“>”,“<”或“=”).【答案】<.【解答】解:∵()2=,()2=,<,∴<,故答案为:<.2.(2021•临沂)比较大小:2 < 5(选填“>”、“=”、“<”).【答案】见试题解答内容【解答】解:∵2=,5=,而24<25,∴2<5.故填空答案:<.二.规律型:数字的变化类(共1小题)3.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, (n﹣1)(n+1)+1 =n2.【答案】(n﹣1)(n+1)+1.【解答】解:观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…;按照上述规律,(n﹣1)(n+1)+1=n2.故答案为:(n﹣1)(n+1)+1.三.提公因式法与公式法的综合运用(共2小题)4.(2022•临沂)因式分解:2x2﹣4x+2= 2(x﹣1)2 .【答案】2(x﹣1)2.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2故答案为2(x﹣1)2.5.(2021•临沂)分解因式:2a3﹣8a= 2a(a+2)(a﹣2) .【答案】见试题解答内容【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)四.函数值(共1小题)6.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:①当x<﹣1时,x越小,函数值越小;②当﹣1<x<0时,x越大,函数值越小;③当0<x<1时,x越小,函数值越大;④当x>1时,x越大,函数值越大.其中正确的是 ②③④ (只填写序号).【答案】②③④.【解答】解:如图所示,∴当x<﹣1时,x越小,函数值越大,故①错误.当﹣1<x<0时,x越大,函数值越小,故②正确.当0<x<1时,x越小,函数值越大,故③正确.当x>1时,x越大,函数值越大,故④正确.故答案为:②③④.五.平行四边形的判定(共1小题)7.(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是 ①②④ (填上所有符合要求的条件的序号).【答案】①②④.【解答】解:①连接AD,交BE于点O,∵正六边形ABCDEF中,∠BAO=∠ABO=∠OED=∠ODE=60°,∴△AOB和△DOE是等边三角形,∴OA=OD,OB=OE,又∵BM=EN,∴OM=ON,∴四边形AMDN是平行四边形,故①符合题意;②∵∠FAN=∠CDM,∠CDA=∠DAF,∴∠OAN=∠ODM,∴AN∥DM,又∵∠AON=∠DOM,OA=OD,∴△AON≌△DOM(ASA),∴AN=DM,∴四边形AMDN是平行四边形,故②符合题意;③∵AM=DN,AB=DE,∠ABM=∠DEN,∴△ABM与△DEN不一定全等,不能得出四边形AMDN是平行四边形,故③不符合题意;④∵∠AMB=∠DNE,∠ABM=∠DEN,AB=DE,∴△ABM≌△DEN(AAS),∴AM=DN,∵∠AMB+∠AMN=180°,∠DNM+∠DNE=180°,∴∠AMN=∠DNM,∴AM∥DN,∴四边形AMDN是平行四边形,故④符合题意.故答案为:①②④.六.菱形的性质(共2小题)8.(2023•临沂)若菱形的两条对角线长分别为6和8,则该菱形的面积为 24 .【答案】24.【解答】解:如图:菱形ABCD中AC=8,BD=6,∵四边形ABCD是菱形,∴AC⊥BD,∴△DAC的面积=AC•OD,△BAC的面积=AC•OB,∴菱形ABCD的面积=△DAC的面积+△BAC的面积=AC•(OD+OB)=AC•BD=×8×6=24.故答案为:24.9.(2021•临沂)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是 ① (只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.【答案】①.【解答】解:①在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,应用了“两点确定一条直线”,故符合题意.②因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,故不符合题意.③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形四边相等和平行四边形的不稳定性”,故不符合题意;④地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故不符合题意.故答案是:①.七.剪纸问题(共1小题)10.(2023•临沂)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是 14 .【答案】14.【解答】解:如图,∵DE∥BC,DF∥AC,∴四边形DECF为平行四边形,△ADE∽△ABC,△BDF∽△BAC,∴==,==,∵AC=6,BC=9,∴DE=3,DF=4,∴平行四边形纸片的周长是2×(3+4)=14.故答案为:14.八.坐标与图形变化-平移(共1小题)11.(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A(0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是 (1,﹣3) .【答案】(1,﹣3).【解答】解:由题意知,点A从(0,2)平移至(﹣1,0),可看作是△ABC先向下平移2个单位,再向左平移1个单位(或者先向左平移1个单位,再向下平移2个单位),即B点(2,﹣1),平移后的对应点为B'(1,﹣3),故答案为:(1,﹣3).九.中心对称(共1小题)12.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 (4,﹣1) .【答案】(4,﹣1).【解答】解:∵平行四边形ABCD的对称中心是坐标原点,∴点A,点C关于原点对称,∵A(﹣1,1),∴C(1,﹣1),∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),故答案为:(4,﹣1).一十.条形统计图(共1小题)13.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 95.5 .【答案】见试题解答内容【解答】解:由统计图可知四个成绩的人数分别为3,2,5,10,∴,故答案为95.5.。
中考数学填空题专项练习知识点
一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形 B .平行四边形 C .正五边形 D .正六边形 3.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣14.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3π C .2π-12D .126.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=257.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .98.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°9.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>10.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .11212.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2-13.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3514.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°15.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2二、填空题16.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.17.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.18.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.19.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.20.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.21.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t ≤≤ 3540t <≤ 4045t <≤ 4550t <≤ 合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.22.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:_____.23.若一元二次方程x2+px﹣2=0的一个根为2,则p=_____,另一个根是_____.24.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.25.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.三、解答题26.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.27.已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.(1)求实数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.28.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.29.从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2) 抽取两名同学,求甲在其中的概率。
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 .二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= .三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 .四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 .五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 .6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 (写出一个即可),使x>2时,y1>y2.六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 .七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 .(只填序号)八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 .九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD= .一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 边形.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 .一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 .一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 .山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 6.1×106 .【答案】6.1×106.【解答】解:用科学记数法表示6100000,应记作6.1×106,故答案是:6.1×106.二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= 8 .【答案】8.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,∴2m3﹣3m2﹣m+9=(2m3﹣2m2)﹣m2﹣m+9=2m(m2﹣m)﹣m2﹣m+9=2m﹣m2﹣m+9=﹣m2+m+9=﹣(m2﹣m)+9=﹣1+9=8,故答案为:8.三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 x≥3 .【答案】见试题解答内容【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 y =+2 .【答案】y=+2.【解答】解:根据题意得:y=(0+1+x+3+6)÷5=+2.故答案为:y=+2.五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 y=x+2(答案不唯一) .【答案】y=x+2(答案不唯一).【解答】解:设一次函数的解析式为y=kx+b(k≠0).∵一次函数y=kx+b的图象经过点(1,3),∴3=k+b,又∵函数值y随自变量x的增大而增大,∴k>0,∴k=1,b=2符合题意,∴符合上述条件的函数解析式可以为y=x+2.故答案为:y=x+2(答案不唯一).6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 0(答案不唯一) (写出一个即可),使x>2时,y1>y2.【答案】0(答案不唯一).【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 4 .【答案】4.【解答】解:∵点C是OA的中点,∴S△ACD=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ABD=S△OBD,∵点B在双曲线y=(x>0)上,BD⊥y轴,∴S△OBD==4,∴S△ABD=4,故答案为:4.七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 ①②④ .(只填序号)【答案】见试题解答内容【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 53°28' .【答案】53°28'.【解答】解:如图:∵l1∥l2,l2∥l3,∴l1∥l3,∴∠1=∠3=126°32',∴∠2=180°﹣∠3=180°﹣126°32'=53°28';故答案为:53°28'.九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 AD=AB (答案不唯一) ,使△ABC≌△ADC.【答案】见试题解答内容【解答】解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE =30°,,则BD= 3﹣ .【答案】3﹣.【解答】解:过点A作AH⊥BC于H,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=60°,∴AH⊥BC,∴,∴∠BAD+∠DAH=30°,∴∠DAE=30°,∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC,∴tan∠DAH=tan∠EAC=,∵BH=AB=3,∵AH=AB sin60°=6×=3,∴,∴DH=,∴BD=BH﹣DH=3﹣,故答案为:3﹣.一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 五 边形.【答案】五.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=540°,解得:n=5,即此多边形为五边形,故答案为:五.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 ﹣ .【答案】见试题解答内容【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 2a .【答案】2a.【解答】解:连接AB,作直径CE.连接DE,设AD交BC于点T.∵∠ACB=90°,∴AB是直径,∵EC是直径,∴∠CDE=90°,∵∠CBD=∠E,∴tan E=tan∠CBD=,∴=,∴DE=3a,∴EC=AB===a,∴AC=BC=AB=a,∵∠CAT=∠CBD,∴tan∠CAT=tan∠CBD=,∴CT=a,BT=a,∴AT===a,∵AB是直径,∴∠ADB=90°,∵tan∠DBT==,∴DT=BT=a,∴AD=AT+DT=2a,解法二:过点C作CE⊥AD于点E,则CE=DE=a,AE=a,∴AD=AE+CE=2a.故答案为:2a.一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 (15+1)m .【答案】(15+1)m.【解答】解:如图:延长CD交EF于点G,由题意得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,∵∠EDG是△EDC的一个外角,∴∠DEC=∠EDG﹣∠ECG=30°,∴∠DEC=∠ECD=30°,∴ED=CD=30m,在Rt△EGD中,EG=ED•sin60°=30×=15(m),∴EF=EG+FG=(15+1)m,∴该建筑物的高是(15+1)m,故答案为:(15+1)m.。
山东省泰安市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)
山东省泰安市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•泰安)2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 千米.二.规律型:数字的变化类(共1小题)2.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是 .三.二次根式的混合运算(共1小题)3.(2022•泰安)计算:•﹣3= .四.由实际问题抽象出二元一次方程组(共1小题)4.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为 .五.根的判别式(共1小题)5.(2023•泰安)已知关于x的一元二次方程x2﹣4x﹣a=0有两个不相等的实数根,则a的取值范围是 .六.规律型:点的坐标(共1小题)6.(2023•泰安)已知,△OA1A2,△A3A4A5,△A6A7A8,...都是边长为2的等边三角形,按如图所示摆放.点A2,A3,A5,...都在x轴正半轴上,且A2A3=A5A6=A8A9= (1)则点A2023的坐标是 .七.一次函数图象上点的坐标特征(共1小题)7.(2021•泰安)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为 (结果用含正整数n的代数式表示).八.二次函数图象与系数的关系(共1小题)8.(2021•泰安)如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0),对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根.其中正确的为 (将所有正确结论的序号都填入).九.二次函数的最值(共1小题)9.(2023•泰安)二次函数y=﹣x2﹣3x+4的最大值是 .一十.等腰三角形的性质(共1小题)10.(2021•泰安)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为 .一十一.平行四边形的性质(共1小题)11.(2022•泰安)如图,四边形ABCD为平行四边形,则点B的坐标为 .一十二.切线的性质(共2小题)12.(2023•泰安)为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出AB=4cm,则这张光盘的半径是 cm.(精确到0.1cm.参考数据:≈1.73)13.(2022•泰安)如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC 相切于点C,若∠A=32°,则∠ADO= .一十三.轴对称的性质(共1小题)14.(2023•泰安)如图,在△ABC中,AC=BC=16,点D在AB上,点E在BC上,点B 关于直线DE的轴对称点为点B′,连接DB′,EB′,分别与AC相交于F点,G点,若AF=8,DF=7,B′F=4,则CG的长度为 .一十四.翻折变换(折叠问题)(共2小题)15.(2022•泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE 折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为 .16.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为 .一十五.解直角三角形的应用(共1小题)17.(2022•泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP 的长度为 (结果精确到0.1m).一十六.解直角三角形的应用-仰角俯角问题(共1小题)18.(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为 m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)山东省泰安市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•泰安)2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 3.2×108 千米.【答案】见试题解答内容【解答】解:3.2亿=320000000=3.2×108,故答案为:3.2×108.二.规律型:数字的变化类(共1小题)2.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是 (10,18) .【答案】(10,18).【解答】解:∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).三.二次根式的混合运算(共1小题)3.(2022•泰安)计算:•﹣3= 2 .【答案】2.【解答】解:原式=﹣3×=4﹣2=2,故答案为:2.四.由实际问题抽象出二元一次方程组(共1小题)4.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为 .【答案】.【解答】解:由题意可得,,故答案为:.五.根的判别式(共1小题)5.(2023•泰安)已知关于x的一元二次方程x2﹣4x﹣a=0有两个不相等的实数根,则a的取值范围是 a>﹣4 .【答案】a>﹣4.【解答】解:根据题意得Δ=(﹣4)2﹣4×1×(﹣a)>0,解得a>﹣4.故答案为:a>﹣4.六.规律型:点的坐标(共1小题)6.(2023•泰安)已知,△OA1A2,△A3A4A5,△A6A7A8,...都是边长为2的等边三角形,按如图所示摆放.点A2,A3,A5,...都在x轴正半轴上,且A2A3=A5A6=A8A9= (1)则点A2023的坐标是 (2023,) .【答案】(2023,).【解答】解:如图,过点A1,A4,A7,A10,A13,……A2023分别作x轴的垂线,∵△A1A2O是边长为2正三角形,∴OB=BA2=1,A1B==,∴点A1横坐标为1,由题意可得,点A2横坐标为2,点A3横坐标为3,点A4横坐标为4,…因此点A2023横坐标为2023,∵2023÷3=674……1,而674是偶数,∴点A2023在第一象限,∴点A2023的纵坐标为,即点A2023(2023,),故答案为:(2023,).七.一次函数图象上点的坐标特征(共1小题)7.(2021•泰安)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为 ×()n﹣1 (结果用含正整数n的代数式表示).【答案】×()n﹣1.【解答】解:设直线y=x与x轴夹角为α,过B1作B1H⊥x轴于H,如图:∵点B1的横坐标为2,点B1在直线l:y=x上,令x=2得y=1,∴OH=2,B1H=1,OB1==,∴tanα==,Rt△A1B1O中,A1B1=OB1•tanα=,即第1个正方形边长是,∴OB2=OB1+B1B2=+=×3,Rt△A2B2O中,A2B2=OB2•tanα=×3×=×,即第2个正方形边长是×,∴OB3=OB2+B2B3=×3+×=×,Rt△A3B3O中,A3B3=OB3•tanα=××=×,即第3个正方形边长是×=×()2,∴OB4=OB3+B3B4=×+×=×,Rt△A4B4O中,A4B4=OB4•tanα==××=×,即第4个正方形边长是×=×()3,......观察规律可知:第n个正方形边长是×()n﹣1,故答案为:×()n﹣1.八.二次函数图象与系数的关系(共1小题)8.(2021•泰安)如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0),对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根.其中正确的为 ②④ (将所有正确结论的序号都填入).【答案】②④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的交点(3,0),对称轴为直线x=1,∴抛物线x轴的另一个交点在(﹣1,0),∴当x=﹣1时,y=a﹣b+c=0,即②正确;由图象无法判断y的最大值,故③错误;方程ax2+bx+c+1=0的根的个数,可看作二次函数y=ax2+bx+c与y=﹣1的图象的交点个数,由图象可知,必然有2个交点,即方程ax2+bx+c+1=0有2个不相等的实数根.故④正确.故答案为:②④.九.二次函数的最值(共1小题)9.(2023•泰安)二次函数y=﹣x2﹣3x+4的最大值是 .【答案】.【解答】解:y=﹣x2﹣3x+4=﹣(x+)2+.∵a=﹣1<0,∴当x=﹣时,y取得最大值,最大值=.故答案为:.一十.等腰三角形的性质(共1小题)10.(2021•泰安)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为 4 .【答案】4.【解答】解:设AB交半圆于点D,连接CD.∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD垂直平分斜边AB,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.一十一.平行四边形的性质(共1小题)11.(2022•泰安)如图,四边形ABCD为平行四边形,则点B的坐标为 (﹣2,﹣1) .【答案】(﹣2,﹣1).【解答】解:∵四边形ABCD为平行四边形,且A(﹣1,2),D(3,2),∴点A是点D向左平移4个单位所得,∵C(2,﹣1),∴B(﹣2,﹣1).故答案为:(﹣2,﹣1).一十二.切线的性质(共2小题)12.(2023•泰安)为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出AB=4cm,则这张光盘的半径是 6.9 cm.(精确到0.1cm.参考数据:≈1.73)【答案】6.9.【解答】解:设光盘的圆心为O,由题意可知:AB,AC切⊙O于C、B,连接OC,OB,OA,如图所示:∵AC,AB分别为圆O的切线,∴AO为∠CAB的平分线,OC⊥AC,OB⊥AB,又∠CAD=60°,∴∠OAC=∠OAB=∠CAB=60°,在Rt△AOB中,∠OAB=60°,AB=4cm,∴tan∠OAB=,∴OB=tan∠OAB×AB==4≈6.9(cm),∴这张光盘的半径为6.9cm.故答案为:6.9.13.(2022•泰安)如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC 相切于点C,若∠A=32°,则∠ADO= 64° .【答案】64°.【解答】解:连接OC,∵∠A=32°,∴∠DOC=2∠A=64°,∵BC与⊙O相切于点C,∴OC⊥BC,∵∠B=90°,∴∠B+∠OCB=180°,∴AB∥OC,∴∠ADO=∠DOC=64°,故答案为:64°.一十三.轴对称的性质(共1小题)14.(2023•泰安)如图,在△ABC中,AC=BC=16,点D在AB上,点E在BC上,点B 关于直线DE的轴对称点为点B′,连接DB′,EB′,分别与AC相交于F点,G点,若AF=8,DF=7,B′F=4,则CG的长度为 .【答案】.【解答】解:∵△BDE与△B′DE关于DE对称,∴∠B=∠B′,又∵∠AFD=∠B′FG,∴△ADF∽△B′GF,∴=,即=,∴GF=,∴CG=AC﹣AF﹣GF=16﹣8﹣=,故答案为:.一十四.翻折变换(折叠问题)(共2小题)15.(2022•泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE 折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为 2 .【答案】2.【解答】解:如图,连接AP,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,点E是BC的中点,∴BE=CE=AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD﹣PD=6﹣x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6﹣x)2,解得x=2.则DP的长度为2.故答案为:2.16.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为 4+2 .【答案】4+2.【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=2,∴BF=EC=2,由翻折的性质可知,BF=FG=2,∠FAG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=2,∴AF=2.∴AB=AB′=2+2,∴AD=AB′+DB′=4+2,故答案为:4+2.一十五.解直角三角形的应用(共1小题)17.(2022•泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP 的长度为 4.4m (结果精确到0.1m).【答案】4.4m.【解答】解:根据图形可知AD∥CP.∵AD∥CP,∠DPC=30°,在Rt△ABD中,∠ADB=30°,AD=0.8m,∴AB=AD×tan∠ADB=0.8×≈0.46m.∵AB=0.46m,AF=2m,CF=1m,∴BC=2.54m,在Rt△BCP中,∠BPC=30°,BC=2.54m,∴CP=.答:CP的长度约为4.4m.故答案为:4.4m.一十六.解直角三角形的应用-仰角俯角问题(共1小题)18.(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为 55 m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)【答案】55.【解答】解:过点E作EF⊥AB,垂足为F,由题意得:AF=DE=2m,EF=AD,BA⊥DA,设AC=xm,∵CD=60m,∴EF=AD=AC+CD=(x+60)m,在Rt△ABC中,∠BCA=50°,∴AB=AC•tan50°≈1.2x(m),在Rt△FBE中,∠BEF=26.6°,∴BF=EF•tan26.6°≈0.5(x+60)m,∴AB=BF+AF=[2+0.5(x+60)]m,∴1.2x=2+0.5(x+60),解得:x=,∴AB=1.2x≈55(m),∴该电视发射塔的高度AB约为55m,故答案为:55.。
中考数学专题训练第2讲整式(知识点梳理)
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
【精选试卷】中考数学填空题专项练习知识点总结(2)
一、填空题1.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.2.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.3.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为 .4.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.5.正六边形的边长为8cm,则它的面积为____cm2.6.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.7.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 8.使分式x 2−1x+1的值为0,这时x=_____.9.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.10.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm11.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______12.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 13.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .14.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 15.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.16.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.17.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.18.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.19.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 20.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .21.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= .22.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元. 23.分解因式:2x 3﹣6x 2+4x =__________.24.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .25.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n的值为___.26.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.27.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.28.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.29.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.30.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=22.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-3.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角4.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=5.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD6.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-17.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确8.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法9.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:10.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面11.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE 的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=212.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键13.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=214.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×10615.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半16.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA17.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(05118.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++219.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且20.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°21.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【22.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:200023.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点24.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF25.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA26.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM27.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=28.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x﹣4029.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)2+4ab=11a+b=∴y=-x2x∴顶点坐标为30.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、填空题1.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=22.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.3.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√42+32=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=3,2;∴BE=32②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.或3.综上所述,BE的长为32或3.故答案为:324.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.5.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆6.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD ,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.7.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B 种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A 种种子发芽率大于B 种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 8.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,x 2−1x+1=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法9.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.10.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为152.12.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.13.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣3【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,3∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.14.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.15.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.16.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.17.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.18.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.19.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且 解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 20.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°21.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.22.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.23.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.24.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.25.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.26.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.27.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .28.【解析】【分析】设复兴号的速度为x 千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x ﹣40 解析:13201320304060x x -=-. 【解析】【分析】 设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 29.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.30.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43 【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.。
中考数学必考知识点专项训练
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学必考知识点专项训练一、选择题1.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A. 20米B. 18米C. 16米D. 15米2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A. B. C. D.3.如图是由一个长方体和一个正方体组成的几何体,则该几何体的主视图为()A. B.C. D.4.如图,该几何体的主视图是()A. B. C. D.5.下列投影中,是平行投影的是()A. B. C. D.6.由5个完全相同的小长方形搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A. B. C. D.7.如图所示的三视图所对应的几何体是()A. B. C. D.8.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A. 10B. 9C. 8D. 79.若一个几何体的俯视图是圆,则这个几何体不可能是()A. 圆柱B. 圆锥C. 正方体D. 球10.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A. 6B. 8C. 12D. 2411.下列几何体中,同一个几何体的三视图完全相同的是()A. 球B. 圆锥C. 圆柱D. 三棱柱12.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A. m=5,n=13B. m=8,n=10C. m=10,n=13D. m=5,n=10二、填空题13.如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为________ m2.14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.15.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要________个这样的小立方块,最多需要________个这样的小立方块.16.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说“广场上的大灯泡一定位于两人________ ”.17.一个几何体由几个大小相同的小正方形搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是________.18.一个几何体由若干个大小相同点小立方块搭成,如图分别是从它的正面、上面看到的形状图,该几何体至少是用________块小立方块搭成的.三、解答题19.有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示.(1)这个几何体由________个小正方体组成,请画出这个几何体的三视图.(2)该几何体的表面积是________cm2.(3)若还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加________个小正方体.参考答案一、选择题1.D2. B3. B4. C5.B6. A7. B8. B9.C 10.B 11. A 12. A二、填空题13.0.81π14.5 15. 6;8 16.中上方17.4 18. 6三、解答题19.(1)解:这个几何体由10个小正方体组成,如图所示:(2)解:38(3)4精品基础教育教学资料,仅供参考,需要可下载使用!一、选择题1.下列说法错误的是()A. 若AP=BP,则点P是线段的中点B. 若点C在线段AB上,则AB=AC+BCC. 顶点在圆心的角叫做圆心角D. 两点之间,线段最短2.下列说法正确的个数是()⑴射线AB和射线BA是一条射线⑵两点之间的连线中直线最短⑶若AP=BP,则P是线段AB的中点⑷经过任意三点可画出1条或3条直线.A. 1个B. 2个C. 3个D. 4个3.如图中,共有线段()A. 4条B. 5条C. 6条D. 7条4.下列语句中,属于定义的是()A. 两点确定一条直线B. 两直线平行,同位角相等C. 两点之间线段最短D. 直线外一点到直线的垂线段的长度,叫做点到直线的距离5.下列说法正确的是()A. 延长直线ABB. 延长线段AB到C,使AC=BCC. 延长射线ABD. 反向延长线段AB到C,使AC=AB6.下列语句中,假命题的是()A. 一条直线有且只有一条垂线B. 直角的补角必是直角C. 不相等的两个角一定不是对顶角D. 两直线平行,同旁内角互补7.如图,线段AB表示一条对折的绳子,现从P点将绳子剪断.剪断后的各段绳子中最长的一段为30cm.若AP= BP,則原来绳长为()cm.A. 55cmB. 75cmC. 55或75cmD. 50或75cm8.下列语句正确的是( )A. 在所有联结两点的线中,直线最短B. 线段A是点A与点B的距离C. 三条直线两两相交,必定有三个交点D. 在同一平面内,两条不重合的直线,不平行必相交9.下列说法正确的是()A. 角的边越长,角越大B. 在∠ABC一边的延长线上取一点DC. ∠B=∠ABC+∠DBCD. 以上都不对10.若∠A =20°18′,∠B =20°15′30〃,∠C =20.25°,则()A. ∠A>∠B>∠CB. ∠B>∠A>∠CC. ∠A>∠C>∠BD. ∠C>∠A>∠B11.时钟9点30分时,分针和时针之间形成的角的大小等于()A. 75°B. 90°C. 105°D. 120°12.如图,在△ABC中,∠A=36°,AB=AC,CD,BE分别是∠ACB,∠ABC的平分线,CD、BE相交于F点,连接DE,则图中全等的三角形有多少组()A. 3B. 4C. 5D. 613.如果∠l与∠2互补,∠2为锐角,则下列表示∠2余角的式子是()A. 90°-∠1B. ∠1-90°C. ∠1+90°D. 180°-∠114.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°15.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A. PQ≥5B. PQ>5C. PQ<5D. PQ≤5二、填空题16.平面上有三个点,可以确定直线的条数是________17.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.18.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为________cm.19.经过一点的直线有________条;经过两点的直线有________条,并且只有________ 条,经过不在同一直线上的三点最多可画________条直线。
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.绝对值(共1小题)1.(2022•自贡)计算:|﹣2|= .二.有理数的混合运算(共1小题)2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 .三.估算无理数的大小(共2小题)3.(2021•自贡)请写出一个满足不等式x+>7的整数解 .4.(2023•自贡)请写出一个比小的整数 .四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= .五.因式分解-提公因式法(共1小题)6.(2022•舟山)分解因式:m2+m= .六.约分(共1小题)7.(2023•自贡)化简:= .七.分式的加减法(共1小题)8.(2021•自贡)化简:﹣= .八.分式的混合运算(共1小题)9.(2022•自贡)化简:•+= .九.一次函数的性质(共1小题)10.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 .一十.垂径定理(共1小题)11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 厘米.一十一.圆锥的计算(共1小题)12.(2023•自贡)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是 cm2.一十二.轴对称-最短路线问题(共1小题)13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB 上左右滑动,若EF=1,则GE+CF的最小值为 .一十三.胡不归问题(共1小题)14.(2023•自贡)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是 .一十四.用样本估计总体(共1小题)15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 鱼池.(填甲或乙)一十五.加权平均数(共1小题)16.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .一十六.列表法与树状图法(共1小题)17.(2023•自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.绝对值(共1小题)1.(2022•自贡)计算:|﹣2|= 2 .【答案】见试题解答内容【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.二.有理数的混合运算(共1小题)2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 244872 .【答案】见试题解答内容【解答】解:由三个等式,得到规律:5*3⊕6=301848可知:5×6 3×6 6×(5+3),2*6⊕7=144256可知:2×7 6×7 7×(2+6),9*2⊕5=451055可知:9×5 2×5 5×(9+2),∴4*8⊕6=4×6 8×6 6×(4+8)=244872.故答案为:244872.三.估算无理数的大小(共2小题)3.(2021•自贡)请写出一个满足不等式x+>7的整数解 6(答案不唯一) .【答案】6(答案不唯一).【解答】解:∵x+>7,∴x>7﹣,∵1<<2,∴﹣2<﹣<﹣1,∴7﹣2<7﹣<﹣1+7∴5<7﹣<6,故满足不等式x+>7的整数解可以为:6(答案不唯一).故答案为:6(答案不唯一).4.(2023•自贡)请写出一个比小的整数 4(答案不唯一) .【答案】4(答案不唯一).【解答】解:∵42=16,52=25,而16<23<25,∴4<<5,∴比小的整数有4(答案不唯一),故答案为:4(答案不唯一).四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= 3a2 .【答案】3a2.【解答】解:7a2﹣4a2=(7﹣4)a2=3a2,故答案为:3a2.五.因式分解-提公因式法(共1小题)6.(2022•舟山)分解因式:m2+m= m(m+1) .【答案】m(m+1).【解答】解:m2+m=m(m+1).故答案为:m(m+1).六.约分(共1小题)7.(2023•自贡)化简:= x﹣1 .【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.七.分式的加减法(共1小题)8.(2021•自贡)化简:﹣= .【答案】.【解答】解:=====.故答案为:.八.分式的混合运算(共1小题)9.(2022•自贡)化简:•+= .【答案】.【解答】解:•+=+=+=,故答案为:.九.一次函数的性质(共1小题)10.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 ﹣2 .【答案】﹣2.【解答】解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,而﹣1≤x≤3时,函数的最小值为k+3,∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,而﹣1≤x≤3时,函数的最小值为k+3,∴x=3时取得最小值,即有﹣3+k=k+3,此时无解,故答案为:﹣2.一十.垂径定理(共1小题)11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 26 厘米.【答案】26.【解答】解:如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,由题意可得:OC⊥AB,AC=AB=10(厘米),设镜面半径为x厘米,由题意可得:x2=102+(x﹣2)2,∴x=26,∴镜面半径为26厘米,故答案为:26.一十一.圆锥的计算(共1小题)12.(2023•自贡)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是 cm2.【答案】.【解答】解:如图,由题意得弧AC的长为2π×2=4π(cm),设弧AC所对的圆心角为n°,则即=4π,解得n=90,∴粘贴部分所对应的圆心角为100°﹣90°=10°,∴圆锥上粘贴部分的面积是=(cm2),故答案为:.一十二.轴对称-最短路线问题(共1小题)13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB 上左右滑动,若EF=1,则GE+CF的最小值为 3 .【答案】3.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.一十三.胡不归问题(共1小题)14.(2023•自贡)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是 .【答案】.【解答】解:∵直线与x轴,y轴分别交于A,B两点,∴B(0,2),A(6,0),作点B关于x轴的对称点B'(0,﹣2),把点B'向右平移3个单位得到C(3,﹣2),作CD⊥AB于点D,交x轴于点F,过点B'作B'E∥CD交x轴于点E,则四边形EFCB'是平行四边形,此时,B'E=BE=CF,∴BE+DF=CF+DF=CD有最小值,作CP⊥x轴于点P,则CP=2,OP=3,∵∠CFP=∠AFD,∴∠FCP=∠FAD,∴tan∠FCP=tan∠FAD,∴,即,则,设直线CD的解析式为y=kx+b,则,,解得,∴直线CD的解析式为y=3x﹣11,联立,解得,即D(,),过点D作DG⊥y轴于点G,直线与x轴的交点为,则,∴sin∠OBQ===,∴,∴3BH+5DH=5(BH+DH)=5(HG+DH)=5DG,即3BH+5DH的最小值是5DG=5×=,故答案为:.一十四.用样本估计总体(共1小题)15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 甲 鱼池.(填甲或乙)【答案】甲.【解答】解:由题意可得,甲鱼池中的鱼苗数量约为:100÷=2000(条),乙鱼池中的鱼苗数量约为:100÷=1000(条),∵2000>1000,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.一十五.加权平均数(共1小题)16.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 83 .【答案】83.【解答】解:小彤这学期的体育成绩是90×30%+80×70%=83,故答案为:83.一十六.列表法与树状图法(共1小题)17.(2023•自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .【答案】.【解答】解:把2个蛋黄粽分别记为A、B,3个鲜肉粽分别记为C、D、E,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子的结果有8种,即AB、BA、CD、CE、DC、DE、EC、ED,∴爷爷奶奶吃到同类粽子的概率是=,故答案为:.。
浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类
浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类一.整式的混合运算(共1小题)1.(2023•金华)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 .二.分式有意义的条件(共1小题)2.(2023•宁波)要使分式有意义,x的取值应满足 .三.一元一次方程的应用(共1小题)3.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为 斤.四.由实际问题抽象出二元一次方程组(共1小题)4.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .五.解分式方程(共1小题)5.(2023•绍兴)方程的解是 .六.反比例函数系数k的几何意义(共1小题)6.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y轴,若△OAB的面积为6,则△ABC的面积是 .七.反比例函数的应用(共1小题)7.(2023•温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p(kPa)与汽缸内气体的体积V(mL)成反比例,p关于V的函数图象如图所示.若压强由75kPa加压到100kPa,则气体体积压缩了 mL.八.二次函数的最值(共1小题)8.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= .九.平行线的性质(共1小题)9.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= .一十.三角形的面积(共1小题)10.(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC 为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为 ;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为 .一十一.菱形的性质(共1小题)11.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC 长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 .一十二.圆内接四边形的性质(共1小题)12.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 .一十三.正多边形和圆(共1小题)13.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= .一十四.弧长的计算(共1小题)14.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 cm.一十五.扇形面积的计算(共2小题)15.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .16.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 .一十六.圆的综合题(共1小题)17.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP 为等腰三角形时,AP的长为 .一十七.坐标与图形变化-旋转(共1小题)18.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 .一十八.相似三角形的判定与性质(共1小题)19.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则= (结果用含k的代数式表示).一十九.概率公式(共2小题)20.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .21.(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是 .二十.应用类问题(共1小题)22.(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有 人.浙江省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类参考答案与试题解析一.整式的混合运算(共1小题)1.(2023•金华)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 6 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 6+4 .【答案】(1)6;(2)6+4.【解答】解:(1)∵边AD减少1m,得到的矩形面积不变,∴5b=(5+1)×(b﹣1),解得:b=6,故答案为:6;(2)根据题意知b=,∵边AB增加1m,边AD增加2m,得到的矩形面积为2s(m2),∴(a+1)(b+2)=2s,∴(a+1)(+2)=2s,整理得:2a++2﹣s=0,∴2a2+(2﹣s)a+s=0,∵有且只有一个a的值使得到的矩形面积为2s,∴Δ=0,即(2﹣s)2﹣8s=0,解得s=6﹣4(不符合题意舍去)或s=6+4,故答案为:6+4.二.分式有意义的条件(共1小题)2.(2023•宁波)要使分式有意义,x的取值应满足 x≠2 .【答案】x≠2.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.三.一元一次方程的应用(共1小题)3.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为 斤.【答案】.【解答】解:设原有生丝为x斤,x:12=30:(30﹣3),解得x=.故原有生丝为斤.故答案为:.四.由实际问题抽象出二元一次方程组(共1小题)4.(2023•浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 .【答案】.【解答】解:根据题意得:.故答案为:.五.解分式方程(共1小题)5.(2023•绍兴)方程的解是 x=3 .【答案】x=3.【解答】解:去分母,得3x=9,∴x=3.经检验,x=3是原方程的解.故答案为:x=3.六.反比例函数系数k的几何意义(共1小题)6.(2023•绍兴)如图,在平面直角坐标系xOy中,函数(k为大于0的常数,x>0)图象上的两点A(x1,y1),B(x2,y2),满足x2=2x1,△ABC的边AC∥x轴,边BC∥y 轴,若△OAB的面积为6,则△ABC的面积是 2 .【答案】2.【解答】解:如图,延长CA交y轴于E,延长CB交x轴于点F,∴CE⊥y轴,CF⊥x轴,∴四边形OECF为矩形,∵x2=2x1,∴点A为CE的中点,由几何意义得,S△OAE=S△OBF,∴点B为CF的中点,∴S△OAB=S矩形OECF=6,∴S矩形OECF=16,∴S△ABC=×16=2.故答案为:2.2七.反比例函数的应用(共1小题)7.(2023•温州)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p(kPa)与汽缸内气体的体积V(mL)成反比例,p关于V 的函数图象如图所示.若压强由75kPa加压到100kPa,则气体体积压缩了 20 mL.【答案】20.【解答】解:设这个反比例函数的解析式为V=,∵V=100ml时,p=60kpa,∴k=pV=100ml×60kpa=6000,∴V=,当p=75kPa时,V==80,当p=100kPa时,V==60,∴80﹣60=20(mL),∴气体体积压缩了20mL,故答案为:20.八.二次函数的最值(共1小题)8.(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b= 或﹣ .【答案】或﹣.【解答】解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,∴C(0,4),∵A(3,0),四边形ABCO是矩形,∴B(3,4),①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得,解得b=;②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得,解得b=﹣,综上所述,b=或b=﹣,故答案为:或﹣,九.平行线的性质(共1小题)9.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= 90° .【答案】90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.一十.三角形的面积(共1小题)10.(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC 为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为 5a+5b =7c ;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为 a2+b2=c2 .【答案】(1)5a+5b=7c;(2)a2+b2=c2.【解答】解:(1)∵△ADE和△CBF是等边三角形,∴∠A=∠ADE=∠B=∠BCF=60°,∴△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,∴四边形EHFG是平行四边形,AB=AG=BG=c,CH=DH=CD=AD+BC﹣AB=a+b﹣c,∴EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,∵四边形EHFG的周长与△CDH的周长相等,∴2[(c﹣a)+(c﹣b)]=3(a+b﹣c),整理得:5a+5b=7c,故答案为:5a+5b=7c;(2)∵S四边形EHFG=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH 的面积相等,∴S△ABG﹣S△BCF﹣S△ADE+S△CDH=S△CDH,∴S△ABG=S△BCF+S△ADE,∵△ABG,△ADE和△CBF是等边三角形,∴c2=a2+b2,∴c2=a2+b2,故答案为:a2+b2=c2.一十一.菱形的性质(共1小题)11.(2023•绍兴)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC 长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是 10°或80° .【答案】10°或80°.【解答】解:以点A为圆心,AC长为半径作弧,交直线AD于点E和E′,如图所示,在菱形ABCD中,∠DAC=∠BAC,∵∠DAB=40°,∵AC=AE,∴∠AEC=(180°﹣20°)÷2=80°,∵AE′=AC,∴∠AE′C=∠ACE′=10°,综上所述,∠AEC的度数是10°或80°,故答案为:10°或80°.一十二.圆内接四边形的性质(共1小题)12.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是 80° .【答案】80°.【解答】解:∵四边形ABCD内接于圆O,∵∠D=100°,∴∠B=80°.故答案为:80°.一十三.正多边形和圆(共1小题)13.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= 2 .【答案】2.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,又∵AC=AC,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2一十四.弧长的计算(共1小题)14.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 π cm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.一十五.扇形面积的计算(共2小题)15.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为 5 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM 于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.16.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是 6﹣6 .现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是 18+12π﹣18 .【答案】6﹣6;18+12π﹣18.【解答】解:如图1,过点G作GK⊥BC于K,则∠CKG=∠BKG=90°,∵∠BCD=45°,∴△CGK是等腰直角三角形,∴CK=GK=CG,∵BC=12,∴BK=BC﹣CK=12﹣CG,在Rt△BGK中,∠GBK=30°,∴=tan∠GBK=tan30°=,∴BK=GK,即12﹣CG=×CG,∴CG=6﹣6;如图2,以C为圆心,CD为半径作圆,当△CDE绕点C旋转60°时,CE′交AB于H ′,连接DD′,过点D作DM⊥AB于M,过点C作CN⊥DD′于N,则∠BCE′=∠DCD′=60°,点D的运动轨迹为,点H的运动轨迹为线段BH ′,∴在旋转0°到60°的过程中,线段DH扫过的面积为S△BDD′+S扇形CDD′﹣S△CDD′,∵CD=BC•cos CBD=12cos45°=6,∴DG=CD﹣CG=6﹣(6﹣6)=12﹣6,∵∠BCD+∠ABC=60°+30°=90°,∴∠BH′C=90°,在Rt△BCH′中,CH′=BC•sin30°=12×=6,BH′=BC•cos30°=12×=6,∵△CD′E′是等腰直角三角形,∠CD′E′=90°,D′H′⊥CE′,∴D′H′=CE′=6,∴BD′=6+6,∵DM⊥AB,∴∠DMG=90°,∴∠DMG=∠CH′G,∵∠DGM=∠CGH′,∴△DGM∽△CGH′,∴=,即=,∴DM=3﹣3,∵CD′=CD=6,∠DCD′=60°,∴△CDD′是等边三角形,∴∠CDD′=60°,∵CN⊥DD′,∴CN=CD•sin∠CDD′=6sin60°=3,∴S△BDD′+S扇形CDD′﹣S△CDD′=×(6+6)×(3﹣3)+﹣×6×3=18+12π﹣18;故答案为:6﹣6;18+12π﹣18.一十六.圆的综合题(共1小题)17.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP 为等腰三角形时,AP的长为 6或2 .【答案】6或2.【解答】解:如图1,连接OD,DE,∵半圆O与BC相切于点D,∴OD⊥BC,在Rt△OBD中,OB=OE+BE=OD+3,BD=3.∴OB2=BD2+OD2,∴(OD+3)2=(3)2+OD2,解得OD=6,∴AO=EO=OD=6,①当AP=PD时,此时P与O重合,∴AP=AO=6;②如图2,当AP′=AD时,在Rt△ABC中,∵∠C=90°,∴AC⊥BC,∴OD∥AC,∴△BOD∽△BAC,∴==,∴==,∴AC=10,CD=2,∴AD===2,∴AP′=AD=2;③如图3,当DP′′=AD时,∵AD=2,∴DP′′=AD=2,∵OD=OA,∴∠ODA=∠BAD,∴OD∥AC,∴∠ODA=∠CAD,∴∠BAD=∠CAD,∴AD平分∠BAC,过点D作DH⊥AE于点H,∴AH=P″H,DH=DC=2,∵AD=AD,∴Rt△ADH≌Rt△ADC(HL),∴AH=AC=10,∴AH=AC=P″H=10,∴AP″=2AH=20(E为AB边上一点,不符合题意,舍去),综上所述:当△ADP为等腰三角形时,AP的长为6或2.故答案为:6或2.一十七.坐标与图形变化-旋转(共1小题)18.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 (﹣5,4) .【答案】(﹣5,4).【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).一十八.相似三角形的判定与性质(共1小题)19.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则= (结果用含k的代数式表示).【答案】.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.一十九.概率公式(共2小题)20.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【答案】9.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.21.(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是 .【答案】.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个红球,3个白球,∴摸到红球的概率是.故答案为:.二十.应用类问题(共1小题)22.(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有 3 人.【答案】3.【解答】解:设第一组有x人,则第二组有(x+6)人,依题意有:=,解得x=3,经检验,x=3是原方程的解.故第一组有3人.故答案为:3.。
四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.代数式求值(共1小题)1.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为 .二.幂的乘方与积的乘方(共1小题)2.(2022•成都)计算:(﹣a3)2= .三.因式分解-提公因式法(共1小题)3.(2023•成都)因式分解:m2﹣3m= .四.因式分解-运用公式法(共1小题)4.(2023•贵州)因式分解:x2﹣4= .五.因式分解的应用(共1小题)5.(2023•成都)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 ;第23个智慧优数是 .六.分式的化简求值(共1小题)6.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为 .七.根与系数的关系(共1小题)7.(2021•成都)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是 .八.解分式方程(共1小题)8.(2022•成都)分式方程+=1的解为 .九.一次函数图象与系数的关系(共1小题)9.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第 象限.一十.反比例函数的性质(共1小题)10.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是 .一十一.反比例函数图象上点的坐标特征(共1小题)11.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1 y2(填“>”或“<”).一十二.抛物线与x轴的交点(共1小题)12.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k= .一十三.二次函数的应用(共1小题)13.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w的取值范围是 ;当2≤t≤3时,w的取值范围是 .一十四.全等三角形的性质(共1小题)14.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC =8,CE=5,则CF的长为 .一十五.勾股定理(共2小题)15.(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是 .16.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为 .一十六.等腰直角三角形(共1小题)17.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为 .一十七.垂径定理(共2小题)18.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O 到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,取1.73)19.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为 .一十八.作图—基本作图(共2小题)20.(2023•成都)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为 .21.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为 .一十九.关于x轴、y轴对称的点的坐标(共1小题)22.(2023•成都)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是 .二十.轴对称-最短路线问题(共1小题)23.(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为 .二十一.翻折变换(折叠问题)(共2小题)24.(2023•成都)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A= .25.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B ′,则线段BF的长为 ;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为 .二十二.位似变换(共1小题)26.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是 .二十三.由三视图判断几何体(共1小题)27.(2023•成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有 个.二十四.几何概率(共1小题)28.(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .二十五.列表法与树状图法(共1小题)29.(2021•成都)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数k,此三角形的顺序旋转和与逆序旋转和的差小于4的概率是 .四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.代数式求值(共1小题)1.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为 .【答案】.【解答】解:原式=(﹣)×=×=a(a﹣1)=a2﹣a,∵2a2﹣7=2a,∴2a2﹣2a=7,∴a2﹣a=,∴代数式的值为,故答案为:.二.幂的乘方与积的乘方(共1小题)2.(2022•成都)计算:(﹣a3)2= a6 .【答案】a6.【解答】解:(﹣a3)2=a6.三.因式分解-提公因式法(共1小题)3.(2023•成都)因式分解:m2﹣3m= m(m﹣3) .【答案】m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).四.因式分解-运用公式法(共1小题)4.(2023•贵州)因式分解:x2﹣4= (x+2)(x﹣2) .【答案】见试题解答内容【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).五.因式分解的应用(共1小题)5.(2023•成都)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 15 ;第23个智慧优数是 57 .【答案】15,57.【解答】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,智慧优数虽然不会重复,但产生方式却会.举例:24是一个智慧数,却可以有两种方式产生:m=7,n=5和m=5,n=1.又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的,所以需要将智慧优数进行一一列出,并进行比较.第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,第23个智慧优数,当m=11时,n=8,第23个智慧优数为:112﹣82=121﹣64=57,故答案为:15,57.六.分式的化简求值(共1小题)6.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为 .【答案】.【解答】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.七.根与系数的关系(共1小题)7.(2021•成都)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是 ﹣3 .【答案】﹣3.【解答】解:∵m是一元二次方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∵m、n是一元二次方程x2+2x﹣1=0的两个根,∴m+n=﹣2,∴m2+4m+2n=m2+2m+2m+2n=1+2×(﹣2)=﹣3.故答案为:﹣3.八.解分式方程(共1小题)8.(2022•成都)分式方程+=1的解为 x=3 .【答案】x=3【解答】解:去分母得:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3.九.一次函数图象与系数的关系(共1小题)9.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第 一 象限.【答案】一.【解答】解:∵在正比例函数y=kx中,y的值随着x值的增大而增大,∴k>0,∴点P(3,k)在第一象限.故答案为:一.一十.反比例函数的性质(共1小题)10.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是 k<2 .【答案】k<2.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k﹣2<0,解得k<2,故答案为:k<2.一十一.反比例函数图象上点的坐标特征(共1小题)11.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1 > y2(填“>”或“<”).【答案】>.【解答】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.一十二.抛物线与x轴的交点(共1小题)12.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k= 1 .【答案】1.【解答】解:由题意得:Δ=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.一十三.二次函数的应用(共1小题)13.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是 0≤w≤5 ;当2≤t≤3时,w的取值范围是 5≤w≤20 .【答案】0≤w≤5;5≤w≤20.【解答】解:∵物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,∴抛物线h=﹣5t2+mt+n的顶点的纵坐标为20,且经过(3,0)点,∴,解得:,(不合题意,舍去),∴抛物线的解析式为h=﹣5t2+10t+15,∵h=﹣5t2+10t+15=﹣5(t﹣1)2+20,∴抛物线的最高点的坐标为(1,20).∵20﹣15=5,∴当0≤t≤1时,w的取值范围是:0≤w≤5;当t=2时,h=15,当t=3时,h=0,∵20﹣15=5,20﹣0=20,∴当2≤t≤3时,w的取值范围是:5≤w≤20.故答案为:0≤w≤5;5≤w≤20.一十四.全等三角形的性质(共1小题)14.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC =8,CE=5,则CF的长为 3 .【答案】3.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.一十五.勾股定理(共2小题)15.(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是 2 .【答案】2.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.16.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为 100 .【答案】100.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.一十六.等腰直角三角形(共1小题)17.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为 7 .【答案】7.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.一十七.垂径定理(共2小题)18.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O 到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 184 名观众同时观看演出.(π取3.14,取1.73)【答案】184.【解答】解:过O作OD⊥AB,D为垂足,∴AD=BD,OD=5m,∵cos∠AOD===,∴∠AOD=60°,AD=OD=5m,∴∠AOB=120°,AB=10m,∴S阴影部分=S扇形OAB﹣S△OAB=﹣×10×5=π﹣25≈61.4(m2),∴61.4×3=184(人).∴观看马戏的观众人数约为184人.故答案为:184人.19.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为 2 .【答案】2.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.一十八.作图—基本作图(共2小题)20.(2023•成都)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为 .【答案】.【解答】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.21.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为 1+ .【答案】1+.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=,则BC=CD+BD=1+,故答案为:1+.一十九.关于x轴、y轴对称的点的坐标(共1小题)22.(2023•成都)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是 (﹣5,﹣1) .【答案】(﹣5,﹣1).【解答】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).二十.轴对称-最短路线问题(共1小题)23.(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为 .【答案】.【解答】解:如图,连接BD交AC于点O,过点D作DK⊥BC于点K,延长DE交AB 于点R,连接EP′并延长,延长线交AB于点J,作EJ关于AC的对称线段EJ′,则点P′的对应点P″在线段EJ′上.当点P是定点时,DQ﹣QP′=DQ﹣QP″,当D,P″,Q共线时,QD﹣QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ﹣QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,∵AE=14.EC=18,∴AC=32,AO=OC=16,∴OE=AO﹣AE=16﹣14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO•EC=36,∴DE=EB=EJ=6,∴CD===12,∴OD===4,∴BD=8,∵S△DCB=×OC×BD=BC•DK,∴DK==,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK===,∴RB=BE×=,∵EJ=EB,ER⊥BJ,∴JR=BR=,∴JB=DJ′=,∴DQ﹣P'Q的最大值为.解法二:DQ﹣P'Q=BQ﹣P'Q≤BP',显然P'的轨迹EJ,故最大值为BJ.勾股得CD,OD.△BDJ∽△BAD,BD2=BJ*BA,可得BJ=.故答案为:.二十一.翻折变换(折叠问题)(共2小题)24.(2023•成都)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A= .【答案】.【解答】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.25.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B ′,则线段BF的长为 1 ;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为 .【答案】1,.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=4,BF=AT,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=8,∠B=∠D=90°∴AC===4,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=2,EF=2,∴BF=AT=AE﹣ET=3﹣2=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(4﹣x)2=32+x2,∴x=1,∴FN===,∴MN===,补充求TE的第二种方法:∵∠TFE=∠DAC,∴tan∠TFE=tan∠CAD,∴==,∵FT=AB=4,∴ET=2,∴BF=AT=AE﹣ET=3﹣2=1.故答案为:1,.二十二.位似变换(共1小题)26.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是 2:5 .【答案】2:5.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.二十三.由三视图判断几何体(共1小题)27.(2023•成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有 6 个.【答案】6.【解答】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.二十四.几何概率(共1小题)28.(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【答案】.【解答】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.二十五.列表法与树状图法(共1小题)29.(2021•成都)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数k,此三角形的顺序旋转和与逆序旋转和的差小于4的概率是 .【答案】.【解答】解:该三角形的顺序旋转和与逆序旋转和的差为(4x+2k+3y)﹣(3x+2y+4k)=x+y﹣2k,画树状图为:共有12种等可能的结果,其中此三角形的顺序旋转和与逆序旋转和的差小于4的结果数为9,所以三角形的顺序旋转和与逆序旋转和的差小于4的概率==.故答案为.。
山东省菏泽市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
山东省菏泽市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•菏泽)2021年5月11日,国家统计局、国务院第七次全国人口普查领导小组办公室对外发布:截至2020年11月1日零时,全国人口共约1410000000人.数据1410000000用科学记数法表示为 .二.实数的运算(共1小题)2.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230= .三.因式分解-运用公式法(共1小题)3.(2022•菏泽)分解因式:x2﹣9y2= .四.提公因式法与公式法的综合运用(共2小题)4.(2023•菏泽)因式分解:m3﹣4m= .5.(2022•巴中)因式分解:﹣a3+2a2﹣a= .五.分式的化简求值(共1小题)6.(2022•菏泽)若a2﹣2a﹣15=0,则代数式(a﹣)•的值是 .六.二次根式有意义的条件(共1小题)7.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 .七.一次函数图象上点的坐标特征(共1小题)8.(2022•菏泽)如图,在第一象限内的直线l:y=x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为 .八.反比例函数与一次函数的交点问题(共1小题)9.(2021•菏泽)如图,一次函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B1;再作B1A2∥BA1,交反比例函数图象于点A2,依次进行下去,…,则点A2021的横坐标为 .九.二次函数的性质(共1小题)10.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y 轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x >时,y随x的增大而减小.其中所有正确结论的序号是 .一十.勾股定理(共1小题)11.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为 .一十一.三角形中位线定理(共1小题)12.(2021•菏泽)如图,在Rt△ABC中,∠C=30°,D、E分别为AC、BC的中点,DE=2,过点B作BF∥AC,交DE的延长线于点F,则四边形ABFD的面积为 .一十二.多边形内角与外角(共1小题)13.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n= .一十三.正多边形和圆(共1小题)14.(2023•菏泽)如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为 (结果保留π).一十四.扇形面积的计算(共1小题)15.(2022•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是 .(结果保留π)一十五.旋转的性质(共1小题)16.(2023•菏泽)如图,点E是正方形ABCD内的一点,将△ABE绕点B按顺时针方向旋转90°,得到△CBF.若∠ABE=55°,则∠EGC= 度.一十六.相似三角形的判定与性质(共1小题)17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为 .一十七.列表法与树状图法(共1小题)18.(2023•菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .山东省菏泽市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•菏泽)2021年5月11日,国家统计局、国务院第七次全国人口普查领导小组办公室对外发布:截至2020年11月1日零时,全国人口共约1410000000人.数据1410000000用科学记数法表示为 1.41×109 .【答案】1.41×109.【解答】解:1410000000=1.41×109,故答案为:1.41×109.二.实数的运算(共1小题)2.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230= 1 .【答案】1.【解答】解:|﹣2|+2sin60°﹣20230=2﹣+2×﹣1=2﹣+﹣1=1.故答案为:1.三.因式分解-运用公式法(共1小题)3.(2022•菏泽)分解因式:x2﹣9y2= (x﹣3y)(x+3y) .【答案】(x﹣3y)(x+3y).【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).四.提公因式法与公式法的综合运用(共2小题)4.(2023•菏泽)因式分解:m3﹣4m= m(m+2)(m﹣2) .【答案】m(m+2)(m﹣2)【解答】解:原式=m(m2﹣4)=m(m+2)(m﹣2),故答案为:m(m+2)(m﹣2)5.(2022•巴中)因式分解:﹣a3+2a2﹣a= ﹣a(a﹣1)2 .【答案】﹣a(a﹣1)2.【解答】解:原式=﹣a(a2﹣2a+1)=﹣a(a﹣1)2.故答案为:﹣a(a﹣1)2.五.分式的化简求值(共1小题)6.(2022•菏泽)若a2﹣2a﹣15=0,则代数式(a﹣)•的值是 15 .【答案】15.【解答】解:(a﹣)•===a2﹣2a,∵a2﹣2a﹣15=0,∴a2﹣2a=15,∴原式=15.故答案为:15.六.二次根式有意义的条件(共1小题)7.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 x>3 .【答案】x>3.【解答】解:由题意得,x﹣3>0,解得x>3.故答案为:x>3.七.一次函数图象上点的坐标特征(共1小题)8.(2022•菏泽)如图,在第一象限内的直线l:y=x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为 22020 .【答案】22020.【解答】解:∵OA1=1,△OA1B1是等边三角形,∴OB1=OA1=1,∴A1的横坐标为,∵OB1=1,∴A2的横坐标为1,∵过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2,过点B2作x轴的垂线交直线l于点A3,∴OB2=2OB1=2,∴A3的横坐标为2,∴依此类推:A n的坐标为:(2n﹣2,2n﹣2),∴A2022的横坐标为22020,故答案为:22020.八.反比例函数与一次函数的交点问题(共1小题)9.(2021•菏泽)如图,一次函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B1;再作B1A2∥BA1,交反比例函数图象于点A2,依次进行下去,…,则点A2021的横坐标为 + .【答案】+.【解答】解:如图,分别过点A,A1,A2,作x轴的垂线,垂足分别为C,D,E,∵一次函数y=x与反比例函数y=(x>0)的图象交于点A,∴联立,解得A(1,1),∴AC=OC=1,∠AOC=45°,∵AB⊥OA,∴△OAB是等腰直角三角形,∴OB=2OC=2,∵A1B∥OA,∴∠A1BD=45°,设BD=m,则A1D=m,∴A1(m+2,m),∵点A1在反比例函数y=上,∴m(m+2)=1,解得m=﹣1+,(m=﹣1﹣,负值舍去),∴A1(+1,﹣1),∵A1B1⊥A1B,∴BB1=2BD=2﹣2,∴OB1=2.∵B1A2∥BA1,∴∠A2B1E=45°,设B1E=t,则A2E=t,∴A2(t+2,t),∵点A2在反比例函数y=上,∴t(t+2)=1,解得t=﹣+,(t=﹣﹣,负值舍去),∴A2(,﹣),同理可求得A3(2+,2﹣),以此类推,可得点A2021的横坐标为+.故答案为:+.九.二次函数的性质(共1小题)10.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y 轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x >时,y随x的增大而减小.其中所有正确结论的序号是 ①②③ .【答案】①②③.【解答】解:由特征数的定义可得:特征数为[m,1﹣m,2﹣m]的二次函数的表达式为y =mx2+(1﹣m)x+2﹣m.∵此抛物线的对称轴为直线x===,∴当m=1时,对称轴为直线x=0,即y轴.故①正确;∵当m=2时,此二次函数表达式为y=2x2﹣x,令x=0,则y=0,∴函数图象过原点,故②正确;∵当m>0时,二次函数图象开口向上,函数有最小值,故③正确;∵m<0,∴对称轴x==,抛物线开口向下,∴在对称轴的右侧,y随x的增大而减小.即x>时,y随x的增大而减小.而<,故④错误.故答案为:①②③.一十.勾股定理(共1小题)11.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为 ﹣2 .【答案】﹣2.【解答】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF 有最小值,∵AD=4,∴,∴,∴线段BF的最小值为﹣2,故答案为:﹣2.一十一.三角形中位线定理(共1小题)12.(2021•菏泽)如图,在Rt△ABC中,∠C=30°,D、E分别为AC、BC的中点,DE=2,过点B作BF∥AC,交DE的延长线于点F,则四边形ABFD的面积为 8 .【答案】见试题解答内容【解答】解:∵D、E分别为AC、BC的中点,即DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.一十二.多边形内角与外角(共1小题)13.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n= 5 .【答案】5.【解答】解:设外角为2x,则其内角为3x,则2x+3x=180°,解得:x=36°,∴外角为2x=72°,∵正n边形外角和为360°,∴n=360°÷72°=5,故答案为:5.一十三.正多边形和圆(共1小题)14.(2023•菏泽)如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为 6π (结果保留π).【答案】6π.【解答】解:由题意得,∠HAB==135°,AH=AB=4,∴S阴影部分==6π,故答案为:6π.一十四.扇形面积的计算(共1小题)15.(2022•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是 π﹣2 .(结果保留π)【答案】π﹣2.【解答】解:如图,取BC的中点O,连接OA.∵∠CAB=90°,AC=AB=,∴BC=AB=2,∴OA=OB=OC=1,∴S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB=•π×12﹣××+﹣××=π﹣2.故答案为:π﹣2.一十五.旋转的性质(共1小题)16.(2023•菏泽)如图,点E是正方形ABCD内的一点,将△ABE绕点B按顺时针方向旋转90°,得到△CBF.若∠ABE=55°,则∠EGC= 80 度.【答案】80.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=55°,∴∠EBC=∠ABC﹣∠ABE=35°,由旋转得:BE=BF,∠EBF=90°,∴∠BEF=∠BFE=45°,∵∠EGC是△BEG的一个外角,∴∠EGC=∠BEF+∠EBC=80°,故答案为:80.一十六.相似三角形的判定与性质(共1小题)17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM 与四边形BCME的面积比为 1:3 .【答案】见试题解答内容【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.一十七.列表法与树状图法(共1小题)18.(2023•菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .【答案】见试题解答内容【解答】解:画树状图如下:共有9种等可能的结果,其中是偶数的结果有5种,∴是偶数的概率为,故答案为:.。
山东省东营市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)
山东省东营市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共2小题)1.(2022•东营)2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为 .2.(2021•东营)2021年5月11日,第七次全国人口普查数据显示,全国人口比第六次全国人口普查数据增加了7206万人.7206万用科学记数法表示 .二.科学记数法与有效数字(共1小题)3.(2023•东营)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.0.0000003用科学记数法表示为 .三.提公因式法与公式法的综合运用(共3小题)4.(2023•东营)因式分解:3ma2﹣6mab+3mb2= .5.(2022•东营)因式分解:x3﹣9x= .6.(2021•东营)因式分解:4a2b﹣4ab+b= .四.根的判别式(共1小题)7.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是 .五.由实际问题抽象出分式方程(共1小题)8.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为 .六.解一元一次不等式组(共1小题)9.(2021•东营)不等式组的解集为 .七.点的坐标(共1小题)10.(2023•东营)如图,一束光线从点A(﹣2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m﹣n的值是 .八.规律型:点的坐标(共1小题)11.(2023•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点A1,以OA1为边作正方形A1B1C1O,点C1在y轴上,延长C1B1交直线l于点A2,以C1A2为边作正方形A2B2C2C1,点C2在y轴上,以同样的方式依次作正方形A3B3C3C2,⋯,正方形A2023B2023C2023C2022,则点B2023的横坐标是 .九.一次函数图象上点的坐标特征(共1小题)12.(2022•东营)如图,△AB1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则点A2022的横坐标是 .一十.反比例函数系数k的几何意义(共1小题)13.(2022•东营)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=(x>0)的图象上,则经过点A的函数图象表达式为 .一十一.三角形内角和定理(共1小题)14.(2022•东营)如图,在⊙O中,弦AC∥半径OB,∠BOC=40°,则∠AOC的度数为 .一十二.勾股定理的应用(共1小题)15.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为 km.一十三.垂径定理的应用(共1小题)16.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为 寸.一十四.扇形面积的计算(共1小题)17.(2021•东营)如图,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若∠BAC=60°,∠ABC=100°,BC=4,则扇形BEF的面积为 .一十五.作图—基本作图(共1小题)18.(2023•东营)如图,在△ABC中,以点C为圆心,任意长为半径作弧,分别交AC,BC于点D,E;分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点F;作射线CF交AB于点G.若AC=9,BC=6,△BCG的面积为8,则△ACG的面积为 .一十六.翻折变换(折叠问题)(共1小题)19.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为 .一十七.相似三角形的判定与性质(共2小题)20.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .21.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021= .一十八.条形统计图(共1小题)22.(2021•东营)如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11岁,最大为15岁,根据统计图所提供的数据,该小组组员年龄的中位数为 岁.一十九.众数(共1小题)23.(2022•东营)为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是 分钟.作业时长(单位:分钟)5060708090人数(单位:人)14622二十.方差(共1小题)24.(2023•东营)为备战东营市第十二届运动会,某县区对甲、乙、丙、丁四名射击运动员进行射击测试,他们射击测试成绩的平均数(单位:环)及方差S2(单位:环2)如表所示:甲乙丙丁9.68.99.69.6S2 1.40.8 2.30.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择 .山东省东营市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共2小题)1.(2022•东营)2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为 6×108 .【答案】6×108.【解答】解:6亿=600000000=6×108.故答案为:6×108.2.(2021•东营)2021年5月11日,第七次全国人口普查数据显示,全国人口比第六次全国人口普查数据增加了7206万人.7206万用科学记数法表示 7.206×107 .【答案】7.206×107.【解答】解:7206万=72060000=7.206×107,故答案为:7.206×107.二.科学记数法与有效数字(共1小题)3.(2023•东营)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.0.0000003用科学记数法表示为 3×10﹣7 .【答案】3×10﹣7.【解答】解:0.0000003=3×10﹣7,故答案为:3×10﹣7.三.提公因式法与公式法的综合运用(共3小题)4.(2023•东营)因式分解:3ma2﹣6mab+3mb2= 3m(a﹣b)2 .【答案】3m(a﹣b)2.【解答】解:3ma2﹣6mab+3mb2=3m(a2﹣2ab+b2)=3m(a﹣b)2,故答案为:3m(a﹣b)2.5.(2022•东营)因式分解:x3﹣9x= x(x+3)(x﹣3) .【答案】见试题解答内容【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).6.(2021•东营)因式分解:4a2b﹣4ab+b= b(2a﹣1)2 .【答案】见试题解答内容【解答】解:原式=b(4a2﹣4a+1)=b(2a﹣1)2.故答案为:b(2a﹣1)2.四.根的判别式(共1小题)7.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是 k<2且k≠1 .【答案】k<2且k≠1.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.五.由实际问题抽象出分式方程(共1小题)8.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为 ﹣=30 .【答案】﹣=30.【解答】解:设原计划每天绿化的面积为x万平方米,则实际每天绿化的面积为(1+25%)x万平方米,依题意得:﹣=30.故答案为:﹣=30.六.解一元一次不等式组(共1小题)9.(2021•东营)不等式组的解集为 ﹣1≤x<2 .【答案】见试题解答内容【解答】解:解不等式﹣≤1,得:x≥﹣1,解不等式5x﹣1<3(x+1),得:x<2,则不等式组的解集为﹣1≤x<2,故答案为:﹣1≤x<2.七.点的坐标(共1小题)10.(2023•东营)如图,一束光线从点A(﹣2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m﹣n的值是 ﹣1 .【答案】﹣1.【解答】解:∵点A(﹣2,5)关于y轴的对称点为A′(2,5),∴反射光线所在直线过点B(0,1)和A′(2,5),设A'B的解析式为:y=kx+1,过点A′(2,5),∴5=2k+1,∴k=2,∴A'B的解析式为:y=2x+1,∵反射后经过点C(m,n),∴2m+1=n,∴2m﹣n=﹣1.故答案为:﹣1.八.规律型:点的坐标(共1小题)11.(2023•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点A1,以OA1为边作正方形A1B1C1O,点C1在y轴上,延长C1B1交直线l于点A2,以C1A2为边作正方形A2B2C2C1,点C2在y轴上,以同样的方式依次作正方形A3B3C3C2,⋯,正方形A2023B2023C2023C2022,则点B2023的横坐标是 (1+)2022 .【答案】(1+)2022.【解答】解:当y=0时,有x﹣1=0,解得:x=1,∴点A1的坐标为(1,0).∵四边形A1B1C1O为正方形,∴OA1=A1B1=OC1=1,∴点B1(1,1),B1的横坐标为1;∴y=1时,1=x﹣,解得:x=,∴点A2的坐标为(,1),A2B2C2C1是正方形,∴A2B2=C2C1=A2C1=,∴点B2(,2+),即B2的横坐标为;当y=2+时,2+=x﹣,解得:x=(),∴点A3((),2+),∵A3B3C3C2是正方形,∴A3B3=C3C2=A3C2=(),∴点B3的横坐标为()=(1+)2,……,以此类推,则点B2023的横坐标是(1+)2022.故答案为:(1+)2022.九.一次函数图象上点的坐标特征(共1小题)12.(2022•东营)如图,△AB1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则点A2022的横坐标是 (22023﹣2) .【答案】(22023﹣2).【解答】解:如图:∵直线y=x+2,令x=0,则y=2,令y=0,则x+2=0,解得x=﹣2,∴A(0,2),C(﹣2,0),∴OA=2,OC=2,∴∠OCA=30°,∵△AB1A1,△A1B2A2,△A2B3A3,…是等边三角形,∴∠AA1B1、∠AA2B2=60°,A1B1=AB1=AC=2OA=4,……∴△A1B1C、△A2B2C、……是含30°角的直角三角形,∴A1B1=4=22,A2B2=8=23,……,∴OB1=A1B1﹣OC=4=2,OB2=A2B2﹣OC=8=6,∴A1(2,4),A2(6,8),……∴A n[(2n+1﹣2),2n+1],∴点A2022的横坐标是(22023﹣2),故答案为:(22023﹣2).一十.反比例函数系数k的几何意义(共1小题)13.(2022•东营)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=(x>0)的图象上,则经过点A的函数图象表达式为 y=﹣ .【答案】y=﹣.【解答】解:如图,作AD⊥x轴于D,BC⊥x轴于C,∴∠ADO=∠BCO=90°,∵∠AOB=90°,∴∠AOD+∠BOC=90°,∴∠AOD+∠DAO=90°,∴∠BOC=∠DAO,∵OB=OA,∴△BOC≌△OAD(AAS),∵点B在反比例函数y=(x>0)的图象上,∴S△OBC=,∴S△OAD=,∴k=﹣1,∴经过点A的反比例函数解析式为y=﹣.故答案为:y=﹣.一十一.三角形内角和定理(共1小题)14.(2022•东营)如图,在⊙O中,弦AC∥半径OB,∠BOC=40°,则∠AOC的度数为 100° .【答案】100°.【解答】解:∵AC∥半径OB,∴∠OCA=∠BOC=40°,∵OA=OC,∴∠A=∠OCA=40°,∴∠AOC=180°﹣∠A﹣∠OCA=180°﹣40°﹣40°=100°.故答案为:100°.一十二.勾股定理的应用(共1小题)15.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为 50 km.【答案】50.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC===50(km),∴A,C两港之间的距离为50km,故答案为:50.一十三.垂径定理的应用(共1小题)16.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为 26 寸.【答案】26.【解答】解:连接OA,设⊙O的半径是r寸,∵直径CD⊥AB,∴AE=AB=×10=5寸,∵CE=1寸,∴OE=(r﹣1)寸,∵OA2=OE2+AE2,∴r2=(r﹣1)2+52,∴r=13,∴直径CD的长度为2r=26寸.故答案为:26.一十四.扇形面积的计算(共1小题)17.(2021•东营)如图,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若∠BAC=60°,∠ABC=100°,BC=4,则扇形BEF的面积为 .【答案】.【解答】解:∵∠BAC=60°,∠ABC=100°,∴∠ACB=20°,又∵E为BC的中点,∴BE=EC=BC=2,∵BE=EF,∴EF=EC=2,∴∠EFC=∠ACB=20°,∴∠BEF=40°,∴扇形BEF的面积==,故答案为:.一十五.作图—基本作图(共1小题)18.(2023•东营)如图,在△ABC中,以点C为圆心,任意长为半径作弧,分别交AC,BC于点D,E;分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点F;作射线CF交AB于点G.若AC=9,BC=6,△BCG的面积为8,则△ACG的面积为 12 .【答案】12.【解答】解:如图,过点G作GM⊥AC于点M,GN⊥BC于点N.由作图可知CG平分∠ACB,∵GM⊥AC,GN⊥BC,∴GM=GN,∵S△BCG=•BC•GN=8,BC=6,∴GN=,∴GN=GM=,∴S△AGC=•AC•GM=×9×=12,故答案为:12.一十六.翻折变换(折叠问题)(共1小题)19.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为 .【答案】.【解答】解:方法一、设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,方法二、易证△ADE≌△DCF(ASA),∴AE=DF=5,∴DE===13,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵S△DFC=×DF×CD=×CF×DO,∴DO=,∴DG=2DO=,∴EG=13﹣=,故答案为:.一十七.相似三角形的判定与性质(共2小题)20.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .【答案】.【解答】解:设AD交EH于点R,∵矩形EFGH的边FG在BC上,∴EH∥BC,∠EFC=90°,∴△AEH∽△ABC,∵AD⊥BC于点D,∴∠ARE=∠ADB=90°,∴AR⊥EH,∴=,∵EF⊥BC,RD⊥BC,EH=2EF,∴RD=EF=EH,∵BC=8,AD=6,AR=6﹣EH,∴=,解得EH=,∴EH的长为,故答案为:.21.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021= 2×()2020 .【答案】2×()2020.【解答】解:根据题意可知AB1=AB=,∠B1AA1=90°﹣60°=30°,∴tan∠B1AA1==,∴A1B1=AB1×=×=1,AA1=2A1B1=2,A2B2=A1B2×=A1B1×=,A1A2=2A2B2=2×,A3B3=A2B3×=A2B2×=×=()2,A2A3=2A3B3=2×()2,∴A2021B2021=A2020B2021×=()2020,A2020A2021=2A2021B2021=2×()2020,故答案为:2×()2020.一十八.条形统计图(共1小题)22.(2021•东营)如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11岁,最大为15岁,根据统计图所提供的数据,该小组组员年龄的中位数为 13 岁.【答案】13.【解答】解:根据题意排列得:11,11,12,12,12,13,13,13,13,13,14,14,14,14,15,15,15,15,则该小组组员年龄的中位数为×(13+13)=13(岁),故答案为:13.一十九.众数(共1小题)23.(2022•东营)为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是 70 分钟.作业时长(单位:分钟)5060708090人数(单位:人)14622【答案】70.【解答】解:∵70分钟出现了6次,它的次数最多,∴众数是70分钟.故答案为:70.二十.方差(共1小题)24.(2023•东营)为备战东营市第十二届运动会,某县区对甲、乙、丙、丁四名射击运动员进行射击测试,他们射击测试成绩的平均数(单位:环)及方差S 2(单位:环2)如表所示:甲乙丙丁9.68.99.69.6S2 1.40.8 2.30.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择 丁 .【答案】丁.【解答】解:由表格知,甲、丙、丁,平均成绩较好,而丁成绩的方差小,成绩更稳定,所以要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故答案为:丁.。
江苏省徐州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
江苏省徐州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共3小题)1.(2023•徐州)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 .2.(2022•徐州)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为 亿斤.3.(2021•徐州)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为 人.二.平方根(共1小题)4.(2021•徐州)49的平方根是 .三.因式分解-运用公式法(共2小题)5.(2023•广东)因式分解:x2﹣1= .6.(2021•徐州)因式分解:x2﹣36= .四.二次根式有意义的条件(共2小题)7.(2023•徐州)若有意义,则x的取值范围是 .8.(2022•盐城)若有意义,则x的取值范围是 .五.根的判别式(共2小题)9.(2023•徐州)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 .10.(2022•徐州)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是 .六.根与系数的关系(共1小题)11.(2021•徐州)若x1、x2是方程x2+3x=0的两个根,则x1+x2= .七.解分式方程(共1小题)12.(2022•徐州)方程=的解为 .八.一次函数与一元一次不等式(共1小题)13.(2022•徐州)若一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为 .九.反比例函数图象上点的坐标特征(共1小题)14.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是 .一十.反比例函数与一次函数的交点问题(共1小题)15.(2023•徐州)如图,点P在反比例函数的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1的图象与PB交于点D,若D为PB的中点,则k的值为 .一十一.二次函数图象上点的坐标特征(共1小题)16.(2022•徐州)若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为 .一十二.三角形三边关系(共1小题)17.(2023•徐州)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 (写出一个即可).一十三.三角形内角和定理(共1小题)18.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C= °.一十四.多边形内角与外角(共2小题)19.(2023•徐州)正五边形的一个外角等于 °.20.(2022•徐州)正十二边形的一个内角的度数为 .一十五.矩形的性质(共1小题)21.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD 上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为 cm2.一十六.圆周角定理(共2小题)22.(2022•徐州)如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB = .23.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC= °.一十七.切线的性质(共1小题)24.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= °.一十八.圆锥的计算(共3小题)25.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 cm.26.(2022•徐州)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为 .27.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为 cm.一十九.翻折变换(折叠问题)(共2小题)28.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .29.(2022•徐州)如图,将矩形纸片ABCD沿CE折叠,使点B落在边AD上的点F处.若点E在边AB上,AB=3,BC=5,则AE= .二十.相似三角形的判定与性质(共1小题)30.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比 .江苏省徐州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共3小题)1.(2023•徐州)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 4.37×106 .【答案】见试题解答内容【解答】解:4370000=4.37×106,故答案为:4.37×106.2.(2022•徐州)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为 1.37×104 亿斤.【答案】1.37×104.【解答】解:13700=1.37×104.故答案为:1.37×104.3.(2021•徐州)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为 9.08×106 人.【答案】9.08×106.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.二.平方根(共1小题)4.(2021•徐州)49的平方根是 ±7 .【答案】见试题解答内容【解答】解:49的平方根是±7.故答案为:±7.三.因式分解-运用公式法(共2小题)5.(2023•广东)因式分解:x2﹣1= (x+1)(x﹣1) .【答案】见试题解答内容【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).6.(2021•徐州)因式分解:x2﹣36= (x+6)(x﹣6) .【答案】见试题解答内容【解答】解:x2﹣36=(x+6)(x﹣6).四.二次根式有意义的条件(共2小题)7.(2023•徐州)若有意义,则x的取值范围是 x≥3 .【答案】x≥3.【解答】解:若有意义,则x﹣3≥0,∴x≥3,即x的取值范围是x≥3,故答案为:x≥3.8.(2022•盐城)若有意义,则x的取值范围是 x≥1 .【答案】x≥1.【解答】解:根据题意得x﹣1≥0,解得x≥1.故答案为:x≥1.五.根的判别式(共2小题)9.(2023•徐州)若关于x的方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为 4 .【答案】4.【解答】解:根据题意得Δ=(﹣4)2﹣4m=0,解得m=4.故答案为:4.10.(2022•徐州)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是 c<﹣ .【答案】c<﹣.【解答】解:根据题意得Δ=12+4c<0,解得c<﹣.故答案为:c<﹣.六.根与系数的关系(共1小题)11.(2021•徐州)若x1、x2是方程x2+3x=0的两个根,则x1+x2= ﹣3 .【答案】﹣3.【解答】解:∵x1、x2是方程x2+3x=0的两个根,a=1,b=3,∴x1+x2=﹣=﹣3.故答案为:﹣3.七.解分式方程(共1小题)12.(2022•徐州)方程=的解为 x=6 .【答案】见试题解答内容【解答】解:去分母得:3x﹣6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=6八.一次函数与一元一次不等式(共1小题)13.(2022•徐州)若一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为 x>3 .【答案】x>3.【解答】解:∵一次函数y=kx+b的图象过点(2,0),∴2k+b=0,∴b=﹣2k,∴关于kx+b>0∴kx>﹣×(﹣2k)=3k,∵k>0,∴x>3.故答案为:x>3.九.反比例函数图象上点的坐标特征(共1小题)14.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是 (2,3) .【答案】见试题解答内容【解答】解:设A的纵坐标为n,则D的纵坐标为n,∵点A、D分别在函数y=、y=的图象上,∴A(﹣,n),D(,n),∵四边形ABCD为正方形,∴+=n,解得n=3(负数舍去),∴D(2,3),故答案为(2,3).方法二:解:∵点A、D分别在函数y=、y=的图象上,点B、C在x轴上.四边形ABCD 为正方形,∴AB⊥x轴,DC⊥x轴,∴S1=3,S2=6,∴S正方形=S1+S2=9,∴正方形的边长为3,∴D点的纵坐标为3,把y=3代入y=,求得x=2,∴D(2,3),故答案为(2,3).一十.反比例函数与一次函数的交点问题(共1小题)15.(2023•徐州)如图,点P在反比例函数的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1的图象与PB交于点D,若D为PB的中点,则k的值为 4 .【答案】4.【解答】解:设一次函数图象与x轴的交点为M,与y轴的交点为N,则M(﹣1,0),N (0,1),∴OM=ON=1,∵PA⊥x轴于点A,PB⊥y轴于点B,PA=PB,∴四边形AOBP是正方形,∴PB∥x轴,PB=OB,∴△DBN∽△MON,∴==1,∴BD=BN,∵D为PB的中点,∴N为OB的中点,∴OB=2ON=2,∴PB=OB=2,∴P(2,2),∴点P在反比例函数的图象上,∴k=2×2=4,故答案为:4.一十一.二次函数图象上点的坐标特征(共1小题)16.(2022•徐州)若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为 4 .【答案】4.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.一十二.三角形三边关系(共1小题)17.(2023•徐州)若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为 3或4或5或6或7(答案不唯一) (写出一个即可).【答案】3或4或5或6或7(答案不唯一).【解答】解:设三角形的第三边长为x,则5﹣3<x<5+3,即2<x<8,∵第三边的长为整数,∴x=3或4或5或6或7.故答案为:3或4或5或6或7(答案不唯一).一十三.三角形内角和定理(共1小题)18.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C= 55 °.【答案】55.【解答】解:∵DE∥BC,∠BDE=120°,∴∠B=180°﹣120°=60°,∵FG∥AC,∠DFG=115°,∴∠A=180°﹣115°=65°,∴∠C=180°﹣∠B﹣∠A=55°,故答案为:55.一十四.多边形内角与外角(共2小题)19.(2023•徐州)正五边形的一个外角等于 72 °.【答案】见试题解答内容【解答】解:正五边形的一个外角==72°,故答案为:72.20.(2022•徐州)正十二边形的一个内角的度数为 150° .【答案】150°.【解答】解:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为:150°.一十五.矩形的性质(共1小题)21.(2021•徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为 24 cm2.【答案】24.【解答】解:∵矩形AEGF的周长为20cm,∴AF+AE=10cm,∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),故答案为:24.一十六.圆周角定理(共2小题)22.(2022•徐州)如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB= 72° .【答案】72°.【解答】解:∵∠ACB=∠AOB,∠ACB=36°,∴∠AOB=2×∠ACB=72°.故答案为:72°.23.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC = 32 °.【答案】32.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=∠ADC=58°,∴∠BAC=90°﹣∠B=32°.故答案为32.一十七.切线的性质(共1小题)24.(2023•徐州)如图,在⊙O中,直径AB与弦CD交于点E.=2,连接AD,过点B的切线与AD的延长线交于点F.若∠AFB=68°,则∠DEB= 66 °.【答案】66.【解答】解:如图,连接OC,OD,∵BF是⊙O的切线,AB是⊙O的直径,∴OB⊥BF,∴∠ABF=90°,∵∠AFB=68°,∴∠BAF=90°﹣∠AFB=22°,∴∠BOD=2∠BAF=44°,∵,∴∠COA=2∠BOD=88°,∴∠CDA=,∵∠DEB是△AED的一个外角,∴∠DEB=∠BAF+∠CDA=66°,故答案为:66.一十八.圆锥的计算(共3小题)25.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为 2 cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.26.(2022•徐州)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为 120° .【答案】120°.【解答】解:设圆锥的侧面展开图的圆心角为n°,根据题意得2π×2=,解得n=120,所以侧面展开图的圆心角为120°.故答案为:120°.27.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为 2 cm.【答案】2.【解答】解:∵扇形的圆心角为90°,母线长为8cm,∴扇形的弧长为=4π,设圆锥的底面半径为rcm,则2πr=4π,解得:r=2,故答案为2.一十九.翻折变换(折叠问题)(共2小题)28.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为 .【答案】3.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.29.(2022•徐州)如图,将矩形纸片ABCD沿CE折叠,使点B落在边AD上的点F处.若点E在边AB上,AB=3,BC=5,则AE= .【答案】.【解答】解:在矩形ABCD中,∠A=∠D=90°,CD=AB=3,AD=BC=5,由翻折变换的性质可知,FC=BC=5,EF=BE,在Rt△CDF中,由勾股定理,得DF==4,∴AF=AD﹣DF=1,设AE=x,则BE=EF=3﹣x,在Rt△AEF中,由勾股定理,得EF2=AE2+AF2,即(3﹣x)2=x2+12,解得x=,即AE=,故答案为:.二十.相似三角形的判定与性质(共1小题)30.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比 .【答案】.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE∽△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.。
江苏省南通市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
江苏省南通市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.有理数的加法(共1小题)1.(2002•南通)计算:﹣6+2= .二.科学记数法与有效数字(共1小题)2.(2007•双流县)地球上陆地面积约为149000000km2,用科学记数法可以表示为 km2(保留三个有效数字).三.因式分解-提公因式法(共1小题)3.(2023•南通)分解因式:a2﹣ab= .四.因式分解-运用公式法(共1小题)4.(2021•南通)分解因式:x2﹣9y2 .五.分式有意义的条件(共1小题)5.(2022•南通)分式有意义,则x应满足的条件是 .六.二次根式的性质与化简(共1小题)6.(2002•南通)当0≤x<1时,化简+|x﹣1|的结果是 .七.二次根式的加减法(共1小题)7.(2023•南通)计算= .八.由实际问题抽象出一元一次方程(共1小题)8.(2022•南通)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为 .九.根与系数的关系(共1小题)9.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则的值为 .一十.高次方程(共1小题)10.(2002•南通)二元二次方程组的解是 .一十一.点的坐标(共1小题)11.(2002•南通)点(2,﹣3)在第 象限.一十二.函数自变量的取值范围(共1小题)12.(2016•黑龙江)函数y=中,自变量x的取值范围是 .一十三.一次函数图象与系数的关系(共1小题)13.(2023•南通)已知一次函数y=x﹣k,若对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,则k的取值范围是 .一十四.一次函数的应用(共1小题)14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是 ℃.一十五.反比例函数的性质(共1小题)15.(2002•南通)写出具有性质“图象的两个分支分别在第二、第四象限内,且在每个象限内,y随x的增大而增大”的一个反比例函数: .一十六.反比例函数系数k的几何意义(共1小题)16.(2022•南通)平面直角坐标系xOy中,已知点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.若S△ABC=2,则k的值为 .一十七.反比例函数的应用(共1小题)17.(2023•南通)某型号汽车行驶时功率一定,行驶速度v(单位:m/s)与所受阻力F(单位:N)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为30m/s,则所受阻力F为 N.一十八.二次函数的应用(共1小题)18.(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为 s时,小球达到最高点.一十九.余角和补角(共1小题)19.(2002•南通)若一个角的余角是67°41',则这个角的大小为 .二十.三角形三边关系(共1小题)20.(2002•南通)若三角形三条边的长分别是7,10,x,则x的取值范围是 .二十一.全等三角形的判定(共1小题)21.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是 .二十二.全等三角形的判定与性质(共1小题)22.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是 .二十三.勾股定理(共2小题)23.(2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为 .24.(2021•南通)如图,在△ABC中,AC=BC,∠ACB=90°,以点A为圆心,AB长为半径画弧,交AC延长线于点D,过点C作CE∥AB,交于点E,连接BE,则的值为 .二十四.勾股数(共1小题)25.(2023•南通)勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中a,b均小于c,a=m2﹣,,m是大于1的奇数,则b= (用含m的式子表示).二十五.多边形内角与外角(共2小题)26.(2002•南通)如果一个多边形的内角和是1440°,那么这个多边形是 边形.27.(2021•南通)正五边形每个内角的度数为 .二十六.菱形的性质(共1小题)28.(2002•南通)已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是 cm2.二十七.正方形的性质(共1小题)29.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为 .二十八.垂径定理(共1小题)30.(2002•南通)如图,⊙O的半径为7cm,弦AB的长为4cm,则由与弦AB组成的弓形的高CD等于 cm.二十九.圆周角定理(共1小题)31.(2023•南通)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DAB=66°,则∠ACD= 度.三十.相交弦定理(共1小题)32.(2002•南通)圆内相交的两条弦中,一条弦被交点分成的两条线段的长分别为1cm和6cm,另一条弦被交点分成的两条线段的长分别为2cm和xcm,则x= .三十一.圆锥的计算(共1小题)33.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 cm2.三十二.相似三角形的判定与性质(共2小题)34.(2023•南通)如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则= .35.(2002•南通)已知:如图,AD:AB=1:3,DE∥BC,则S△ADE:S△ABC = .三十三.解直角三角形的应用-仰角俯角问题(共1小题)36.(2022•南通)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m 高的测角仪BD,测得树顶A的仰角为60°,则树高AC为 m(结果保留根号).三十四.解直角三角形的应用-方向角问题(共1小题)37.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为 海里(结果保留根号).三十五.全面调查与抽样调查(共1小题)38.(2022•南通)为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是 (填“全面调查”或“抽样调查”).三十六.频数与频率(共1小题)39.(2002•南通)为了了解中学生的素质教育情况,某县在全县各中学共抽取了200名九年级学生进行素质教育调查,将所得的数据整理后,画出频率分布直方图(如图),已知图中从左到右前4个小组的频率分别是0.04,0.12,0.16,0.4,则第5小组的频数是 .江苏省南通市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.有理数的加法(共1小题)1.(2002•南通)计算:﹣6+2= ﹣4 .【答案】见试题解答内容【解答】解:∵﹣6与2符号相反,且|﹣6|>|2|,∴﹣6+2=﹣4.二.科学记数法与有效数字(共1小题)2.(2007•双流县)地球上陆地面积约为149000000km2,用科学记数法可以表示为 1.49×108 km2(保留三个有效数字).【答案】见试题解答内容【解答】解:149 000 000=1.49×108.三.因式分解-提公因式法(共1小题)3.(2023•南通)分解因式:a2﹣ab= a(a﹣b) .【答案】见试题解答内容【解答】解:a2﹣ab=a(a﹣b).四.因式分解-运用公式法(共1小题)4.(2021•南通)分解因式:x2﹣9y2 =(x+3y)(x﹣3y) .【答案】见试题解答内容【解答】解:原式=(x+3y)(x﹣3y).故答案为:(x+3y)(x﹣3y).五.分式有意义的条件(共1小题)5.(2022•南通)分式有意义,则x应满足的条件是 x≠2 .【答案】x≠2.【解答】解:∵分母不等于0,分式有意义,∴x﹣2≠0,解得:x≠2,故答案为:x≠2.六.二次根式的性质与化简(共1小题)6.(2002•南通)当0≤x<1时,化简+|x﹣1|的结果是 1 .【答案】见试题解答内容【解答】解:∵0≤x<1,∴x≥0,x﹣1<0,∴=x;|x﹣1|=1﹣x∴+|x﹣1|=x+1﹣x=1.七.二次根式的加减法(共1小题)7.(2023•南通)计算= 2 .【答案】2.【解答】解:原式=2.故答案为:2.八.由实际问题抽象出一元一次方程(共1小题)8.(2022•南通)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为 5x+45=7x ﹣3 .【答案】5x+45=7x﹣3.【解答】解:若设人数为x,则可列方程为:5x+45=7x﹣3.故答案为:5x+45=7x﹣3.九.根与系数的关系(共1小题)9.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则的值为 3 .【答案】见试题解答内容【解答】解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴===3,故答案为3.一十.高次方程(共1小题)10.(2002•南通)二元二次方程组的解是 .【答案】见试题解答内容【解答】解:由(1)得,x=3﹣y,代入(2)得(3﹣y)y=10,整理得:(y﹣5)(y+2)=0,解得y=5或y=﹣2,当y=5时,x=﹣2;当y=﹣2时,x=5.所以原方程组的解为:.故本题答案为:,.一十一.点的坐标(共1小题)11.(2002•南通)点(2,﹣3)在第 四 象限.【答案】见试题解答内容【解答】解:∵点(2,﹣3)横坐标为正,纵坐标为负,∴应在第四象限.故填:四.一十二.函数自变量的取值范围(共1小题)12.(2016•黑龙江)函数y=中,自变量x的取值范围是 x≥2 .【答案】见试题解答内容【解答】解:根据题意得:3x﹣6≥0,即x≥2.一十三.一次函数图象与系数的关系(共1小题)13.(2023•南通)已知一次函数y=x﹣k,若对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,则k的取值范围是 k≥1 .【答案】k≥1.【解答】解:∵一次函数y=x﹣k,∴y随x的增大而增大,∵对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,∴3﹣k≤2k,解得k≥1,故答案为:k≥1.一十四.一次函数的应用(共1小题)14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是 52 ℃.【答案】52.【解答】解:根据表格中的数据可知温度T随时间t的增加而上升,且每分钟上升3℃,则关系式为:T=3t+10,当t=14min时,T=3×14+10=52(℃).故14min时的温度是52℃.故答案为:52.一十五.反比例函数的性质(共1小题)15.(2002•南通)写出具有性质“图象的两个分支分别在第二、第四象限内,且在每个象限内,y随x的增大而增大”的一个反比例函数: y=(答案不唯一) .【答案】见试题解答内容【解答】解:根据题意,所写函数只要k<0即可:如y=(答案不唯一).一十六.反比例函数系数k的几何意义(共1小题)16.(2022•南通)平面直角坐标系xOy中,已知点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.若S△ABC=2,则k的值为 .【答案】.【解答】解:如图,连接OA,作AD⊥x轴于D,BE⊥x轴于E,∵点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.∴k=6m2=6mn,∴n=m,∴B(3m,2m),C(﹣3m,﹣2m),∴B、C关于原点对称,∴BO=CO,∵S△ABC=2,∴S△AOB=1,∵S△AOB=S梯形ADEB+S△AOD﹣S△BOE=S梯形ADEB,∴|6m+2m|•|3m﹣m|=1,∴m2=,∵k=6×,∴k=,故答案为:.一十七.反比例函数的应用(共1小题)17.(2023•南通)某型号汽车行驶时功率一定,行驶速度v(单位:m/s)与所受阻力F(单位:N)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为30m/s,则所受阻力F为 2500 N.【答案】2500.【解答】解:设功率为P,由题可知P=FV,即v=,将F=3750N,v=20m/s代入可得:P=75000,即反比例函数为:v=.当v=30m/s时,F==2500N.胡答案为:2500.一十八.二次函数的应用(共1小题)18.(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为 2 s时,小球达到最高点.【答案】2.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.一十九.余角和补角(共1小题)19.(2002•南通)若一个角的余角是67°41',则这个角的大小为 22°19′ .【答案】见试题解答内容【解答】解:根据余角的定义:若一个角的余角是67°41',则这个角的大小为90°﹣67°41′=22°19′.故填22°19′.二十.三角形三边关系(共1小题)20.(2002•南通)若三角形三条边的长分别是7,10,x,则x的取值范围是 3<x<17 .【答案】见试题解答内容【解答】解:10﹣7<x<10+7,即3<x<17.二十一.全等三角形的判定(共1小题)21.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是 AB=DE(答案不唯一) .【答案】AB=DE(答案不唯一).【解答】解:∵AB∥ED,∴∠B=∠E,∵AC∥DF,∴∠ACB=∠DFE,∵AB=DE,∴△ABC≌△DEF(AAS),故答案为:AB=DE(答案不唯一).二十二.全等三角形的判定与性质(共1小题)22.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是 .【答案】.【解答】解:设AC,BD的交点为O,AB,BC,CD,DA的中点分别是P,Q,R,S,连接PQ,QR,RS,SP,OQ,OS,QS,如图:∵AC,BD互相垂直,∴△AOD和△BOC为直角三角形,且AD,BC分别为斜边,∴AD=2OS,BC=2OQ,∴AD+BC=2(OS+OQ),∴当OS+OQ为最小时,AD+BC为最小,根据“两点之间线段最短”得:OQ+OS≥QS,∴当点O在线段QS上时,OQ+OS为最小,最小值为线段QS的长,∵点P,Q分别为AB,BC的中点,∴PQ为△ABC的中位线,∴PQ=AC=2,PQ∥AC,同理:QR=BD=3,QR∥BD,RS=AC=2,RS∥AC,SP=BD=3,SP∥BD,∴PQ∥AC∥RS,QR∥BD∥SP,∴四边形PQRS为平行四边形,∵AC⊥BD,PQ∥AC,SP∥BD,∴PQ⊥SP,∴四边形PQRS为矩形,在Rt△PQS中,PQ=2,SP=3,由勾股定理得:,∴OQ+OS的最小值为,∴AD+BC的最小值为.故答案为:.二十三.勾股定理(共2小题)23.(2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为 .【答案】.【解答】解:∵m﹣n2+4=0,∴n2﹣4=m,∴3n2﹣9=3m+3,∵P(m,3n2﹣9),∴P点到原点的距离为=,∴点P到原点O的距离的最小值为,故答案为.24.(2021•南通)如图,在△ABC中,AC=BC,∠ACB=90°,以点A为圆心,AB长为半径画弧,交AC延长线于点D,过点C作CE∥AB,交于点E,连接BE,则的值为 .【答案】.【解答】解:如图,过点A作CE的垂线交EC延长线于F,过E作EG⊥AB交AB于G,连AE,∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵CE∥AB,∴∠FAB=90°,∴∠FAC=45°,∴△AFC为等腰直角三角形,设AF=x,则CF=x,∴AC==,∴AB=,∵AE、AB均为⊙的半径,∴AE=2x,∴EF==,∴CE=,∵∠F=∠FAB=∠AGE=90°,∴四边形FAGE为矩形,∴AF=EG=x,EF=AG=,∴BG=AB﹣AG=(2)x,∴BE==,∴=.故答案为:.二十四.勾股数(共1小题)25.(2023•南通)勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中a,b均小于c,a=m2﹣,,m是大于1的奇数,则b= m (用含m的式子表示).【答案】m.【解答】解:∵a,b,c是勾股数,其中a,b均小于c,a=m2﹣,,∴b2=c2﹣a2=(m2+)2﹣(m2﹣)2=m4++m2﹣(m4+﹣m2)=m4++m2﹣m4﹣+m2=m2,∵m是大于1的奇数,∴b=m.故答案为:m.二十五.多边形内角与外角(共2小题)26.(2002•南通)如果一个多边形的内角和是1440°,那么这个多边形是 十 边形.【答案】见试题解答内容【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.所以这是一个十边形.27.(2021•南通)正五边形每个内角的度数为 108° .【答案】见试题解答内容【解答】解:方法一:(5﹣2)•180°=540°,540°÷5=108°;方法二:360°÷5=72°,180°﹣72°=108°,所以,正五边形每个内角的度数为108°.故答案为:108°.二十六.菱形的性质(共1小题)28.(2002•南通)已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是 20 cm2.【答案】见试题解答内容【解答】解:由已知得,菱形面积=×5×8=20cm2.故答案为20.二十七.正方形的性质(共1小题)29.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为 3+3 .【答案】3+3.【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.二十八.垂径定理(共1小题)30.(2002•南通)如图,⊙O的半径为7cm,弦AB的长为4cm,则由与弦AB组成的弓形的高CD等于 2 cm.【答案】见试题解答内容【解答】解:根据垂径定理,AB⊥OD,AC=2cm,在Rt△AOC中,OC===5cm,∴CD=OD﹣OC=7﹣5=2(cm).二十九.圆周角定理(共1小题)31.(2023•南通)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DAB=66°,则∠ACD = 24 度.【答案】24.【解答】解:如图,连接OD,∵OA=OD,∠DAB=66°,∴∠ODA=∠OAD=66°,∴∠AOD=180°﹣66°﹣66°=48°,∴∠ACD=∠AOD=24°,故答案为:24.三十.相交弦定理(共1小题)32.(2002•南通)圆内相交的两条弦中,一条弦被交点分成的两条线段的长分别为1cm和6cm,另一条弦被交点分成的两条线段的长分别为2cm和xcm,则x= 3 .【答案】见试题解答内容【解答】解:由相交弦定理:1×6=2•x,解得x=3.三十一.圆锥的计算(共1小题)33.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 2π cm2.【答案】见试题解答内容【解答】解:圆锥的侧面积为:πrl=2×1π=2πcm2,故答案为:2π.三十二.相似三角形的判定与性质(共2小题)34.(2023•南通)如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则= .【答案】.【解答】解:∵D,E分别是AB,AC的中点,∴,又∵∠A=∠A,∴△ADE∽△ABC,∴=()2=.故答案为:.35.(2002•南通)已知:如图,AD:AB=1:3,DE∥BC,则S△ADE:S△ABC= 1:9 .【答案】见试题解答内容【解答】解:∵DE∥BC∴△ADE∽△ABC∴S△ADE:S△ABC=(AD)2:(AB)2=1:9.三十三.解直角三角形的应用-仰角俯角问题(共1小题)36.(2022•南通)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m 高的测角仪BD,测得树顶A的仰角为60°,则树高AC为 (1+10) m(结果保留根号).【答案】(1+10).【解答】解:如图,设DE⊥AC于点E,在Rt△AED中,AE=DE•tan60°=10×=10,∴AC=(1+10)(m).故答案为:(1+10).三十四.解直角三角形的应用-方向角问题(共1小题)37.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为 25 海里(结果保留根号).【答案】25.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,PA=50海里,在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.三十五.全面调查与抽样调查(共1小题)38.(2022•南通)为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是 抽样调查 (填“全面调查”或“抽样调查”).【答案】抽样调查.【解答】解:为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是抽样调查.故答案为:抽样调查.三十六.频数与频率(共1小题)39.(2002•南通)为了了解中学生的素质教育情况,某县在全县各中学共抽取了200名九年级学生进行素质教育调查,将所得的数据整理后,画出频率分布直方图(如图),已知图中从左到右前4个小组的频率分别是0.04,0.12,0.16,0.4,则第5小组的频数是 56 .【答案】见试题解答内容【解答】解:根据题意,得第5小组的频率是1﹣(0.04+0.12+0.16+0.4)=0.28,则第5小组的频数是200×0.28=56.。
河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类
河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.列代数式(共1小题)1.(2023•河南)某校计划给每个年级配发n套劳动工具,则3个年级共需配发 套劳动工具.二.分式有意义的条件(共1小题)2.(2021•河南)若代数式有意义,则实数x的取值范围是 .三.解二元一次方程组(共1小题)3.(2023•河南)方程组的解为 .四.解一元一次不等式组(共1小题)4.(2022•河南)不等式组的解集为 .五.一次函数的性质(共1小题)5.(2022•河南)请写出一个y随x的增大而增大的一次函数的表达式: .六.正比例函数的性质(共1小题)6.(2021•河南)请写出一个图象经过原点的函数的解析式 .七.等腰直角三角形(共1小题)7.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为 .八.矩形的性质(共1小题)8.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为 .九.切线的性质(共1小题)9.(2023•河南)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为 .一十.弧长的计算(共1小题)10.(2021•河南)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为 .一十一.扇形面积的计算(共1小题)11.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .一十二.翻折变换(折叠问题)(共1小题)12.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 .一十三.扇形统计图(共1小题)13.(2023•河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有 棵.一十四.方差(共1小题)14.(2021•河南)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是 (填“甲”或“乙”).一十五.列表法与树状图法(共1小题)15.(2022•河南)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 .河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.列代数式(共1小题)1.(2023•河南)某校计划给每个年级配发n套劳动工具,则3个年级共需配发 3n 套劳动工具.【答案】3n.【解答】解:∵给每个年级配发n套劳动工具,∴3个年级共需配发3n套劳动工具.故答案为:3n.二.分式有意义的条件(共1小题)2.(2021•河南)若代数式有意义,则实数x的取值范围是 x≠1 .【答案】见试题解答内容【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.三.解二元一次方程组(共1小题)3.(2023•河南)方程组的解为 .【答案】.【解答】解:,①+②,得4x+4y=12,∴x+y=3③.①﹣③,得2x=2,∴x=1.②﹣①,得2y=4,∴y=2.∴原方程组的解为.故答案为:.四.解一元一次不等式组(共1小题)4.(2022•河南)不等式组的解集为 2<x≤3 .【答案】2<x≤3.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.五.一次函数的性质(共1小题)5.(2022•河南)请写出一个y随x的增大而增大的一次函数的表达式: 答案不唯一,如y=x .【答案】答案不唯一,如y=x【解答】解:例如:y=x,或y=x+2等,答案不唯一.六.正比例函数的性质(共1小题)6.(2021•河南)请写出一个图象经过原点的函数的解析式 y=x(答案不唯一) .【答案】y=x(答案不唯一).【解答】解:依题意,正比例函数的图象经过原点,如y=x(答案不唯一).故答案为:y=x(答案不唯一).七.等腰直角三角形(共1小题)7.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为 或 .【答案】或.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.八.矩形的性质(共1小题)8.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为 2或1+ .【答案】2或1+.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.九.切线的性质(共1小题)9.(2023•河南)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为 .【答案】.【解答】解:连接OC,∵PA与⊙O相切于点A,∴∠OAP=90°,∵OA=OB,OC=OC,CA=CB,∴△OAC≌△OBC(SSS),∴∠OAP=∠OBC=90°,在Rt△OAP中,OA=5,PA=12,∴OP===13,∵△OAC的面积+△OCP的面积=△OAP的面积,∴OA•AC+OP•BC=OA•AP,∴OA•AC+OP•BC=OA•AP,∴5AC+13BC=5×12,∴AC=BC=,故答案为:.一十.弧长的计算(共1小题)10.(2021•河南)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为 .【答案】见试题解答内容【解答】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.一十一.扇形面积的计算(共1小题)11.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 + .【答案】+.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.一十二.翻折变换(折叠问题)(共1小题)12.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 或2﹣ .【答案】或2﹣.【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.AB=2AC=2,∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.一十三.扇形统计图(共1小题)13.(2023•河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有 280 棵.【答案】280.【解答】解:由统计图可得,该基地高度不低于300cm的“无絮杨”品种苗约占10%+18%=28%,∵1000×28%=280(棵),∴该基地高度不低于300cm的“无絮杨”品种苗约有280棵.故答案为:280.一十四.方差(共1小题)14.(2021•河南)某外贸公司要出口一批规格为200克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取15盒进行检测,测得它们的平均质量均为200克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是 甲 (填“甲”或“乙”).【答案】见试题解答内容【解答】解:从图中折线可知,乙的起伏大,甲的起伏小,所以乙的方差大于甲的方差,因为方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,所以产品更符合规格要求的厂家是甲.故答案为:甲.一十五.列表法与树状图法(共1小题)15.(2022•河南)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 .【答案】.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.。
黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)
黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共3小题)1.(2023•黑龙江)据交通运输部信息显示:2023年“五一”假期第一天,全国营运性客运量约5699万人次,将5699万用科学记数法表示为 .2.(2022•黑龙江)我国南水北调东线北延工程2021﹣2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为 .3.(2021•黑龙江)截止到2020年7月底,中国铁路营业里程达到14.14万公里,位居世界第二.将数据14.14万用科学记数法表示为 .二.解一元一次不等式组(共2小题)4.(2022•黑龙江)若关于x的一元一次不等式组的解集为x<2,则a的取值范围是 .5.(2021•黑龙江)关于x的一元一次不等式组无解,则a的取值范围是 .三.一元一次不等式组的整数解(共1小题)6.(2023•黑龙江)关于x的不等式组有3个整数解,则实数m的取值范围是 .四.规律型:点的坐标(共1小题)7.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022= .五.函数自变量的取值范围(共3小题)8.(2023•黑龙江)在函数y=中,自变量x的取值范围是 .9.(2022•黑龙江)在函数中,自变量x的取值范围是 .10.(2021•黑龙江)在函数y=中,自变量x的取值范围是 .六.一次函数图象上点的坐标特征(共1小题)11.(2023•黑龙江)如图,在平面直角坐标系中,△ABC的顶点A在直线l1:y=x上,过点A作直线l2的垂线,垂足为C1,交x轴于B1,过点B1作A1B1垂直x轴,交l1于点A1,连接A1C1,得到第一个△A1B1C1;过点A1作直线l2的垂线,垂足为C2,交x轴于B2,过点B2作A2B2垂直x轴,交l1于点A2,连接A2C2,得到第二个△A2B2C2;如此下去,…,则△A2023B2023C2023的面积是 .七.三角形的面积(共1小题)12.(2021•黑龙江)如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2…按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2…,△A2020D2020A2021的面积为S2021,则S2021= .八.全等三角形的判定(共1小题)13.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件 ,使△AOB≌△COD.九.菱形的性质(共1小题)14.(2022•黑龙江)如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD =3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE 的最小值是 .一十.矩形的性质(共1小题)15.(2022•黑龙江)在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P 是直线BC上的一个动点.若△APE是直角三角形,则BP的长为 .一十一.矩形的判定(共1小题)16.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ,使平行四边形ABCD 是矩形.一十二.正方形的判定(共1小题)17.(2023•黑龙江)如图,在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件 ,使得矩形ABCD为正方形.一十三.圆周角定理(共2小题)18.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA 上的动点,则PC+PD的最小值为 .19.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC =30°,则⊙O的半径为 cm.一十四.三角形的外接圆与外心(共1小题)20.(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为 cm.一十五.切线的性质(共1小题)21.(2023•黑龙江)如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠B=28°,则∠P= °.一十六.圆锥的计算(共3小题)22.(2023•黑龙江)已知圆锥的母线长13cm,侧面积65πcm2,则这个圆锥的高是 cm.23.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为 cm.24.(2021•黑龙江)若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为 cm.一十七.翻折变换(折叠问题)(共2小题)25.(2023•黑龙江)矩形ABCD中,AB=3,AD=9,将矩形ABCD沿过点A的直线折叠,使点B落在点E处,若△ADE是直角三角形,则点E到直线BC的距离是 .26.(2021•黑龙江)在矩形ABCD中,AB=2cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD交于点E,且DE=3cm,则矩形ABCD的面积为 cm2.一十八.旋转的性质(共1小题)27.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是 .一十九.概率公式(共1小题)28.(2022•黑龙江)在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是 .二十.列表法与树状图法(共2小题)29.(2023•黑龙江)一个不透明的袋子中装有3个红球和2个白球,这些小球除标号外完全相同,随机摸出两个小球,恰好是一红一白的概率是 .30.(2021•黑龙江)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .黑龙江省龙东地区2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共3小题)1.(2023•黑龙江)据交通运输部信息显示:2023年“五一”假期第一天,全国营运性客运量约5699万人次,将5699万用科学记数法表示为 5.699×107 .【答案】5.699×107.【解答】解:5699万=56990000=5.699×107.故答案为:5.699×107.2.(2022•黑龙江)我国南水北调东线北延工程2021﹣2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为 1.89×108 .【答案】见试题解答内容【解答】解:1.89亿=189000000=1.89×108.故答案为:1.89×108.3.(2021•黑龙江)截止到2020年7月底,中国铁路营业里程达到14.14万公里,位居世界第二.将数据14.14万用科学记数法表示为 1.414×105 .【答案】1.414×105.【解答】解:14.14万=141400=1.414×105,故答案为:1.414×105.二.解一元一次不等式组(共2小题)4.(2022•黑龙江)若关于x的一元一次不等式组的解集为x<2,则a的取值范围是 a≥2 .【答案】a≥2.【解答】解:不等式组整理得:,∵不等式组的解集为x<2,∴a≥2.故答案为:a≥2.5.(2021•黑龙江)关于x的一元一次不等式组无解,则a的取值范围是 a≥6 .【答案】a≥6.【解答】解:,解不等式①得:x>a,解不等式②得:x<3,∵不等式组无解,∴a≥3,∴a≥6,故答案为:a≥6.三.一元一次不等式组的整数解(共1小题)6.(2023•黑龙江)关于x的不等式组有3个整数解,则实数m的取值范围是 ﹣3≤m<﹣2 .【答案】﹣3≤m<﹣2.【解答】解:解不等式x+5>0,得:x>﹣5,解不等式x﹣m≤1,得:x≤m+1,∵不等式组有3个整数解,∴不等式组的3个整数解为﹣4、﹣3、﹣2,∴﹣2≤m+1<﹣1,∴﹣3≤m<﹣2.故答案为:﹣3≤m<﹣2.四.规律型:点的坐标(共1小题)7.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022= 24041 .【答案】24041.【解答】解:∵OA1=1,OA2=2OA1,∴OA2=2,∵OA3=2OA2,∴OA3=4,∵OA4=2OA3,∴OA4=8,把x=1代入直线y=x中可得:y=,∴A1B1=,把x=2代入直线y=x中可得:y=2,∴A2B2=2,把x=4代入直线y=x中可得:y=4,∴A3B3=4,把x=8代入直线y=x中可得:y=8,∴A4B4=8,∴S1=OA1•A1B1=×1×=×20×(20×),S2=OA2•A2B2=×2×2=×21×(21×),S3=OA3•A3B3=×4×4=×22×(22×),S4=OA4•A4B4=×8×8=×23×(23×),...∴S2022=×22021×(22021×)=24041,故答案为:24041.五.函数自变量的取值范围(共3小题)8.(2023•黑龙江)在函数y=中,自变量x的取值范围是 x≥﹣3 .【答案】见试题解答内容【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.9.(2022•黑龙江)在函数中,自变量x的取值范围是 x≥ .【答案】见试题解答内容【解答】解:根据题意得,2x﹣3≥0,解得x≥.故答案为:x≥.10.(2021•黑龙江)在函数y=中,自变量x的取值范围是 x≠2 .【答案】见试题解答内容【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.六.一次函数图象上点的坐标特征(共1小题)11.(2023•黑龙江)如图,在平面直角坐标系中,△ABC的顶点A在直线l1:y=x上,顶点B在x轴上,AB垂直x轴,且OB=2,顶点C在直线l2:y=x上,BC⊥l2;过点A作直线l2的垂线,垂足为C1,交x轴于B1,过点B1作A1B1垂直x轴,交l1于点A1,连接A1C1,得到第一个△A1B1C1;过点A1作直线l2的垂线,垂足为C2,交x轴于B2,过点B2作A2B2垂直x轴,交l1于点A2,连接A2C2,得到第二个△A2B2C2;如此下去,…,则△A2023B2023C2023的面积是 24046 .【答案】24046.【解答】解:∵OB=2,∴B(2,0),∵AB⊥x轴,∴点A的横坐标为2,∵直线l1:y=x,∴点A的纵坐标为=,∴∠AOB=,∴∠AOB=30°,∵直线l2:y=x,∴C(x C,),∴=,∴∠BOC=60°,∵BC⊥l2,B1C1⊥l2,B2C2⊥l2,∴BC∥B1C1∥B2C2,∴∠C1B1O=∠C2B2O=∠CBO=30°,∴∠C1B1O=∠C2B2O=∠CBO=∠AOB,∴AO=AB1,A1O=A1B2,∵AB⊥x轴,A1B1⊥x轴,∴OB =,OB 1=,∵AB ⊥x 轴,A 1B 1⊥x 轴,A 2B 2⊥x 轴,∴AB ∥A 1B 1∥A 2B 2,∴,,∵BC ∥B 1C 1∥B 2C 2,∴,,∴,∵∠ABC =∠A 1B 1C 1=90°﹣30°=60°,∴△ABC ∽△A 1B 1C 1,同理△ABC ∽△A 2B 2C 2,∴=4S△ABC ,=42•S △ABC =(22)2•S △ABC ,∴=(2n )2S△ABC =22n S △ABC ,=22×2023×=24046.故答案为:24046.七.三角形的面积(共1小题)12.(2021•黑龙江)如图,菱形ABCD 中,∠ABC =120°,AB =1,延长CD 至A 1,使DA 1=CD ,以A 1C 为一边,在BC 的延长线上作菱形A 1CC 1D 1,连接AA 1,得到△ADA 1;再延长C 1D 1至A 2,使D 1A 2=C 1D 1,以A 2C 1为一边,在CC 1的延长线上作菱形A 2C 1C 2D 2,连接A 1A 2,得到△A 1D 1A 2…按此规律,得到△A 2020D 2020A 2021,记△ADA 1的面积为S 1,△A 1D 1A 2的面积为S 2…,△A 2020D 2020A 2021的面积为S 2021,则S 2021= 24038 .【答案】24038.【解答】解:∵菱形ABCD中,∠ABC=120°,AB=1,∴∠ADC=120°,AD=CD=1,∴∠ADA1=60°,∵DA1=CD,∴AD=DA1,∴△ADA1为等边三角形且边长为1,同理:△A1D1A2为等边三角形且边长为2,△A2D2A3为等边三角形且边长为4,△A3D3A4为等边三角形且边长为8,…,△A2021D2021A2022为等边三角形且边长为22021,∴S1=×12,S2=×22,S3=×42,…,S n=×22n﹣2,∴S2021=×24040=24038,故答案为24038.八.全等三角形的判定(共1小题)13.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件 OB=OD(答案不唯一) ,使△AOB≌△COD.【答案】见试题解答内容【解答】解:添加的条件是OB=OD,理由是:在△AOB和△COD中,,∴△AOB≌△COD(SAS),故答案为:OB=OD(答案不唯一).九.菱形的性质(共1小题)14.(2022•黑龙江)如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD =3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是 .【答案】见试题解答内容【解答】解:连接OE,过点O作OF⊥AB,垂足为F,并延长到点O′,使O′F=OF,连接O′E交直线AB于点P,连接OP,∴AP是OO′的垂直平分线,∴OP=O′P,∴OP+PE=O′P+PE=O′E,此时,OP+PE的值最小,∵四边形ABCD是菱形,∴AD=AB=3,∠BAC=∠BAD,OA=OC=AC,OD=OB=BD,∠AOD=90°,∵∠BAD=60°,∴△ADB是等边三角形,∴BD=AD=3,∴OD=BD=,∴AO===,∴AC=2OA=3,∵CE⊥AH,∴∠AEC=90°,∴OE=OA=AC=,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠OAE=∠EAB,∴∠OEA=∠EAB,∴OE∥AB,∴∠EOF=∠AFO=90°,在Rt△AOF中,∠OAB=∠DAB=30°,∴OF=OA=,∴OO′=2OF=,在Rt△EOO′中,O′E===,∴OP+PE=,∴OP+PE的最小值为,故答案为:.一十.矩形的性质(共1小题)15.(2022•黑龙江)在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE=4,点P 是直线BC上的一个动点.若△APE是直角三角形,则BP的长为 或或6 .【答案】见试题解答内容【解答】解:若△APE是直角三角形,有以下三种情况:①如图1,∠AEP=90°,∴∠AED+∠CEP=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠CEP+∠CPE=90°,∴∠AED=∠CPE,∴△ADE∽△ECP,∴=,即=,∴CP=,∵BC=AD=12,∴BP=12﹣=;②如图2,∠PAE=90°,∵∠DAE+∠BAE=∠BAE+∠BAP=90°,∴∠DAE=∠BAP,∵∠D=∠ABP=90°,∴△ADE∽△ABP,∴=,即=,∴BP=;③如图3,∠APE=90°,设BP=x,则PC=12﹣x,同理得:△ABP∽△PCE,∴=,即=,∴x1=x2=6,∴BP=6,综上,BP的长是或或6.故答案为:或或6.一十一.矩形的判定(共1小题)16.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ∠ABC=90°(答案不唯一) ,使平行四边形ABCD是矩形.【答案】∠ABC=90°(答案不唯一).【解答】解:添加一个条件为:∠ABC=90°,理由如下:∵四边形ABCD是平行四边形,∠ABC=90°,∴平行四边形ABCD是矩形,故答案为:∠ABC=90°(答案不唯一).一十二.正方形的判定(共1小题)17.(2023•黑龙江)如图,在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件 AB=AD(答案不唯一) ,使得矩形ABCD为正方形.【答案】AB=AD(答案不唯一).【解答】解:AB=AD.理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(答案不唯一).一十三.圆周角定理(共2小题)18.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA 上的动点,则PC+PD的最小值为 2 .【答案】见试题解答内容【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴=,∴=,∴CD=2,在Rt△CDE中,DE===2,∴PC+PD的最小值为2.故答案为:2.19.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC =30°,则⊙O的半径为 5 cm.【答案】见试题解答内容【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.一十四.三角形的外接圆与外心(共1小题)20.(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O上一点,∠ACB=60°,则AB的长为 3 cm.【答案】3.【解答】解:连接AO并延长交⊙O于点D,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ACB=60°,∴∠ADB=∠ACB=60°,在Rt△ABD中,AD=6cm,∴AB=AD•sin60°=6×=3(cm),故答案为:3.一十五.切线的性质(共1小题)21.(2023•黑龙江)如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠B=28°,则∠P= 34 °.【答案】34.【解答】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠B=28°,∴∠AOC=2∠B=56°,∴∠P=90°﹣∠AOC=34°,故答案为:34.一十六.圆锥的计算(共3小题)22.(2023•黑龙江)已知圆锥的母线长13cm,侧面积65πcm2,则这个圆锥的高是 12 cm.【答案】12.【解答】解:设圆锥的底面圆的半径为rcm,根据题意得•2π•r•13=65π,解得r=5,所以圆锥的高==12(cm).故答案为:12.23.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为 cm.【答案】.【解答】解:圆锥侧面展开图扇形的弧长为:=,设圆锥的底面半径为r,则2πr=,∴r=cm.故答案为:.24.(2021•黑龙江)若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为 4 cm.【答案】4.【解答】解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.一十七.翻折变换(折叠问题)(共2小题)25.(2023•黑龙江)矩形ABCD中,AB=3,AD=9,将矩形ABCD沿过点A的直线折叠,使点B落在点E处,若△ADE是直角三角形,则点E到直线BC的距离是 6或3+2或3﹣2 .【答案】6或3+2或3﹣2.【解答】解:由题意矩形ABCD沿过点A的直线折叠,使点B落在点E处,可知点E在以点A为圆心,AB长为半径的圆上运动,如图1,延长BA交OA的另一侧于点E,则此时△ADE是直角三角形,点E到直线BC的距离为BE的长度,即BE=2AB=6;当过点D的直线与圆相切于点E时,△ADE是直角三角形,分两种情况:①如图2,过点E作EH⊥BC交BC于点H,交AD于点G,∵四边形ABCD是矩形,∴EG⊥AD,∴四边形ABHG是矩形,∴GH=AB=3,∵AE=AB=3,AE⊥DE,AD=9,由勾股定理可得DE==6,∵S△AED=AE•DE=AD•EG,∴EG=2,∴E到直线BC的距离EH=EG+GH=3+2;②如图3,过点E作EN⊥BC交BC于点N,交AD于点M,∵四边形ABCD是矩形,∴NM⊥AD,∴四边形ABNM是矩形,∴MN=AB=3,∵AE=AB=3,AE⊥DE,AD=9,由勾股定理可得DE==6,∵S△AED=AE•DE=AD•EM,∴EM=2,∴E到直线BC的距离EN=MN﹣GN=3﹣2;综上,点E到直线BC的距离是6或3+2或3﹣2,故答案为:6或3+2或3﹣2.26.(2021•黑龙江)在矩形ABCD中,AB=2cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD交于点E,且DE=3cm,则矩形ABCD的面积为 (2+6)或(6﹣2) cm2.【答案】(2+6)或(6﹣2).【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED=3cm.在Rt△ABE中,AB2+AE2=BE2.∴22+AE2=32,解得AE=cm.∴AD=AE+ED=(+3)cm或AD=ED﹣AE=(3﹣)cm∴矩形ABCD的面积为为AD•AB=(2+6)cm2或(6﹣2)cm2.故答案为(2+6)或(6﹣2).一十八.旋转的性质(共1小题)27.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是 4+ .【答案】.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F的在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.一十九.概率公式(共1小题)28.(2022•黑龙江)在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是 .【答案】.【解答】解:∵在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,∴摸到红球的概率是:=.故答案为:.二十.列表法与树状图法(共2小题)29.(2023•黑龙江)一个不透明的袋子中装有3个红球和2个白球,这些小球除标号外完全相同,随机摸出两个小球,恰好是一红一白的概率是 .【答案】.【解答】解:画树状图如下:共有20种等可能的结果,其中恰好是一红一白的结果有12种,∴恰好是一红一白的概率是=,故答案为:.30.(2021•黑龙江)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .【答案】.【解答】解:用列表法表示所有可能出现的结果情况如下:共有9种等可能出现的结果情况,其中两球上的数字之和为偶数的有5种,所以从中随机一次摸出两个小球,小球上的数字之和为偶数的概率为,故答案为:.。
内蒙古通辽2021-2023三年中考数学真题分类汇编-02填空题知识点分类
内蒙古通辽2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较小的数(共1小题)1.(2021•通辽)冠状病毒是一类病毒的总称,其最大直径约为0.00000012米,数据0.00000012用科学记数法表示为 .二.由实际问题抽象出二元一次方程组(共1小题)2.(2021•通辽)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为 .三.一元一次不等式组的整数解(共1小题)3.(2021•通辽)若关于x的不等式组,有且只有2个整数解,则a的取值范围是 .四.反比例函数图象上点的坐标特征(共1小题)4.(2021•通辽)如图,△OA1B1,△A1A2B2,△A2A3B3,…,△A n﹣1A n B n都是斜边在x轴上的等腰直角三角形,点A1,A2,A3,…,A n都在x轴上,点B1,B2,B3,…,B n都在反比例函数y=(x>0)的图象上,则点B n的坐标为 .(用含有正整数n的式子表示)五.平行线的性质(共2小题)5.(2023•通辽)将一副三角尺如图所示放置,其中AB∥DE,则∠CDF= 度.6.(2021•通辽)一副三角板如图所示摆放,且AB∥CD,则∠1的度数为 .六.全等三角形的判定与性质(共1小题)7.(2023•通辽)如图,等边三角形ABC的边长为6cm,动点P从点A出发以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交边AC于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧,当点D落在BC边上时,点P需移动 s.七.勾股定理(共1小题)8.(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为 .八.菱形的性质(共1小题)9.(2022•通辽)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 .九.扇形面积的计算(共1小题)10.(2021•通辽)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB =60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是 .一十.作图—基本作图(共1小题)11.(2022•通辽)如图,依据尺规作图的痕迹,求∠α的度数 °.一十一.轨迹(共1小题)12.(2022•通辽)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P 从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为 .一十二.关于x轴、y轴对称的点的坐标(共1小题)13.(2023•通辽)点Q的横坐标为一元一次方程3x+7=32﹣2x的解,纵坐标为a+b的值,其中a,b满足二元一次方程组,则点Q关于y轴对称点Q'的坐标为 .一十三.解直角三角形(共1小题)14.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE = .一十四.由三视图判断几何体(共1小题)15.(2023•通辽)某款“不倒翁”(如图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B,若该圆半径是10cm,∠P=60°,则主视图的面积为 cm2.一十五.众数(共1小题)16.(2023•通辽)已知一组数据:3,4,5,5,6,则这组数据的众数是 .一十六.列表法与树状图法(共1小题)17.(2021•通辽)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是 .内蒙古通辽2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较小的数(共1小题)1.(2021•通辽)冠状病毒是一类病毒的总称,其最大直径约为0.00000012米,数据0.00000012用科学记数法表示为 1.2×10﹣7 .【答案】1.2×10﹣7.【解答】解:0.00000012=1.2×10﹣7.故答案为:1.2×10﹣7.二.由实际问题抽象出二元一次方程组(共1小题)2.(2021•通辽)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为 .【答案】.【解答】解:设绳索长x尺,竿长y尺,依题意得:.故答案为:.三.一元一次不等式组的整数解(共1小题)3.(2021•通辽)若关于x的不等式组,有且只有2个整数解,则a的取值范围是 ﹣1<a≤1 .【答案】﹣1<a≤1.【解答】解:解不等式3x﹣2≥1,得:x≥1,解不等式2x﹣a<5,得:x<,∵不等式组只有2个整数解,∴2<≤3,解得﹣1<a≤1,故答案为:﹣1<a≤1.四.反比例函数图象上点的坐标特征(共1小题)4.(2021•通辽)如图,△OA1B1,△A1A2B2,△A2A3B3,…,△A n﹣1A n B n都是斜边在x轴上的等腰直角三角形,点A1,A2,A3,…,A n都在x轴上,点B1,B2,B3,…,B n都在反比例函数y=(x>0)的图象上,则点B n的坐标为 (+,﹣+) .(用含有正整数n的式子表示)【答案】(+,﹣+).【解答】解:过B1作B1M1⊥x轴于M1,易知M1(1,0)是OA1的中点,∴A1(2,0).可得B1的坐标为(1,1),∴B1O的解析式为:y=x,∵B1O∥A1B2,∴A1B2的表达式一次项系数与B1O的一次项系数相等,将A1(2,0)代入y=x+b,∴b=﹣2,∴A1B2的表达式是y=x﹣2,与y=(x>0)联立,解得B2(1+,﹣1+).仿上,A2(2,0).B3(+,﹣+),以此类推,点B n的坐标为(+,﹣+),故答案为(+,﹣+).五.平行线的性质(共2小题)5.(2023•通辽)将一副三角尺如图所示放置,其中AB∥DE,则∠CDF= 105 度.【答案】105.【解答】解:∵AB∥DE,∴∠BDE=∠B=30°.∴∠CDF=180°﹣∠EDF﹣∠BDE=180°﹣45°﹣30°=105°.故答案为:105.6.(2021•通辽)一副三角板如图所示摆放,且AB∥CD,则∠1的度数为 75° .【答案】75°.【解答】解:如图,∠A=45°,∠C=30°,∵AB∥CD,∴∠2=∠C=30°,∴∠1=∠2+∠A=30°+45°=75°,故答案为:75°.六.全等三角形的判定与性质(共1小题)7.(2023•通辽)如图,等边三角形ABC的边长为6cm,动点P从点A出发以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交边AC于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧,当点D落在BC边上时,点P需移动 1 s.【答案】1.【解答】解:设点P需移动t秒,点D落在BC边上,如图所示.∵三角形PQD是等边三角形,∴∠DPQ=60°,∴∠BPD=180°﹣∠APQ﹣∠DPQ=180°﹣90°﹣60°=30°,∴∠BDP=180°﹣∠B﹣∠BPD=180°﹣60°﹣30°=90°.∠AQP=180°﹣∠APQ﹣∠A=180°﹣90°﹣60°=30°.∵∠BDP=∠APQ=90°,DP=PQ,∠BPD=∠AQP=30°,∴△BDP≌△APQ(ASA).∴BP=AB﹣AP=6﹣2t,BD=AP=2t,∵∠BPD=30°,∴BD=BP,即2t=(6﹣2t),∴t=1.故答案为:1.七.勾股定理(共1小题)8.(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为 ,9或3 .【答案】,9或3.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.八.菱形的性质(共1小题)9.(2022•通辽)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【答案】见试题解答内容【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:5九.扇形面积的计算(共1小题)10.(2021•通辽)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB =60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是 ﹣ .【答案】﹣.【解答】解:连接OA、OB、OM,如图,∵∠ACB=60°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵AM=BM=AB=,∴OM⊥AB,∴tan30°=,∴OM=×=1,∴OA=2OM=2,∵点M、N分别是AB、BC的中点,∴MN∥AC,MN=AC,∴△MBN∽△ABC,∴=()2=,∴当△ABC的面积最大时,△MBN的面积最大,∵C、O、M在一条直线时,△ABC的面积最大,∴△ABC的面积最大值为:××(2+1)=3,∴△MBN的面积最大值为:,∵S弓形=S扇形OAB﹣S△AOB=﹣=﹣,∴此时,S阴影=﹣+=﹣,故答案为:﹣.一十.作图—基本作图(共1小题)11.(2022•通辽)如图,依据尺规作图的痕迹,求∠α的度数 60 °.【答案】60.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.一十一.轨迹(共1小题)12.(2022•通辽)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P 从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为 π .【答案】π.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.一十二.关于x轴、y轴对称的点的坐标(共1小题)13.(2023•通辽)点Q的横坐标为一元一次方程3x+7=32﹣2x的解,纵坐标为a+b的值,其中a,b满足二元一次方程组,则点Q关于y轴对称点Q'的坐标为 (﹣5,﹣4) .【答案】(﹣5,﹣4).【解答】解:3x+7=32﹣2x,移项,合并同类项得:5x=25,系数化为1得:x=5;①+②得:a+b=﹣4;则Q(5,﹣4),那么点Q关于y轴对称点Q'的坐标为(﹣5,﹣4),故答案为:(﹣5,﹣4).一十三.解直角三角形(共1小题)14.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE = ﹣1 .【答案】﹣1.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.一十四.由三视图判断几何体(共1小题)15.(2023•通辽)某款“不倒翁”(如图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B,若该圆半径是10cm,∠P=60°,则主视图的面积为 (100 +) cm2.【答案】(100+).【解答】解:OA⊥PA,OB⊥PB,OA,OB交于点O,如图,∴∠OAP=∠OBP=90°,PA=PB,∵∠P=60°,∴∠AOB=120°,且△PAB为等边三角形,∴优弧AMB对应的圆心角为360°﹣120°=240°,AB=OA=10(cm),∴扇形AMB的面积是:=(cm2),S△PAB=×(10)2=75(cm2),S△AOB=×102=25(cm2),∴主视图的面积=+75+25=(100+)(cm2),故答案为:(100+).一十五.众数(共1小题)16.(2023•通辽)已知一组数据:3,4,5,5,6,则这组数据的众数是 5 .【答案】5.【解答】解:在数据3,4,5,5,6中,5出现了2次,出现的次数最多,则这组数据的众数为5.故答案为:5.一十六.列表法与树状图法(共1小题)17.(2021•通辽)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是 .【答案】见试题解答内容【解答】解:把开关S1,S2,S3分别记为A、B、C,画树状图如图:共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,∴能让两个小灯泡同时发光的概率为=,故答案为:.。
湖南省各地市2023-中考数学真题分类汇编-02填空题(容易题)知识点分类
湖南省各地市2023-中考数学真题分类汇编-02填空题(容易题)知识点分类一.有理数大小比较(共1小题)1.(2023•永州)﹣0.5,3,﹣2三个数中最小的数为 .二.非负数的性质:偶次方(共1小题)2.(2023•湘潭)已知实数a,b满足(a﹣2)2+|b+1|=0,则a b= .三.科学记数法—表示较大的数(共4小题)3.(2023•益阳)据报道,2023年我国新能源汽车发展优势不断巩固和扩大,一季度全国新能源汽车销量为159万辆,同比增长27%,将1590000用科学记数法表示为 .4.(2023•常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 .5.(2023•张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 .6.(2023•岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 .四.立方根(共2小题)7.(2023•郴州)计算= .8.(2023•邵阳)的立方根是 .五.估算无理数的大小(共1小题)9.(2023•湘潭)数轴上到原点的距离小于的点所表示的整数有 .(写出一个即可)六.合并同类项(共1小题)10.(2023•株洲)计算:3a2﹣2a2= .七.幂的乘方与积的乘方(共1小题)11.(2023•常德)计算:(a2b)3= .八.公因式(共1小题)12.(2023•永州)2a2与4ab的公因式为 .九.提公因式法与公式法的综合运用(共3小题)13.(2023•湘西州)分解因式:2x2﹣2= .14.(2023•张家界)因式分解:x2y+2xy+y= .15.(2023•邵阳)因式分解:3a2+6ab+3b2= .一十.二次根式有意义的条件(共2小题)16.(2023•常德)要使二次根式有意义,则x应满足的条件是 .17.(2023•怀化)要使代数式有意义,则x的取值范围是 .一十一.二次根式的乘除法(共1小题)18.(2023•益阳)计算:= .一十二.解分式方程(共1小题)19.(2023•益阳)分式方程的解是 .一十三.分式方程的增根(共1小题)20.(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是 .一十四.解一元一次不等式(共1小题)21.(2023•株洲)关于x的不等式的解集为 .一十五.点的坐标(共1小题)22.(2023•衡阳)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 象限.一十六.函数自变量的取值范围(共1小题)23.(2023•娄底)函数y=的自变量x的取值范围是 .一十七.反比例函数系数k的几何意义(共1小题)24.(2023•长沙)如图,在平面直角坐标系中,点A在反比例函数y=(k为常数,k>0,x>0)的图象上,过点A作x轴的垂线,垂足为B,连接OA.若△OAB的面积为,则k= .一十八.平行线的性质(共1小题)25.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80°,则∠D= 度.一十九.三角形内角和定理(共1小题)26.(2023•株洲)如图所示,点A、B、C是O上不同的三点,点O在△ABC的内部,连接BO、CO,并延长线段BO交线段AC于点D.若∠A=60°,∠OCD=40°,则∠ODC= 度.二十.多边形内角与外角(共1小题)27.(2023•益阳)如图,正六边形ABCDEF中,∠FAB= °.二十一.正方形的性质(共1小题)28.(2023•怀化)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE =3.则点P到直线AB的距离为 .二十二.垂径定理的应用(共1小题)29.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为 cm.二十三.圆周角定理(共1小题)30.(2023•长沙)如图,点A,B,C在半径为2的⊙O上,∠ACB=60°,OD⊥AB,垂足为E,交⊙O于点D,连接OA,则OE的长度为 .二十四.扇形面积的计算(共1小题)31.(2023•永州)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 度.二十五.概率公式(共1小题)32.(2023•益阳)从1~10这10个整数中随机抽取1个数,抽到3的倍数的概率是 .二十六.圆的性质(共1小题)33.(2023•长沙)如图,已知∠ABC=50°,点D在BA上,以点B为圆心,BD长为半径画弧,交BC于点E,连接DE,则∠BDE的度数是 度.湖南省各地市2023-中考数学真题分类汇编-02填空题(容易题)知识点分类参考答案与试题解析一.有理数大小比较(共1小题)1.(2023•永州)﹣0.5,3,﹣2三个数中最小的数为 ﹣2 .【答案】﹣2.【解答】解:﹣2<﹣0.5<3,∴最小的数是﹣2,故答案为:﹣2.二.非负数的性质:偶次方(共1小题)2.(2023•湘潭)已知实数a,b满足(a﹣2)2+|b+1|=0,则a b= .【答案】.【解答】解:∵(a﹣2)2+|b+1|=0,(a﹣2)2≥0,|b+1|≥0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,则a b=2﹣1=,故答案为:.三.科学记数法—表示较大的数(共4小题)3.(2023•益阳)据报道,2023年我国新能源汽车发展优势不断巩固和扩大,一季度全国新能源汽车销量为159万辆,同比增长27%,将1590000用科学记数法表示为 1.59×106 .【答案】1.59×106.【解答】解:1590000=1.59×106.故答案为:1.59×106.4.(2023•常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 8×109 .【答案】8×109.【解答】解:8000000000=8×109,故答案为:8×109.5.(2023•张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 8.64×105 .【答案】8.64×105.【解答】解:864000=8.64×105.故答案为:8.64×105.6.(2023•岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 3.783×105 .【答案】3.783×105.【解答】解:将378300用科学记数法表示为3.783×105.故答案为:3.783×105.四.立方根(共2小题)7.(2023•郴州)计算= 3 .【答案】3.【解答】解:=3.故答案为:3.8.(2023•邵阳)的立方根是 2 .【答案】2.【解答】解:=8,=2.故答案为:2.五.估算无理数的大小(共1小题)9.(2023•湘潭)数轴上到原点的距离小于的点所表示的整数有 0(答案不唯一) .(写出一个即可)【答案】0(答案不唯一).【解答】解:数轴上到原点的距离小于的点所表示的数为﹣与之间的所有数,则其中的整数为0(答案不唯一),故答案为:0(答案不唯一).六.合并同类项(共1小题)10.(2023•株洲)计算:3a2﹣2a2= a2 .【答案】见试题解答内容【解答】解:3a2﹣2a2=a2.故答案为:a2.七.幂的乘方与积的乘方(共1小题)11.(2023•常德)计算:(a2b)3= a6b3 .【答案】见试题解答内容【解答】解:(a2b)3=(a2)3b3=a6b3.故答案为:a6b3.八.公因式(共1小题)12.(2023•永州)2a2与4ab的公因式为 2a .【答案】2a.【解答】解:2a2与4ab的公因式是2a.故答案为:2a.九.提公因式法与公式法的综合运用(共3小题)13.(2023•湘西州)分解因式:2x2﹣2= 2(x﹣1)(x+1) .【答案】2(x﹣1)(x+1).【解答】解:2x2﹣2=2(x2﹣1)=2(x﹣1)(x+1).故答案为:2(x﹣1)(x+1).14.(2023•张家界)因式分解:x2y+2xy+y= y(x+1)2 .【答案】y(x+1)2.【解答】解:x2y+2xy+y=y(x2+2x+1)=y(x+1)2.故答案为:y(x+1)2.15.(2023•邵阳)因式分解:3a2+6ab+3b2= 3(a+b)2 .【答案】见试题解答内容【解答】解:3a2+6ab+3b2,=3(a2+2ab+b2),=3(a+b)2.一十.二次根式有意义的条件(共2小题)16.(2023•常德)要使二次根式有意义,则x应满足的条件是 x≥4 .【答案】x≥4.【解答】解:根据二次根式有意义得:x﹣4≥0,解得:x≥4.故答案为:x≥4.17.(2023•怀化)要使代数式有意义,则x的取值范围是 x≥9 .【答案】x≥9.【解答】解:∵代数式有意义,∴x﹣9≥0,∴x≥9,故答案为:x≥9.一十一.二次根式的乘除法(共1小题)18.(2023•益阳)计算:= 10 .【答案】10.【解答】解:===10,故答案为:10.一十二.解分式方程(共1小题)19.(2023•益阳)分式方程的解是 x=﹣2 .【答案】见试题解答内容【解答】解:,方程两边同乘x(x﹣2),去分母得4x=2(x﹣2),解这个整式方程得x=﹣2,检验:把x=﹣2代入x(x﹣2)≠0,∴x=﹣2是分式方程的解.故答案为:x=﹣2.一十三.分式方程的增根(共1小题)20.(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是 x=4 .【答案】x=4.【解答】解:∵关于x的分式方程(m为常数)有增根,∴x﹣4=0,∴x=4,故答案为:x=4.一十四.解一元一次不等式(共1小题)21.(2023•株洲)关于x的不等式的解集为 x>2 .【答案】x>2.【解答】解:x﹣1>0,移项,得:x>1,系数化1,得x>2.故答案为:x>2.一十五.点的坐标(共1小题)22.(2023•衡阳)在平面直角坐标系中,点P(﹣3,﹣2)所在象限是第 三 象限.【答案】三.【解答】解:点P(﹣3,﹣2)在第三象限,故答案为:三.一十六.函数自变量的取值范围(共1小题)23.(2023•娄底)函数y=的自变量x的取值范围是 x≥﹣1 .【答案】x≥﹣1.【解答】解:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.一十七.反比例函数系数k的几何意义(共1小题)24.(2023•长沙)如图,在平面直角坐标系中,点A在反比例函数y=(k为常数,k>0,x >0)的图象上,过点A作x轴的垂线,垂足为B,连接OA.若△OAB的面积为,则k= .【答案】.【解答】解:△AOB的面积为=,所以k=.故答案为:.一十八.平行线的性质(共1小题)25.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80°,则∠D= 100 度.【答案】100.【解答】解:∵AB∥CD,∠B=80,∴∠BCD=∠B=80°,∵BC∥ED,∴∠D+∠BCD=180°,∴∠D=180°﹣∠BCD=180°﹣80°=100°.故答案为:100.一十九.三角形内角和定理(共1小题)26.(2023•株洲)如图所示,点A、B、C是O上不同的三点,点O在△ABC的内部,连接BO、CO,并延长线段BO交线段AC于点D.若∠A=60°,∠OCD=40°,则∠ODC= 80 度.【答案】80.【解答】解:在⊙O中,∠BOC=2∠A=2×60°=120°,∴∠ODC=∠BOC﹣∠OCD=120°﹣40°=80°.故答案为:80.二十.多边形内角与外角(共1小题)27.(2023•益阳)如图,正六边形ABCDEF中,∠FAB= 120 °.【答案】120.【解答】解:∵六边形ABCDEF是正六边形,∴∠FAB=(6﹣2)×180°÷6=120°,故答案为:120.二十一.正方形的性质(共1小题)28.(2023•怀化)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE =3.则点P到直线AB的距离为 3 .【答案】3.【解答】解:解法一:过点P作PF⊥AB于点F,∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PE⊥AD,PF⊥AB,∴PE=PF=3,∴点P到直线AB的距离为3.解法二:过点P作PF⊥AB于点F,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠DAB=∠B=∠BCD=∠D=90°,∴∠PAE=45°,∴△AEP为等腰直角三角形,AE=PE=3,∵PE⊥AD,PF⊥AB,∴∠FAE=∠AEP=∠AFP=90°,又∵AE=PE,∴四边形AFPE为正方形,∴AE=PF=3,∴点P到直线AB的距离为3.故答案为:3.二十二.垂径定理的应用(共1小题)29.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为 16 cm.【答案】16.【解答】解:如图,过点O作OD⊥AB于点C,交⊙O于点D,连接OA,∴,由题意知,OA=10cm,CD=4cm,∴OC=6cm,在Rt△AOC中,cm,∴AB=2AC=16cm,故答案为:16.二十三.圆周角定理(共1小题)30.(2023•长沙)如图,点A,B,C在半径为2的⊙O上,∠ACB=60°,OD⊥AB,垂足为E,交⊙O于点D,连接OA,则OE的长度为 1 .【答案】1.【解答】解:如图,连接OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OD⊥AB,∴=,∠OEA=90°,∴∠AOD=∠BOD=∠AOB=60°,∴∠OAE=90°﹣60°=30°,∴OE=OA=×2=1,故答案为:1.二十四.扇形面积的计算(共1小题)31.(2023•永州)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 60 度.【答案】60.【解答】解:设扇形圆心角的度数为n°,则=6π,解得:n=60,即扇形圆心角的度数为60°,故答案为:60.二十五.概率公式(共1小题)32.(2023•益阳)从1~10这10个整数中随机抽取1个数,抽到3的倍数的概率是 .【答案】.【解答】解:由题意可得:在1~10中共有10个整数,3的倍数只有3,6,9,共3个,∴随机抽取一个数,抽到3的倍数的概率是.故答案为:.二十六.圆的性质(共1小题)33.(2023•长沙)如图,已知∠ABC=50°,点D在BA上,以点B为圆心,BD长为半径画弧,交BC于点E,连接DE,则∠BDE的度数是 65 度.【答案】65.【解答】解:根据题意可得:BD=BE,∴∠BDE=∠BED,∵∠ABC+∠BDE+∠BED=180°,∠ABC=50°,∴∠BDE=∠BED=65°.故答案为:65.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学填空选择知识点专题训练二
因式分解
方法一:提公因式法 ab+ac=a(b+c)
方法二:运用公式法 平方差公式:
a 2-
b 2=(a+b)(a-b)
完全平方公式 :a
2
+2ab+b 2=(a+b)2
a 2-2ab+
b 2=(a-b)2
中考题
9.分解因式:23mn m -= .
9.分解因式:=+-2422a a ___________________. 9. 分解因式:a a -3= . 9.分解因式:y y x -2= 4. 下列分解因式正确的是( )
A. )1(222--=--y x x x xy x
B. )32(322
---=-+-x xy y y xy xy C. 2)()()(y x y x y y x x -=--- D. 3)1(32
--=--x x x x
2.把多项式32
2x x x -+分解因式结果正确的是 ( )
A .2(2)x x x -
B .2(2)x x -
C .(1)(1)x x x +-
D .2
(1)x x - 练习题
56. (2014福建龙岩)分解因式: . 48.(2014常德市)分解因式:= 44.(2014山东济宁)分解因式: . 34.(2014 江西)分解因式: = .
6、(2014浙江义乌)因式分解: ..
31.(2014江苏宿迁)因式分解
.
38.(2014广东深圳)分解因式:;
46.(2014云南省)分解因式:_______________________.
1.(2014年四川省宜宾市)因式分解:3y2-27= .
11.(2014年山东省临沂市)分解因式:=___________.
13.(2014年辽宁省十二市)分解因式:.
15.(2014年沈阳市)分解因式:.
27.(2014北京)分解因式:.
32.(2014 湖南怀化)分解因式:.
9.(2014山东威海)分解因式=.
24.(2014年山东省威海市)分解因式=.
12.(2014年山东省潍坊市)分解因式x3+6x2-27x=________________.
14.(2014年浙江省绍兴市)分解因式
8.(2014浙江宁波) 分解因式.
16.(2014年四川巴中市)把多项式分解因式,结果为.
17.(2014年大庆市)分解因式:.
19.(2014年湖南省邵阳市)分解因式:.
35.(2014黑龙江哈尔滨)把多项式2mx2-4mxy+2my2分解因式的结果是.40. (2014 山东聊城)分解因式.
53. (2014四川凉山州)分解因式.
54. (2014青海)分解因式:.
2.(2014 四川泸州)分解因式
3. (2014湖南株洲)分解因式:
39.(2014山西太原)分解因式x(x+4)+4的结果是。
;
10.(2014年山东省滨州市)分解因式:(2a+b)2-8ab=_______________.。