中考数学选择题专项训练

合集下载

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学选择题训练(1)

中考数学选择题训练(1)

中考数学选择题练习(1)丹阳市河阳中学许国栋1.在中,有理数的个数是〔〕A.2 B.3 C.4 D.52.某种细菌在培养过程中,每半小时分裂一次〔由一个分裂为两个〕.假设这种细菌由1个分裂为16个,那么这个过程要经过〔〕A.1小时B.2小时C.3小时D.4小时3.圆的内接正三角形的半径与边心距的比为〔〕A.1∶2B.2∶1C.∶2D.2∶4.如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的〔〕A.平均数和方差都不变B.平均数不变,方差改变C.平均数改变,方差不变D.平均数和方差都改变5.为锐角,且,那么的度数是〔〕A.30°B.45°C.60°D.90°6.假设关于x的一元二次方程有实数根,那么k的取值范围是〔〕A.B.C.且D.且7.如图,⊙O的直径AB=10,P为OA上一点,弦MN经过点P,假设AP=2,MP=,那么MN的长为〔〕A.B.C.D.8.解方程,设,那么原方程变形为〔〕A.B.C.D.9.如下图,光线l照射到平面镜I上,然后在平面镜I、II之间往返反射,∠=55°,∠=75°,那么∠为〔〕A.50°B.55°C.60°D.65°10.以下四个命题:①如果两个点到一条直线的距离相等,那么过这两点的直线与直线平行;②函数中,y随x的增大而减小;③与都是最简二次根式;④“同旁内角互补,两直线平行〞的逆命题是真命题.其中,不正确...的命题个数是〔〕A.1 B.2 C.3 D.411. 的倒数是〔〕 A. B. 3 C. D.12. 某校方案修建一座既是中央对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是〔〕A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形13. 以下等式中,一定成立的是〔〕 A. B.C. D.14. 假设,那么以下各式中一定正确的选项是〔〕A. B. C. D.15. 在中,,假设,那么tanB等于〔〕A. B. C. D.16. 根据以下图所示的程序计算函数值.假设输入的值为,那么输出的结果为〔〕A. B. C. D.17、以下计算正确的选项是〔〕:(A) (B) (C) (D)18、不等式组的整数解是〔〕:(A) –1,0 (B) –1,1 (C) 0,1 (D) 无解19、把分解因式的结果是〔〕:(A) (B)(C) (D)20、以下四个图形中,既轴对称图形,又是中央对称图形的是〔〕:(A)〔1〕、〔2〕 (B) 〔1〕、〔3〕 (C)〔2〕、〔3〕 (D) 〔1〕、〔4〕21、扇形的弧长是20лcm2,面积是240лcm2,那么扇形的半径是〔〕:(A)6cm (B)12cm (C)24cm (D)28cm22、△ABC中,边BC=12cm,高AD=6cm,边长为的正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC上,那么边长为( ):(A) 3cm (B) 4cm (C) 5cm (D) 6cm23、如图,某城市公园的一个雕塑,它是由三个直径为1米的圆两两相切垒立在水平的地面上,那么雕塑的最高点到地面的距离是( ):(A)米 (B) 米 (C) 米 (D) 米24. 以下运算中,正确的选项是〔〕A. B.C. D.25. 点关于原点的对称点的坐标是〔〕A. B. C. D.26. 假设,那么的取值范围是〔〕A. B. C. D.27. 如图,中,,,那么以下结论中正确的选项是〔〕A. B. C. D.28. 一天的时间共86400秒,用科学记数法表示应为〔〕A. 秒B. 秒C. 秒D. 秒29. 如图,⊙O的弦AB=8cm,弦CD平分AB于点E.假设,那么ED长为〔〕A. 8cmB. 6cmC. 4cmD. 2cm30. 某农场挖一条960m长的渠道,开工后每天比原方案多挖20m,结果提前4天完成了任务.假设设原方案每天挖xm,那么根据题意可列出方程〔〕A. B.C. D.31. 如图,四边形ABCD内接于⊙O,假设,那么〔〕A. B. C. D.32. 如图,中,BC=8,BC上的高,D为BC上一点,,交AB于点E,交AC于点F〔EF不过A、B〕,设E到BC的距离为,那么的面积关于的函数的图象大致为〔〕33. 如图,⊙O的内接的外角的平分线交⊙O于点D.,垂足为F,,垂足为E.给出以下4个结论:正确是〔〕①CE=CF ②③DE是⊙O的切线④A. ①②③B. ②③④C. ①③④D. ①②④34.sin450的值等于〔〕(A) (B) (C) (D) 135、在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83那么这组数据的众数、平均数与中位数分别为〔〕〔A〕81,82,81 (B)81,81,76.5 (C)83,81,77 (D)81,81,8136、制造一种产品,原来每件的本钱是100元,由于连续两次降低本钱,现在的本钱是81元,那么平均每次降低本钱〔〕〔A〕8.5% (B) 9% (C) 9.5% (D) 10%37.AB、CD是⊙O的两条直径,那么四边形ACBD一定是〔〕(A)等腰梯形 (B)菱形 (C) 矩形〔D〕正方形38.相交两圆的公共弦长为16cm,假设两圆的半径长分别为10cm和17cm,那么这两圆的圆心距为〔A〕7cm (B)16cm (C)21cm (D)27cm 〔〕39.有如下四个结论:1、有两边及一角对应相等的两个三角形全等;2、菱形既是轴对称图形,又是中央对称图形;3、平分弦的直径垂直于弦,并且平分弦所对的两条弧;4、两圆的公切线最多有4条.其中正确结论的个数为〔〕〔A〕1个〔B〕2个 (C ) 3个〔D〕4个40.假设两个分式与的和等于它们的积,那么实数x的值为〔〕〔A〕 -6 (B) 6 (C) (D)41.a,b,c均为正数,且,那么以下四个点中,在正比例函数y=kx图象上的点的坐标是〔〕〔A〕(1,) (B) (1,2) (C) (1,) (D)(1,-1)42.如图,在中,AB=AC,BD,CE分别为和的角平分线,且相交于点F,那么图中等腰三角形有〔〕(A)6个〔B〕7个 (C) 8个〔D〕9个43.四边形ABCD的对角线AC与BD 相交于点O,假设那么四边形ABCD的面积的最小值为〔〕(A)21 (B) 25 (C) 26 (D) 3644.在Rt△ABC中,∠C是直角,各边的长度都分别扩大2倍,那么∠A的三角函数值〔〕A没有变化B分别扩大2倍C分别扩大倍D不能确定45.在以下图形中,只有一组对边平行的是( )A平行四边形B菱形C矩形D等腰梯形46.一元二次方程bx2+cx+a=0〔b≠0)的根的判别式△的表达式正确的选项是( ) A △=b2-4ac B △=c2-4ab C △=4ab -c2D△=4ac-b247.同一时刻,高为2米的测量竿的影长为1.5米,某古塔的影长为24米,那么古塔的高是( )A 18米B20米C30米D32米48.一个多边形的内角和是外角和的4倍,这个,边形的达数是( )(A)4 (B)8 (C)10 (D)1249.方程组的解的个数是( )(A)1 (B)2 (C)3 (D)450.以下运算正确的选项是( )A a2(-a)=a3B x6÷x3=x2C -〔x2〕3=-x6D (xy)5=xy551.当x<2时化简得( )(A)x-2 (B)-x+2 (C)x+2 (D)-x-252.己知两个相似三角形周长的比为3:2其中较小的三角形面积为12,那么较大的三角形的面积是( )A 27 B 24 C 18 D 1653.不等式组的解集是( )A x>3B x≤4C 3<x≤4D 3≤x<454.如图4,的直径10,弦AB的长为8,M是弦AB上的动点,那么OM的长的取值范围是〔〕A.3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<555.如图5,点P是上的一个动点,过点P作 x轴的垂线PQ交双曲线于点Q,连结OQ,当点P 沿x轴正半方向运动时,Rt△QOP面积〔〕A. 逐渐增大B.逐渐减小C.保持不变D.无法确定56.关于x的不等式组无解,那么a的取值范围是〔〕A.a ≤-1B.a≥2C. -1<a<2D. a<,或a>257.第五次人口普查的结果是:到2001年11月1日,我国人口约为13亿.用科学记数法表示的人口数为〔〕A. 13×108B. 1.3×106C. 1.3×109D.1.3×101058.实数x、y同时满足三个条件:①,②③,那么实数p的取值范围是〔〕A. p〉-1B.p〈1C.p〈-1D.p〉159、以下计算正确的选项是……………〔〕60.抛物线的对称轴是直线……………………………………〔〕61.某学校有数学教师25名,将他们的年龄分成3组,在38~45(岁)组内有8名教师,那么这个小组的频率是…………………………………………………………〔〕62.以下命题中,错误的命题是……………………………………………………〔〕所有的等边三角形都是彼此相似的三角形所有的矩形都是彼此相似的四边形所有的等腰直角三角形都是彼此相似的三角形有两组对应边成比例的直角三角形相似63、2的相反数是A. -2B. 2C. -D.64、角α=54O,那么它的补角的度数是A. 36oB. 46oC. 126oD. 136o65、我国最长的河流长江全长约为6300千米,用科学记数法表示为A. 63×102千米B. 6.3×102千米C. 6.3×103千米D. 6.3×104千米66、9的算术平方根是A.±3 B. 3 C. ± D.67、等腰三角形的一边为4,一边为8那么它的周长是A. 12B. 16C. 20D. 16或2068、有解集2<x<3的不等式组是A. B. C. D.69、以下根式中,与是同类二次根式的是A. B. C. D.70、以下图形中,不是..中央对称图形的是71、点P〔-1,3〕关于y轴对称的点是A. (-1,-3)B. 〔1,-3〕C. 〔1,3〕D. 〔-3,1〕72、在△ABC中,∠C=90O,如果cosA=,那么sinB的值是A. B. C. D.73、对于数据1,2,3,4,5的平均数是A. 2B. 3C. 4D. 574、如图1在⊙O中,圆心角∠AOB=48O,那么圆周角∠ACB的度数是A. 96OB. 48OC. 36OD. 24O75.函数y=中,自变量x的取值范围是A. x>2B. x<2C. x≠2D. x≠-276.如图2,正方形ABCD的边长为4cm,那么它的外接圆的半径长是A. cmB. 2cmC. 3cmD. 4cm77.假设分式的值为0,那么x的值是A.±2 B. -2 C. 2 D. 078.两圆半径分别是3和4,圆心距是7,那么这两个圆的公切线最多有A. 1条B. 2条C. 3条D. 4条79.以下方程有实数根的是A. x2-x-1=0B. x2+x+1=0C. x2-6x+10=0D. x2-x+1=080.当K<0时,反比例函数y=和一次函数y=kx+2的图象在致是图中的81.4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,假设不交钱,最多可以喝矿泉水A. 3瓶B. 4瓶C. 5瓶D. 6瓶82.抛物线y=x2-2x-1的顶点坐标是A.〔1,-1〕B.〔-1,2〕C.〔-1,-2〕D.〔1,-2〕83.以下二次根式中最简二次根式是〔〕84.以下运算正确的选项是〔〕85.当∠A为锐角,且CosA的值大于时,∠A〔〕〔A〕小于30° 〔B〕大于30° 〔C〕小于60° 〔D〕大于60°86.方程的解是〔〕87.某县教育局在今年体育测试中,从某校初三〔3〕班中抽取男、女学生各15人进行三次体育成绩复查测试,在这个问题中,以下表达正确的选项是〔〕〔A〕校所有初三学生是总体〔B〕所抽取的30名学生是样本〔C〕样本容量是30〔D〕样本容量是1588.正方形、菱形、矩形都具有的性质是〔〕〔A〕对角线相等〔B〕对角线互相平分〔C〕对角线互相升起垂直〔D〕对角线平分一组对角89.设a>b,那么以下不等式不正确的选项是〔〕〔A〕a+c>b+c (B) a-c>b-c (C) (D) -2a>-2b90.以下命题中,真命题是〔〕〔A〕三点决定一个圆〔B〕和圆的半径垂直的直线是圆的切线〔C〕直角三角形的外心就是斜边的中点〔D〕两圆的公共弦垂直平分连心线91.实数π是〔〕〔A〕整数〔B〕分数〔C〕有理数〔D〕无理数92.计算,正确结果是〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕393.从甲、乙、丙、丁四人中用抽签的方法,任选一人去看电影,选中甲的概率是〔〕〔A〕〔B〕〔C〕〔D〕 194.以下图形中,既是轴对称图形,又是中央对称图形的是〔〕〔A〕等腰三角形〔B〕等腰梯形〔C〕直角三角形〔D〕圆95.如图,假设DE是△ABC的中位线,△ABC的周长为6,那么△ADE的周长为〔〕〔A〕4 〔B〕3 〔C〕2 〔D〕196.以下命题中,真命题是〔〕〔A〕矩形的对角线互相垂直〔B〕菱形的对角线相等〔C〕正方形的对角线相等且互相垂直〔D〕等腰梯形的对线互相平分97.如果,那么函数上的图象大致是〔〕98.如图,O为⊙O/上一点,⊙O和⊙O/相交于A,B,CD是⊙O的直径,交AB于F,DC的延长线交⊙O/于E,且CF=4,OF=2,贝CE的长为〔〕〔A〕12〔B〕8〔C〕6〔D〕499.不管m何实数,直线与的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限100、张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系〔〕:河阳中学中考选择题练习〔2〕1.16的平方根是〔〕〔A〕±4〔B〕4〔C〕±2〔D〕22.化简:〔〕〔A〕〔B〕〔C〕〔D〕3.不等式>0的解是〔〕〔A〕x<〔B〕x<〔C〕x>〔D〕x>4.抛物线的对称轴是直线〔〕(A)x=-2〔B〕x=2〔C〕x=-1〔D〕x=15.等腰三角形两腰中点的连线长为4,那么它的底边长为〔〕(A)2〔B〕4〔C〕8〔D〕166.如图,∥∥,AB=6cm,BC=3cm,=4cm,那么线段的长度为〔〕(A)6cm〔B〕4cm〔C〕3cm〔D〕2cm7.二元二次方程组的一个解是〔〕〔A〕〔B〕〔C〕〔D〕8.图甲、乙分别是我国1997~2000年全国初中生在校人数和全国初中学校数统计图.由图可知,从1997年至2000年,我国初中生在校人数〔〕(A)逐年增加,学校数也逐增加〔B〕逐年增加,学校数却逐年减少(B)逐年减少,学校数也逐年减少〔D〕逐年减少,学校数却逐年增加9、a<-1,点〔a-1,y1〕、〔a,y2〕〔a+1,y3〕都在函数y= —x2的图象上,那么〔〕A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y310.在△ABC中,∠A,∠B都是锐角,且sinA=,cosB=,那么△ABC的形状是〔〕(A)直角三角形〔B〕钝角三角形〔C〕锐角三角形〔D〕不能确定11.圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是〔〕(A)9πcm2〔B〕18πcm2〔C〕24πcm2〔D〕36πcm212.右图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,杠杆的动力臂AC与阻力臂BC之比为5:1,那么要使这块石头滚动,至少要将杠杆的A端向下压〔〕(A)100cm〔B〕60cm〔C〕50cm〔D〕10cm13.有六个等圆按图甲、乙、丙三种形状摆放,使相邻两圆均互相外切,且如下图的圆心的连线〔虚线〕分别构成正六边形、平行四边形和正三角形.将圆心连线外侧的6个扇形〔阴影局部〕的面积之和依次记为S,P,Q,那么〔〕〔A〕S>P>Q〔B〕S>Q>P〔C〕S>P且P=Q〔D〕S=P=Q14.如图,A、B分别为y=x2上两点,且线段AB⊥y轴,假设AB=6,那么直线AB的表达式为〔〕A.y=3 B.y=6 C.y=9 D.y=3615.对于的图象以下表达正确的选项是〔〕A 的值越大,开口越大B 的值越小,开口越小C 的绝对值越小,开口越 D的绝对值越小,开口越小16.假设抛物线y=ax2经过点P ( l,-2 ),那么它也经过〔〕A. P1(-1,-2 )B. P2(-l, 2 )C.P3( l, 2)D.P4(2, 1)17.a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,那么下面图中,可以成立的是〔〕18、六名运发动杨、柳、桃、梅、柏、林比赛中国象棋,每两人赛一局.第一天杨与柳各赛了3局,梅与桃各赛了4局,柏赛了2局,而且梅和柳、杨和桃之间都还没赛过,那么林已赛了_______局.A、1B、2C、3D、419、a、b、c是三角形的三边,那么代数式的值〔〕A、大于0B、等于0C、小于0D、不能确定20、以下图是某蓄水池的横断面示意图,分深水区和浅水区,•如果这个蓄水池以固定的流量注水,图11-2中能大致表示水的最大深度h与时间t之间关系的是( ).ˋˊ21、,,那么多项式的值为〔〕A、0B、1C、2D、322、如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可供选择的地址有〔〕A、1处;B、2处;C、3处;D、4处23、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如下图,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在〔〕A、A区;B、B区;C、C区;D、非A、B、C区的任一位置24、直线与直线的交点坐标是( ).A、(-8,-10)B、(0,-6);C、(10,-1);D、以上答案均不对25、小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,假设返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是〔〕.A、37.2分钟;B、48分钟;C、30分钟;D、33分钟26、假设点P〔a,b〕在第二象限,那么点P′〔a-1,-b〕关于y轴的对称点在〔〕A 第一象限B 第二象限C 第三象限D 第四象限27、,如图11,在△ABC,∠ABC、∠ACB的角平分线交于点O,那么∠BOC=90°+∠A=×180°+∠A.如图12,在△ABC中,∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2,那么∠BO1C=×180°+∠A,∠BO2C=×180°+∠A .根据以上阅读理解,你能猜测〔n等分时,内部有n-1个点〕〔用n的代数式表示〕∠BO n-1C=〔〕A、×180°+∠A;B、×180°+∠A;C、×180°+∠A;D、×180°+∠A.28、︱-32︱的值是〔〕A、-3B、3C、9D、-929、以下二次根式是最简二次根式的是〔〕A、B、C、D、以上都不是30、以下计算中,正确的选项是〔〕A、X3+X3=X6B、a6÷a2=a3C、3a+5b=8abD、(—ab)3=-a3b331、1mm为十亿分之一米,而个体中红细胞的直径约为0.0000077m,那么人体中红细胞直径的纳米数用科学记数法表示为〔〕A、7.7×103mmB、7.7×102mmC、7.7×104mmD、以上都不对32、如图2,天平右盘中的每个砝码的质量为10g,那么物体M的质量m(g)的取值范围,在数轴上可表示为〔〕33、如图3,将∠BAC沿DE向∠BAC内折叠,使AD与A’D重合,A’E与AE重合,假设∠A =300,那么∠1+∠2=〔〕A、500B、600C、450D、以上都不对34、某校九〔3〕班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的选项是〔〕A、从图中可以直接看出喜欢各种球类的具体人数;B、从图中可以直接看出全班的总人数;C、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系.35、以下各式中,能表示y是x的函数关系式是〔〕A、y=B、y=C、y=D、y=36、如图5,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,那么tan∠APO的值为〔〕A、B、C、D、37、在同一直角坐标系中,函数y=kx+k,与y=〔k〕的图像大致为〔〕38、以下各式中,计算正确的选项是〔〕A B C D39、关于x的不等式的解集如下图,那么a的值等于〔〕+A 0B 1C -1D 21 240、假设x<2,化简的正确结果是〔〕A-1B1C2x-5 D 5-2x41、:如图AB//CD,AEDC,AE=12,BD=15,AC=20,那么梯形ABCD的面积是〔〕A 130B 140C 150D 16042、如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快〔〕A 2.5米B2米粉C1.5米 D 1米43、如图,⊙O为△ABC的内切圆,∠C=90度,OA的延长线交BC于点D,AC=4,CD=1,那么⊙O的半径等于〔〕A B C D O44、一组数据,的平均数是2,方差是,那么另一组数据的平均数和方差是〔〕A 2、 B 2,1 C 4,D 4,345、一次函数与,它们在同一坐标系内的大致图象是〔〕A B C D46、朝日“世界杯〞期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,假设全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;假设全部安排坐B队的车,每辆坐4人,车不够,每辆坐5人,有的车未满,那么A队有出租车〔〕辆A 11B 10C 9D 847、一居民小区有一正多边形的活动场.为迎接“AAPP〞会议在重庆的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2m的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12.假设每个花台的造价为400元,那么建造这些花台共需资金〔〕A 2400元B 2800元C 3200元D 3600元48、4的平方根是〔〕(A)2〔B〕-2〔C〕±2〔D〕±49、2022年世界杯足球赛预计观看人数到达1920000,用科学记数法表示为〔〕〔A〕1.92×105〔B〕0.192×107〔C〕1.92×106〔D〕192×10450不等式>0的解是〔〕〔A〕x>〔B〕x>〔C〕x<〔D〕x<51、,那么等于〔〕〔A〕〔B〕〔C〕〔D〕52如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,那么∠DAE等于〔〕(A)100°〔B〕80°〔C〕60°〔D〕40°53、边长为a的正六边形的边心距为〔〕(A)a〔B〕〔C〕〔D〕2a54、y=x+a,当x=-1,0,1,2,3时对应的y值的平均数为5,那么a的值是〔〕〔A〕〔B〕〔C〕4〔D〕55、如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,那么圆柱的侧面积为〔〕(A)30π〔B〕π〔C〕20π〔D〕π56、关于x的一元二次方程没有实数根,其中R,r分别为⊙,⊙的半径,d为此两圆的圆心距,那么⊙,⊙的位置关系是〔〕(A)外离〔B〕香切〔C〕相交〔D〕内含57、抛物线与x轴交于A,B两点,Q〔2,k〕是该抛物线上一点,且AQ⊥BQ,那么ak的值等于〔〕〔A〕-1〔B〕-2〔C〕2〔D〕358、在平面直角坐标系中,点P〔-2,1〕在( )〔A〕第一象限〔C〕第二象限〔C〕第三象限〔D〕第四象限59、经国务院批准,撤消鄞县,设立宁波市鄞州区,宁波市区面积到达2560平方千米,用科学记数法表示宁波市区面积为( )〔A〕2.56×102平方千米〔B〕25.6×102平方千米〔C〕2.56×l03平方千米〔D〕2.56×l04平方千米60、如图,△ABC中,AB=7,AC=6,BC=5,点D、E分别是边AB、AC的中点,那么DE的长为( )〔A〕2.5〔B〕3 〔C〕3.5〔D〕661、方程,如果,那么原方程变为( )〔A〕y2+2y-3=0〔B〕y2+2y+3=0〔C〕2y2+y+3=0〔D〕2y2+y-3=062.二次函数y=x2-2x+3的最小值为( )〔A〕4 〔B〕2〔C〕l 〔D〕-l63.菱形的边长为6,一个内角为60°,那么菱形较短的对角线长是( ) 〔A〕3〔B〕6〔C〕3〔D〕664,圆柱的侧面积是100cm2假设圆柱底面半径为对r (cm),高线长为h (cm),那么h关于r的函数的图象大致是( )65.如图,有一住宅小区呈四边形ABCD,周长为2000 m,现规划沿小区周围铺上宽为3m的草坪,那么草坪的面积是〔精确至lm2〕( )〔A〕6000m2〔B〕6016 m2〔C〕6028 m2〔D〕6036 m266、据测算,我国每年因沙漠化造成的直接经济损失超过5400000万元,用科学计数法表示这个数,应记为〔〕A、54×105万元B、5.4×106万元C、5.4×105万元D、0. 54×107万元67、函数y=中,自变量x的取值范围是〔〕A、x≥3B、x>3C、x<3D、x≤368、圆锥的轴截面是〔〕A、梯形B、等腰三角形C、矩形D、圆69、抛物线y=〔x-5〕2+4的对称轴是〔〕A、直线x=4B、直线x=-4C、直线x=-5D、直线x=570、把分母有理化的结果是〔〕A、B、C、1-D、-1-71、:,那么以下式子中一定成立的是〔〕A、2x=3yB、3x=2yC、x=6yD、xy=672、如图⊙O的弦CD交弦AB于P,PA=8,PB=6,PC=4,那么PD的长为〔〕A、8B、6C、16D、1273、某校举行“五.四〞文艺会演,5位评委给各班演出的节目打分,在家个评委中,去掉一个最高分,再去掉一个最低分,求出评分在平均数,作为该节目的实际得分.对于某节目的演出,评分如下:8.9 9.1 9.3 9.4 9.2,那么该节目实际得分是〔〕、A、9.4B、9.3C、9.2D、9.1874、方程x〔x+1〕〔x-2〕=0 的根是〔〕A、-1,2B、1,-2C、0,-1,2D、0,1,-275、两圆的半径分别是3和5,圆心距为8,那么两圆的位置关系是〔〕A、外切B、内切C、相交D、相离76、当x>1时,-1化简的结果是〔〕A、2-xB、x-2C、xD、-x77、如图,D是ΔABC的AB边上一点,过D作DEBC,交AC于E,AD:AB=1:2,那么SΔADE:SΔABC的值为〔〕A、4:9B、2:3C、1:4D、1:278.2的相反数是〔〕A.-2 B.2 C.- D.79.2022年,我国财政总收入21700亿元,这个数用科学记数法可表示为〔〕A.2.17×103亿元B.21.7×103亿元C.2.17×104亿元D.2.17×10亿元80.以下计算正确的选项是〔〕A.+ = B .·=C.= D.÷=〔≠0〕81.假设分式有意义,那么应满足〔〕A.=0 B.≠0C.=1 D.≠182.以下根式中,属于最简二次根式的是〔〕A.B.C.D.83.两圆的半径分别为3㎝和4㎝,两个圆的圆心距为10㎝,那么两圆的位置关系是〔〕A.内切 B.相交 C.外切 D.外离84.不等式组的解集在数轴上可表示为〔〕85.k>0 ,那么函数y= 的图象大致是〔〕86.在△ABC中,∠C=90°,AC=BC=1,那么sinA的值是〔〕A. B. C. 1 D.87.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有〔〕A.1个 B.2个C.3个D.4个88.在比例尺1:6000000的地图上,量得南京到北京的距离是15㎝,这两地的实际距离是〔〕A.0.9㎞ B. 9㎞ C.90㎞ D.900㎞89.如果等边三角形的边长为6,那么它的内切圆的半径为〔〕A.3 B.C.D.90.观察以下算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…….通过观察,用作所发现的规律确定212的个位数字是〔〕A.2 B.4 C.6 D.891.花园内有一块边长为的正方形土地,园艺师设计了四种不同图案,其中的阴影局部用于种植花草,种植花草面积最大的是〔〕92.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中和分别表示运动的路程和时间,根据图象判断,甲的速度与乙的速度相比,以下说法中正确的选项是〔〕A.甲比乙快 B.甲比乙慢C.甲与乙一样D.无法判断93、抛物线的顶点坐标是〔〕A、B、C、D、94、二次函数的图象如下图,那么〔〕A、,B、,C、,D、,95、如图,在中,点在上,,垂足为点,假设,,那么的值是〔〕A、B、C、D、96、给出以下命题:①平行四边形的对角线互相平分;②对角线互相平分的四边形是平行四边形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形.其中真命题的个数为〔〕A、4B、3C、2D、197、给出以下函数:①;②;③;④.其中,随的增大而减小的函数是〔〕A、①②B、①③C、②④D、②③④98、一次函数与,它们在同一坐标系内的大致图象是〔〕99、如图,是不等边三角形,,以点、为两个顶点作位置不同的三角形,使所作三角形与全等,这样的三角形可以作出〔〕A、2个B、4个C、6个D、8个100、二次函数的图象如下图,那么以下四个结论:①;②;③;④中,正确的结论有〔〕A、1个B、2个C、3个D、4个。

人教版九年级数学中考复习:选择、填空综合训练1

人教版九年级数学中考复习:选择、填空综合训练1

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。

2022中考数学复习考点专项训练——一次函数

2022中考数学复习考点专项训练——一次函数

2022中考数学复习考点专项训练——一次函数一、选择题1. 设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量2. 小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟3.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为( )A.y=2x+3B.y=2x−3C.y=2x+6D.y=2x−64.直线l:m(2x−y−5)+(3x−8y−14)=0被以A(1, 0)为圆心,2为半径的⊙A所截得的最短弦的长为()A.√2B.√3C.2√2D.2√35.已知函数图象如图所示,则此函数的解析式为()A .2y x =-B .2(10)y x x =--<<C .12y x =- D .1(10)2y x x =--<<6.在地球某地,地表以下岩层的温度y(∘C)与所处深度x(km)之间的关系可以近似地用表达式y =35x +20来表示,当自变量x 每增加1km 时,因变量y 的变化情况是()A.减少35∘CB.增加35∘CC.减少55∘CD.增加55∘C7.如图所示,△ABC 中,已知BC =16,高AD =10,动点Q 由C 点沿CB 向B 移动(不与点B 重合).设CQ 长为x ,△ACQ 的面积为S ,则S 与x 之间的函数关系式为()A.S =80−5xB.S =5xC.S =10xD.S =5x +808. 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的()9. 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km ;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个10. 已知函数y =√x 2−1,当x =−2时,函数值为()A.√3B.±√3C.3D.±311. 已知点()()1242y y -,,,都在直线122y x =-+上,则12y y ,大小关系是() A .12y y > B .12y y = C .12y y < D .不能比较12. 已知梯形ABCD 的四个顶点的坐标分別为A(−1, 0),B(5, 0),C(2, 2),D(0, 2),直线y =kx +2将梯形分成面积相等的两部分,则k 的值为()A.−23B.−29C.−47D.−27 13.汽车由A 地驶往相距120km 的B 地,它的平均速度是30km/h ,则汽车距B 地路程s (km)与行驶时间t(h)的函数关系式及自变量t 的取值范围是()A.S =120−30t (0≤t ≤4)B.S =120−30t (t >0)C.S =30t (0≤t ≤40)D.S =30t (t <4)14. 如果等腰三角形的周长为16,那么它的底边长y 与腰长x 之间的函数图像为()15.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是()A. B.C.D.二、填空题 16.已知函数y =−4x −3,当x =________时,函数值为0.17. 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是.18. 已知函数y =(m −1)x |m|+3是一次函数,则m =________.19.已知关于x 的函数y =(k +3)x +|k|−3是正比例函数,则k 的值是________.20. 若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________. 21.小华用500元去购买单价为3元的一种商品,剩余的钱y (元)与购买这种商品的件数x (件)之间的函数关系是________.22. 重庆出租车夜间收费(单位:元)与行驶路程(单位:千米)之间的关系如图所示,如果勇勇乘出租车最远能到10公里,那么他恰有________元.23. 已知一次函数y kx b =+中,0kb <,则这样的一次函数的图像必经过的公共象限有个,即第象限.24. 某工人生产一种零件,完成定额20个,每天收入28元,如果超额生产一个零件,增加收入1.5元.写出该工人一天的收入y (元)与他生产的零件x (个)的函数关系式________.25.小明放学后步行回家,他离家的路程s (米)与步行时间t (分钟)的函数图象如图所示,则他步行回家的平均速度是________米/分钟.26. 已知y 是x 一次函数,表给出了部分对应值,m 的值是.27.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是____.28.在如图所示的平面直角坐标系中,点P 是直线y x =上的动点,()0A 1,,B(2,0)是x 轴上的两点,则PA PB +的最小值为______.29.某公司推销一种产品,公司付给推酬员的月报销有两种方案如图所示.设推销员推销产品的数量为x (件),付给推销员的月报酬为y (元).若公司决定改进“方案二”,保持基本工资不变,每件报酬增加m 元,使得当销售员销售产品达到40件时,两种方案的报酬差额不超过100元,则m 的取值范围是________.30.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则b=_____.三、解答题31. 函数已知28(3)1my m x -=-+,当m 为何值时,y 是x 的一次函数?32.已知一次函数y =−2x +3.(1)求这个函数图象与x 轴的交点坐标;(2)当这个函数图象在x轴下方时,求自变量x的取值范围;(3)当这个函数图象在第一象限时,求自变量x的取值范围.33.已知函数y=(8-2m)x+m-2.(1)若函数图象经过原点,求m的值.(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.(3)若这个函数是一次函数,且图象经过第一、二、三象限,求m的取值范围.34. 直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的表达式.(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.35.在甲药店购买口罩,一次性购买数量不超过100个时,价格为3.5元/个;一次性购买数量超过100个时,其中100个的价格仍为3.5元/个,超过100个的部分价格为2.5元/个.(1)设在甲药店购买x个口罩,总费用为y元,请写出y与x的函数解析式;(2)乙药店销售同一种口罩,不论一次购买数量是多少,价格均为3元/个.若某单位需购买300个口罩,选择在哪个药店购买更便宜?36. 为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?37. 平面直角坐标系xOy中,点P的坐标为(m+1, m−1).(1)试判断点P是否在一次函数y=x−2的图象上,并说明理由;(2)如图,一次函数y=-x+3的图象与x轴、y轴分别相交于A,B,若点P在△AOB的内部,求m的取值范围.38. 图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自x+6,动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数表达式.(2)请通过计算说明甲、乙两人谁先到达一楼地面.39.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9 000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.40. 如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=−3的解.41. 某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6m3的速度注入乙池,甲、乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式.(2)求注水多长时间甲、乙两个蓄水池中水的深度相同.(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.x的图象上运动(不与O重合),连接AP.过42.在平面直角坐标系xOy中,已知A(0,2),动点P在y=√33点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.。

【精选试卷】(必考题)中考数学专项练习经典习题(含答案解析)

【精选试卷】(必考题)中考数学专项练习经典习题(含答案解析)

一、选择题1.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .52.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.33.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 4.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .1305.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( )A .B .C .D .6.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)7.如果√(2a −1)2=1−2a ,则a 的取值范围是( ) A .a <12 B .a ≤12 C .a >12 D .a ≥128.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°11.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A.3 B.23C.32D.612.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 13.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+14.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.15.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°16.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5 17.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.1818.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个19.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁20.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.532D.5321.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°22.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)23.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.624.下列四个实数中,比1-小的数是( ) A .2-B .0C .1D .225.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,026.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .427.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .28.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .29.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)30.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A.6 B.5 C.3 D.32【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.C4.A5.C6.A7.B8.B9.D10.D11.B12.C13.D14.B15.C16.C17.B18.C19.D20.D21.A22.D23.A24.A25.D26.B27.B28.C29.D30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.2.B解析:B【解析】【分析】【详解】ABC =D 故选B .3.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4.A解析:A 【解析】 【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=. 【详解】 解:AB//CD ,EFC 40∠=,BAF 40∠∴=, BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A . 【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.5.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.6.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.B解析:B 【解析】试题分析:根据二次根式的性质1可知:√(2a −1)2=|2a −1|=1−2a ,即2a −1≤0故答案为B.a ≤12.考点:二次根式的性质.8.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 12.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.13.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.14.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.15.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.16.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.17.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.18.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.19.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 20.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,在Rt△OAE中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.21.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.22.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.23.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.24.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.25.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.26.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.27.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.28.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.29.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
O
图3
中考定时专项训练
选择填空篇01
时间:15分钟 分数:42分
一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.3
(1)-等于( )
A .-1
B .1
C .-3
D .3
2.在实数范围内,x 有意义,则x 的取值范围是( )
A .x ≥0
B .x ≤0
C .x >0
D .x <0
3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( ) A .20 B .15
C .10
D .5
4.下列运算中,准确的是( )
A .34=-m m
B .()m n m n --=+
C .236m m =()
D .m
m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、
B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,
且位于右上方的小正方形内,则∠APB 等于( )
A .30°
B .45°
C .60°
D .90°
6.反比例函数1
y x =(x >0)的图象如图3所示,随着x 值的
增大,y 值( ) A .增大 B .减小
C .不变
D .先减小后增大
7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0
D .某两个负数的积大于0
8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,
∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )
A .833 m
B .4 m
C .3m
D .8 m
9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2
120
y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s
D .5 m/s
10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方
体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24
D .26
B
A
C
D
图1
P
O B
A
图2
图5
A B
C D
150°
图4
h
4=1+3 9=3+6
16=6+10
图7 …
11.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图
象应为( )
12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正
方形数”.
从图7中能够发现,任何一个大于1
的“正方形数”都能够看作两个相邻 “三角形数”之和.下列等式中,符 合这个规律的是( )
A .13 = 3+10
B .25 = 9+16
C .36 = 15+21
D .49 = 18+31
二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)
13.比较大小:-6 -8.(填“<”、“=”或“>”)
14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:
则这些体温的中位数是 ℃.
16.若m 、n 互为倒数,则2
(1)mn n --的值为 . 17.如图
8,等边△ABC 的边长为1 cm ,D
、E 分别是AB 、
AC 上的点,将
△ADE 沿直线DE 折叠,点A 落在点A '
处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .
18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中
加入水后,一根露出水面的长度是它的1
3
,另一根露
出水面的长度是它的1
5.两根铁棒长度之和为55 cm ,
此时木桶中水的深度是 cm .
A D
C
B
图6

9
图8。

相关文档
最新文档