霍尔磁敏传感器原理与应用报告材料
霍尔传感器的应用以及原理
霍尔传感器的应用以及原理1. 引言霍尔传感器是一种常见的传感器,广泛应用于电子设备和工业控制领域。
它通过测量磁场变化来检测物体的位置、速度和方向等信息。
本文将介绍霍尔传感器的原理以及它在不同领域的应用。
2. 霍尔传感器原理霍尔传感器的工作原理基于霍尔效应,即当电流通过晶体管和金属片时,会形成一个垂直于电流和磁场方向的电压差。
这个电压差叫做霍尔电压,它与外界磁场的强度和方向成正比。
通过测量霍尔电压的变化,可以得到与磁场相关的信息。
霍尔传感器通常由霍尔元件、增益放大器和输出电路组成。
霍尔元件是一个具有霍尔电压特性的磁敏器件,一般采用半导体材料制造。
增益放大器用于放大霍尔电压的信号,使其可以被检测和处理。
输出电路根据需求将电信号转换成数字信号或模拟信号输出。
3. 霍尔传感器的应用3.1 位置检测霍尔传感器可以通过测量磁场的变化来检测物体的位置。
在自动门控制系统中,可以使用霍尔传感器来检测人员的位置,实现自动开关门。
在机械制造中,霍尔传感器可以被用来监测机械臂的位置,控制其准确移动。
3.2 速度检测通过测量磁场变化的频率,霍尔传感器可以检测物体的速度。
在汽车中,霍尔传感器常被用来测量车轮的转速,用于ABS(防抱死制动系统)和发动机管理系统等。
此外,在电动机控制领域,霍尔传感器也经常被应用于测量电动机的转速。
3.3 方向检测霍尔传感器通过测量磁场的方向,可以检测物体的方向。
在磁罗盘中,霍尔传感器用于检测地球的磁场方向,提供导航和定位功能。
在游戏手柄中,霍尔传感器可以检测游戏手柄的倾斜方向,实现精确的游戏控制。
3.4 磁场检测由于霍尔传感器对磁场的敏感性,它也可以用来检测磁场的强度和方向。
在磁共振成像仪中,霍尔传感器被用于检测强磁场的均匀性,确保图像质量。
在磁力计中,霍尔传感器可以测量磁场的强度,用于测量磁体的磁场强度。
4. 总结霍尔传感器是一种应用广泛的传感器,它通过测量磁场变化来获得与位置、速度和方向等相关的信息。
霍尔传感器的原理和应用
霍尔传感器的原理和应用1. 霍尔传感器的原理霍尔传感器是一种基于霍尔效应的传感器,通过测量电磁场的变化来检测物体的位置、运动或者其他属性。
其原理主要基于霍尔效应的存在。
1.1 霍尔效应的概念霍尔效应是指当通过一块导体中的电流流过时,如果将该导体放置于磁场中,该磁场会产生一个力,使得电子在导体中聚集在一边,导致在导体两侧产生一种电势差。
这种现象就是霍尔效应。
1.2 霍尔传感器的结构霍尔传感器通常由霍尔元件、磁场源和信号处理电路组成。
其中,霍尔元件是关键部件,其结构包括霍尔片、上下两个触点和引线。
霍尔片是一种特殊材料,能够对磁场产生敏感。
当磁场作用于霍尔片时,霍尔片上的电荷会发生积聚,从而产生一定的电势差。
1.3 霍尔传感器的工作原理当磁场作用于霍尔传感器时,霍尔片上的电荷会发生积聚,从而产生电势差。
这种电势差可以被测量,并转化为相应的信号。
该信号可以通过信号处理电路进行放大、滤波和解调等处理,以便得到相关的测量结果。
2. 霍尔传感器的应用霍尔传感器由于其特殊的原理和结构,在许多领域都有广泛的应用。
2.1 位置检测由于霍尔传感器能够对磁场的变化进行敏感测量,因此在位置检测方面有很好的应用。
比如,在汽车领域中,霍尔传感器可以用来检测车速、转向角度,以及车辆的位置等信息。
2.2 运动检测霍尔传感器可以用来检测物体的运动状态。
在工业自动化领域中,霍尔传感器常常被用来监测机器的转速、转向等参数。
另外,霍尔传感器还被广泛应用于航空航天领域中,用于检测飞机、卫星等设备的姿态、位置等信息。
2.3 流量测量由于霍尔传感器对电流的变化敏感,因此能够用来测量流体的流量。
在工业领域中,霍尔传感器常常被用来监测管道内流体的流速和流量,以实现对流体控制和管理的目的。
2.4 磁场测量由于霍尔传感器对磁场的变化具有很好的感知能力,因此可以用来测量磁场的大小和方向。
在科学研究领域中,霍尔传感器常常被用来测量磁场的强度和分布,以研究磁场的性质和应用。
.霍尔门磁传感器的原理与应用
霍尔门磁传感器或称霍尔开关,是一种可以检测磁场变化并转化为电信号的传感器。
它通常被应用于门窗磁控报警系统、电子开关和电机控制等领域。
本文将详细介绍霍尔门磁传感器的原理、结构与应用。
一、霍尔门磁传感器的原理1. 霍尔效应:霍尔效应是指在导电材料中,当有电流通过时,如果受到外部磁场的作用,会在垂直于电流方向上产生电势差。
这种现象是由美国物理学家爱德华·霍尔于1879年首先发现的。
霍尔效应是霍尔门磁传感器能够探测磁场变化的基础。
2. 霍尔元件:霍尔元件是霍尔门磁传感器的核心部件,通常由半导体材料制成。
当磁场作用于霍尔元件时,会在元件两侧产生电势差,这一电势差可以被检测电路所读取,从而转化为相应的信号输出。
3. 灵敏度调节:由于不同的应用场景对磁场的灵敏度要求不同,霍尔门磁传感器通常具有灵敏度调节功能。
用户可以通过调节传感器上的旋钮或设置参数来改变传感器的灵敏度。
二、霍尔门磁传感器的结构1. 外壳:霍尔门磁传感器的外壳通常由耐高温、耐腐蚀的材料制成,以确保其稳定可靠地工作在不同的环境中。
2. 传感元件:传感元件是霍尔门磁传感器的核心部件,它通常为霍尔元件。
传感元件的选择和制造工艺会直接影响传感器的灵敏度和稳定性。
3. 输出端口:霍尔门磁传感器的输出端口通常为开关量输出,常见的有正常开关、NC(Normally Closed)和NO(Normally Open)等类型。
用户可以根据实际需求选择合适的输出类型。
4. 供电接口:霍尔门磁传感器通常需要外部供电,供电电压的稳定性和电流的大小需要符合传感器的工作要求。
5. 灵敏度调节装置:为了适应不同的工作环境和需求,霍尔门磁传感器通常具有灵敏度调节装置,用户可以通过调节该装置来改变传感器的灵敏度。
三、霍尔门磁传感器的应用1. 门窗磁控报警系统:霍尔门磁传感器可以应用于门窗磁控报警系统中,通过安装在门窗上,当门窗打开时,磁场的变化会被传感器检测到,并触发报警器发出警报。
霍尔传感器实验报告
一、实验目的1. 了解霍尔效应的原理及其在电量、非电量测量中的应用。
2. 熟悉霍尔传感器的工作原理及其性能。
3. 掌握开关型霍尔传感器测量电流和电压的方法。
4. 通过实验验证霍尔传感器在实际测量中的应用效果。
二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上会产生一个与电流和磁场方向都垂直的电压。
这种现象称为霍尔效应。
霍尔电压的大小与电流、磁场强度以及导体材料的霍尔系数有关。
霍尔传感器利用霍尔效应将磁场变化转换为电压信号,从而实现磁场的测量。
根据霍尔元件的输出特性,可以将霍尔传感器分为开关型霍尔传感器和线性霍尔传感器。
三、实验器材1. 霍尔传感器2. 信号源3. 电流表4. 电压表5. 直流稳压电源6. 磁场发生器7. 电阻箱8. 连接线四、实验步骤1. 将霍尔传感器、信号源、电流表、电压表、直流稳压电源、磁场发生器和电阻箱等器材连接成实验电路。
2. 调节直流稳压电源输出电压,使霍尔传感器工作在合适的工作电压范围内。
3. 调节信号源输出电流,使霍尔传感器工作在合适的工作电流范围内。
4. 改变磁场发生器的磁场强度,观察霍尔传感器输出电压的变化。
5. 测量不同磁场强度下霍尔传感器的输出电压,记录实验数据。
6. 根据实验数据,分析霍尔传感器的输出特性。
五、实验数据与分析1. 霍尔传感器输出电压与磁场强度的关系根据实验数据,绘制霍尔传感器输出电压与磁场强度的关系曲线。
从曲线可以看出,霍尔传感器输出电压与磁场强度呈线性关系。
2. 霍尔传感器输出电压与电流的关系根据实验数据,绘制霍尔传感器输出电压与电流的关系曲线。
从曲线可以看出,霍尔传感器输出电压与电流呈线性关系。
六、实验结果与结论1. 实验结果表明,霍尔传感器输出电压与磁场强度、电流均呈线性关系,符合霍尔效应的原理。
2. 霍尔传感器具有响应速度快、精度高、抗干扰能力强等优点,在实际测量中具有广泛的应用前景。
3. 通过本实验,掌握了霍尔传感器的工作原理、性能特点和应用方法。
霍尔式传感器原理及应用(共9张PPT)
霍尔电势 VH 的大小 48)
式中 KH——霍尔常数,表示单位磁感应强度和
单位控制电流下所得的开路霍尔电势, 取决于材质、元件尺寸,并受温度变化影响;
α——电流方向与磁场方向夹角,如两者垂直,则sinα=1。
磁场变化 材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
霍尔芯片一般用非磁性金属、陶瓷或环氧树脂封装 若在一个方向上通以电流 I 磁场变化
洛伦兹力•F应L 的用方中向由不左用手定永则久决定磁铁产生的磁场,而是用一个可变电流作激磁的可变磁场,输
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14)
使用时,I 和 B 都可作为输入信号,输出信号正比于两者的乘积
一式般中采K用H—N形—锗霍、尔锑常化寿数铟,命、表砷长示化单铟位、磁砷感化应镓强和度磷和砷化铟等
材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
价格低
•可以广泛应用于测量:
位移
可转化为位移的力和加速度
在垂直于 B 和 I 的方向上产生一感应电动势 VH
洛伦兹力 FL 的方向由左手定则决定 当霍尔元件相对于磁极作x方向位移时,可得到输出电压VH=VH1-VH2,且ΔVH数值正比于位移量Δx,正负方向取决于位移Δx的方向 若在一个方向上通以电流 I 霍尔元件置于两相反方向的磁场中
霍尔元件霍可制尔成位传移传感感器器 的结构
R为调节电阻,调节控制电流的大小 建立霍尔电势所需的时间极短(10-12~10-14) 在垂直于 B 和 I 的方向上产生一感应电动势 VH
• 霍尔元件传感器既能测量位移的大小,又能鉴别位移的方向
•霍尔元件在静止状态下具有感受磁场的独特能力
霍尔传感器原理与应用
霍尔传感器原理霍尔传感器是一种磁传感器。
用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。
霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。
一、霍尔效应霍尔元件霍尔传感器(一)霍尔效应如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为。
其中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。
上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。
(二)霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
(三)霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。
二、霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。
(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。
(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。
三、霍尔传感器的特性(一)线性型霍尔传感器的特性输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。
(二)开关型霍尔传感器的特性如图4所示,其中BOP为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度。
当外加的磁感应强度超过动作点Bop时,传感器输出低电平,当磁感应强度降到动作点Bop 以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。
实验三 霍尔传感器实验
实验三磁敏传感器实验一、霍尔式传感器的直流激励特性实验目的:了解霍尔式传感器的原理与特性。
实验原理:霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度磁场中的霍尔元件组成。
当霍尔元件通过恒定电流时,霍尔元件在梯度磁场中上、下移动时,输出的霍尔电势V取决于其在磁场中的位移量X,所以测得霍尔电势的大小便可获知霍尔元件的静位移。
所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、F/V表、直流稳压电源、测微头、振动平台、主、副电源。
有关旋钮初始位置:差动放大器增益旋钮打到最小,电压表置20V档,直流稳压电源置2V档,主、副电源关闭。
实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号。
霍尔片安装在实验仪的振动圆盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔传感器。
(2)开启主、副电源将差动放大器调零后,增益最小,关闭主电源,根据图3-1接线,W1、r为电桥单元的直流电桥平衡网络。
图3-1(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。
(4)开启主、副电源,调整W1使电压表指示为零。
作出V-X曲线指出线性范围,求出灵敏度,关闭主、副电源。
可见,本实验测出的实际上是磁场情况,磁场分布为梯度磁场与磁场分布有很大差异,位移测量的线性度,灵敏度与磁场分布有很大关系。
(6)实验完结关闭主、副电源,各旋钮置初始位置。
注意事项:(1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。
(2)一旦调整好后,测量过程中不能移动磁路系统。
(3)激励电玉不能过2v,以免损坏霍尔片。
二、霍尔式传感器的应用一电子秤实验目的:了解霍尔式传感器在静态测量中的应用。
所需单元及部件:霍尔片、磁路系统、差动放大器、直流稳压电源、电桥、砝码、F/V表(电压表)、主、副电源、振动平台。
有关旋钮初始位置:直流稳压电源置±2V档,F/V表置2V档,主、副电源关闭。
霍尔磁敏传感器工作原理
霍尔磁敏传感器工作原理霍尔磁敏传感器工作原理霍尔磁敏传感器是一种常用的磁敏元件,可广泛应用于位置检测、速度测量、角度测量等领域。
它利用霍尔效应来检测磁场,并将其转化为电信号。
下面将介绍霍尔磁敏传感器的工作原理。
1. 引入霍尔效应霍尔效应是指当导体中有电流通过时,置于垂直磁场中的导电材料会在其两侧产生电势差。
这种现象是由于磁场对载流子的影响导致的。
2. 基本构造霍尔磁敏传感器的基本构造包括霍尔元件和信号处理电路。
霍尔元件是一个半导体器件,通常采用硅或镓化合物制成。
信号处理电路负责将霍尔元件输出的微弱电信号放大并转换为可用的电压或电流信号。
3. 工作原理当霍尔磁敏传感器暴露在磁场中时,磁场作用于霍尔元件上的载流子。
根据磁场的方向和极性,载流子会产生偏转,从而在霍尔元件的两侧产生电势差。
3.1 磁场方向垂直于电流方向当电流通过霍尔元件时,磁场方向垂直于电流方向,则在霍尔元件的两侧会形成相反的电势差。
这个电势差称为霍尔电压(Hall voltage)。
3.2 输出信号处理霍尔电压通过信号处理电路进行放大和处理。
常见的处理方法包括使用运算放大器和滤波器等电路来调整信号的增益和频率响应。
4. 特点和应用霍尔磁敏传感器具有灵敏度高、响应速度快、可靠性好等优点。
它可以检测不同强度和方向的磁场,能够工作在宽温度范围内。
因此,它在许多领域中得到广泛应用,包括角度传感、位置检测、速度测量、电流测量等。
总结:霍尔磁敏传感器的工作原理是基于霍尔效应,利用磁场对导电材料的影响产生电势差,通过信号处理电路将其转化为可用的电信号。
其高灵敏度、快速响应和可靠性使得它成为许多应用中的重要组成部分。
通过不断的研究和改进,霍尔磁敏传感器在工业、汽车、电子等领域中的应用前景将更加广阔。
霍尔磁敏传感器的原理及应用
霍尔磁敏传感器的原理及应用
1引言
由霍尔效应的原理知,霍尔电势的大小取决于:
Rh为霍尔常数,它与半导体材质有关;IC为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。
对于一个给定的霍尔器件,Vh将完全取决于被测的磁场强度B。
一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流IC的
输入端,另两根是霍尔电压的输出端。
如果两输出端构成外回路,就会产生霍尔电流。
一般地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。
为了达到高的灵敏度,有的霍尔元件的传感面上装有高导磁系数的坡莫合金;这类传感器的霍尔电势较大,但在0.05T左右出现饱和,仅适用在低量限、小量程下使用。
近年来,由于半导体技术的飞速发展,出现了各种类型的新型集成霍尔元件。
这类元件可以分为两大类,一类是线性元件,另一类是开关类元件。
2线性霍尔元件的原理及应用
UGN350lT是一种目前较常用的三端型线性霍尔元件。
它由稳压器、霍尔发生器和放大器组成。
用UGN350lT可以十分方便地组成一台高斯计。
其使用十分简单,先使B=0,记下表的示值VOH,再将探头端面贴在被测对象上,记下新的示值VOH1。
ΔVOH=VOH1-VOH
如果ΔVOH0,说明探头端面测得的是N极;反之为S极。
UGN3501T 的灵敏度为7V/T,由此即可测出相应的被测磁感应强度B。
如果采用数字电压表(DVM),可得图1所示的线性高斯计。
运放采用高精度。
霍尔传感器及磁敏二极管三极管的原理及应用
一、H all霍尔传感器1、霍尔传感器的定义霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。
霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
2、霍尔传感器的分类按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
(1)线性电路:它由霍尔元件、差分放大器和射极跟随器组成。
其输出电压和加在霍尔元件上的磁感强度B成比例。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。
霍尔线性电路的功能框图(2)开关电路:霍尔开关电路由稳压器、霍尔片、差分放大器、施密特触发器和输出级组成。
在外磁场的作用下,当磁感应强度超过导通阈值BOP时,霍尔电路输出管导通,输出低电平。
之后,B再增加,仍保持导通态。
若外加磁场的B值降低到BRP时,输出管截止,输出高电平。
我们称BOP为工作点,BRP 为释放点,BOP-BRP=BH称为回差。
回差的存在使开关电路的抗干扰能力增强。
霍尔开关电路的功能框见图2。
图2(a)表示集电极开路(OC)输出,(b)表示双输出。
(a) 单OC 输出 (b)双OC 输出图2 霍尔开关电路的功能框图3、原理霍尔效应原理:将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。
H V 称为霍尔电压。
X(a) (b)图3 霍尔效应原理图实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即d IB R V H H (1)或 IB K V H H = (2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。
产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。
霍尔传感器 实验报告
霍尔传感器实验报告霍尔传感器实验报告引言:霍尔传感器是一种广泛应用于工业控制、汽车电子、医疗设备等领域的传感器。
它利用霍尔效应来测量磁场的强度和方向,具有高精度、高灵敏度和无接触的特点。
本实验旨在通过实际操作和数据分析,深入了解霍尔传感器的原理和应用。
实验目的:1. 理解霍尔效应的基本原理;2. 掌握霍尔传感器的使用方法;3. 分析霍尔传感器在不同应用场景下的特点和优势。
实验器材和方法:1. 实验器材:- 霍尔传感器模块- 磁铁- 电源- 示波器- 电阻箱- 连接线等2. 实验方法:- 将霍尔传感器模块连接至电源和示波器,并调整合适的工作电压;- 在不同距离和角度下,用磁铁靠近霍尔传感器,记录示波器上的输出信号;- 调节电阻箱的阻值,观察霍尔传感器输出信号的变化;- 分析实验数据,总结霍尔传感器的特性和应用。
实验结果与讨论:1. 霍尔效应的观察:在实验中,我们发现当磁铁靠近霍尔传感器时,示波器上的输出信号会有明显的变化。
这是因为霍尔传感器感受到磁场的作用,产生霍尔电压,从而改变输出信号。
通过改变磁铁的距离和角度,我们可以观察到输出信号的不同变化趋势,验证了霍尔效应的存在。
2. 霍尔传感器的特性:- 灵敏度高:霍尔传感器对磁场的变化非常敏感,能够精确测量磁场的强度和方向;- 无接触式:与传统的接触式传感器相比,霍尔传感器无需物理接触被测物体,避免了磨损和干扰;- 快速响应:霍尔传感器的输出信号响应速度快,适用于需要实时监测和控制的场景;- 可靠性高:由于无机械部件,霍尔传感器具有较长的使用寿命和较高的可靠性。
3. 霍尔传感器的应用:- 工业控制:霍尔传感器可用于测量电机的转速和位置,实现精确的运动控制; - 汽车电子:霍尔传感器可用于测量车速、转向角度等,实现车辆的智能化和安全性控制;- 医疗设备:霍尔传感器可用于测量人体生理参数,如心率、血压等,辅助医疗诊断和监测。
结论:本实验通过对霍尔传感器的实际操作和数据分析,深入了解了霍尔传感器的原理和应用。
霍尔传感器的工作原理及应用论文
霍尔传感器的工作原理及应用论文1. 引言霍尔传感器是一种重要的非接触式传感器,在工业控制、汽车电子、医疗设备等领域有广泛的应用。
本文将介绍霍尔传感器的工作原理及其在不同领域的应用情况。
2. 霍尔传感器的工作原理霍尔传感器利用霍尔效应测量磁场的强度,进而实现对物体位置、速度、方向等信息的检测。
霍尔效应是指当一个导电体通过一定方向的磁场时,会在其两端产生一定方向的电势差。
这个电势差与磁场的强度成正比。
霍尔传感器通常由霍尔元件、信号调理电路、输出电路三部分组成。
霍尔元件是传感器的核心部件,由半导体材料制成。
它的特点是在有磁场的情况下产生电势差,并将这个电势差转化为电信号输出。
信号调理电路用于增强和处理霍尔元件输出的信号,以得到准确的测量结果。
输出电路则将调理后的信号进行适配和放大,以便于连接到其他设备或系统中。
3. 霍尔传感器的应用霍尔传感器具有灵敏、稳定、可靠、无接触等优点,因此在众多领域中得到广泛应用。
3.1 工业控制•位置检测:霍尔传感器可以用于检测各种设备的位置,如机械臂、自动门等,以实现精确控制。
•运动检测:通过测量磁场的变化,可以实时监测设备的运动情况,并作出相应的调控。
•流量测量:将霍尔传感器用于流量计中,可以准确测量液体或气体的流量,广泛应用于工业自动化领域。
3.2 汽车电子•转向角度检测:霍尔传感器可以用于检测方向盘的转向角度,为车辆的转向控制提供精确数据。
•轮速测量:将霍尔传感器安装在车轮上,可以实时测量车辆的轮速,用于制动系统的控制。
•空气流量测量:汽车发动机需要准确测量进气量,霍尔传感器在这方面具有优异的性能,被广泛应用于汽车的空气流量测量系统中。
3.3 医疗设备•心率检测:通过将霍尔传感器置于医疗设备上,可以实时监测患者的心率,并提供给医生进行诊断。
•血压测量:霍尔传感器可用于测量患者的血压,实现无创血压测量,提高患者的舒适度和测量准确性。
•磁性药物传递:霍尔传感器可以用于控制磁性药物在磁场中的释放速度和位置,提高药物的治疗效果。
霍尔传感器实验报告
霍尔传感器实验报告霍尔传感器实验报告引言:霍尔传感器是一种常用的传感器,它能够通过测量磁场的变化来检测物体的位置、速度和方向等信息。
在本次实验中,我们将探索霍尔传感器的原理和应用,并通过实验来验证其性能和准确度。
一、霍尔传感器的原理霍尔传感器是基于霍尔效应原理工作的。
霍尔效应是指当一个电流通过一块导体时,如果该导体处于磁场中,就会在导体两侧产生一种称为霍尔电压的电势差。
霍尔电压的大小与磁场的强度和方向成正比。
二、实验器材和步骤1. 实验器材:- 霍尔传感器- 磁铁- 电源- 电压表- 连接线2. 实验步骤:1)将霍尔传感器连接到电源和电压表上。
2)将磁铁靠近霍尔传感器,并记录电压表的读数。
3)改变磁铁的位置和方向,并记录相应的电压表读数。
4)重复步骤2和3多次,以获得更多的数据。
三、实验结果和分析通过实验,我们得到了一系列不同磁场条件下的电压表读数。
我们可以观察到以下现象:1. 当磁铁靠近霍尔传感器时,电压表的读数会增加。
2. 当磁铁离开霍尔传感器时,电压表的读数会减小。
3. 当改变磁铁的位置和方向时,电压表的读数也会相应地发生变化。
根据霍尔效应的原理,我们可以解释这些现象。
当磁铁靠近霍尔传感器时,磁场的强度增加,导致霍尔电压的大小增加,因此电压表的读数也增加。
当磁铁离开霍尔传感器时,磁场的强度减小,导致霍尔电压的大小减小,因此电压表的读数减小。
而当改变磁铁的位置和方向时,磁场的分布也会发生变化,从而导致电压表的读数相应地发生变化。
四、霍尔传感器的应用霍尔传感器在许多领域都有广泛的应用,其中一些应用包括:1. 位置检测:霍尔传感器可以用来检测物体的位置,例如在自动门系统中用来检测门的开关状态。
2. 速度测量:霍尔传感器可以用来测量物体的速度,例如在汽车中用来检测车轮的转速。
3. 方向控制:霍尔传感器可以用来检测物体的方向,例如在航空航天中用来控制飞行器的方向。
五、实验总结通过本次实验,我们深入了解了霍尔传感器的原理和应用。
磁电式传感器(霍尔)原理及工程应用
会产生感应电动势,这种现
象称霍尔效应。
7.2 霍尔式传感器
7.2.1 霍尔效应及霍尔元件
1.霍尔效应
工作原理:假设在N型半导体薄片上通以电流I,
则半导体中的自由电荷沿着和电流相反的方向运
动,由于在垂直于半导体薄片平面的方向施加磁
场B,所以电子受到洛仑兹力
FL的作用向一边偏转,并使该 边形成电子积累,而另一边则
的大,且μn>μp,所以霍尔元件一般采用N型半导体材料。 2) 霍尔电压UH与元件的尺寸有关。 根据公式d 愈小,霍尔灵敏度愈高,所以霍尔元件的厚
度都比较薄。
3)霍尔电压UH与控制电流及磁场强度有关。根据公式 UH正比于I及B。当控制电流I恒定时B愈大UH愈大。当磁 场改变方向时, UH也改变方向。同样,当霍尔灵敏度及 磁感应强度B恒定时,增加控制电流I,也可以提高霍尔电
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 3.不等位电势补偿
磁电式传感器
传感器原理及工程应用
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 4.霍尔元件温度补偿 温度误差产生原因:
➢ 霍尔元件的基片是半导体材料,因而对温度的变化
很敏感。其载流子浓度和载流子迁移率、电阻率和霍尔
系数都是温度的函数。
压UH的输出。
7.2 霍尔式传感器 7.2.2 霍尔传感器基本电路
2.霍尔元件基本结构Fra bibliotek➢ 霍尔晶体外形矩形薄片有 四根引线,两端加激励两端为 输出;电源E产生控制电流I; 负载RL,R可调,调节控制电流, B磁场与元件面垂直(向里)。 ➢ .实测中可把I*B作输入, 也可把I或B单独做输入。 而霍尔电势输出测量信号U0 与I或B成正比关系。
向时,霍尔电动势极性不变。
霍尔磁敏传感器原理与应用报告材料
霍尔磁敏传感器原理与应用一.引言随着自动检测控制和信息技术的发展,对传感器的性能要求越来越高,一方面要求尽可能精确,可靠性要求高;另一方面要求价格尽可能廉价。
霍尔传感器是一种理想器件。
磁敏传感器,顾名思义就是感知磁性物体的存在或者磁性强度(在有效范围内)这些磁性材料除永磁体外,还包括顺磁材料(铁、钻、镍及其它们的合金)当然也可包括感知通电(直、交)线包或导线周围的磁场。
传统的磁检测中首先被采用的是电感线圈为敏感元件。
特点正是无须在线圈中通电,一般仅对运动中的永磁体或电流载体起敏感作用。
后来发展为用线圈组成振荡槽路的。
如探雷器,金属异物探测器,测磁通的磁通计等.(磁通门,振动样品磁强计)。
霍尔传感器是依据霍尔效应制成的器件。
霍尔效应:通电的载体在受到垂直于载体平面的外磁场作用时,则载流子受到洛伦兹力的作用,并有向两边聚集的倾向,由于自由电子的聚集(一边多一边必然少)从而形成电势差,在经过特殊工艺制备的半导体材料这种效应更为显著。
从而形成了霍尔元件。
早期的霍尔效应的材料Insb(锑化铟)。
为增强对磁场的敏感度,在材料方面半导体IIIV元素族都有所应用。
近年来,除Insb之外,有硅衬底的,也有砷化镓的。
霍尔器件由于其工作机理的原因都制成全桥路器件,其内阻大约都在150Q~500 Q之间。
对线性传感器工作电流大约在2~10mA左右,一般米用恒流供电法。
Insb与硅衬底霍尔器件典型工作电流为10mA。
而砷化镓典型工作电流为2 mA。
作为低弱磁场测量,我们希望传感器自身所需的工作电流越低越好。
(因为电源周围即有磁场,就不同程度引进误差。
另外,目前的传感器对温度很敏感,通的电流大了,有一个自身加热问题。
(温升)就造成传感器的零漂。
这些方面除外附补偿电路外,在材料方面也在不断的进行改进。
霍尔传感器主要有两大类,一类为开关型器件,一类为线性霍尔器件,从结构形式(品种)及用量、产量前者大于后者。
霍尔器件的响应速度大约在1us量级。
霍尔磁敏传感器的原理及应用
霍尔磁敏传感器的原理及应用1、引言由的原理知,霍尔电势的大小取决于:Rh为霍尔常数,它与材质有关;IC为霍尔元件的偏置;B为磁场强度;d为半导体材料的厚度。
对于一个给定的霍尔器件,Vh将彻低取决于被测的磁场强度B。
一个霍尔元件普通有四个引出端子,其中两根是霍尔元件的偏置电流IC的输入端,另两根是霍尔的输出端。
假如两输出端构成外回路,就会产生霍尔电流。
普通地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。
为了达到高的敏捷度,有的霍尔元件的传感面上装有高导磁系数的坡莫合金;这类的霍尔电势较大,但在0.05T左右浮现饱和,仅适用在低量限、小量程下用法。
近年来,因为半导体技术的飞快进展,浮现了各种类型的新型集成霍尔元件。
这类元件可以分为两大类,一类是线性元件,另一类是开关类元件。
2、线性霍尔元件的原理及应用UGN350lT是一种目前较常用的三端型线性霍尔元件。
它由稳压器、霍尔发生器和组成。
用UGN350lT可以非常便利地组成一台高斯计。
其用法非常容易,先使B=0,登记表的示值VOH,再将探头端面贴在被测对象上,登记新的示值VOH1。
ΔVOH=VOH1-VOH假如ΔVOH>0,解释探头端面测得的是N极;反之为S极。
UGN3501T 的敏捷度为7V/T,由此即可测出相应的被测磁感应强度B。
假如采纳数字电压表(DVM),可得图1所示的线性高斯计。
运放采纳高精度运放CA3130。
该的详细调零方式为:开启电源后,令B=0,调整W1使DVM的示值为零,然后用一块标准的钕铝硼磁钢(B=0.1T)贴在探头端面上,调整W2使DVM的示值为1V即可。
本高斯计检测时示值假如为-200mV,则探头端面检测的是S极,磁场强度为0.02T。
本高斯计也可用来测量交变的磁场,不过DVM应改为沟通电压表。
明显用法图1的电路可以很便利地扩展一般数字的功能。
霍尔传感器应用实验报告
一、实验目的1. 理解霍尔效应原理及其在传感器中的应用;2. 掌握霍尔传感器的特性、工作原理及使用方法;3. 了解霍尔传感器在磁场测量、电流检测等领域的应用;4. 通过实验验证霍尔传感器在实际应用中的性能。
二、实验原理霍尔效应是指当导体或半导体材料置于磁场中,且磁场方向与导体或半导体材料的电流方向垂直时,导体或半导体材料两端将产生电动势的现象。
霍尔效应的原理如下:设导体或半导体材料的宽度为b,厚度为d,长度为l,磁感应强度为B,电流为I,电动势为E。
根据霍尔效应的原理,当电流I通过导体或半导体材料时,在垂直于电流方向和磁场方向的b×d截面上,会产生电动势E,其大小为:E = B I d其中,E为电动势,B为磁感应强度,I为电流,d为导体或半导体材料的厚度。
霍尔传感器是利用霍尔效应原理制作的传感器,它可以将磁场强度转换为电压信号输出。
霍尔传感器的结构主要包括霍尔元件、放大电路和信号处理电路等。
三、实验器材1. 霍尔传感器;2. 信号发生器;3. 直流稳压电源;4. 示波器;5. 数字万用表;6. 磁场发生器;7. 导线等。
四、实验步骤1. 连接电路:将霍尔传感器、信号发生器、直流稳压电源、示波器和数字万用表等器材按照实验电路图连接好。
2. 调整参数:将信号发生器的输出设置为恒定电流,调节直流稳压电源的输出电压,使霍尔传感器工作在最佳状态。
3. 测量电动势:将示波器探头接在霍尔传感器的输出端,观察电动势随磁场强度的变化情况。
4. 测量电流:将数字万用表串接在电路中,测量霍尔传感器的输出电流,验证霍尔效应的原理。
5. 分析数据:分析实验数据,得出霍尔传感器的特性参数。
6. 应用实验:将霍尔传感器应用于磁场测量、电流检测等领域,验证其实际应用性能。
五、实验结果与分析1. 霍尔效应电动势与磁场强度的关系:通过实验数据可知,霍尔效应电动势E与磁场强度B成正比,符合霍尔效应原理。
2. 霍尔传感器输出电流:实验结果表明,霍尔传感器在磁场强度为0.1T时,输出电流约为1mA,验证了霍尔传感器的灵敏度。
霍尔传感器原理以及应用
霍尔传感元器件及其应用1 引言 (2)2 霍尔效应和霍尔器件 (2)2.1 霍尔效应 (2)2.2 霍尔器件 (3)2.2.1 霍尔元件 (4)2.2.2 霍尔电路 (5)3 霍尔器件的应用 (8)3.1 应用的一般问题 (8)3.1.1 测量磁场 (8)3.1.2 工作磁体的设置 (9)3.1.3 与外电路的接口 (10)3.2 应用实例 (11)3.2.1检测磁场 (11)3.2.2 检测铁磁物体 (12)3.2.3 用在直流无刷电机中 (13)3.2.4 无损探伤 (15)3.2.5 磁记录信息读出 (15)3.2.6 霍尔接近传感器和接近开关 (16)3.2.8 霍尔齿轮传感器 (18)3.2.9 旋转传感器 (19)3.2.10 霍尔位移传感器 (21)3.2.11实现电-磁-电的转换 (25)3.2.14霍尔隔离放大器 (37)3.2.15用作电磁隔离耦合器 (37)4.结束语 (38)1 引言霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达µm级)。
取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~1 50℃。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。
前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
磁敏传感器原理与运用以及发展趋势《传感器与检测技术》调研报告资料
磁敏传感器原理与运用以及发展趋势——《传感器与检测技术》调研报告姓名学校学院专业班级学号年月日摘要:传感器是各种仪器仪表和自动化设备的基础,尤其在当今以计算机为标志的信息社会中,传感器技术更承担着获取信息的重要任务。
各种各样的磁场传感器都是为不同的磁场测量目的而设计的。
磁敏传感器是将磁场信息转换成各种有用信号的装置。
它是各种磁测仪器的核心。
本文主要评述磁敏传感器产业的现状及可能形成产业化生产和产业性应用的磁敏传感器的发展趋势。
关键词:磁敏传感器;霍尔元件;磁场检验;产业化目录第一章概述 (5)1.1 磁敏传感器简介 (6)1.1.1 霍尔器件 (6)1.1.2 探测线圈 (6)1.1.3 磁敏电阻 (7)1.1.4 韦甘德器件 (7)1.1.5 磁通门磁强计 (8)1.2 磁敏传感器的应用 (8)第二章磁敏传感器的原理 (11)2.1 霍尔式传感器 (11)2.1.1 霍尔效应 (11)2.1.2 霍尔元件的结构与特性 (13)2.2 磁敏半导体传感器 (15)2.2.1 磁阻效应 (15)2.2.2 磁阻元件 (16)2.2.3 磁敏电阻的特性 (18)2.3 结型磁敏传感器 (20)2.3.1 磁敏二极管 (20)2.3.2 磁敏三极管 (23)2.4 新型磁传感器 (25)2.4.1 高分辨率磁性旋转编码器 (24)2.4.2 涡流传感器 (26)第三章磁敏传感器在漏磁探伤中的应用 (28)3.1 磁敏传感器阵列结构 (28)3.2 磁敏传感器阵列在漏磁探伤中的应用 (29)3.3 结论 (32)第四章磁敏传感器的发展趋势 (33)4.1 磁敏传感器的发展现状 (33)4.1.1 国内现状 (33)4.1.2 国外现状 (34)4.2 磁敏传感器的发展趋势 (34)第五章理解 (36)参考文献 (37)第1章概述世界传感器市场正在以持续稳定的增长之势向前发展。
世界非军用传感器市场1998年为325亿美元,据统计,2008年已增加到506亿美元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔磁敏传感器原理与应用一.引言随着自动检测控制和信息技术的发展,对传感器的性能要求越来越高,一方面要求尽可能精确,可靠性要求高;另一方面要求价格尽可能廉价。
霍尔传感器是一种理想器件。
磁敏传感器,顾名思义就是感知磁性物体的存在或者磁性强度(在有效范围内)这些磁性材料除永磁体外,还包括顺磁材料(铁、钴、镍及其它们的合金)当然也可包括感知通电(直、交)线包或导线周围的磁场。
传统的磁检测中首先被采用的是电感线圈为敏感元件。
特点正是无须在线圈中通电,一般仅对运动中的永磁体或电流载体起敏感作用。
后来发展为用线圈组成振荡槽路的。
如探雷器,金属异物探测器,测磁通的磁通计等. (磁通门,振动样品磁强计)。
霍尔传感器是依据霍尔效应制成的器件。
霍尔效应:通电的载体在受到垂直于载体平面的外磁场作用时,则载流子受到洛伦兹力的作用,并有向两边聚集的倾向,由于自由电子的聚集(一边多一边必然少)从而形成电势差,在经过特殊工艺制备的半导体材料这种效应更为显著。
从而形成了霍尔元件。
早期的霍尔效应的材料Insb(锑化铟)。
为增强对磁场的敏感度,在材料方面半导体IIIV 元素族都有所应用。
近年来,除Insb之外,有硅衬底的,也有砷化镓的。
霍尔器件由于其工作机理的原因都制成全桥路器件,其内阻大约都在150Ω~500Ω之间。
对线性传感器工作电流大约在2~10mA左右,一般采用恒流供电法。
Insb与硅衬底霍尔器件典型工作电流为10mA。
而砷化镓典型工作电流为2 mA。
作为低弱磁场测量,我们希望传感器自身所需的工作电流越低越好。
(因为电源周围即有磁场,就不同程度引进误差。
另外,目前的传感器对温度很敏感,通的电流大了,有一个自身加热问题。
(温升)就造成传感器的零漂。
这些方面除外附补偿电路外,在材料方面也在不断的进行改进。
霍尔传感器主要有两大类,一类为开关型器件,一类为线性霍尔器件,从结构形式(品种)及用量、产量前者大于后者。
霍尔器件的响应速度大约在1us 量级。
以磁场作为媒介,利用霍尔传感器可以检测多种物理量,如位移、振动、转速、加速度、流量、电流、电功率等。
它不仅可以实现非接触测量,并且采用永久磁铁产生磁场,不需附加能源。
另外,霍尔传感器尺寸小、价格便宜、应用电路简单、性能可靠,因而获得极为广泛的应用。
除了直接利用霍尔传感器外,还利用它开发出各种派生的传感器。
二.工作原理1.霍尔效应通电的导体或半导体,在垂直于电流和磁场的方向上将产生电动势的现象。
2.霍尔磁敏传感器工作原理设霍耳片的长度为l ,宽度为w ,厚度为d 。
又设电子以均匀的速度v 运动,则在垂直方向施加的磁感应强度B 的作用下,它受到洛仑兹力e —电子电量(1.62×10-19C); v —电于运动速度。
同时,作用于电子的电场力当达到动态平衡时电流密度weV eE f H H E /==weV evB H /=dnevw d jw I ⋅-=⋅=d new I v ⋅-=/ned IB V H /-=evBf L =霍耳电势VH与I、B的乘积成正比,而与d成反比。
于是可改写成:R—霍耳系数,由载流材料物理性质决定。
ρ—材料电阻率Hμ—载流子迁移率,μ=v/E,即单位电场强度作用下载流子的平均速度。
金属材料,电子μ很高但ρ很小,绝缘材料,ρ很高但μ很小。
故为获得较强霍耳效应,霍耳片全部采用半导体材料制成。
设K H=R H / d V H=K H I BKH—霍耳器件的乘积灵敏度。
它与载流材料的物理性质和几何尺寸有关,表示在单位磁感应强度和单位控制电流时霍耳电势的大小。
若磁感应强度B的方向与霍耳器件的平面法线夹角为θ时,霍耳电势应为:V H=K H I B cosθ注意:当控制电流的方向或磁场方向改变时,输出霍耳电势的方向也改变。
但当磁场与电流同时改变方向时,霍耳电势并不改变方向。
三.霍耳磁敏传感器(霍耳器件)器件电流(控制电流或输入电流):流入到器件内的电流。
电流端子A、B相应地称为器件电流端、控制电流端或输入电流端。
霍耳输出端的端子C、D相应地称为霍耳端或输出端。
若霍耳端子间连接负载,称为霍耳负载电阻或霍耳负载。
电流电极间的电阻,称为输入电阻,或者控制内阻。
霍耳端子间的电阻,称为输出电阻或霍耳侧内部电阻。
图中控制电流I由电源E供给,R为调节电阻,保证器件内所需控制电流I。
霍耳输出端接负载R3,R3可是一般电阻或放大器的输入电阻、或表头内阻等。
磁场B垂直通过霍耳器件,在磁场与控制电流作用下,由负载上获得电压。
实际使用时,器件输入信号可以是I或B,或者IB,而输出可以正比于I或B, 或者正比于其乘积IB。
实际使用时,器件输入信号可以是I或B,或者IB,而输出可以正比于I或B,同样,若给出控制电压V,由于V=R1I,可得控制电压和霍耳电势的关系式上两式是霍耳器件中的基本公式。
即:输入电流或输入电压和霍耳输出电势完全呈线性关系。
如果输入电流或电压中任一项固定时,磁感应强度和输出电势之间也完全呈线性关系。
四.基本特性1、直线性:指霍耳器件的输出电势VH分别和基本参数I、V、B之间呈线性关系。
2、灵敏度:可以用乘积灵敏度或磁场灵敏度以及电流灵敏度、电势灵敏度表示:V H=K H BIKH——乘积灵敏度,表示霍耳电势VH与磁感应强度B和控制电流I 乘积之间的比值,通常以mV/(mA·0.1T)。
因为霍耳元件的输出电压要由两个输入量的乘积来确定,故称为乘积灵敏度。
若控制电流值固定,则:VH=KBBKB——磁场灵敏度,通常以额定电流为标准。
磁场灵敏度等于霍耳元件通以额定电流时每单位磁感应强度对应的霍耳电势值。
常用于磁场测量等情况。
若磁场值固定,则:VH=KIIKI——电流灵敏度,电流灵敏度等于霍耳元件在单位磁感应强度下电流对应的霍耳电势值。
3、额定电流:霍耳元件的允许温升规定着一个最大控制电流。
4、最大输出功率在霍耳电极间接入负载后,元件的功率输出与负载的大小有关,当霍耳电极间的内阻R2等于霍耳负载电阻R3时,霍耳输出功率为最大。
5、最大效率 霍耳器件的输出与输入功率之比,称为效率,和最大输出对应的效率,称为最大效率,即:6、负载特性 当霍耳电极间串接有负载时,因为流过霍耳电流,在其内阻上将产生压降,故实际霍耳电势比理论值小。
由于霍耳电极间内阻和磁阻效应的影响,霍耳电势和磁感应强度之间便失去了线性关系。
如图所示7、温度特性:指霍耳电势或灵敏度的温度特性,以及输入阻抗和输出阻抗的温度特性。
它们可归结为霍耳系数和电阻率(或电导率)与温度的关系。
8、频率特性磁场恒定,而通过传感器的电流是交变的。
器件的频率特性很好,到10k Hz时交流输出还与直流情况相同。
因此,霍耳器件可用于微波范围,其输出不受频率影响。
磁场交变。
霍耳输出不仅与频率有关,而且还与器件的电导率、周围介质的磁导率及磁路参数(特别是气隙宽度)等有关。
这是由于在交变磁场作用下,元件与导体一样会在其内部产生涡流的缘故。
总之,在交变磁场下,当频率为数十kHz时,可以不考虑频率对器件输出的影响,即使在数MHz时,如果能仔细设计气隙宽度,选用合适的元件和导磁材料,仍然可以保证器件有良好的频率特性的。
五.应用举例利用霍耳效应制作的霍耳器件,不仅在磁场测量方面,而且在测量技术、无线电技术、计算技术和自动化技术等领域中均得到了广泛应用。
利用霍耳电势与外加磁通密度成比例的特性,可借助于固定元件的控制电流,对磁量以及其他可转换成磁量的电量、机械量和非电量等进行测量和控制。
应用这类特性制作的器具有磁通计、电流计、磁读头、位移计、速度计、振动计、罗盘、转速计、无触点开关等。
利用霍耳传感器制作的仪器优点:(1) 体积小,结构简单、坚固耐用。
(2)无可动部件,无磨损,无摩擦热,噪声小。
(3)装置性能稳定,寿命长,可靠性高。
(4)频率范围宽,从直流到微波范围均可应用。
(5)霍耳器件载流子惯性小,装置动态特性好。
霍耳器件也存在转换效率低和受温度影响大等明显缺点。
但是,由于新材料新工艺不断出现,这些缺点正逐步得到克服。
1.检测磁场检测磁场是霍尔式传感器最典型的应用之一。
将霍尔器件做成各种形式的探头,放在被测磁场中,使磁力线和器件表面垂直,通电后即可输出与被测磁场的磁感应强度成线性正比的电压。
2.霍尔位移传感器将霍尔元件置于磁场中,左半部磁场方向向上,右半部磁场方向向下,从a端通人电流I,根据霍尔效应,左半部产生霍尔电势V H1,右半部产生露尔电势V H2,其方向相反。
因此,c、d两端电势为V H1—V H2。
如果霍尔元件在初始位置时V H1=V H2,则输出为零;当改变磁极系统与霍尔元件的相对位置时,即可得到输出电压,其大小正比于位移量。
3.霍尔式压力传感器霍尔元件P4.霍尔转速传感器5.霍尔计数装置(a)工作示意图( b) 电路图输入轴传感器(a)(b)绝缘板6.汽车霍尔电子点火器+12S L 305传感器磁传感器磁当缺口对准霍尔元件时,磁通通过霍尔传感器形成闭合回路,电路导通,霍尔电路输出≤0.4V的低电平;当隔磁罩竖边的凸出部分挡在霍尔元件和磁体之间时,电路截止,霍尔电路输出高电平。
当霍尔传感器输出低电平时,V1截止,V2、V3导通,点火器的初级绕组有恒定的电流通过;当霍尔传感器输出高电平时,V1导通,V2、V3 截止,点火器的初级绕组电流截止,此时储存在点火线圈中的能量由初级绕组以高压放电的形式输出,即放电点火。
六.参考文献罗四维传感器应用电路详解郁有文传感器原理及工程应用康维新传感器与检测技术。