第10章 分式 检测题(含答案和解析)

合集下载

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若分式的值为零,则x的值是()A.1B.﹣1C.±1D.22、下列计算正确的是().A. B.C. D.3、若分式的值为0,则x的值是()A.x≠3B.x≠﹣2C.x=﹣2D.x=34、下列运算,正确的是()A. B. C. D.5、对于两个不相等的实数a、b,我们规定符号表示a、b中的较小的值,如,按照这个规定,方程的解为().A. B.2 C. 或2 D.1或6、对于分式方程,下列说法中,一定正确的是()A.只要是分式方程,一定有增根B.分式方程若有增根,增根代入最简公分母中,其值一定为0C.使分式方程中分母为零的值,都是此方程的增根D.分式方程化成整式方程,整式方程的解都是分式方程的解7、计算:-3x2y2÷ =().A.-2xy 2B.- x 2C.- x 3D.- xy 48、若分式有意义,则的取值范围是()A. B. C. D.9、要使分式有意义,则实数x的取值范围是()A.x≠6B.x≠﹣6C.x≥﹣6D.x>﹣610、化简的结果是().A.m+3B.m﹣3C.D.11、若点在反比例函数的图像上,则分式方程的解是()A. B. C. D.12、将, , 通分的过程中,不正确的是( )A.最简公分母是(x-2)(x+3) 2B. =C. =D. =13、计算的结果为()A. B. C. a-2 D. a+214、如果代数式有意义,那么x的取值范围是()A.x≥0且x≠1B.x≠1C.x>0D.x≥015、若代数式中,的取值范围是,则为()A. B.m≠4 C. D.二、填空题(共10题,共计30分)16、在函数y=+(x﹣4)0中,自变量x的取值范围是________.17、当x=________时,分式的值为零.18、分式有意义,则x的取值范围是________.19、已知关于 x 的方程= 2的解是非负数,则 m 的取值范围是________.20、分式,,的最简公分母为________.21、分式方程=4的解是x=________.22、若关于的方程的解为正数,则的取值范围是________.23、若2x+3y=0,则的值是________.24、轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为________.25、在函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.28、一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高匀速行驶,并比原计划提前到达目的地,求前一小时的行驶速度.29、先化简,再求的值,且a、b满足.30、甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?参考答案一、单选题(共15题,共计45分)2、B3、D4、B5、B6、B7、C8、B9、B10、A11、B12、D13、B14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

苏科版八年级数学下《第10章分式》测试题含答案

苏科版八年级数学下《第10章分式》测试题含答案

八年级下第10章 分式 测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m -++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x x x x --+=2(4)(4)4x x xx x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1. (2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b-. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。

八年级数学下册第10章《分式》精选好题(含答案)

八年级数学下册第10章《分式》精选好题(含答案)

第10章《分式》例题精选知识梳理重难点分类解析考点1 分式的概念及性质【考点解读】分式的概念主要内容包括分式的定义、分式有意义的条件、分式的值等;分式的性质包括分式的基本性质、通分和约分.中考中对该知识点要求较低,多以基础题的形式出现.例1 (2018·盐城)要使分式12x -有意义,则x 的取值范围是 . 分析:当分母20x -≠,即2x ≠时,分式12x -有意义. 答案: 2x ≠ 【规律·技法】若分式有意义,则分母不等于零.【反馈练习】1.分式29x -在实数范围内有意义,则x 的取值范围是 . 点拨:当分母不为0时,分式有意义.2.在代数式21331,,,2x xy a x y mπ+++中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 1个点拨:根据分式是分母中含有字母的式子进行判断即可.考点2 分式的运算【考点解读】分式的运算包括分式的加减和分式的乘除,分式的基本性质是解决分式运算问题的关键,在中考中分式的运算多以计算题出现,属于简单题.例2 (2018·泰州)化简: 22169(2)11x x x x x -++-÷+-. 分析:本题考查分式的化简,先算括号内的减法,把除式分子和分母中多项式因式分解,同时把除法变为乘法再约分化简.解答:原式= 222(1)1(1)(1)3(1)(1)1[]11(3)1(3)3x x x x x x x x x x x x x x +-+-++---⋅=⋅=++++++【规律·技法】整式与分式进行运算时,常把整式化为分式形式后再进行通分.【反馈练习】3.化简:11(2)()a a a a ++÷-.点拨:先算括号内加减法,再利用除法法则把除法运算变为乘法运算,并且因式分解分式中复杂的因式最后约分化为最简分式.4. (2018·淮安)先化简,再求值: 212(1)11a a a -÷+-,其中3a =-.点拨:先把括号中的式子通分,再把除法转化为乘法进行化简,最后把a 的值代入化简后的式子计算求值.考点3 分式方程【考点解读】分式方程的解法主要利用转化的数学思想,即把分式方程转化为整式方程,再进行求解,转化过程中可能会出现增根,故在解分式方程时一定要检验.中考中常以简单的计算题出现,遗忘检验是失分的主要原因.例3 (2018·镇江)解方程: 2121x x x =++-. 分析:两边同时乘最简公分母,将分式方程转化为整式方程,然后解答,检验后确定方程的解.解答:两边同时乘(2)(1)x x +-,得(1)2(2)(2)(1)x x x x x -=+++-.去括号,得22242x x x x x -=+++-.移项、合开同类项,得42x =-.系数化为1,得12x =-.检验:当12x =-时,(2)(1)0x x +-≠.故12x =-是原分式方程的解. 【规律·技法】分式方程的解法主要用到转化的数学思想,通过方程两边同乘最简公分母,把分式方程化为整式方程后再进行求解,检验是解分式方程必不可少的步骤.【反馈练习】5.若关于x 的分式方程1244m x x x-=---有增根,则实数m 的值是 . 点拨:先去分母转化为整式方程,利用方程有增根,使分式方程的分母为0的x 的值,代入整式方程即可解决问题.6.解方程: 14555x x x-+=--.点拨:先去分母化为整式方程,再解方程,最后检验方程的根是否是增根.考点4 列分式方程解决问题【考点解读】列分式方程解决问题的关键是要找出问题的等量关系,根据等量关系列出方程从而解决问题,在解方程时要注意进行检验.例4 (2018·徐州)徐州至北京的高铁里程约为700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80 km/h, A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?分析:解题关键是找出解决问题的等量关系列出方程.设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h ,根据速度=路程÷时间得出关于t 的分式方程,解此分式方程并检验即可得出结论.解答:设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h.由题意,得700700801.4t t-=,解得t = 2.5.经检验,t = 2.5是所列方程的解.则1.4t = 3.5.故A 车行驶的时间为3.5h ,B 车行驶的时间为2.5h . 【规律·技法】行程问题的等量关系主要体现在速度、时间和路程的关系,如速度×时间=路程,路程÷时间=速度,路程÷速度=时间,掌握基本的等量关系是解题的关键.【反馈练习】7.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?点拨:本题考查了分式方程的应用,解题的关键是根据题意列出符合等量关系的分式方程并正确求解检验。

初中数学七年级下册-第10章一次方程组练习题答案

初中数学七年级下册-第10章一次方程组练习题答案

第10章 一次方程组检测题参考答案1.D 解析:掌握判断二元一次方程的三个必要条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.A 不符合条件①;B 不符合条件②;C 不符合条件③.故选D.2.B 解析:二元一次方程组有所以共3个.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.B 解析:因为所以原方程组可变为解这个二元一次方程组,可得5. D 解析:设一种耳机的进价为x 元,另一种耳机的进价为y 元,则x +60℅x =64,解得x =40,y-20℅y =64,解得y =80.所以(64+64)-(40+80)=8(元),所以这家商店赚8元.6.A 解析:题目中有两个相等关系:买甲种水果花的钱+买乙种水果花的钱=28元,买的甲种水果的质量=买的乙种水果的质量+2千克.由相等关系可列两个方程:4x +6y =28,x =y +2,故选项A 正确.7. A 解析:设原长方形的长为a 、宽为b ,正方形②的边长为x ,正方形③的边长为y .根据题意得,,x y a x x y b x +=-⎧⎨-=-⎩解得,4,2a b x a b y +⎧=⎪⎪⎨-⎪=⎪⎩ ∴ 长方形①的周长为2(a -x +b -x )=2(a+b -2x )=2=a+b ;正方形②的周长为4x =4×4a b +=a+b ;正方形③的周长为4y =4×2a b -=2(a -b ).∴ 只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为①②.8.D 解析:将代入方程组可得将①式两边同乘3可得,③ 将②式两边同乘-2可得将③④两边分别相加,可得,整理可得9. B 解析:根据图形寻求几何关系,列出方程组.10. A 11.424332xy -- 12.2 解析:设租用每辆8个座位的车x 辆,每辆4个座位的车y 辆,根据题意,得8x +4y =20,整理得,2x +y =5.∵ x ,y 都是正整数,∴ x =1时,y =3,x =2时,y =1.所以共有2种租车方案.13. 解析:因为是二元一次方程,所以,,解得 ,.14.9 4 解析:设甲数是,乙数是,依题意可列方程组解方程组可得所以甲数是9,乙数是4.15.-1 解析:由二元一次方程组23,21x y k x y +=+=-⎧⎨⎩的解互为相反数,所以x +y =0,所以y =-x ,所以原方程组变形为23,21,x x k x x -=-=-⎧⎨⎩所以,1,x k x -=-=-⎧⎨⎩所以k =-1.16.1 4 解析:将代入方程组中进行求解.17.150 解析:由题意可得甲、乙、丙商品各4件共需600元,则各一件共需150元.18.1 -2 解析:因为看错了,所以是正确的,所以求出来的结果符合,又正确结果,所以可列关于的二元一次方程组解得再将 代入中,可求得19.分析:解二元一次方程组的主要方法有:加减消元法和代入法.解:(1)错误!未找到引用源。

八年级物理下册第10章《浮力》检测题(含答案)

八年级物理下册第10章《浮力》检测题(含答案)

人教版八年级物理下册第10章《浮力》检测题一.选择题(共17小题)1.在水平桌面上有一个盛有水的容器,木块用细线系住没入水中,如图甲所示.将细线剪断,木块最终漂浮在水面上,且有的体积露出水面,如图乙所示.下列说法正确的是()A.甲、乙两图中,木块受到水的浮力之比是5:3B.甲、乙两图中,水对容器底部的压强大小相等C.甲图中细线对木块的拉力与木块受到的浮力之比是2:5D.甲图中容器对水平桌面的压力小于乙图中容器对水平桌面的压力2.6月1日,“东方之星”号邮轮在强暴雨和龙卷风的天气中,倒伏沉没在一处水深15米的长江里,社会各界全力实施了救援,对于事件的一些场面,下列说法中正确的是()A.当起吊船将沉船吊起不断浮出水面的过程中,沉船受到水的浮力不断减少B.用两艘同为500吨的起吊船同时起吊船头与船尾时,船尾露出水面的速度较慢(如图所示),说明当时沉船的重心靠前C.船内受困人员通过敲击船体发出求救声,敲击发出的声是超声波D.若江水的密度为1.0×103kg/m3,则沉船处江水对江底的压强为1.5×104Pa3.图中的实验操作中,可探究“浮力的大小与液体密度有关”的操作是()A.①②③B.①②④C.②③④D.①③④4.如图所示,将一挂在弹簧测力计下的圆柱体金属块缓慢浸入水中(水足够深),在圆柱体接触容器底之前,图中能正确反映弹簧测力计示数F和圆柱体下表面到水面的距离h的关系的图象是()A.B.C.D.5.在盛满不同液体的相同的溢水杯中,放入两个完全相同的小球,如图所示.当小球静止时,甲、乙两杯中溢出液体的重力分别为0.5N和0.4N,则下列说法正确的是:(g=10N/kg)()A.甲球受到浮力,乙球不受浮力B.小球的质量为40gC.甲杯液体的密度大于乙杯液体的密度D.乙球受到的浮力小于0.4N6.如图所示,体积相等的铁块甲、乙、丙浸在同一液体里,丙的底部紧贴容器底,则()A.甲、乙、丙受到的浮力一样大B.乙受到的浮力最大C.丙受到的浮力最大D.甲、乙受到的浮力一样大,丙不受浮力7.小明想测某种金属块的密度,于是将金属块浸没在水中,如图甲所示,在将金属块缓缓从水中竖直提出来的过程中,画出了测力计拉力F随提起高度h变化的图象,如图乙所示.则该金属块的密度约为()A.2.7×103kg/m3B.3.1×103kg/m3C.3.5×103kg/m3D.4.4×103kg/m38.如图是某同学用弹簧测力计测量铁块没入水中浮力的图示.当他缓慢地提着弹簧测力计将铁块下表面由位置A移至水面B的过程中,弹簧测力计示数的变化情况是()A.逐渐变大B.逐渐变小C.先变大后变小D.先不变后变大9.将一木块分别浮在甲、乙两种不同的液体中,木块均有一部分露出液面,如果甲液体的密度大于乙液体的密度,则()A.木块在甲液体中受到的浮力大B.木块在乙液体中受到的浮力大C.木块在甲液体中露出液面的体积较大D.木块在乙液体中露出液面的体积较大10.如图所示,是甲与乙质量与体积关系的图象,结合图象所给信息,下列说法不正确的是()A.如果甲放入水中后悬浮,那么乙一定在水中漂浮B.如果乙放入水中后悬浮,那么甲乙连在一起在水中一定沉底C.如果甲乙质量相同,那么甲乙在水中的浮力一定相同D.如果甲乙体积相同,那么甲乙在水中的浮力不一定相同11.如图,将同一密度计分别放入盛有甲、乙两种液体的烧杯中,它竖直立在液体中,如果密度计受到的浮力分别为F甲、F乙,液体的密度分别为ρ甲、ρ乙.则()A.F甲=F乙ρ甲>ρ乙B.F甲=F乙ρ甲<ρ乙C.F甲<F乙ρ甲<ρ乙D. F甲<F乙ρ甲>ρ乙12.如图甲所示,烧杯里盛有6℃的水,小球在水中恰好悬浮.经研究发现,水的密度随温度的变化如图乙所示.现在烧杯四周放上大量的冰块,在烧杯内水的温度下降到0℃的过程中,假设小球的体积始终不变,关于小球的浮沉情况判断正确的是()A.先下沉然后上浮B.浮力变小,一直下沉C.先上浮然后下沉D.浮力变大,一直上浮13.如图所示,把一小球先后放入盛有不同液体的甲、乙两个容器中,在甲容器中小球漂浮在液面上,在乙容器中小球加速下沉到容器底部.已知:小球在甲容器中受到的浮力为F1,小球在乙容器中受到的浮力为F2,甲容器中的液体密度为ρ1,乙容器中的液体密度为ρ2,则下列判断正确的是()A.F1>F2B.F1<F2C.ρ1>ρ2D.ρ1<ρ214.测量液体密度的仪器叫密度计,将其插入被测液体中,待静止后直接读取液面处的刻度值(图甲).图乙和图丙的容器中是同一个自制的简易密度计,它是在木棒的一端缠绕一些铜丝做成的,将其放入盛有不同液体的两个烧杯中,它会竖直立在液体中,由图中现象可以判断()A.密度计在乙烧杯液体中受到的浮力较大B.密度计在丙烧杯液体中受到的浮力较大C.乙烧杯中液体的密度较大D.丙烧杯中液体的密度较大15.密度为0.8×103kg/m3的实心木块,轻放于足够深的水中,木块静止后,浸入水中的体积与木块体积之比为()A.4:5 B.4:1 C.1:4 D.1:116.利用下列哪组器材不能区分如图所示的两杯没有标签的水和盐水()A. B.C.D.17.如图所示,同一物体浸在甲液体中悬浮(图a),浸在乙液体中漂浮(图b).比较物体在两种液体中所受浮力F甲和F乙的大小,及两种液体的密度ρ甲和ρ乙的大小,可以确定正确的是()A.F甲=F乙,ρ甲=ρ乙B.F甲=F乙,ρ甲<ρ乙C.F甲<F乙,ρ甲=ρ乙D.F甲>F乙,ρ甲>ρ乙二.填空题(共10小题)18.如图所示,在跳水运动员身体全部入水后继续下沉过程中,所受的浮力,受到水的压强.(均选填“增大”、“减小”或“不变”)第19题第18题第20题19.如图所示,将一根试管由空气慢慢压入水中,试管越往下压,水对试管内空气的越大,试管中空气的体积会(选填“变大”、“变小”或“不变”).20.将一小物块A轻轻地放入盛满水的大烧杯中,A静止后,有72g的水溢出;再将其轻轻放入盛满酒精的大烧杯中,A静止后,有64g的酒精溢出.则A在水中静止时受到的浮力为N,A的体积是cm3,A的密度是g/cm3.(酒精的密度是0.8×103kg/m3)21.体积均为200cm3的木块和合金块,放入水中静止时的情况如图所示,已知木块重为1.8N,合金块重为6N,则木块受到的浮力为N,合金块受到的浮力为N.22.我国第五代隐形战机﹣歼20已研制并试飞成功,速度可达声速的2.35倍.(1)若以680m/s的速度飞行,10秒内可飞行m;飞行时,以为参照物,飞行员是静止的;(2)机翼的横截面设计成如图所示的形状,这是为了利用流体压强的特点给飞机提供升力,使飞机升空的力施力物体是.(3)歼20飞机具有一定的隐身功能,能够躲避雷达的“眼神”,这主要是由于飞机的机身对(电磁波、超声波)有较强的吸收作用.(4)飞机上的着地轮一般都装有如图所示的搭地线,这是为了防止因摩擦起电现象而造成危险,还有些飞机不装搭地线,而是采用了一种特殊的橡胶轮胎,这种橡胶一定是(选填导体、绝缘体).23.如图呈现的是体积相同、未打开的普通可乐和无糖可乐浸入水中时的浮沉状况,则质量较大的是,受到浮力较大的是.24.如图,一重为0.5N的鸡蛋沉在水底,向水中加入食盐并搅拌,鸡蛋仍沉在水底,此过程中鸡蛋受到的浮力(选填“变大”、“变小”或“不变”);继续加入食盐并搅拌,鸡蛋上浮,最终静止时排开盐水的重力0.5N(选填“>”、“<”或“=”).25.如图所示,将重为5N的木块放入烧杯中,静止时木块所受浮力的大小为N,放入木块后,烧杯底部所受水的压强比原来(填“变大”、“变小”或“不变”).26.边长为10cm的正立方体木块,漂浮在水面上时,有五分之二的体积露出水面,如图甲所示.将木块截去一部分后,再用少许粘合剂(其质量和体积忽略不计)固定上与截去部分体积相同的合金材料后,投入某种液体中仍漂浮,如图乙所示,此时液体对它竖直向上的压强为1×103 Pa,ρ合金=2.6×103 kg/m3,则合金材料的质量是kg.(g=10N/kg)27.如图所示,乒乓球从水里上浮直至漂浮在水面上.乒乓球在A位置时受到的浮力为F A,在B位置时受到的浮力为F B,则它们的大小关系是F A F B(选填“大于”、“等于”、“小于”).已知乒乓球最终漂浮在水面时排开水的体积为3cm3,则乒乓球的质量是g.第23题第24题第25题三.解答题(共3小题)28.底面积为S0的圆柱形薄壁容器内装有密度为ρ0的液体,横截面积为S1的圆柱形木块由一段非弹性细线与容器底部相连,且部分浸入液中,此时细线刚好伸直,如图所示.已知细线所能承受的最大拉力为T,现往容器中再缓慢注入密度为ρ0的液体,直到细线刚好被拉断为止.请解答下列问题;(1)画出细线刚好伸直时,木块在竖直方向上的受力示意图;(2)导出细线未拉断前,细线对木块拉力F与注入的液体质量m之间的关系式;(3)求出细线刚好被拉断时与细线断后容器中液面恢复稳定时,容器底部所受液体压强的变化量.29.如图甲所示,水平桌面上放置底面积为100cm2、质量为500g的圆筒,筒内装有20cm 深的某液体.弹簧测力计下悬挂底面积60cm2、高为10cm的圆柱体,从液面逐渐浸入直至完全浸没,弹簧测力计示数F随圆柱体浸入液体的深度h的变化关系如图乙所示:(可以忽略圆筒的厚度,过程中液体始终没有从筒中溢出),g取10N/kg,求:(1)圆柱体完全浸没时受到液体的浮力是多少?(2)筒内液体密度是多少?(3)当圆柱体完全浸没时,圆筒对桌面的压强是多少?30.某同学想测量某种液体的密度,设计了如图所示的实验,已知木块的重力为1.2N,体积为200cm3,当木块静止时弹簧测力计的示数为2N,g=10N/kg,求:(1)木块受到的浮力是多少?(2)液体的密度是多少?(3)剪断细绳,木块稳定时处于什么状态,所受浮力又是多大?湖南省澧县张公庙中学2015-2016学年人教版八年级物理下册第10章《浮力》检测题参考答案:一.选择题(共17小题)1.AC 2.A 3.D 4.A 5.C 6.D 7.C 8.D 9.C 10.C 11.B 12.C13.AC 14.D 15.A 16.B 17.B二.填空题(共10小题)18.不变,增大.(均选填“增大”、“减小”或“不变”)19.压强变小(选填“变大”、“变小”或“不变”).20.0.72N,80cm3,0.9g/cm3.(酒精的密度是0.8×103kg/m3)21. 1.8N,2N.22.(1)6800m;飞机(2)空气.(3)电磁波(4)导体(选填导体、绝缘体).23.普通可乐,普通可乐.24.变大(选填“变大”、“变小”或“不变”)=0.5N(选填“>”、“<”或“=”).25.5N,变大(填“变大”、“变小”或“不变”).26.0.52kg.(g=10N/kg)27.等于(选填“大于”、“等于”、“小于”).3g.三.解答题(共3小题)28.解:(1)细线刚好伸直时,木块受到重力和浮力作用,二力平衡,大小相等,力的作用点画在重心上,如图所示:(2)注入液体的质量为m时,细线对木块的拉力为F,液面上升的高度为△h,细线对木块的拉力F等于木块增大的浮力,则有:F=△F浮=ρ0gV排=ρ0gS1△h,①由ρ=得,容器内注入的液体质量:m=ρ0V液=ρ0(S0﹣S1)△h,②将①式和②式联立,解得:F=m;(3)当细线刚好被拉断时,F浮=G+T,液面恢复稳定后,F浮′=G,即:F浮﹣F浮′=T,ρ0g(V排﹣V排′)=Tρ0g△h′S0=T△p=.答:(1)见上图;(2)导出细线未拉断前,细线对木块拉力F与注入的液体质量m之间的关系式为:F=m;(3)求出细线刚好被拉断时与细线断后容器中液面恢复稳定时,容器底部所受液体压强的变化量为△p=.总结:本题考查了阿基米德原理、密度公式、压强公式、力的合成知识的综合运用,对木块正确的受力分析,灵活运用阿基米德原理和液体压强公式进行转化是解题的关键,属于难题.29.解:(1)由图象知,当h=0时,此时测力计的示数等于圆柱体的重力,所以G=18N;当h≥10cm时,测力计的示数不变,说明此时浮力不变,圆柱体完全浸没,此时F=13.2N;所以F浮=G﹣F=18N﹣13.2N=4.8N;(2)物体排开液体的体积V排=V物=60×10×10﹣6m3=6×10﹣4m3由F浮=ρ液gV排得:ρ液===0.8×103kg/m3(3)液体的质量m液=ρ液V液=0.8×103kg/m3×100×20×10﹣6m3=1.6kg将圆柱体、圆筒、液体看做一个整体,则其对地面的压力F′=(m液+m筒)g+G物﹣F拉=(1.6kg+0.5kg)×10N/kg+18N﹣13.2N=25.8Np==2.58×103Pa.答:(1)圆柱体浸没在液体中所受浮力是4.8N;(2)筒内液体的密度是0.8×103kg/m3;(3)圆柱体浸没时,圆筒对桌面的压强是2.58×103Pa.总结:此题是一道有关浮力知识的计算题,同时涉及到了有关固体压强和密度的计算,能够通过图象确定物体的重力和浸没时的浮力是解决此题的关键,(3)问中关键能分析出压力大小,这是此题的难点.30.解:(1)木块受到的浮力为F浮=F+G=2N+1.2N=3.2N;(2)因为F浮=ρ液gV排,所以液体的密度为ρ液===1.6×103kg/m3;(3)因为G=mg,所以木块的质量为m===0.12kg,木块的密度为ρ===0.6×103kg/m3,因为ρ<ρ液,所以木块最终静止在液面上,受到的浮力为F浮′=G=1.2N.答:(1)木块受到的浮力是3.2N;(2)液体的密度是1.6×103kg/m3;(3)剪断细绳,木块稳定时处于静止状态,所受浮力是1.2N.总结:此题考查的是阿基米德原理和物体浮沉条件的应用,熟悉基本规律,对木块进行正确的受力方向,是解答此题的关键.11。

2022年人教版初中数学七年级下册第十章数据的收集、整理与描述综合测评试题(含答案解析)

2022年人教版初中数学七年级下册第十章数据的收集、整理与描述综合测评试题(含答案解析)

初中数学七年级下册第十章数据的收集、整理与描述综合测评(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.2 D.302、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A .一,二B .二,一C .一,一D .二,二3、某运动品牌经销商对鞋码大小进行抽样调查,经销商最感兴趣的数据是( )A .中位数B .平均数C .众数D .方差4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<5、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A .调查方式是普查B .该校只是360个家长持反对态度C .样本是360个家长D .该校约有90%的家长持反对态度6、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少7、下列调查中,最适合采用全面调查的是()A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高C.检测一批手持测温仪的使用寿命D.端午节期间市场上粽子质量8、下列调查适合作抽样调查的是()A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查9、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是()A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.410、如下条形图、扇形图分别是甲、乙两户居民家庭全年支出费用的统计图.根据统计图,对两户“教育”支出占全年总支出的百分比所作出的判断中,正确的是()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定哪一户多二、填空题(5小题,每小题4分,共计20分)1、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_____.2、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.3、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.4、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.5、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场推出的C类礼盒有盒;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)请将条形统计图补充完整;(4)你觉得哪一类礼盒销售最快,请说明理由.3、一个面粉批发商统计了前48个星期的销售量(单位:t):请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.4、学校为了了解全校1600名学生对“初中学生带手机上学”现象的看法,在全校随机抽取了若干名学生进行问卷调查.问卷给出了四种看法供学生选择,每人只能选一种,且不能不选.将调查结果整理后,绘制成如图①、图②所示的条形统计图与扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图和扇形统计图;(3)估计全校有多少名学生对“初中学生带手机上学”现象持“不赞同”的看法.5、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?---------参考答案-----------一、单选题1、B【解析】【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:30100=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.2、A【解析】【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.故选A.【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.3、C【解析】【分析】经销商最感兴趣的是这组鞋号中销售量最大的尺码,即这组鞋号的众数.【详解】解:由于众数是数据中出现次数最多的数.经销商最感兴趣的是这组鞋号中销售量最大的尺码,故应关注众数的大小.故选:C.【点睛】本题主要考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.4、D【解析】【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【解析】【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.6、B【解析】【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7、A【解析】【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为2465320++++=.则频率为80.420=. 故选D .【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.10、B【解析】【分析】根据条形统计图求得教育支出的具体数,进而求得甲居民家庭教育支出所占百分比,结合扇形统计图进行比较即可【详解】1200100%20%1200200012001600⨯=+++, 根据扇形统计图可知乙居民家庭教育支出所占百分比为25%,∴乙比甲多,故选B .【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题1、100【解析】【分析】直接利用样本容量的定义分析得出答案.解:∵从中抽取100份试卷进行分析,∴样本容量是:100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本.2、 9万名考生的数学成绩每名考生的数学成绩被抽出的2000名考生的数学成绩2000【解析】【分析】根据抽样中总体、个体、样本以及样本容量的概念解答即可.【详解】根据题意,在这个抽样中,总体是9万名考生的数学成绩,个体是每名考生的数学成绩,样本是被抽出的2000名考生的数学成绩,样本容量是2000.故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.【点睛】本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.3、乙【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.4、 60 18 0.3【解析】【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5、全面调查【解析】【分析】根据全面调查和抽样调查的概念判断即可.【详解】解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.三、解答题1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)200;(2)72;(3)见解析;(4)A类礼盒销售最快,见解析.【分析】(1)求出C类礼盒所占的百分比即可计算其数量;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)求出销售的C类礼盒的数量,即可补全条形统计图;(4)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×(1﹣35%﹣25%﹣20%)=200(盒),故答案为:200;(2)360°×(1﹣35%﹣25%﹣20%)=72°,故答案为:72;(3)1000×50%﹣168﹣80﹣150=102(盒),补全条形统计图如图所示:(4)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,理解统计图中各个数量之间的关系是解决问题的关键.3、见解析【分析】先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;【详解】解:计算最大值与最小值的差:数据的最小值是18.5t,最大值是24.4t,24.418.5 5.9-=(t),决定组距与组数:取组距为1t,则分成6组,设每星期销售面粉x t,则可分为:x≤≤,20.521.5≤≤,18.519.5xx≤≤,19.520.5x≤≤≤≤,23.524.5≤≤,22.523.5x21.522.5x频数分布表:正正频数分布直方图:∵这组数据的中位数在21.522.5≤≤,x∴这批面粉批发商每星期进22吨面粉比较合适.【点睛】本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.4、(1)200名;(2)见解析;(3)720名【分析】(1)根据对“初中学生带手机上学”现象赞同的学生数除以所占的百分比即可求出调查的学生总数;(2)根据学生总数求出“无所谓”的学生数,补全条形统计图,再根据“无所谓”,“赞同”,“不赞同”的百分比求出“很赞同”的百分比,补全扇形统计图即可;(3)利用“不赞同”学生数所占的百分比,乘以1600即可得到结果;【详解】解:()1由题意可得,÷=名),这次调查的学生有:5025%200(即在这次调查中,一共抽取了200名学生;()2无所谓的学生有:20020509040(---=名),很赞同所占的百分比为:120%25%45%10%---=,补全的条形统计图和扇形统计图如图所示,()3160045%720(⨯=名),【点睛】本题考查了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.5、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

八年级数学下册第10章《分式》精选好题(含答案)

八年级数学下册第10章《分式》精选好题(含答案)

第10章《分式》例题精选知识梳理重难点分类解析考点1 分式的概念及性质【考点解读】分式的概念主要内容包括分式的定义、分式有意义的条件、分式的值等;分式的性质包括分式的基本性质、通分和约分.中考中对该知识点要求较低,多以基础题的形式出现.例1 (2018·盐城)要使分式12x -有意义,则x 的取值范围是 . 分析:当分母20x -≠,即2x ≠时,分式12x -有意义. 答案: 2x ≠ 【规律·技法】若分式有意义,则分母不等于零.【反馈练习】1.分式29x -在实数范围内有意义,则x 的取值范围是 . 点拨:当分母不为0时,分式有意义.2.在代数式21331,,,2x xy a x y mπ+++中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 1个点拨:根据分式是分母中含有字母的式子进行判断即可.考点2 分式的运算【考点解读】分式的运算包括分式的加减和分式的乘除,分式的基本性质是解决分式运算问题的关键,在中考中分式的运算多以计算题出现,属于简单题.例2 (2018·泰州)化简: 22169(2)11x x x x x -++-÷+-. 分析:本题考查分式的化简,先算括号内的减法,把除式分子和分母中多项式因式分解,同时把除法变为乘法再约分化简.解答:原式= 222(1)1(1)(1)3(1)(1)1[]11(3)1(3)3x x x x x x x x x x x x x x +-+-++---⋅=⋅=++++++【规律·技法】整式与分式进行运算时,常把整式化为分式形式后再进行通分.【反馈练习】3.化简:11(2)()a a a a ++÷-.点拨:先算括号内加减法,再利用除法法则把除法运算变为乘法运算,并且因式分解分式中复杂的因式最后约分化为最简分式.4. (2018·淮安)先化简,再求值: 212(1)11a a a -÷+-,其中3a =-.点拨:先把括号中的式子通分,再把除法转化为乘法进行化简,最后把a 的值代入化简后的式子计算求值.考点3 分式方程【考点解读】分式方程的解法主要利用转化的数学思想,即把分式方程转化为整式方程,再进行求解,转化过程中可能会出现增根,故在解分式方程时一定要检验.中考中常以简单的计算题出现,遗忘检验是失分的主要原因.例3 (2018·镇江)解方程: 2121x x x =++-. 分析:两边同时乘最简公分母,将分式方程转化为整式方程,然后解答,检验后确定方程的解.解答:两边同时乘(2)(1)x x +-,得(1)2(2)(2)(1)x x x x x -=+++-.去括号,得22242x x x x x -=+++-.移项、合开同类项,得42x =-.系数化为1,得12x =-.检验:当12x =-时,(2)(1)0x x +-≠.故12x =-是原分式方程的解. 【规律·技法】分式方程的解法主要用到转化的数学思想,通过方程两边同乘最简公分母,把分式方程化为整式方程后再进行求解,检验是解分式方程必不可少的步骤.【反馈练习】5.若关于x 的分式方程1244m x x x-=---有增根,则实数m 的值是 . 点拨:先去分母转化为整式方程,利用方程有增根,使分式方程的分母为0的x 的值,代入整式方程即可解决问题.6.解方程: 14555x x x-+=--.点拨:先去分母化为整式方程,再解方程,最后检验方程的根是否是增根.考点4 列分式方程解决问题【考点解读】列分式方程解决问题的关键是要找出问题的等量关系,根据等量关系列出方程从而解决问题,在解方程时要注意进行检验.例4 (2018·徐州)徐州至北京的高铁里程约为700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80 km/h, A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?分析:解题关键是找出解决问题的等量关系列出方程.设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h ,根据速度=路程÷时间得出关于t 的分式方程,解此分式方程并检验即可得出结论.解答:设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h.由题意,得700700801.4t t-=,解得t = 2.5.经检验,t = 2.5是所列方程的解.则1.4t = 3.5.故A 车行驶的时间为3.5h ,B 车行驶的时间为2.5h . 【规律·技法】行程问题的等量关系主要体现在速度、时间和路程的关系,如速度×时间=路程,路程÷时间=速度,路程÷速度=时间,掌握基本的等量关系是解题的关键.【反馈练习】7.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?点拨:本题考查了分式方程的应用,解题的关键是根据题意列出符合等量关系的分式方程并正确求解检验。

2019-2020学年九年级物理 第10章 机械能、内能及其转化 检测题(北师大版 解析版)

2019-2020学年九年级物理 第10章 机械能、内能及其转化 检测题(北师大版 解析版)

第十章机械能、内能及其转化检测题一.选择题1.如图所示,钩码A和B在定滑轮的两边处于静止(不计摩擦、绳重和空气阻力),用手指向上轻弹一下钩码底部,钩码A离开手指后到与定滑轮接触前,你认为下列说法正确的是()A.钩码A在上升过程中动能增大B.钩码A在上升过程中机械能增加C.钩码B在下降过程中机械能增加D.钩码B在下降过程中动能增大2.今年4月20日,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功发射了第44颗北斗导航卫星。

如图所示。

这颗北斗导航卫星在随火箭加速升空过程中()A.重力势能增大,动能不变B.重力势能增大,动能增大C.重力势能不变,机械能增大D.重力势能增大,机械能不变3.下列关于热现象说法正确的是()A.搓手可以升温是通过做功改变内能B.水变成水蒸气需要放热C.糖在热水中扩散快,是因为糖分子容易扩散D.霜的形成是凝固现象4.下列实例中,属于做功改变物体内能的是()A.子弹击中一块木板,温度升高B.发热时用冷毛巾给头部降温C.倒入冷饮的杯子温度降低D.冬天用热水袋取暖5.下表中有几种物质的比热容,小智同学根据提供的数据得出了四个结论,其中正确的是()A.一杯水比一桶煤油的比热容小B.液体的比热容一定比固体的比热容大C.比热容是物质自身的性质之一,只和物质的种类有关D.水吸收或放出热量的本领较强,常用作冷却剂6.关于内能和比热容的知识,下列说法正确的是()A.阳光下沙滩升温比海水快是因为沙子的吸热本领比海水强B.温度低于0℃的物体不具有内能C.做功和热传递都可以改变物体的内能D.物体内能增加,一定是从外界吸收了热量7.对于下列图片中所描述的科学知识,分析正确的是()A.图中软木塞飞出时,管内水蒸气的内能增加B.图中冰山不具有内能C.图中活塞向上运动说明该冲程是汽油机的压缩冲程D.图中两个压紧的铅块能吊起钩码,主要是因为分子间存在引力8.下列有关热机的说法正确的是()A.内燃机的冷却液需要用比热容较小的物质B.内燃机除做功程冲程以外的三个冲程都是靠飞轮的动能来完成的C.汽油机消耗的汽油可循环使用,是取之不尽的能源D.热机的压缩冲程是将内能转化为机械能的过程9.下列事例中,关于能量转化说法正确的是()A.手机充电过程是化学能转化为电能B.发电机发电过程是电能转化为机械能C.搓手取暖过程是机械能转化为内能D.汽车的发动机工作过程是机械能转化为电能10.保护环境,人人有责。

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分 式综合检测(满分100分,限时60分钟)一、选择题(本题共8题,每题3分,共24分)1.下列式子中,是分式的为( )A.12―a B.xπ―3 C.-x3 D.x2+y2.下列判断错误的是( )A.当a≠0时,分式2a 有意义B.当a=2时,分式3a ―62a +1的值为0C.当a>2时,分式a ―2a 2的值为正数D.当a=-2时,分式a +2a 2―4的值为03.(2022江苏扬州广陵期中)把分式x 2x ―3y 中的x 和y 都扩大为原来的3倍,则分式的值( )A.不变  B.扩大为原来的3倍C.缩小为原来的13 D.扩大为原来的9倍4.(2022江苏无锡月考)若式子x 2+1x ―1 2xx ―1的运算结果为x-1,则在“ ”中添加的运算符号为( )A.+B.-C.×D.÷5.(2022江苏泰州月考)下列运算正确的是( )A.1a +1b =2a +b B.―a +ba ―b =-1C.a÷b·1b =a D.ab =a ―1b ―16.(2021四川成都中考)分式方程2―x x ―3+13―x=1的解为( )A.x=2B.x=-2C.x=1D.x=-17.(2020黑龙江齐齐哈尔中考)若关于x 的分式方程3xx ―2=m2―x +5的解为正数,则m 的取值范围为( )A.m<-10B.m≤-10C.m≥-10且m≠-6D.m>-10且m≠-68.(2022山东泰安中考)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合作2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定时间为x 天,下面所列方程中错误的是( )A.2x +xx +3=1B.2x=3x +3+×2+x ―2x +3=1D.1x +x x +3=1二、填空题(每题3分,共24分)9.(2022江苏南京鼓楼期中)请你写出一个值恒为正数的分式: .10.(2022江苏南京三十九中期中)分式2xx ―2和3x 2―2x 的最简公分母是 . 11.(2022浙江温州中考)计算:x 2+xyxy+xy ―x 2xy = .12.若不改变分式的值,使分子与分母的最高次项的符号为正,则―1―2x ―x 2―x 2+1= . 13.(2022四川内江中考)对于非零实数a,b,规定a￿b=1a―1b,若(2x-1)￿2=1,则x 的值为 .14.(2021浙江宁波镇海期末)已知1x ―1y=2,则―x+xy+y2x+7xy―2y= .15.(2022黑龙江齐齐哈尔中考)若关于x的分式方程1x―2+2x+2=x+2mx2―4的解大于1,则m的取值范围是 .16.(2022江苏盐城月考)已知ab=1,且a≠b.若P=aa+1+bb+1,Q=1a+1+1b+1,则P Q(填“>”“<”“=”“≤”或“≥”).三、解答题(共52分)17.(10分)解分式方程:(1)(2022江苏苏州中考) xx+1+3x=1;(2)(2021江苏连云港中考)x+1x―1―4x2―1=1.18.(2022江苏江阴期中)(10分)先化简―÷a2+aa2―2a+1,再从-1,0,1,2四个数中选一个恰当的数作为a的值代入求值.19.【新素材·青春仪式】(2022江苏扬州中考)(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?20.(2021四川广安中考)(10分)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1 200元购进甲种水果的质量与用1 500元购进乙种水果的质量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的质量不低于乙种水果质量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?21.(12分)阅读下列材料:方程x+1x=2+12有两个解,它们是x 1=2,x 2=12;关于x 的方程:x+1x =c +1c 有两个解,它们是x 1=c,x 2=1c ;x-1x=c ―x +―1x=c +x 1=c,x 2=-1c ;x+2x =c +2c 的解是x 1=c,x 2=2c ;x+3x =c +3c 的解是x 1=c,x 2=3c ;……(1)请观察上述方程与解的特征,比较关于x 的方程x+m x=c +mc (m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)请利用上题的结论解关于x 的方程:x+2x ―1=a +2a ―1.答案全解全析1.A A.12―a的分母中含有字母,是分式,符合题意;B、C不是分式,不符合题意;D选项不符合AB的形式,不是分式.故选A.2.D 当a=-2时,a2-4=0,分式a+2a2―4无意义,所以D选项错误,符合题意.故选D.3.B 将x,y扩大为原来的3倍,即将x,y分别用3x,3y代替,有(3x)23x―3×3y=3x2x―3y,∴分式的值扩大为原来的3倍,故选B.4.B ∵x2+1x―1―2xx―1=x2+1―2xx―1=(x―1)2x―1=x-1,∴在“ ”中添加的运算符号为-.故选B.5.B A.1a +1b=a+bab,不符合题意;B正确;C.a÷b·1b =a·1b·1b=a b2,不符合题意;D.运算错误,不符合题意.故选B.6.A 2―xx―3―1x―3=1,2-x-1=x-3,解得x=2,检验:当x=2时,x-3=2-3=-1≠0,∴x=2是分式方程的解,故选A.7.D 去分母得3x=-m+5(x-2),解得x=m+102,∵方程的解为正数,∴m+102>0且m+102-2≠0,解得m>-10且m≠-6.故选D.8.D+×2+x―2x+3=1,整理得2x +xx+3=1或2x=1―xx+3或2x=3x+3.∴A、B、C选项均正确,故选D.9.答案不唯一.如1x2+1解析 此题是一个开放性试题,答案不唯一.10.x(x-2)解析 第一个分式的分母为x-2,第二个分式的分母分解因式为x(x-2),∴最简公分母是x(x-2).11.2解析 x 2+xyxy +xy ―x 2xy=2xy xy =2.12.x 2+2x +1x 2―1解析 原式=―(1+2x +x 2)―(x 2―1)=x 2+2x +1x 2―1.13.56解析 由题意得12x ―1―12=1,等式两边同时乘2(2x-1)得2-2x+1=2(2x-1),解得x=56,经检验,x=56是原方程的根,∴x=56.14.1解析 ∵1x―1y =2,∴y ―x xy =2,∴y-x=2xy,x-y=-2xy,∴原式=y ―x +xy2(x ―y )+7xy=2xy +xy ―4xy +7xy=3xy 3xy =1.15.m>0且m≠1解析 方程两边同时乘(x+2)(x-2)得x+2+2(x-2)=x+2m,整理得2x=2m+2,解得x=m+1,∵分式方程的解大于1,∴m+1>1,且m+1≠2,m+1≠-2,解得m>0,且m≠1,∴m 的取值范围是m>0且m≠1.16.=解析 P-Q=aa +1+bb +1―+=ab +a +ab +b ―(a +b +2)(a +1)(b +1)=2ab ―2(a +1)(b +1).∵ab=1,且a≠b,∴2ab-2=0,∴P-Q=0,∴P=Q.17.解析 (1)方程两边同乘x(x+1),得x 2+3(x+1)=x(x+1),解得x=-32.经检验,x=-32是原方程的解.(2)去分母得(x+1)2-4=x 2-1,整理得2x=2,解得x=1,经检验,x=1是分式方程的增根,故此方程无解.18.解析 ―÷a 2+a a 2―2a +1=2a ―(a ―1)a (a ―1)÷a (a +1)(a ―1)2=a +1a (a ―1)×(a ―1)2a (a +1)=a ―1a 2,因为a≠1、-1、0,所以a 只能取2,所以原式=14.19.解析 设每个小组有学生x 名,根据题意,得3603x―3604x=3,解这个方程,得x=10,经检验,x=10是原方程的根.答:每个小组有学生10名.20.解析 (1)由题意可知1 200x=1 500x +4,解得x=16,经检验,x=16是原方程的解.(2)设购进甲种水果m千克,利润为y元,则购进乙种水果(100-m)千克,由题意可知y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的质量不低于乙种水果质量的3倍,∴m≥3(100-m),解得m≥75,即75≤m<100.在y=-m+500中,-1<0,∴y随m的增大而减小,∴当m=75时,y最大,最大为-75+500=425,∴购进甲种水果75千克,乙种水果25千克才能获得最大利润,最大利润为425元.21.解析 (1)关于x的方程x+mx=c+m c(m≠0)的解是x1=c,x2=m c.验证:当x=c时,方程左边=c+mc ,方程右边=c+mc,左边=右边,∴方程成立;当x=mc 时,方程左边=mc+c,方程右边=c+mc,左边=右边,∴方程成立.故关于x的方程x+mx=c+m c(m≠0)的解为x1=c,x2=m c.(2)由关于x的方程x+2x―1=a+2a―1,得x-1+2x―1=a―1+2a―1,∴x-1=a-1或x-1=2a―1,∴x1=a,x2=a+1a―1.。

苏科版数学八年级下册《第10章分式》单元自测卷含答案

苏科版数学八年级下册《第10章分式》单元自测卷含答案

第10章 分式 单元自测卷(满分:100分 时间:90分钟)一、选择题(每题3分,共30分)1.下列各式:11,,,1,,52235a n a a b y m b x π++-其中分式有 ( ) A .2个B .3个C .4个D .5个 2.把分式3xy x y-中的x 和y 都扩大2倍,则分式的值 ( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的 D .扩大为原来的4倍3.要使分式2939x x -+的值为0,你认为x 可取的数是 ( ) A .9B .±3C .-3D .3 4.若241()142w a a+=--,则w=( ) A.2(2)a a +≠- B. 2(2)a a -+≠ C. 2(2)a a -≠ D. 2(2)a a --≠- 5.化简的结果是( )6.下列计算错误的是 ( )A .0.220.77a b a b a b a b ++=--B .3223x y x x y y =C .1a b b a -=--D .123c c c+= 7.(2014.孝感)分式方程2133x x x =--的解为 ( ) A .x =-16 B .x =23 C .x =1 D .x =568.关于x 的方程12n m x x +--=0可能产生的增根是 ( ) A .x =1B .x =2C .x =1或2D .x =-1或2 9.若()()412121a m n a a a a -=++-+-,则 ( ) A .m =4,n =-1 B .m =5,n =-1 C .m =3,n =1 D .m =4,n =110.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+1x);当矩形成为正方形时,就有x=1x(x>0),解得x=1,这时矩形的周长2(x+1x)=4最小,因此x+1x(x>0)的最小值是2.模仿张华的推导,你求得式子29xx+(x>0)的最小值是( )A.2 B.1 C.6 D.10二、填空题(每题2分,共14分)11.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是_______米.12.代数式11x-有意义时,x应满足的条件为x_______.13.计算:2422xx x+=--_______.14.如果实数x、y满足方程组30233x yx y+=⎧⎨+=⎩,那么代数式12xyx y x y⎛⎫+÷⎪++⎝⎭的值为_______.15.若关于x的分式方程2213m xx x+-=-无解,则m的值为_______.16.若1171m n m+=+,则n mm n+的值为_______.17.化简(1+)÷的结果为_________.三、解答题(共56分)18.(8分)计算:(1)22211x xx x--+;(2)22691933m m m mm m m⎛⎫-+--÷⎪-++⎝⎭19.(8分)解方程:(1)15121x x =-+ (2)11322y y y-+=--20.(10分)已知关于x 的方程233x m x x=---的解是一个正数,求m 的取值范围.21.(10分)先化简,再求值:2214244x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x +7>1的负整数解.22.(10分)已知三个数x 、y 、z 满足2xy x y =-+,43yz y z =+,43zx z x =-+,求xyz xy yz zx ++的值.23.(10分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?参考答案一、1.B 2.B 3.D 4.D 5.D 6.A 7.B 8.C 9.C 10.C二、11.a b a+ 12.≠±1 13.x +2 14.1 15. -或-32 16.5 17.x ﹣1三、18.(1)1x x - (2)31m -- 19.(1)x =2 (2)无解 20.m<6且m ≠3 21.x =-1 3 22.-423.(1)9万元 (2)有5种进货方案(3)(2)中所有的方案获利相同,此时购买A 款汽车6辆,B 款汽车9辆对公司更有利 12。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、下列各式从左到右的变形正确的是()A. B. C. D.2、使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±23、已知点P(a,b)是反比例函数y=象上异于点(﹣1,﹣1)的一个动点,则+=()A.2B.1C.D.4、下列式子中,是分式的是()A.-3xB.C. xy 2D.-5、在、、、、中分式的个数有()A.1个B.2个C.3个D.4个6、下列各式的约分运算中,正确的是()A. B. C. D.7、若数使关于的分式方程的解为正数,则的取值正确的是()A. B. C. D.8、下列分式中,为最简分式的是()A. B. C. D.9、一检测员在n分钟内可检查个产品,他在2小时内可检查产品()个.A. B. C. D.10、王师傅乘大巴车从甲地到相距60千米的乙地办事,办好事后乘出租车返回甲地,出租车的平均速度比大巴车快20千米/时,回来时乘出租车所花时间比去时乘大巴车节省了.设大巴车的平均速度为x千米/时,则下面列出的方程中正确的是( )A. B. C.D.11、使为负的x的取值范围是 ( )A.x<-2B.x>-2C.x<2D.x>212、如果把分式中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的D.不变13、若函数y= 的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1B.c=1C.c>1D.c≤114、计算的结果为()A.-B.C.D.-15、下列分式运算或化简错误的是()A. B. C.D. + =﹣1二、填空题(共10题,共计30分)16、计算:=________.17、若x2﹣3x+2=0,则=________.18、化简:= ________.19、代数式,,,,中,是分式的共有________个。

20、分式方程=的解是________ .21、不改变分式的值,把分子、分母中各项的系数都化为整数=________22、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.23、若分式有意义,则x的取值范围为________.24、已知= ,则的值为________25、对于两个非零代数式,定义一种新的运算:.若,则x=________.三、解答题(共5题,共计25分)26、解方程:.27、某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.28、(1)已知分式, x取什么值时,分式的值为零?(2)x为何值时,分式的值为正数?29、解分式方程:=.30、用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致,两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完,这两个操作员每分钟各能输入多少个数据?参考答案一、单选题(共15题,共计45分)1、D3、B4、D5、C6、D7、A8、A9、B10、B11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

2018年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (46)

2018年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (46)

第七章 锐角三角函数 检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1. cos 60°的值等于( )1A B 2.2.在Rt △ABC 中,∠C =,BC =4,sin A =,则AC =( ) A.3 B.4 C.5 D.6 3.若∠A 是锐角,且sin A =,则( )A.<∠A <B.<∠A <C.<∠A <D.<∠A <4.(2014·杭州中考)在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =, 则AC =( )A.3sin 40︒B.3sin 50︒C.3tan 40︒D.3tan 50︒ 5.在△ABC 中,∠A :∠B :∠C =1:1:2,则::=( )A.1:1:2B. 1:1:C. 1:1:D. 1:1: 6.在Rt △ABC 中,∠C =,则下列式子成立的是( )A.sin A =sin BB.sin A =cos BC.tan A =tan BD.cos A =tan B7.如图,一个小球由地面沿着坡度的坡面向上前进了10 m ,此时小球距离地面的高度为( )A. B.25 m C.45 m D.310m第8题图8.(2014·武汉中考)如图,P A ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交P A ,PB 于C ,D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A.13125B.512C.1353D.13329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目第7题图高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A.350 m B.100 mC.150 mD.3100 m二、填空题(每小题3分,共24分)11.在Rt △ABC 中,∠C =90°,AB =5,AC =3,则sin B =_____. 12.在△ABC 中,若BCABAC =3,则cos A =________. 13.如图所示,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B , 且BP =2,那么PP '的长为____________. (不取近似值. 以下数据供解题 使用:sin 15°,cos 15°) 14.如图所示,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.15.如图所示,机器人从A 点,沿着西南方向,行走了42个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________(结果保留根号). 16.如图,△ABC 的顶点都在方格纸的格点上,则_ . 17.在直角三角形ABC 中,∠A =90°,BC =13,AB =12tan B =___________.18.根据图中所给的数据,求得避雷针CD 的长约为__m (结果精确到0.01 m ).(可用计算器求,也可用下列参考 数据求:sin ≈0.682 0,sin 40°≈0.642 8, cos 43°≈0.731 4,cos 40°≈0.766 0,tan 43° ≈0.932 5,tan 40°≈0.839 1)第13题图第14题图 第15题图A第18题图三、解答题(共46分)19.(6分)计算:︒⋅︒-︒-︒+︒30tan 60tan 45cot 60cos 30sin .20.(6分)如图所示,在△ABC 中,AD 是BC 边上的高,DAC B ∠=cos tan . (1)求证:AC =BD ; (2)若121312sin ==BC C ,,求AD 的长.21.(6分)每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据)第20题图22.(7分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37°,BC=20 m,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)23.(7分)如图,在同一平面内,两条平行高速公路1l和2l间有一条“Z”型道路连通,其中AB段与高速公路1l成30°角,长为20 km;BC段与AB、CD段都垂直,长为10 km;CD 段长为30 km,求两高速公路间的距离(结果保留根号).第23题图24. (7分)如图,在小山的东侧处有一热气球,以每分钟的速度沿着仰角为60°的方向上升,20分钟后升到处,这时气球上的人发现在的正西方向俯角为45°的处有一着火点,求气球的升空点与着火点的距离.(结果保留根号)°°第24题图25.(7分)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB 垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)参考答案一、选择题1.A 解析:应熟记特殊角的三角函数值:2.A 解析:在Rt △ABC 中,∠C =90°.∵ BC =4,sin A =,∴ AB =BC ÷sin A =5,AC==3. 3.A 解析:∵ sin 30°=,,∴ 0°<∠A <30°.故选A .4.D 解析:在Rt △ABC 中,∵90C ∠=︒,40A ∠=︒,∴ 50∠B =︒, ∴ tan tan 50ACB BC=︒=,∴ tan 503tan 50g AC BC =︒=︒. 5.B 解析:设∠A 、∠B 、∠C 的度数分别为、、2,则 =180°,解得=45°.∴ 2=90°.∴ ∠A 、∠B 、∠C 的度数分别为45°、45°、90°.∴ △ABC 是等腰直角三角形,∴ =1:1:.6.B 解析:A.sin A =,sin B =,sin A ≠sin B ,故错误; B. sin A =,cos B =,sin A =cos B ,故正确; C.tan A =,tan B =,tan A ≠tan B ,故错误; D.,tan B =,则≠tan B ,故错误.7. B 解析:设小球距离地面的高度为则小球水平移动的距离为 所以解得8.B 解析:如图,因为∠APB 所在的三角形不是直角三角形,所以考虑添加辅助线构造直角三角形.因此,连接OA ,连接BO 并延长交PA 的延长线于点F ,由切线长定理得P A =PB ,CA =CE ,DE =DB , 所以△PCD 的周长=PC +CD +PD =PC +CE +ED +PD = PC +CA +(DB +PD )=P A +PB =2P A =3r .在△BFP 与△AFO 中,因为∠F =∠F ,∠PBF =∠OAF =90°, 所以△BFP ∽△AFO ,所以3322rFB PB AF OA r ===,所以AF =23FB .在Rt △BPF 中,由勾股定理,得PF 2=PB 2+FB 2, 第8题答图 即32⎛⎝r +223FB ⎫⎪⎭=232r ⎛⎫ ⎪⎝⎭+FB 2,解得FB =185r ,所以 18125tan 352rFB APB PB r ∠===.9.B 解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h 1=12×tan 30°=4(米),旗杆的高度h =h 1+1.6=1.6+4≈8.5(米).故选B .10. D 解析:如图,作AE ⊥BC 于点E .∵ ∠EAB =30°,AB =100,∴ BE =50,AE =50.∵ BC =200,∴ CE =150.在Rt △ACE 中,根据勾股定理得:AC =100.即此时王英同学离A 地的距离是100m .二、填空题11. 解析:sin B ==.12. 解析:在△ABC 中,∵ AC =3,BC =,AB =,∴=, 即,∴ △ABC 是直角三角形,且∠B =90°.∴ cos A ==.13解析:连接PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD =15°,利用sin 15°先求出PD ,乘2即得PP '. 14.48 解析:根据两直线平行,内错角相等判断. 15.(0,4+解析:过点B 作BC ⊥AO 于点C ,利用勾股定理或三角函数可分别求得AC 与OC 的长. 16解析:利用网格,从C 点向AB 所在直线作垂线,利用勾股定理得,17.125 解析:先根据勾股定理求得AC =5,再根据tan AC B AB=求出结果. 18.4.86 解析:利用正切函数分别求出BD ,BC 的长,再利用CD =BD -BC 求解.第10题答图三、解答题19.解:-1.20.解:(1)在中,有BDADB=tan,中,有ACADDAC=∠cos..costan BDACACADBDADDACB==∴∠=,故,(2)由1312sin==ACADC,可设xBDACxAD1312===,,由勾股定理求得xDC5=,,1218,12==+∴=xDCBDBC即32=x,.83212=⨯=∴AD21.解:因为所以斜坡的坡角小于,故此商场能把台阶换成斜坡.22. 解:因为tan 37°=ABBC≈0.75,BC=20 m,所以AB≈0.75×20=15(m).23. 解:如图,过点A作AB的垂线交DC延长线于点E,过点E作1l的垂线与1l,2l分别交于点H,F,则HF⊥2l.由题意知AB⊥BC,BC⊥CD,又AE⊥AB,∴四边形ABCE为矩形,∴AE=BC,AB=EC.∴DE=DC+CE=DC+AB=30+20=50(km).又AB与1l成30°角,∴∠EDF=30°,∠EAH=60°.在Rt△DEF中,EF=DE sin 30°=50×12=25(km),在Rt△AEH中,EH=AE sin 60°,所以HF=EF+HE=25+,即两高速公路间的距离为(25+km.24.解:过作于点,则.因为∠,3003m,所以300(3-1)即气球的升空点与着火点的距离为300(3-1)第23题答图25. 解:⑴过点O作OD⊥AB于点D,交A′C于点E.根据题意可知EC=DB=OO′=2,ED=BC,∴∠A′ED=∠ADO=90°.在Rt△AOD中,∵ cos A=,OA=10,∴AD=6,∴OD==8.在Rt△A′OE中,∵ sin A′=,OA′=10.∴OE=5.∴BC=ED=OD-OE=8-5=3.⑵在Rt△A′OE中,A′E==5.∴B′C=A′C-A′B′=A′E+CE-AB=A′E+CE-(AD+BD)=5+2-(6+2)=5-6.答:此重物在水平方向移动的距离BC是3米,此重物在竖直方向移动的距离B′C是(5-6)米.。

苏科版八年级下《第10章分式》单元测试含答案解析

苏科版八年级下《第10章分式》单元测试含答案解析

苏科版八年级下《第10章分式》单元测试含答案解析班级姓名学号成绩一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0B.x+2=0C.x+2<0D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A.B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0B.x+2=0C.x+2<0D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。

2020年教科版物理初二下册《第10章 流体的力现象》检测题(有答案)

2020年教科版物理初二下册《第10章 流体的力现象》检测题(有答案)

教科版八年级物理下册《第10章流体的力现象》检测题一、单选题(共18题;共36分)1.在地铁站的站台上,当火车驶过时,若有人站在安全线以内就会非常危险,下列各种情境与其原理不同的是()A. B.C. D.2.在水平桌面上,有两个相同圆柱形容器,内盛相等质量的盐水,将同一鸡蛋分别放入其中,鸡蛋静止时如同所示.鸡蛋在甲、乙两杯中所受浮力分别为F1和F2,盐水对容器底部压强分别为p1和p2.则()A. F1>F2、p1>p2B. F1=F2、p1>p2C. F1<F2、p1=p2D. F1=F2、p1=p23.将一块金属浸没在盛满水的溢水杯中,从杯中排出的水重为G,此时金属块受到的浮力为F,比较它们的大小可知()A. F = GB. F > GC. F < GD. 无法判断4.如图所示是测量液体密度的密度计。

若把它放入密度为ρA的液体中,静止时液面在它的A刻度处;若把它放入密度为ρB的液体中静止时,液面在它的B刻度处,则()A. 它在密度为ρA的液体中受到的浮力比放在密度为ρB的液体中大B. ρA<ρBC. ρA>ρBD. B处的读数比A处的小5.一物体在弹簧测力计下,示数为8N,当它浸入水中时,示数为3N,此时物体所受的浮力为()A. 3NB. 5NC. 8ND. 11N6.某容器装满水,轻轻放入一小球后,溢出50g水,则下列判断正确的是()A. 小球的质量肯定小于50gB. 小球的质量肯定等于50C. 若小球质量大于50g,则小球的体积一定等于50cm3D. 若小球质量等于50g,则小球的体积一定大于50cm37.如图是某同学用弹簧测力计测量铁块没入水中浮力的图示.当他缓慢地提着弹簧测力计将铁块下表面由位置A移至水面B的过程中,弹簧测力计示数的变化情况是( )A. 逐渐变大B. 逐渐变小C. 先变大后变小D. 先不变后变大8.如图1、2所示,某跳水运动员完全入水后,身体由蜷曲变为打开蹬地.在这过程中,他所受的浮力和水对脚底压强的变化情况是()A. 浮力减小,压强增大B. 浮力增大,压强减小C. 浮力不变,压强增大D. 浮力不变,压强减小9.俗话说“瓜浮李沉”,意思是西瓜投入水中会漂浮,李子投入水中会下沉.对此现象,下列说法正确的是()A. 西瓜的密度比李子的密度大B. 西瓜漂浮时所受浮力大于重力C. 李子下沉过程中所受水的压强不变D. 李子浸没后,下沉过程所受浮力大小不变10.下列说法中正确的是()A. 拉弯的弓没有弹性势能B. 大气压强越大,液体的沸点越低C. 茶壶的壶嘴和壶身构成连通器,静止时水面相平D. 在自由下垂的两张纸中间向下吹气,这两张纸会张开11.下列有关学习、生活中的物理知识,其中正确的说法是()A. 学校足球课上,踢出去的足球,继续向前运动,是因为受到惯性力的作用B. 娄底高铁南站站台上设置有安全线,主要目的是为了给旅客排队上车用的C. 包饺子时捏出漂亮的花边,是力改变了物体的形状D. 书本静止在课桌上,是因为书本受到的重力与书本对桌面的压力平衡12.有一体积为0.1m3的冰块漂浮在水面上(ρ冰=0.9×103kg/m3,ρ水=1.0×103kg/m3,g=10N/kg),则该冰块()A. 总重量是1×103NB. 浸入液面以下的体积是0.08m3C. 水上部分体积占总体积的1/9D. 受到的浮力是9×102N13.下列说法错误的是()A. 潜水艇潜水越深,所受浮力越大B. 磁极间的相互作用是通过磁场发生的C. 擦黑板时看到粉尘在空中飞舞,这不是分子在运动D. 有时在脱毛衣时,由于摩擦起电,会听到轻微的噼啪声14.在月球表面,仍能够飞行的运输工具是()A. 直升飞机B. 客机C. 热气球D. 火箭15.下列实验或现象中运用了相同物理知识的是()A. ①③⑤B. ④⑤C. ③④D. ②③④16.质量相同的实心铝块C为正方形,D为圆球体,B为梯形,A为长方体,如图所示,且C的表面很光滑与容器底密闭接触,在这四种情况下()A. A所受的浮力最大B. B所受的浮力一定比A小C. A所受的浮力最小,B,C,D浮力是一样大的D. A,C,所受的浮力都小于B,C所受的浮力为零17.以下是对杨阳同学部分生活事例的分析,其中合理的是()A. 去游泳馆游泳时,受到水的浮力约为2000NB. 全家6月份自来水用量26m3,算出其质量为26kgC. 从一楼走到三楼家中,克服自身重力做功约为100JD. 参加800m跑步的成绩是4min10s,则她跑步的平均速度是3.2m/s18.如图所示,用细绳将一物体系在容器底部,若物体所受浮力为10N,上表面受到水向下的压力为4N,则物体下表面受到水向上的压力为()A. 4NB. 14NC. 6ND. 7N二、填空题(共12题;共30分)19.为改善地铁地车站的通风情况,小明设计了抽气管道,利用地面横风实现自动抽风,为提高抽气效果,管道上方遮雨盖的形状应设计成下列________图中的顶部形状最佳,你的理由是________.20.飞机起飞升空时,机翼上方气流的流速比机翼下方的大,则机翼上方的气流对机翼的压强________机翼下方的气流对机翼的压强.(选填“大于”、“小于”或“等于”)21.飞机机翼做成流线型,可以产生升力,这是利用了气体流速越________ ,压强越小的原理。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、某市为治理污水,需要铺设一段全长为2000米的污水排放管道,为了尽量减少施工对市民生活的影响,实际施工时每天比原计划多铺设50米,结果比原计划提前两天完成任务.如果设实际每天铺设管道x米,那么可列方程为()A. B. C.D.2、化简:的结果是()A. B. C. D.3、函数的自变量x的取值范围是()A.x≠0B.x>3C.x≠-3D.x≠34、关于x的方程- =2有增根,则m的值是()A.-5B.5C.-7D.25、若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A.不变B.是原来的3倍C.是原来的6倍D.是原来的9倍6、化简=()A.﹣xB.y﹣xC.x﹣yD.﹣x﹣y7、下列式子中是分式的是()A. B. C. D.8、下列各式正确的是()A. =B. =C. = (a≠0)D. =9、化简的结果是()A. B. C. D.3(x+1)10、若把分式中的x和y同时扩大为原来的3倍,则分式的值()A.扩大3倍B.缩小6倍C.缩小3倍D.保持不变11、分式方程-1=有增根,则m的值为()A.0和3B.1C.1和﹣2D.312、某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A. ﹣=4B. ﹣=4C. ﹣=4D.﹣=413、在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,下面所列方程正确的是()A.(9﹣7)x=1B.(9+7)x=1C.(+ )x=1D.(﹣)x=114、如果把分式中的a和b的值都变为原来的2倍,则分式的值()A.不变B.是原来的C.是原来的2倍D.是原来的4倍15、下列式子中,错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、若代数式有意义,则实数x的取值范围是________.17、若关于x的分式方程无解,则m的值为________.18、分式有意义的条件是________ .19、当x=________时,分式的值为1.20、若=2,则=________21、若代数式有意义,则x的取值范围是________.22、化简1÷得________23、若a=2b≠0,则的值为________ .24、若关于x的分式方程=3的解是负数,则字母m的取值范围是________.25、若关于的分式方程的解为,则的值为________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、化简求值:①(2x+3y)2﹣(2x+y)•(2x﹣y),其中x= ,y=﹣②﹣a﹣1,其中a=2.28、解方程:29、服装厂准备为某中学加工 470套运动装,在加工完200套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了17天完成任务,问原计划每天加工服装多少套?30、在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,求降价后每枝玫瑰的售价是多少元?参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、A5、B6、A7、C8、C9、C10、D11、D12、D13、C14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 分式 检测题(满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列各式中,分式的个数为( )3x y-,21a x -,π1x +,3a b -,12x y +,12x y +,2123x x =-+.A.5B.4C.3D.2 2.下列各式正确的是( ) A.c ca b a b =---- B.c c a b a b =---+ C.c ca b a b =--++ D.c c a b a b -=----3.下列分式是最简分式的是( )A.11m m --B.3xy y xy -C.22x y x y -+ D.6132m m- 4.将分式2x x y +中x 、y 的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的2倍B.缩小到原来的12C.保持不变D.无法确定 5.若分式211x x -+的值为零,则x 的值为( )A.-1或1B.0C.1D.-1 6.(2013•南京中考)计算231•a a ⎛⎫⎪⎝⎭的结果是( )A.aB.3aC.6aD.9a 7.对于下列说法,错误的个数是( )①2πx y -是分式;②当1x ≠时,2111x x x -=+-成立;③当3x =-时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-=-•. A.6 B.5 C.4 D.3 8.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.1x + C.1x x + D.1xx +9.下列各式变形正确的是( ) A.x y x y x y x y -++=--- B.22a b a bc d c d --=++ C.0.20.03230.40.0545a b a b c d c d --=++ D.a b b ab c c b--=--10.(2013•辽宁锦州中考)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( ) A.4 8005 00020x x -= B.4 800 5 00020x x += C.4 800 5 00020x x -= D.4 800 5 00020x x+=二、填空题(每小题3分,共24分) 11.(2013•江苏盐城中考)使分式121x x +-的值为零的条件是x = . 12.将下列分式约分:(1)528x x = ;(2)22735m n mn -= ;(3)22()()a b b a --= .13.计算3232226a b ab c b c ÷= .14.分式2x y xy +,23y x ,26x yxy -的最简公分母为 . 15.若340m n =≠,则222m n m m n m n m n +-=+--________.16.若0345x y z==≠,则23x y x y z+=-+_________. 17.(2013•江苏苏州中考)方程15121x x =-+的解为 . 18.某人上山的速度为a 千米/时,按原路下山的速度为b 千米/时,则此人上、下山的平均速度为_________千米/时. 三、解答题(共46分)19.(6分)约分:(1)22444a a a --+; (2)22211m m m -+-.20.(5分)通分:21x x -,2121x x --+.21.(10分)计算与化简:(1)222x y y x •; (2)22211444a a a a a --÷-+-; (3)22142a a a ---;(4)11a a a ---; (5)2221(4)(2)y x x y xy x y x +-÷-•.22.(6分)(2013•江苏宿迁中考)先化简,再求值:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,其中3x =.23.(6分)若112x y-=,求2322x xy yx xy y +---的值.24.(6分)当3x =时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.25.(7分)(2013•江苏徐州中考)为改善生态环境,防止水土流失,某村计划在荒坡上种 1 000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?参考答案1.C 解析:由分式的定义,知21ax -,3a b-,12x y +为分式,其他的都不是分式.2.B 解析:c c c a b a b a b =-≠---+-,故A 不正确;c c a b a b=---+,故B 正确;c c c a b a b a b =-≠--+-+,故C 不正确;c c c ca b a b a b a b-=-≠=---+--,故D 不正确.3.C 解析:1111(1)m m m m --==----,故A 不是最简分式;(1)1333xy y y x x xy xy x ---==,故B 不是最简分式;61613232m m -=-,故D 不是最简分式;C 是最简分式. 4.A 解析:因为2222(2)422222()x x x x x y x y x y x y===⨯++++,所以分式的值扩大到原来的2倍. 5.C 解析:若分式211x x -+的值为零,则210x -=且10x +≠,所以1x =.6.A 解析:原式321•a a a==,故选A .7.B 解析:2πx y -不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当3x =时,分式33x x +-的分母30x -=,分式无意义,故③不正确;211a aa b b b b b÷⨯==•,故④不正确;()a a a x y x y xy ++=,故⑤不正确;3423452222x x x x x x x----==---•,故⑥不正确.8.C 解析:22222111(1)(1)11111111(1)x x x x x x x x x x x x x x x x -+-+⎛⎫⎛⎫+÷+=÷=== ⎪ ⎪------⎝⎭⎝⎭•. 9.D 解析:()()x y x y x y x y x y x y -+---==---++,故A 不正确;222()a b a b c d c d--=++,故B 不正确;0.20.03100(0.20.03)2030.40.05100(0.40.05)405a b a b a b c d c d c d ---==+++,故C 不正确;()()a b a b b a b c b c c b----==----,故D正确.10.B 解析:第一次有x 人捐款,则第二次有(20)x +人捐款.根据题意,得4 800 5 00020x x +=,故选B .11.-1 解析:由题意,得10x +=,解得1x =-.经检验当1x =-时,1021x x +=-. 12.(1)38x (2)5mn - (3)1 解析:(1)532322888x x x x x x ==•;(2)2277357(5)m n mn m mn mn n =--•• 5mn=-;(3)2222()()1()()a b a b b a a b --==--.13.cb a 323 解析:32322322322326263a b ab a b c a c b c c b ab b c ÷=⋅=. 14.226x y 15.97 解析:因为340m n =≠,所以43m n =, 所以2222()()()()()()()()m n m m m n n m n m m n m n m n m n m n m n m n m n m n -++-=+-+--+-+-+- 2222222944()()()()7933m mn mn n m n n n m n m n m n m n n n n n n -++-=====+-+-⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭.16.710 解析:设0345x y zk ===≠则3x k =,4y k =,5z k =, 所以34772338151010x y k k k x y z k k k k ++===-+-+.17.2 解析:方程两边都乘(1)(21)x x -+,得215(1)x x +=-.解得2x =.检验:当2x =时,(1)(21)(21)(221)50x x -+=-⨯⨯+=≠,所以,原方程的解是2x =.18.2ab a b + 解析:设上山的路程为x 千米,则此人上山所用的时间为xa小时,此人下山所用的时间为xb 小时,所以此人上、下山的平均速度为222()x x ab x x x a b a b a b ab==+++(千米/时). 19.解:(1)2224(2)(2)244(2)2a a a a a a a a --++==-+--.(2)222221(1)(1)11(1)(1)(1)(1)1m m m m mm m m m m m -+---===--+-++.20.解:因为21x x -与2121x x --+的最简公分母是2(1)x x -,所以22111(1)(1)x x x x x x x -==---;2221121(1)(1)xx x x x x ---==-+--. 21.解:(1)原式4y=. (2)原式21(2)(2)2(2)(1)(1)(1)(2)a a a a a a a a a -+-+==-+-+-•. (3)原式222221(2)(2)(2)(2)(2)(2)(2)(2)2a a a a a a a a a a a a a a +---=-===-+-+-+-++.(4)原式22221(1)(1)1111111a a a a a a a a a a a +-+--+=-===----. (5)原式1(2)(2)2(2)xy x y x y y x y x x y =+-=-+--••. 22.解:原式22(1)(1)1•1(2)2x x x x x x x -+-+==---.当3x =时,原式31432+==-. 23.解:因为112x y-=,所以2x y xy -=-.所以()232324312()22244x y xy x xy y xy xy xy x xy y x y xy xy xy xy -++--+-====-------.24.解:原式2221122(2)2x x x x x ⎡⎤=-÷⎢⎥---⎣⎦222121(2)22(2)2x x x x x x x --=---••12112242422x x x x x-=-==-=----. 当3x =时,原式1123==--. 25.解:设原计划每天种树x 棵,则实际每天植树(125%)x +棵. 根据题意,得1 000 1 0005(125%)x x-+=. 解得40x =.经检验,40x =是原方程的解. 答:原计划每天种树40棵.。

相关文档
最新文档