洛阳市2014-2015学年高一上学期期中考试数学试题(扫描版无答案)
2014-2015河南省洛阳市高三上学期期中考试文科数学解析版
洛阳市2014-2015学年高中三年级期中考试数学试卷(文A )本试卷是高三文科试卷,以基础知识和基本技能为载体,科核心知识的同时,突出考查考纲的基本能力兼顾覆盖面.试题重点考查:集合、不等式、复数、程序框图,向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、统计,概率等;考查学生解决实际问题的综合能力,是份较好的试卷.第I 卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卷上.2.考试结束,将答题卷交回.【题文】一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.设集合{}{}01,102A B m ==--,,,,若A B ⊆,则实数m = A.0 B.1 C.2 D.3【知识点】集合及其运算A1 【答案解析】D ∵集合A={0,1},∴1∈A .∵A ⊆B ,∴1∈B .∵B={-1,0,m-2},∴1=m-2.∴m=3.故选:D .【思路点拨】本题利用集合的包含关系得到元素与元素的关系,从而求出参数的值. 【题文】2.已知,其中i 为虚数单位,121,2z i z bi =+=+,若12z z 为实数,则实数b = A.-2 B.-1 C.1 D.2 【知识点】复数的基本概念与运算L4【答案解析】A ∵z 1=1+i ,z 2=2+bi ,∴z 1•z 2=(1+i )(2+bi )=2-b+(2+b )i , ∵z 1•z 2为实数,∴2+b=0,解得b=-2故选:A【思路点拨】由题意可得z 1•z 2=2-b+(2+b )i ,由实数的定义可得2+b=0,解方程可得. 【题文】3.设等差数列{}n a 的前n 项和为n S ,若8=32S ,则27=a a + A.1 B.4 C.8 D.9 【知识点】等差数列及等差数列前n 项和D2【答案解析】C ∵等差数列{a n }的前n 项和为S n ,S 8=32,∴82(a 2+a 7)=32, ∴a 2+a 7=8.故选:C .【思路点拨】利用等差数列的通项公式和前n 项和公式求解.【题文】4.在长方体1111ABCD A B C D -中,1=3,3AB AD AA h ==,,则异面直线BD 与B 1C 1所成的角为 A.30° B.60°C.90°D.不能确定,与h 有关【知识点】单元综合G 12 【答案解析】B∵B 1C 1∥BC ,∴∠DBC 是异面直线BD 与B 1C 1所成的角(或所成的角的平面角), ∵长方体ABCD-A 1B 1C 1D 1中,AB=3,AD=3,AA 1=h ,∴tan ∠DBC=33DC BC =, ∴异面直线BD 与B 1C 1所成的角为60°.故选:B .【思路点拨】由B 1C 1∥BC ,知∠DBC 是异面直线BD 与B 1C 1所成的角(或所成的角的平面角),由此能求出异面直线BD 与B 1C 1所成的角为60°.【题文】5.某程序的框图如图所示,运行该程序时,若输入的x =0.1,则运行后输出的y 的值是A.-1B.0.5C.2D.10【知识点】算法与程序框图L1【答案解析】A 当x=0.1时,满足第一个判断框中的条件,执行“是”,也满足第二个判断框中的条件,执行“是”,将x=0.1代入y=lgx 得y=-1故选A .【思路点拨】按照程序框图的流程,判断输入的值是否满足判断框中的条件,“是”按y=lgx 求出y .【题文】6.抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是A.1B.3C.12D.32[来源学科网ZXXK]【知识点】双曲线及其几何性质抛物线及其几何性质H6 H7 【答案解析】B ∵抛物线方程为y 2=4x ∴2p=4,可得2P=1,抛物线的焦点F (1,0) 又∵双曲线的方程为x 2-23y =1∴a 2=1且b 2=3,可得a=1且b=3,双曲线的渐近线方程为y=±b ax ,即y=±3x , 化成一般式得:3x±y=0.因此,抛物线y 2=4x 的焦点到双曲线渐近线的距离为d=31031⨯±+=32故选:B 【思路点拨】根据抛物线的标准方程,算出抛物线的焦点F (1,0).由双曲线标准方程,算出它的渐近线方程为y=±3x ,化成一般式得:3x±y=0,再用点到直线的距离公式即可算出所求距离.【题文】7.已知()f x 为R 上的奇函数,且满足(4)=()f x f x +,当()0,2x ∈时,2()=2f x x ,则(2015)=fA.2B.-2C.8D.-8 【知识点】函数的奇偶性与周期性B4【答案解析】B ∵奇函数f (x )的定义域为R ,且满足f (x )=f (x+4),∴y=f (x )是周期为4的奇函数,又当x ∈(0,2)时,f (x )=2x 2,∴f (2015)=f (503×4+3)=f (3)=f (-1)=-f (1)=-2.故答案为:B .【思路点拨】由已知得f (2015)=f (503×4+3)=f (3)=f (-1)=-f (1)=-2.【题文】8.已知向量()cos sin a θθ=,,其中(,),(0,1)2b πθπ∈=-,则a 与b 的夹角等于A.2πθ-B.2πθ+C.32πθ-D.θ【知识点】平面向量的数量积及应用F3【答案解析】C a b ⋅=cosθ×0+sinθ×(-1)=-sinθ,|a |=1,|b |=1, ∴cos <,a b >=a b a b⋅=-sinθ= cos (32πθ- ),∵θ∈(2π,π),<,a b >∈[0,π], ∴,y=cox 在[0,π]上单调递减,∴<,a b >=32πθ-故选C . 【思路点拨】由向量夹角公式可得cos <,a b >=a b a b⋅=-sinθ=cos (32πθ- ), 再由32πθ- ∈( 2π,π),<,a b >∈[0,π],y=cox 在[0,π]上单调递减,可得结论.【题文】9.已知直线l :1y kx =+与圆O :221x y +=相交于A ,B 两点,则“1k =”是“△OAB 的面积为12”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分又不必要条件【知识点】直线与圆、圆与圆的位置关系H4【答案解析】A 若直线l :y=kx+1与圆O :x 2+y 2=1相交于A ,B 两点,则圆心到直线距离d=211k+,|AB|=2=22111k -+=2221k k +, 若k=1,则|AB|=212=2,d=111+=22,则△OAB 的面积为12×2×22 =12成立,即充分性成立.若△OAB 的面积为12,则S=12×211k+×2221k k + =12×2×221k k +=221k k +=12,解得k=±1,则k=1不成立,即必要性不成立. 故“k=1”是“△OAB 的面积为12”的充分不必要条件.故选A . 【思路点拨】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【题文】10.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数(0,0)z ax by a b =+>>的最大值为7,则34a b+的最小值为 A.3 B.4 C.7 D.12 【知识点】简单的线性规划问题E5 【答案解析】C作出不等式组1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩表示的平面区域,得到如图的△ABC 及其内部,其中A (1,0),B (3,4),C (0,1)设z=F (x ,y )=ax+by (a >0,b >0),将直线l :z=ax+by 进行平移,并观察直线l 在x 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最大值. ∴z max =F (3,4)=7,即3a+4b=7. 因此,34a b +=17(3a+4b )(34a b +)=17[25+12(b aa b+)], ∵a >0,b >0,可得b aa b+≥2b a a b ⋅=2, ∴34a b +≥17(25+12⨯2)=7,当且仅当a=b=1时,34a b+的最小值为7.故答案为:7【思路点拨】作出题中不等式组表示的平面区域,得到如图的△ABC 及其内部,利用直线平移法求出当x=3且y=4时,z=ax+by 取得最大值为7,即3a+4b=7.再利用整体代换法,根据基本不等式加以计算,可得当a=b=1时 34a b+的最小值为7. 【题文】11.若函数21()=ln 2f x x ax x -+存在垂直于y 轴的切线,则实数a 的取值范围是 A.(,2][2,)-∞-+∞ B.(,2(2,)-∞-+∞) C.[2,)+∞D.(2,)+∞【知识点】导数的应用B12【答案解析】C ∵f (x )= 12x 2-ax+lnx ,∴f'(x )=x-a+1x, 由题意可知存在实数x >0,使得f'(x )=x-a+1x =0,即a=x+1x成立,∴a=x+1x ≥2(当且仅当x=1x,即x=1时等号取到),∴实数a 的取值范围是[2,+∞).故选:C .【思路点拨】求出原函数的导函数,由导函数等于0得到a=x+1x,利用基本不等式求得x+1x的范围得答案. 【题文】12.已知定义在实数集R 上的函数()f x 满足(1)=3f ,且()f x 的导函数为()f x '在R 上恒有()1f x '>,则不等式()2f x x >+的解集为A.()1-∞-,B.()1+∞,C.()11-,D.()()11-∞-+∞,,【知识点】导数的应用B12【答案解析】B 令F (x )=f(x)-x-2,因为F (1)=0,()f x '在R 上恒有()1f x '>,为增函数,所以 ()2f x x >+的解集为()1+∞,,故答案为B 【思路点拨】构造新函数求大于0的解,利用单调性求出。
河南省洛阳市2014-2015学年高一上学期期末数学试卷 (Word版含解析)
河南省洛阳市2014-2015学年高一上学期期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(5分)若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B的元素的个数为()A.1B.2C.3D.4 2.(5分)已知点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则y的值为()A.﹣1 B.C.1D.3.(5分)如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为()A.2πB.C.4πD.5π4.(5分)设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α5.(5分)下列四个数中最小者是()A.l og3B.l og32 C.l og23 D.l og3(log23)6.(5分)三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB.C.D.8π7.(5分)设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()A.x+y﹣5=0 B.2x﹣y﹣1=0 C.2y﹣x﹣4=0 D.2x+y﹣7=08.(5分)已知函数f(x)=log a(2﹣a x)在(﹣∞,1]上单调递减,则a的取值范围是()A.(1,2)B.(0,1)C.(0,1)∪(1,2)D.(0,1)∪(2,+∞)9.(5分)设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是()A.f(1.5)<f(3.5)<f(6.5)B.f(6.5)<f(3.5)<f(1.5)C.f(3.5)<f(1.5)<f(6.5)D.f(3.5)<f(6.5)<f(1.5)10.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4011.(5分)(理)如图,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是()A.90°B.60°C.45°D.30°12.(5分)已知函数f(x)=,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3﹣x1的取值范围为()A.(2,]B.(2,]C.(2,]D.(2,3)二、填空题(本题共4个小题,每小题5分,共20分)13.(5分)已知长方形ABCD中,AB=2,AD=3,其水平放置的直观图如图所示,则A′C′=.14.(5分)若点P(x,y)在圆C:(x﹣2)2+y2=3上,则的最大值是.15.(5分)已知圆(x﹣3)2+y2=16和圆(x+1)2+(y﹣m)2=1相切,则实数m=.16.(5分)将边长为2的正方形ABCD(O是正方形ABCD的中心)沿对角线AC折起,使得半平面ACD与半平面ABC成θ(0°<θ<180°)的两面角,在折起后形成的三棱锥D ﹣ABC中,给出下列三个命题:①不论θ取何值,总有AC⊥BD;②当θ=90°时,△BCD是等边三角形;③当θ=60°时,三棱锥D﹣ABC的体积是.其中正确的命题的序号是.(把你认为正确的序号都填上)三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤)17.(10分)已知直线l1:x+my+6=0,直线l2:(m﹣2)x+3my+18=0.(1)若l1∥l2,求实数m的值;(2)若l1⊥l2,求实数m的值.18.(12分)如图,O为矩形ABCD的中心,E,F为平面ABCD同侧两点,且EF BC,△CDE和△ABF都是等边三角形.(1)求证:FO∥平面ECD;(2)设BC=CD,求证:EO⊥平面FCD.19.(12分)如图,已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P(3,﹣2),求圆心在l1上且与直线l2相切于点P的圆的方程.20.(12分)已知函数f(x)=a﹣,g(x)=.(1)若函数f(x)为奇函数,求a的值;(2)若关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,求实数a的取值范围.21.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.22.(12分)已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)﹣1,且当x >0时,有f(x)>1.(1)求f(0);(2)求证:f(x)在R上为增函数;(3)若f(1)=2,且关于x的不等式f(ax﹣2)+f(x﹣x2)<3对任意的x∈考点:三点共线.专题:直线与圆.分析:根据三点共线,结合斜率之间的关系进行求解.解答:解:若点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则满足k AB=k AC,即,即,则y﹣2=﹣1,解得y=1,故选:C点评:本题主要考查三点共线的应用一件斜率公式的计算,根据斜率之间的关系是解决本题的关键.3.(5分)如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为()A.2πB.C.4πD.5π考点:由三视图求面积、体积.专题:计算题;图表型.分析:由三视图知,此几何体是一个圆柱,其高为2,半径为,由公式易求得它的表面积,选出正确选项解答:解:由图知,此几何体是一个圆柱,其高为2,半径为,它的表面积为+2×2π×=故选B点评:本题考查由三视图求面积、体积,解题的关键是由三视图还原出实物图的几何特征及其度量,再由公式求出表面积,本题考查了空间想像能力.4.(5分)设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α考点:空间中直线与平面之间的位置关系.专题:证明题.分析:由面面平行的判定定理和线面平行的定理判断A、B、D;由面面垂直的性质定理判断C.解答:解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.点评:本题考查了线面的位置关系,主要用了面面垂直和平行的定理进行验证,属于基础题.5.(5分)下列四个数中最小者是()A.l og3B.l og32 C.l og23 D.log3(log23)考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数的单调性求解.解答:解:∵0=log 31<<=<log32<log33=1,=<log23<log24=2,∴<log3(log23)<log32<log23.∴四个数中最小的是.故选:A.点评:本题考查四个数中的最小者的求法,是基础题,解题时要注意对数函数的性质的合理运用.6.(5分)三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB.C.D.8π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.解答:解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.所以外接球的体积为:V=πr3=π×()3=.故选:C.点评:本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题.7.(5分)设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()A.x+y﹣5=0 B.2x﹣y﹣1=0 C.2y﹣x﹣4=0 D.2x+y﹣7=0考点:与直线关于点、直线对称的直线方程.专题:计算题;压轴题.分析:求出PA的斜率,PB的倾斜角,求出P的坐标,然后求出直线PB的方程.解答:解:由于直线PA的倾斜角为45°,且|PA|=|PB|,故直线PB的倾斜角为135°,又当x=2时,y=3,即P(2,3),∴直线PB的方程为y﹣3=﹣(x﹣2),即x+y﹣5=0.故选A点评:本题考查与直线关于点、直线对称的直线方程,考查逻辑推理能力,计算能力,转化思想的应用,是基础题.8.(5分)已知函数f(x)=log a(2﹣a x)在(﹣∞,1]上单调递减,则a的取值范围是()A.(1,2)B.(0,1)C.(0,1)∪(1,2)D.(0,1)∪(2,+∞)考点:复合函数的单调性;对数函数的图像与性质.专题:函数的性质及应用.分析:分类讨论,利用复合函数的单调性,对数函数、二次函数的性质求得a的范围,综合可得结论.解答:解:当a>1时,由2﹣a>0 求得a<2,∴1<a<2.当0<a<1时,由于2﹣a x在(﹣∞,1]上可能为负数,故不满足条件.综上可得,1<a<2,故选:A.点评:本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.9.(5分)设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是()A.f(1.5)<f(3.5)<f(6.5)B.f(6.5)<f(3.5)<f(1.5)C.f(3.5)<f(1.5)<f(6.5)D.f(3.5)<f(6.5)<f(1.5)考点:函数的周期性.专题:函数的性质及应用.分析:由条件可知函数f(x)的周期为6,利用函数周期性,对称性和单调性之间的关系即可得到结论.解答:解:∵f(x)=f(x+6),∴f(x)在R上以6为周期,∵函数的对称轴为x=3,∴f(3.5)=f(2.5),f(6.5)=f(0.5)∵f(x)在(0,3)内单调递减,0.5<1.5<2.5∴f(2.5)<f(1.5)<f(0.5)即f(3.5)<f(1.5)<f(6.5)故选:C点评:本题主要考查了函数的周期性与单调性的综合运用,利用周期性把所要比较的变量转化到同一单调区间,利用函数的单调性比较函数值的大小,是解决此类问题的常用方法.10.(5分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40考点:直线与圆相交的性质.专题:压轴题.分析:根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.解答:解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选B点评:考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.11.(5分)(理)如图,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是()A.90°B.60°C.45°D.30°考点:异面直线及其所成的角.专题:计算题;证明题;空间角.分析:设三棱柱ABC﹣A1B1C1的棱长等于2,延长MC1到N使MN=BB1,连接AN.可得∠AB1N(或其补角)就是异面直线AB1和BM所成角,然后在△AB1N中分别算出三条边的长,利用余弦定理得cos∠AB1N=0,可得∠AB1N=90°,从而得到异面直线AB1和BM 所成角.解答:解:设三棱柱ABC﹣A1B1C1的棱长等于2,延长MC1到N使MN=BB1,连接AN,则∵MN∥BB1,MN=BB1,∴四边形BB1NM是平行四边形,可得B1N∥BM因此,∠AB1N(或其补角)就是异面直线AB1和BM所成角∵Rt△B1C1N中,B1C1=2,C1N=1,∴B1N=∵Rt△ACN中,AC=2,CN=3,∴AN=又∵正方形AA1B1B中,AB1=2∴△AB1N中,cos∠AB1N==0,可得∠AB1N=90°即异面直线AB1和BM所成角为90°故选:A点评:本题在所有棱长均相等的正三棱柱中,求异面直线所成的角大小,着重考查了正三棱柱的性质、余弦定理和异面直线所成角求法等知识,属于基础题.12.(5分)已知函数f(x)=,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3﹣x1的取值范围为()A.(2,]B.(2,]C.(2,]D.(2,3)考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:作函数f(x)=与y=t的图象,从而可得0<t<1,x1=﹣t,x 3==1+;从而可得x3﹣x1=1++t=﹣(﹣)2+;从而解得.解答:解:作函数f(x)=与y=t的图象如下,结合图象可知,0<t<1;x 1=﹣t,x3==1+,故x 3﹣x1=1++t=﹣(﹣)2+;故2<x3﹣x1≤;故选:B.点评:本题考查了学生作图的能力及数形结合的思想应用,同时考查了配方及换元法的应用,属于中档题.二、填空题(本题共4个小题,每小题5分,共20分)13.(5分)已知长方形ABCD中,AB=2,AD=3,其水平放置的直观图如图所示,则A′C′=.考点:余弦定理的应用;平面图形的直观图.专题:计算题;空间位置关系与距离.分析:由题意,A′B′=,A′D′=3,∠A′D′C′=135°,利用余弦定理可得A′C′.解答:解:由题意,A′B′=,A′D′=3,∠A′D′C′=135°,∴A′C′==.故答案为:.点评:本题考查平面图形的直观图,考查余弦定理,比较基础.14.(5分)若点P(x,y)在圆C:(x﹣2)2+y2=3上,则的最大值是.考点:直线与圆的位置关系.专题:直线与圆.分析:设k=,即y=kx,根据直线和圆相切即可得到结论.解答:解:设k=,即y=kx,则∵点P(x,y)在圆C:(x﹣2)2+y2=3上,∴圆心(2,0)到直线kx﹣y=0的距离d,即,平方得4k2≤3+3k2,即k2≤3,解得﹣,故的最大值是,故答案为:.点评:本题主要考查直线和圆的位置关系的应用,根据点到直线的距离公式和半径之间的关系是解决本题的关键.15.(5分)已知圆(x﹣3)2+y2=16和圆(x+1)2+(y﹣m)2=1相切,则实数m=3或﹣3.考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:根据两个圆的方程,分别求出两圆半径与圆心的坐标,再根据两圆位置关系与数量关系间的联系即可求解,注意圆相切的两种可能性.解答:解:根据题意得:圆C:(x﹣3)2+y2=16的圆心坐标为C(3,0),半径r=4;圆D:(x+1)2+(y﹣m)2=1的圆心坐标为D(﹣1,m),半径R=1.当两圆相外切时,圆心距CD=R+r=5,即=,所以m2=9,解得m=3或m=﹣3.当两圆内切时,圆心距CD=R﹣r=3,即==9此时方程无解,综上m=3或m=﹣3.故答案为:3或﹣3.点评:本题主要考查圆与圆位置关系的知识点还考查两点之间的距离公式,圆与圆的位置关系与数量关系间的联系.注意要进行讨论.16.(5分)将边长为2的正方形ABCD(O是正方形ABCD的中心)沿对角线AC折起,使得半平面ACD与半平面ABC成θ(0°<θ<180°)的两面角,在折起后形成的三棱锥D ﹣ABC中,给出下列三个命题:①不论θ取何值,总有AC⊥BD;②当θ=90°时,△BCD是等边三角形;③当θ=60°时,三棱锥D﹣ABC的体积是.其中正确的命题的序号是①②③.(把你认为正确的序号都填上)考点:棱锥的结构特征;棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离.分析:通过证明AC⊥平面BOD,证明AC⊥BD,可得①正确;过D作DO⊥AC于O,连接BO,利用勾股定理求得BD长,可得②正确;利用棱锥的体积公式计算三棱锥的体积,可得③正确.解答:解:过D作DO⊥AC于O,连接BO,由题意知:BO⊥AC,∵DO∩BO=O,∴AC⊥平面BOD,∴AC⊥BD,∴BD=1,即△BCD为等边三角形,②正确;∵O为AC的中点,AB=BC,∴BO⊥AC,∴AC⊥平面BOD,BD⊂平面BOD,∴AC⊥BD,①正确;∵V D﹣ABC==,∴③正确;故答案为:①②③.点评:本题考查了面面垂直的性质及异面直线所成角的求法,考查了学生的空间想象能力与计算能力.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤)17.(10分)已知直线l1:x+my+6=0,直线l2:(m﹣2)x+3my+18=0.(1)若l1∥l2,求实数m的值;(2)若l1⊥l2,求实数m的值.考点:直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:(1)对m分类讨论,利用两条直线平行与斜率、截距的关系即可得出;(2)对m分类讨论,利用两条直线垂直与斜率的关系即可得出.解答:解:(1)当m=0时,两条直线分别化为:x+6=0,﹣x+9=0,此时两条直线不平行,因此m=0;当m≠0时,两条直线分别化为:,,∵l1∥l2,∴,,无解.综上可得:m=0.(2)由(1)可得:m=0时两条直线平行,m≠0,∵l1⊥l2,∴=﹣1,解得m=﹣1或.∴m=﹣1或.点评:本题考查了分类讨论、两条直线平行垂直与斜率之间的关系,属于基础题.18.(12分)如图,O为矩形ABCD的中心,E,F为平面ABCD同侧两点,且EF BC,△CDE和△ABF都是等边三角形.(1)求证:FO∥平面ECD;(2)设BC=CD,求证:EO⊥平面FCD.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取CD中点M,证明四边形EFOM为平行四边形,得到FO∥EM,从而证明FO∥平面CDE.(Ⅱ)证明平行四边形EFOM为菱形,从而EO⊥FM,证明CD⊥平面EOM,可得CD⊥EO,进而证得EO⊥平面CDF.解答:证明:(Ⅰ)证明:取CD中点M,连接OM.在矩形ABCD中,OM∥BC,且OM=BC,又EF∥BC,且EF=BC,则EF∥OM,EF=OM,连接EM,于是四边形EFOM为平行四边形.∴FO∥EM.又FO不在平面CDE内,且EM在平面CDE内,∴FO∥平面CDE.(Ⅱ)证明:连接FM,由(Ⅰ)和已知条件,在等边△CDE中,CM=DM,EM⊥CD,且EM=CD=BC=EF,因此,平行四边形EFOM为菱形,从而,EO⊥FM,而FM∩CD=M,∴CD⊥平面EOM,从而CD⊥EO.而FM∩CD=M,所以,EO⊥平面CDF.点评:本题考查证明先面平行、线面垂直的方法,取CD中点M,证明CD⊥平面EOM 是解题的难点,属于基本知识的考查.19.(12分)如图,已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P(3,﹣2),求圆心在l1上且与直线l2相切于点P的圆的方程.考点:圆的标准方程.专题:直线与圆.分析:法一:利用待定系数法即可求圆C的方程;法二:根据直线和圆相切的等价条件,联立方程组求出圆心和半径即可.解答:解:法一:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆C与直线l:x+y﹣1=0相切于点P(3,﹣2),且圆心在直线4x+y=0上,∴满足,解得a=1,b=4,r=,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.法二:过切点且与x+y﹣1=0垂直的直线方程为y+2=x﹣3,即y=x﹣5与4x+y=0联立求得圆心为(1,﹣4),则半径r==,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.点评:本题主要考查圆的标准方程的求解,以及直线和圆相切的应用,利用直线和圆的位置关系求出圆心和半径是解决本题的关键.20.(12分)已知函数f(x)=a﹣,g(x)=.(1)若函数f(x)为奇函数,求a的值;(2)若关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,求实数a的取值范围.考点:函数奇偶性的性质;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)根据函数f(x)是R上的奇函数得:f(0)=0,代入解析式列方程,再求实数a的值;(2)由题意先求出g(x)的解析式,代入方程进行化简得:22x﹣a•2x+1﹣a=0,利用换元法转化已知的方程,根据二次函数根的分布问题,列出不等式组求出实数a的取值范围.解答:解:(1)由题意知,f(x)是定义域为R上的奇函数,所以f(0)=0,即a﹣=0,解得a=1;(2)因为f(x)=a﹣,所以g(x)==,将方程g(2x)﹣a•g(x)=0化为:+a×=0,化简得22x﹣a•2x+1﹣a=0,设t=2x,则t>0,代入上式得t2﹣at+1﹣a=0,因为关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,所以关于t的方程t2﹣at+1﹣a=0有唯一的正实数解,则1﹣a<0或,解得a>1或a>,所以实数a的取值范是(,+∞).点评:本题考查函数奇偶性的性质,二次函数根的分布问题,以及有关方程根的转化问题,考查换元法和转化思想.21.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.考点:平面与平面垂直的判定;直线与平面所成的角.专题:证明题.分析:(I)欲证平面B1AC⊥平面ABB1A1,关键是寻找线面垂直,而AC⊥平面ABB1A1,又AC⊂平面B1AC,满足面面垂直的判定定理;(II)过A1做A1M⊥B1A1,垂足为M,连接CM,∠A1CM为直线A1C与平面B1AC所成的角,然后在三角形A1CM中求出此角的正弦值即可.解答:解:(I)证明:由直三棱柱性质,B1B⊥平面ABC,∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,∴AC⊥平面ABB1A1,又AC⊂平面B1AC,∴平面B1AC⊥平面ABB1A1.(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,∴A1M⊥平面B1AC.∴∠A1CM为直线A1C与平面B1AC所成的角,∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.设AB=BB1=a,可得B1C=2a,BC=,∴直线A1C与平面B1AC所成角的正弦值为点评:本题主要考查了平面与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力.22.(12分)已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)﹣1,且当x >0时,有f(x)>1.(1)求f(0);(2)求证:f(x)在R上为增函数;(3)若f(1)=2,且关于x的不等式f(ax﹣2)+f(x﹣x2)<3对任意的x∈=f(x2﹣x1)+f(x1)﹣1>1+f(x1)﹣1=f(x1),从而得到函数的单调性;(3)f(ax﹣2)+f(x﹣x2)=f(ax﹣2+x﹣x2)+1<3,根据f(1)=2及f(x)在R上为增函数即得x2﹣(a+1)x+3>0对任意的x∈=f(x2﹣x1)+f(x1)﹣1>1+f(x1)﹣1=f(x1),∴f(x2)>f(x1),即f(x)在R上为增函数;(3)∵f(ax﹣2)+f(x﹣x2)=f(ax﹣2+x﹣x2)+1<3∴f(ax﹣2+x﹣x2)<2又∵f(1)=2及f(x)在R上为增函数∴ax﹣2+x﹣x2<1对任意的x∈[1,+∞)恒成立,即x2﹣(a+1)x+3>0对任意的x∈[1,+∞)恒成立.下面对△=(a+1)2﹣12的正负情况进行讨论:①当△<0,即(a+1)2﹣12<0时,②当△=0且x2﹣(a+1)x+3=0的解小于1时,则a=±,x=,故a=﹣;③当△>0且x2﹣(a+1)x+3=0的最大解小于1时,即0<a2+2a﹣11<a2﹣2a+1,解得或,综合所述,或.点评:本题主要考查了抽象函数,及其函数的单调性和不等式的解法,着重考查了函数的简单性质和函数恒成立问题等知识点,属于中档题.薄雾浓云愁永昼,瑞脑消金兽。
2014-2015学年河南省洛阳市高一(上)期末数学试卷含答案
2014-2015学年河南省洛阳市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(5.00分)若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B 的元素的个数为()A.1 B.2 C.3 D.42.(5.00分)已知点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则y 的值为()A.﹣1 B.C.1 D.3.(5.00分)如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为()A.2πB. C.4πD.5π4.(5.00分)设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α5.(5.00分)下列四个数中最小者是()A.log3B.log32 C.log23 D.log3(log23)6.(5.00分)三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB. C.D.8π7.(5.00分)设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()A.x+y﹣5=0 B.2x﹣y﹣1=0 C.2y﹣x﹣4=0 D.2x+y﹣7=08.(5.00分)已知函数f(x)=log a(2﹣a x)在(﹣∞,1]上单调递减,则a的取值范围是()A.(1,2) B.(0,1) C.(0,1)∪(1,2)D.(0,1)∪(2,+∞)9.(5.00分)设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f (x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是()A.f(1.5)<f(3.5)<f(6.5)B.f(6.5)<f(3.5)<f(1.5)C.f(3.5)<f(1.5)<f(6.5)D.f(3.5)<f(6.5)<f(1.5)10.(5.00分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4011.(5.00分)(理)如图,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是()A.90°B.60°C.45°D.30°12.(5.00分)已知函数f(x)=,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3﹣x1的取值范围为()A.(2,]B.(2,]C.(2,]D.(2,3)二、填空题(本题共4个小题,每小题5分,共20分)13.(5.00分)已知长方形ABCD中,AB=2,AD=3,其水平放置的直观图如图所示,则A′C′=.14.(5.00分)若点P(x,y)在圆C:(x﹣2)2+y2=3上,则的最大值是.15.(5.00分)已知圆(x﹣3)2+y2=16和圆(x+1)2+(y﹣m)2=1相切,则实数m=.16.(5.00分)将边长为2的正方形ABCD(O是正方形ABCD的中心)沿对角线AC折起,使得半平面ACD与半平面ABC成θ(0°<θ<180°)的两面角,在折起后形成的三棱锥D﹣ABC中,给出下列三个命题:①不论θ取何值,总有AC⊥BD;②当θ=90°时,△BCD是等边三角形;③当θ=60°时,三棱锥D﹣ABC的体积是.其中正确的命题的序号是.(把你认为正确的序号都填上)三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤)17.(10.00分)已知直线l1:x+my+6=0,直线l2:(m﹣2)x+3my+18=0.(1)若l1∥l2,求实数m的值;(2)若l1⊥l2,求实数m的值.18.(12.00分)如图,O为矩形ABCD的中心,E,F为平面ABCD同侧两点,且EF BC,△CDE和△ABF都是等边三角形.(1)求证:FO∥平面ECD;(2)设BC=CD,求证:EO⊥平面FCD.19.(12.00分)如图,已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P (3,﹣2),求圆心在l1上且与直线l2相切于点P的圆的方程.20.(12.00分)已知函数f(x)=a﹣,g(x)=.(1)若函数f(x)为奇函数,求a的值;(2)若关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,求实数a的取值范围.21.(12.00分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.22.(12.00分)已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)﹣1,且当x>0时,有f(x)>1.(1)求f(0);(2)求证:f(x)在R上为增函数;(3)若f(1)=2,且关于x的不等式f(ax﹣2)+f(x﹣x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.2014-2015学年河南省洛阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(5.00分)若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B 的元素的个数为()A.1 B.2 C.3 D.4【解答】解:∵集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},当x=0时,不满足B中元素的条件;当x=1时,不满足B中元素的条件;当x=2时,满足B中元素的条件;当x=3时,满足B中元素的条件;故B={2,3},则集合B的元素的个数为2,故选:B.2.(5.00分)已知点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则y 的值为()A.﹣1 B.C.1 D.【解答】解:若点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则满足k AB=k AC,即,即,则y﹣2=﹣1,解得y=1,故选:C.3.(5.00分)如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为()A.2πB. C.4πD.5π【解答】解:由图知,此几何体是一个圆柱,其高为2,半径为,它的表面积为+2×2π×=故选:B.4.(5.00分)设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α【解答】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.5.(5.00分)下列四个数中最小者是()A.log3B.log32 C.log23 D.log3(log23)【解答】解:∵0=log 31<<=<log32<log33=1,3<log24=2,=<log∴<log3(log23)<log32<log23.∴四个数中最小的是.故选:A.6.(5.00分)三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB. C.D.8π【解答】解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.所以外接球的体积为:V=πr3=π×()3=.故选:C.7.(5.00分)设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()A.x+y﹣5=0 B.2x﹣y﹣1=0 C.2y﹣x﹣4=0 D.2x+y﹣7=0【解答】解:由于直线PA的倾斜角为45°,且|PA|=|PB|,故直线PB的倾斜角为135°,又当x=2时,y=3,即P(2,3),∴直线PB的方程为y﹣3=﹣(x﹣2),即x+y﹣5=0.故选:A.8.(5.00分)已知函数f(x)=log a(2﹣a x)在(﹣∞,1]上单调递减,则a的取值范围是()A.(1,2) B.(0,1) C.(0,1)∪(1,2)D.(0,1)∪(2,+∞)【解答】解:当a>1时,由2﹣a>0 求得a<2,∴1<a<2.当0<a<1时,由于2﹣a x在(﹣∞,1]上可能为负数,故不满足条件.综上可得,1<a<2,故选:A.9.(5.00分)设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f (x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是()A.f(1.5)<f(3.5)<f(6.5)B.f(6.5)<f(3.5)<f(1.5)C.f(3.5)<f(1.5)<f(6.5)D.f(3.5)<f(6.5)<f(1.5)【解答】解:∵f(x)=f(x+6),∴f(x)在R上以6为周期,∵函数的对称轴为x=3,∴f(3.5)=f(2.5),f(6.5)=f(0.5)∵f(x)在(0,3)内单调递减,0.5<1.5<2.5∴f(2.5)<f(1.5)<f(0.5)即f(3.5)<f(1.5)<f(6.5)故选:C.10.(5.00分)已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选:B.11.(5.00分)(理)如图,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是()A.90°B.60°C.45°D.30°【解答】解:设三棱柱ABC﹣A1B1C1的棱长等于2,延长MC1到N使MN=BB1,连接AN,则∵MN∥BB1,MN=BB1,∴四边形BB1NM是平行四边形,可得B1N∥BM因此,∠AB1N(或其补角)就是异面直线AB1和BM所成角∵Rt△B1C1N中,B1C1=2,C1N=1,∴B1N=∵Rt△ACN中,AC=2,CN=3,∴AN=又∵正方形AA1B1B中,AB1=2∴△AB1N中,cos∠AB1N==0,可得∠AB1N=90°即异面直线AB1和BM所成角为90°故选:A.12.(5.00分)已知函数f(x)=,若关于x的方程f(x)=t有3个不等根x 1,x2,x3,且x1<x2<x3,则x3﹣x1的取值范围为()A.(2,]B.(2,]C.(2,]D.(2,3)【解答】解:作函数f(x)=与y=t的图象如下,结合图象可知,0<t<1;x1=﹣t,x3==1+,故x3﹣x1=1++t=﹣(﹣)2+;故2<x3﹣x1≤;故选:B.二、填空题(本题共4个小题,每小题5分,共20分)13.(5.00分)已知长方形ABCD中,AB=2,AD=3,其水平放置的直观图如图所示,则A′C′=.【解答】解:由题意,A′B′=,A′D′=3,∠A′D′C′=135°,∴A′C′==.故答案为:.14.(5.00分)若点P(x,y)在圆C:(x﹣2)2+y2=3上,则的最大值是.【解答】解:设k=,即y=kx,则∵点P(x,y)在圆C:(x﹣2)2+y2=3上,∴圆心(2,0)到直线kx﹣y=0的距离d,即,平方得4k2≤3+3k2,即k2≤3,解得﹣,故的最大值是,故答案为:.15.(5.00分)已知圆(x﹣3)2+y2=16和圆(x+1)2+(y﹣m)2=1相切,则实数m=3或﹣3.【解答】解:根据题意得:圆C:(x﹣3)2+y2=16的圆心坐标为C(3,0),半径r=4;圆D:(x+1)2+(y﹣m)2=1的圆心坐标为D(﹣1,m),半径R=1.当两圆相外切时,圆心距CD=R+r=5,即=,所以m2=9,解得m=3或m=﹣3.当两圆内切时,圆心距CD=R﹣r=3,即==9此时方程无解,综上m=3或m=﹣3.故答案为:3或﹣3.16.(5.00分)将边长为2的正方形ABCD(O是正方形ABCD的中心)沿对角线AC折起,使得半平面ACD与半平面ABC成θ(0°<θ<180°)的两面角,在折起后形成的三棱锥D﹣ABC中,给出下列三个命题:①不论θ取何值,总有AC⊥BD;②当θ=90°时,△BCD是等边三角形;③当θ=60°时,三棱锥D﹣ABC的体积是.其中正确的命题的序号是①②③.(把你认为正确的序号都填上)【解答】解:过D作DO⊥AC于O,连接BO,由题意知:BO⊥AC,∵DO∩BO=O,∴AC⊥平面BOD,∴AC⊥BD,∴BD=1,即△BCD为等边三角形,②正确;∵O为AC的中点,AB=BC,∴BO⊥AC,∴AC⊥平面BOD,BD⊂平面BOD,∴AC ⊥BD,①正确;∵V D==,∴③正确;﹣ABC故答案为:①②③.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤)17.(10.00分)已知直线l1:x+my+6=0,直线l2:(m﹣2)x+3my+18=0.(1)若l1∥l2,求实数m的值;(2)若l1⊥l2,求实数m的值.【解答】解:(1)当m=0时,两条直线分别化为:x+6=0,﹣x+9=0,此时两条直线不平行,因此m=0;当m≠0时,两条直线分别化为:,,∵l1∥l2,∴,,无解.综上可得:m=0.(2)由(1)可得:m=0时两条直线平行,m≠0,∵l1⊥l2,∴=﹣1,解得m=﹣1或.∴m=﹣1或.18.(12.00分)如图,O为矩形ABCD的中心,E,F为平面ABCD同侧两点,且EF BC,△CDE和△ABF都是等边三角形.(1)求证:FO∥平面ECD;(2)设BC=CD,求证:EO⊥平面FCD.【解答】证明:(Ⅰ)证明:取CD中点M,连接OM.在矩形ABCD中,OM∥BC,且OM=BC,又EF∥BC,且EF=BC,则EF∥OM,EF=OM,连接EM,于是四边形EFOM为平行四边形.∴FO∥EM.又FO不在平面CDE内,且EM在平面CDE内,∴FO∥平面CDE.(Ⅱ)证明:连接FM,由(Ⅰ)和已知条件,在等边△CDE中,CM=DM,EM ⊥CD,且EM=CD=BC=EF,因此,平行四边形EFOM为菱形,从而,EO⊥FM,而FM∩CD=M,∴CD⊥平面EOM,从而CD⊥EO.而FM∩CD=M,所以,EO⊥平面CDF.19.(12.00分)如图,已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P (3,﹣2),求圆心在l1上且与直线l2相切于点P的圆的方程.【解答】解:法一:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆C与直线l:x+y﹣1=0相切于点P(3,﹣2),且圆心在直线4x+y=0上,∴满足,解得a=1,b=4,r=,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.法二:过切点且与x+y﹣1=0垂直的直线方程为y+2=x﹣3,即y=x﹣5与4x+y=0联立求得圆心为(1,﹣4),则半径r==,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.20.(12.00分)已知函数f(x)=a﹣,g(x)=.(1)若函数f(x)为奇函数,求a的值;(2)若关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,求实数a的取值范围.【解答】解:(1)由题意知,f(x)是定义域为R上的奇函数,所以f(0)=0,即a﹣=0,解得a=1;(2)因为f(x)=a﹣,所以g(x)==,将方程g(2x)﹣a•g(x)=0化为:+a×=0,化简得22x﹣a•2x+1﹣a=0,设t=2x,则t>0,代入上式得t2﹣at+1﹣a=0,因为关于x的方程g(2x)﹣a•g(x)=0有唯一的实数解,所以关于t的方程t2﹣at+1﹣a=0有唯一的正实数解,则1﹣a<0或,解得a>1或a>,所以实数a的取值范是(,+∞).21.(12.00分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.【解答】解:(I)证明:由直三棱柱性质,B1B⊥平面ABC,∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,∴AC⊥平面ABB1A1,又AC⊂平面B1AC,∴平面B1AC⊥平面ABB1A1.(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,∴A1M⊥平面B1AC.∴∠A1CM为直线A1C与平面B1AC所成的角,∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.设AB=BB1=a,可得B1C=2a,BC=,.∴直线A1C与平面B1AC所成角的正弦值为.22.(12.00分)已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)﹣1,且当x>0时,有f(x)>1.(1)求f(0);(2)求证:f(x)在R上为增函数;(3)若f(1)=2,且关于x的不等式f(ax﹣2)+f(x﹣x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.【解答】(1)解:令m=0,则f(0+n)=f(0)+f(n)﹣1,即f(0)=1;(2)证明:任取x1,x2∈R且x1<x2,则x2﹣x1>0,∵当x>0时,有f(x)>1,∴f(x2﹣x1)>1,∵f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)+f(x1)﹣1>1+f(x1)﹣1=f(x1),∴f(x2)>f(x1),即f(x)在R上为增函数;(3)∵f(ax﹣2)+f(x﹣x2)=f(ax﹣2+x﹣x2)+1<3∴f(ax﹣2+x﹣x2)<2又∵f(1)=2及f(x)在R上为增函数∴ax﹣2+x﹣x2<1对任意的x∈[1,+∞)恒成立,即x2﹣(a+1)x+3>0对任意的x∈[1,+∞)恒成立.下面对△=(a+1)2﹣12的正负情况进行讨论:①当△<0,即(a+1)2﹣12<0时,②当△=0且x2﹣(a+1)x+3=0的解小于1时,则a=±,x=,故a=﹣;③当△>0且x2﹣(a+1)x+3=0的最大解小于1时,即0<a2+2a﹣11<a2﹣2a+1,且1﹣a>0,解得,综合所述,.。
2014-2015学年度高一数学期中试卷(含答案解析)
第1页 共10页 ◎ 第2页 共10页绝密★启用前2014-2015学年度期中卷高一数学考试范围:必修一;考试时间:120分钟;命题人: 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}1,2,3M =,{}2,3,4N =,则 ( ) A .M N ⊆ B .N M ⊆ C .{}1,4MN = D .{}2,3M N =【答案】D【解析】解:因为根据已知 的集合,可以判定集合间的关系,以及集合的运算,那么显然选项D 成立。
2.设集合}1,0,1{-=M ,},{2a a N =,则使M∩N=N 成立的a 的值是( ) A .1 B .0 C .-1 D .1或-1 【答案】C 【解析】试题分析:由于集合中的元素互不相同,所以20,1a a a a ≠⇒≠≠.又因为M∩N=N ,所以1a =-. 考点:集合的特征及集合的基本运算. 3.设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1 【答案】A【解析】因为y=3x在R 上单调递增,又,故﹣2<x <﹣1故选A4.若0.90.48 1.54,8,0.5a b c -===则( )A .c b a >> B. a c b >> C.b a c >> D.b c a >> 【答案】D【解析】0.9 1.80.48 1.44 1.5 1.542,82.(0.5)2.-===函数2x y =是增函数,1.8 1.5 1.44,>>所以.a c b >>故选D5.函数()f x =的定义域是 A. {x ︱34x >} B. {01x x <≤} C. {1x x ≥} D. {x ︱314x <≤} 【答案】D 【解析】略6.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f xf f +=+=则=)5(f ()A.0B .1C .25D .5【答案】C【解析】令x=-1可得(1)(1)(2)(1)(2),(2)2(1)1,f f f f f f f =-+=-+∴==13(3)(1)(2)122f f f ∴=+=+=,35(5)(3)(2)122f f f =+=+=.7.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ), 当他记起诗句“不到长城非好汉”,便调转车头继续前进. 则该同学离起点的距离s 与时间t 的函数关系的图象大致为 ( )【答案】C【解析】分析:本题根据运动变化的规律即可选出答案.依据该同学出门后一系列的动作,匀速前往对应的图象是上升的直线,匀速返回对应的图象是下降的直线,等等,从而选出答案. 解答:解:根据他先前进了akm ,得图象是一段上升的直线,DCBA第3页 共10页 ◎ 第4页 共10页由觉得有点累,就休息了一段时间,得图象是一段平行于t 轴的直线,由想想路途遥远,有些泄气,就沿原路返回骑了bkm (b <a ),得图象是一段下降的直线, 由记起诗句“不到长城非好汉”,便调转车头继续前进,得图象是一段上升的直线, 综合,得图象是C , 故选C .点评:本小题主要考查函数的图象、运动变化的规律等基础知识,考查数形结合思想.属于基础题. 8.函数的单调增区间为( )A .B .(3,+∞)C .D .(﹣∞,2)【答案】D【解析】由题意知,x 2﹣5x+6>0∴函数定义域为(﹣∞,2)∪(3,+∞),排除A 、C , 根据复合函数的单调性知的单调增区间为(﹣∞,2),故选D9.若函数()1(0,1)1x mf x a a a =+>≠-是奇函数,则m 为 A.1- B.2 C.1 D.2-【答案】B 【解析】 试题分析:111111x a(),()()xxxm m mf x f x aaa --=+=+-=-+--- 由于函数是奇函数,()(),f x fx ∴-=-即x a (1)1(1)2111x x x x m m m a a a a -+=-+∴=--- 所以2m =,故选:B.考点:函数的奇偶性10. 下列每组中两个函数是同一函数的组数共有( ) (1)2()1f x x =+和2()1f v v =+(2) y =和y =(3) y=x 和321x xy x +=+ (4) y=和y(A) 1组 (B) 2组 (C) 3组 (D) 4组 【答案】C【解析】根据同意哈函数的定义可知选项A 中定义域和对应关系相同,成立,选项B 中,定义域相同,对应关系相同,选项C 中,相同,选项D 中,定义域不同,故是同一函数的 组数有3组,故选C 11.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )【答案】B【解析】试题分析:因为根据1a >,可知指数函数递增函数,排除C ,D 选项,同时在选项A,B 中,由于对数函数log ()a y x =-的图像与log a y x =的图像关于y 轴堆成,那么可知.排除A.正确的选项为B.考点:本题主要是考查同底的指数函数与对数函数图像之间的关系的运用。
2014-2015学年上学期高一期中测试数学试题(含答案)
2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。
2014-2015学年高一上学期期中考试数学试题(含答案解析)
π 3 f (a ) − f (b ) > 0 成立,则必有( 9. 定义在 R 上的函数 f ( x ) 对任意两个不相等实数 a,b ,总有 a −b
D. f (−1) > f (−π ) > f ( ) A. 函数 f ( x ) 是先增 加后减少 C. f ( x ) 在 R 上是增函数 B. 函数 f ( x ) 是先减少后增加 D. f ( x ) 在 R 上是减函数
)个
12.定义在 [ −1,1] 的函数 f ( x) 满足下列两个条件:①任意的 x ∈ [−1,1] ,都有 f (− x) = − f ( x) ;②任意的 m, n ∈ [0,1] ,当
f ( m) − f ( n) < 0 ,则不等式 f (1 − 3 x) < f ( x − 1) 的解集是 m−n 1 1 2 1 2 B. ( , ] C. [−1, ) D. [ ,1] A. [0, ) 2 2 3 2 3 二、填空题(共 4 小题,每小题 5 分,共 20 分) 2 x − 1 (x ≥ 3) ,则 f ( f (− 1)) 的值是 13. 已知函数 f ( x ) = 。 1 − 3 x (x < 3) m ≠ n ,都有
[来源:学科
π 3
B. f ( ) > f (−1) > f (−π )
π 3
π 3
)
10. 如果函数 f ( x) = x 2 + 2(a − 1) x + 2 在区间 ( −∞, 4] 上单调递减,那么实数 a 的取值范围是 A. a ≥ 5 B.
a≤5
C. a ≥ −3
第- 1 -页,共 4 页
20.(本小题满分 12 分)已知函数 f ( x) 是定义在 R 上的奇函数,当 x > 0 时, f ( x) = x (1)求 f ( x) 的解析式; ( 2)解关于 x 的不等式 f ( x) ≤
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。
XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。
$\{2\}$。
B。
$\{1,2\}$。
C。
$\{0,1,2\}$。
D。
$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。
$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。
2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。
利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。
3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。
$(1,+\infty)$。
B。
$[1,+\infty)$。
C。
$(0,+\infty)$。
D。
$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。
由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。
4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。
$y=-|x|$。
B。
$y=x$。
C。
$y=|x|$。
2014-2015学年河南省洛阳市高三(上)期中数学试卷(理科)
2014-2015学年河南省洛阳市高三(上)期中数学试卷(理科)一、选择题(每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2﹣2x<0},N={x||x|<1}则M∩N=()A.﹣1,0)B.(0,1)C.(1,2)D.(0,2)2.已知(1+)2=a+bi(a,b∈R,i为虚数单位),则a+b=A.﹣4 B.4C.﹣7 D.73.设等差数列{a n}的前n项和为S n,若a6=18﹣a7,则S12=()A.18 B.54 C.72 D.1084.已知双曲线﹣=1的实轴长、虚轴长、焦距依次成等比数列,则其离心率为()A.B.C.D.5.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为()A.[0,]B.[,]C.[,]D.[,] 6.执行如图所示的程序框图,若输出的S是127,则条件①可以为()A.n≤5 B.n≤6 C.n≤7 D.n≤87.已知p:≤2x≤,q:﹣≤x+≤﹣2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知x、y都是区间[0,]内任取的一个实数,则使得y≤sinx的取值的概率是()A.B.C.D.9.的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.4010.若f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),且f()=﹣1则实数m的值等于()A.±1 B.﹣3或1 C.±3 D.﹣1或3 11.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF 的面积为()A.B.C.D.212.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2015,则不等式e x f(x)>e x+2014(其中e为自然对数的底数)的解集为()A.(2014,+∞)B.(﹣∞,0)∪(2014,+∞)C.(﹣∞,0)∪(0,+∞)D.(0,+∞)二、填空题(每小题5分,共20分)13.若等比数列{a n}满足a2+a4=20,a3+a5=40.则a5+a7=_________.14.若实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m=_________.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体的体积为_________.16.函数f(x)=的最大值与最小值之积等于_________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且∠A满足:2cos2A﹣2sinAcosA=﹣1.(Ⅰ)若a=2,c=2,求△ABC的面积;(Ⅱ)求的值.18.(12分)某旅行社为3个旅游团提供甲、乙、丙、丁共4条旅游线路,每个旅游团任选其中一条.(1)求恰有2条线路没有被选择的概率;(2)设选择甲旅行线路的旅游团数为ξ,求ξ的分布列和数学期望.19.(12分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.20.(12分)椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.21.(12分)已知函数f(x)=x2﹣ex3+e x(x﹣1)(其中e为自然对数的底数),记f(x)的导函数为f′(x).(1)求函数y=f(x)的单调区间;(2)求证:当x>0时,不等式f′(x)≥1+lnx恒成立.下面的三个选作题,考生选择一个题作答【选修4—1】几何证明选讲22.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)证明:AE是⊙O的切线;(2)如果AB=2,AE=,求CD.【选修4—4】坐标系参数方程23.已知直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半径为极轴)中,曲线C的极坐标方程为ρ=4cosθ.(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;(2)设直线l与曲线C交于P、Q两点,求|PQ|.【选修4—5】不等式选讲24.(2014•泉州模拟)设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.20.解:(Ⅰ)∵左焦点(﹣c,0)到点P(2,1)的距离为,∴,解得c=1.又,解得a=2,∴b2=a2﹣c2=3.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),由得(3+4k2)x2+8mkx+4(m2﹣3)=0,△=64m2k2﹣16(3+4k2)(m2﹣3)>0,化为3+4k2>m2.∴,.y1y2=(kx1+m)(kx2+m)==.∵以AB为直径的圆过椭圆的右顶点D(2,0),k AD•k BD=﹣1,∴,∴y1y2+x1x2﹣2(x1+x2)+4=0,∴.化为7m2+16mk+4k2=0,解得m1=﹣2k,.,且满足3+4k2﹣m2>0.当m=﹣2k时,l:y=k(x﹣2),直线过定点(2,0)与已知矛盾;当m=﹣时,l:y=k,直线过定点.综上可知,直线l过定点,定点坐标为.21.(1)解:)∵f(x)=x2﹣ex3+e x(x﹣1),∴f′(x)=﹣ex2+x+e x(x﹣1)+e x=x(e x+1﹣ex),令y=e x+1﹣ex,则y′=ex﹣e,y′>0,得x>1,y′<0,得x<1,则x=1取极小,也是最小,则y≥1.即e x+1﹣ex>0恒成立,则g′(x)>0得x>0;g′(x)<0得x<0.故g(x)的增区间为(0,+∞),减区间为(﹣∞,0).(2)证明:当x>0时,1+lnx﹣f′(x)=1+lnx+ex2﹣x﹣e x x,令h(x)=1+lnx+ex2﹣x﹣e x x,h′(x)=+2ex﹣1﹣e x x﹣e x,当x=1时,h′(x)=0,由(1)得,e x﹣ex≥0,当x>1时,h′(x)<0,当0<x<1时,h′(x)>0,故x=1为极大值,也为最大值,且为h(1)=0.故当x>0时,h(x)≤h(1),即有h(x)≤0,故当x>0时,1+lnx﹣f′(x)≤0,即f′(x)≥1+lnx.22.(1)证明:连结OA,在△ADE中,AE⊥CD于点E,∴∠DAE+∠ADE=90°∵DA平分∠BDC.∴∠ADE=∠BDA∵OA=OD∴∠BDA=∠OAD∴∠OAD=∠ADE∴∠DAE+∠OAD=90°即:AE是⊙O的切线(2)在△ADE和△BDA中,∵BD是⊙O的直径∴∠BAD=90°由(1)得:∠DAE=∠ABD又∵∠BAD=∠AED∵AB=2求得:BD=4,AD=2∴∠BDA=∠ADE=∠BDC=60°进一步求得:CD=2故答案为:(1)略(2)CD=223.解:(1)直线l的参数方程为(t为参数),普通方程为y=x+2﹣2;圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x﹣2)2+y2=4;(2)x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.圆心到直线的距离为=1,∴|PQ|=2=2.24.解:(Ⅰ)函数f(x)=+=•+≤•=3,当且仅当=,即x=4时,取等号,故实数M=3.(Ⅱ)关于x的不等式|x﹣1|+|x+2|≤M,即|x﹣1|+|x+2|≤3.由绝对值三角不等式可得|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,∴|x﹣1|+|x+2|=3.根据绝对值的意义可得,当且仅当﹣2≤x≤1时,|x﹣1|+|x+2|=3,故不等式的解集为[﹣2,1].。