大学物理指导1-10例题习题答案
大学物理课后习题答案
P.30 1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t= s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫⎝⎛-+++=4321)53(2(m) (2) 第一秒内位移j y y i x x r)()(01011-+-=∆(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V∴ )s m (73)34(314-⋅+=++=j i j i V (5) 前4秒平均加速度(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV aP.31 1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t t xv当t =2时x =4代入求证 c =-12 即1224134-++=t t t x将t =3s 代入证P .31 1—9 一个半径R=1.0 m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
在重力作用下,物体A 从静止开始均匀加速的下滑,在∆t=2.0 s 内下降的距离h=0.4 m 。
大学物理习题答案
大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。
2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
大学普通物理复习题(10套)带答案
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
大学物理学习指导下标准答案详解(朱善华)
练习一1、D ,2、C ,3、C ,4、203Q a πεD, 5、()j y a qy2/322042+πε, (j 为y 方向单位矢量),2/a ± ,6、()30220824Rqdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 练习二1、A2、A3、12q q ε+,123201(q q )49q R πε++,4. 22(r )L a ρπ- 5、 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴正向,即杆的延长线方向.6 解: 如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴RE E x 0π2ελ==,方向沿x 轴正向.练习三1、C2、D3、0,0Rrσε 4、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)5、解:由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即12SE S d ρε=得到 012E d ρε=(板外两侧) (2)过平板内一点作一正交柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有022ερxSS E ='得到x E 0ερ='(-d/2≤x ≤d/2) 6 解:(1)ρ+球在O点产生电场010=E, ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= d 3303r ερ= ∴O 点电场d33030r E ερ= ; (2)ρ+在O '产生电场'd π4d 3430301OO E ερπ='03ερ=' ρ-球在O '产生电场002='E∴O '点电场003ερ='E'练习四1、C2、D3、C,4、-e q / (6πε0R )5、解:01=E 1R r203132031323)(4)(34rR r r R r E ερπεπρ-=-=21R r R 20313220313233)(4)(34rR R r R R E ερπεπρ-=-=2R r ⎰⎰∞∙+∙=2R 32r E r E d d U R R 21⎰⎰∞-+-=2R dr rR R dr r R r R R 203132203133)(3)(21ερερ )(221220R R -=ερ 6、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2)整个细线所受电场力为:()l r r l q x x q F l r r +π=π=⎰+000204d 400ελελ方向沿x 正方向. 电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能:⎪⎪⎭⎫⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ 练习五1、D2、A3、C 4.rεεσσ0,5 解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2; 金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0'=E则两极板间的电势差为d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.x6 解:(l )根据有介质时的高斯定理:⎰∑=⋅iq s d D可得两圆柱间电位移的大小为)2/(r D πλ= 场强大小为 rDE r rεπελεε002==两圆柱间电势差⎰⎰=⋅=21210122R R rR R r dr r d E U επελ 1200ln 2221R R r dr r R R rεπελεπελ==⎰电容 12012ln 2R R LU Q C r επελλ==)/ln(2120R R Lr επε=.(2)电场能量 rR R L C Q W επελ012224)/ln(2== 练习六1.20d 4a lI πμ,平行z 轴负向 2.πR 2c 3.0(1)226I R μππ-+ 4.)313(R 2I B 0-=πμ 5.134200==a ev B πμT .242102.92-⨯===eva a T e P mπ2m A ⋅6.)11(4120R R I -μ,垂直纸面向外,2/122210)11(4R R I +μ,12arctg R R +π217、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为R I R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= R I B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T0)2d sin (2220=πθθμ-=⎰ππ-RI B y 练习七1.)(120I I -μ,)(120I I +μ 2.320μI 3.2204RIh πμ 4.02Ir μπ 0 5、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则r dq I d 22d π=π=λωω 它在O 点的磁感强度rrrIB d 42d d 000π==λωμμ⎰⎰+π==b a a rr B B d 4d 000λωμa ba +π=ln 40λωμ方向垂直纸面向内. r r I r p m d 21d d 22λω=π= ⎰⎰+==ba am m r r p p d 21d 2λω6/])[(33a b a -+=λω方向垂直纸面向内.6、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ 穿过整个矩形平面的磁通量21ΦΦΦ+=π=40I μ2ln 20π+Iμ 练习八1、A 2.)/(cos 2eB m θv π,)/(sin eB m θv 3.)2(R l BI +4. (1)40 2.510B nI T μ-==⨯m A BH 2000==μ(2)m A I LNH 200==0 1.05r B H H T μμμ===5. 解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ a b I I dx x I I F ba ln 60cos 22100210πμπμ=⋅=⎰6. 解:(1)IS P m =B P M m⨯=沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(2)磁力功)(12ΦΦ-=I A∵01=ΦB l 2243=Φ∴221033.443-⨯==B l IA J练习九1、D ,2、C ,3、0.40 V 、 0.5 m 2/s ,4、5×10-4 Wb5、解:在矩形回路中取一小面元ds ,面元处:2IB xμπ= 一个矩形回路的磁通量为:ln 22d a dIl Id a d BdS ldx x dμμππ++Φ=Φ==⋅=⎰⎰⎰由法拉第电磁感应定律,N 匝回路中的感应电动势为:0ln cos 2N I l d d a Nt dt dμωεωπΦ+=-=- 6、解:abcd 回路中的磁通量⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ由法拉第电磁感应定律 klvt tm-=-=d d Φε 其沿abcd 方向顺时针方向.练习十1、A2、πBnR 2 、0,3、t B R /d d 212π-, 4、28/104.0s m ⨯ 顺时针5、解:在长直导线中取一小线元,小线元中的感应电动势为:dl l vI dl l I v l d B v d πμπμε2180cos 90sin 200-==∙⨯=整个直导线中 dLd vI l dl vI L d d +-=-=⎰+ln2200πμπμε 杆的右端电势低6、解:∵bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴tBR R ac d d ]12π43[22+=ε∵0d d >tB∴0>ac ε即ε从c a →ε的方向也可由楞次定律判定。
大学物理习题及答案
(2)自行车所经历的路程等于多少?
(3)自行车的位移等于多少?
第2章牛顿运动定律
1.两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。将绳子剪断的瞬间,球1和球2的加速度分别为
(A) (B)
(C) (D)
2.质量分别为 和 的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,
6.三个物体A、B、C每个质量都是 ,B、C靠在一起,置于一光滑水平桌面上,两者间连有一段长0.4m的细绳,原先放松着。B的另一端用一跨过桌边的定滑轮的细绳与A相连,如图,滑轮与绳子的质量及轮轴的摩擦不计,绳子不可伸长。问:
(1)A、B起动后,经多长时间C也开始运动?
(2)C开始运动时速度是多大?
7.判断正误
10.一质点沿半径为R的圆周运动。质点所经过的弧长与时间的关系为 其中b、c是大于零的常量,求从t=0开始到达切向加速度与法向加速度大小相等时所经历的时间。
11.如图所示,质点P在水平面内沿一半径
为R=2m的圆轨道转动。转动的角速度 与
时间t的函数关系为 (k为常量)。
已知t=2s时,质点P的速度值为32m.s-1试
11.一个绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出 。另有人沿绳子拉力 的方向求合力,写出 。显然两者不能同时成立,指出哪一个式子是错误的,为什么?
12.已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离 的平方成反比,即 ,k是比例常数。设质点在 时的速度为零,求 处的速度的大小。
11.我国的第一颗人造地球卫星绕地球作椭圆轨道运动,地球的中心O为该椭圆的一个焦点。已知地球的平均半径 km,卫星距地面最近距离 km,最远距离 km。若卫星在近地点速率 kms-1,求远地点速率 。
大学物理课后题答案10
过 点作一圆柱体垂直穿过无限大带电平板,由高斯定理
两底面上各点的场强大小相等,因此
即
由于平板外一点的场强与距平板的距离无关
(2)板内P点处的场强由左右两边薄板的场强在该点叠加产生
(3)若电场强度为0,则
所以
10-14半径为R、线电荷密度为 的均匀带电圆环,在其轴线上放一长为l、线电荷密度为 的均匀带电直线,该线段的一端处于圆心处,如图所示。求该直线段受到的电场力。
[解]在细棒上距O点x处取一线元dx,所带电量为
均匀带电圆环在dx处产生的场强为
dq在带电圆环的电场中所受到的电场力的大小为
所以
整个带电细棒所受的电场力为
在 处取电荷元 ,它受到的左棒的电场力为
所以右棒受的总电场力为
[解二]直接求电荷元间的库仑力,再积分求整个带电体的受力。
在两带电细棒上各取一微元 、 ,它们之间的距离为 。根据库仑定律, 受 的库仑力为
F方向为x正向,左棒受右棒库仑力
10-4用绝缘细线弯成的半圆环,半径为R,其上均匀地带有正电荷Q,试求圆心处点O的场强。
[证明二]在静电场中作一矩形闭合回线abcd,根据场强与电力线密度的关系式 ,可知ab线上各点场强 ,cd线上各点场强 各自相等。所以
这违反静电场中E的环流定律 。所以在静电场中,若电场线平行必然是等间距的,即均匀场可用平行等间距的场线表示。
10-26假如静电场中某一区域电场线的形状是以点O为中心的同心圆弧,如图所示。试证明:该区域各点的电场强度的大小都应与该点离O点的距离成反比。
[解]电荷连续分布带电体产生的场应用点电荷场强公式积分求解。
大学物理习题答案全解1~10章
习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ](A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。
2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。
则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dx dt=,得2t =。
即2t =时x 取极值而返回。
所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。
从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。
(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。
答案:B ;B 。
解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。
或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B )大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。
大学物理习题答案第一章
大学物理习题答案第一章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。
求汽车行驶的总路程和总位移。
解汽车行驶的总路程为;汽车的总位移的大小为∆r =位移的方向沿东北方向,与方向一致。
1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么解与在一般情况下是不相等的。
因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。
如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。
1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。
求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度;(3)第三秒末和第四秒末的加速度。
解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。
(1)第二秒内的平均速度m⋅s-1;(2)第三秒末的速度因为,将t = 3 s 代入,就求得第三秒末的速度,为v3 = - 18 m⋅s-1;用同样的方法可以求得第四秒末的速度,为v4 = - 48 m⋅s-1;(3)第三秒末的加速度因为,将t = 3 s 代入,就求得第三秒末的加速度,为a3 = - 24 m⋅s-2;用同样的方法可以求得第四秒末的加速度,为v4 = - 36 m⋅s-2 .1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:(1) v d v = a d s;(2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。
解(1);(2)对上式积分,等号左边为,等号右边为,于是得,即.1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t-1)2 (t-2),s和t的单位分别是m和s。
(完整版)大学物理上第1章习题解答
第一章 质点运动学1-1 在一艘内河轮船中,两个旅客有这样的对话:甲:我静静地坐在这里好半天了,我一点也没有运动。
乙:不对,你看看窗外,河岸上的物体都飞快地向后掠去,船在飞快前进,你也在很快地运动。
试把他们讲话的含意阐述得确切一些,究竟旅客甲是运动,还是静止?你如何理解运动和静止这两个概念的。
答:①如果以轮船为参考系,则甲、乙旅客都是静止的,而河岸上的物体都在向后运动; 如果以河岸为参考系,则轮船及甲、乙旅客都是运动的。
②运动是绝对的,而静止是相对的。
描述物体的运动情况时,首先要选定参考系,选取的参考系不同,对物体运动的描述也就不同。
1-2 有人说:“分子很小,可将其当作质点;地球很大,不能当作质点”,对吗? 答:这种说法不对。
“质点”是经过科学抽象而形成的物理模型。
物体能否当作质点是有条件的,相对的。
当研究某物体的运动,可以忽略某大小和形状,或者只考虑其平动,那么就可把物体当作质点.。
例如,分子虽小,但如研究分子内部结构时,不能当作质点;地球虽大,但如研究地球自转现象时,也不能当作质点,而当研究地球绕太阳的公转时,就可当作质点。
1-3 已知质点的运动方程为()()r x t i y t j =+,有人说其速度和加速度分别为22d d ,d d r r v a t t==其中r =,你说对吗?答:题中说法不对。
根据定义22d d d . d d d r v r v a t t t ===,所以,由()()r x t i y t j =+ 可得如下结论:22)()(dt dy dt dx j dt dy i dt dx v v +=+== ,2222d d d d d d d d d d y x t y y tx xt y x t r t r ++=+== 显然,d d r v t ≠,2222222d d d d d d d d v x y x a i j t t t t ⎛⎫==+= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛==222222d d d d d d d d d d d d d d y x t y y t x x t t r t t r t r ,显然,22d d t r a ≠ 。
大学物理习题答案解析第一章
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);tsd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗? 1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 42=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin=', t T R y π2cos -='坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t vi j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==ttt t 0)d 46(d d j i a vvj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值. 解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到. 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hlαarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为。
大学物理学习指导详细答案
第四章动量、角动量【例题精选】例4-1一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t+0.96(SI),则2秒末物体的速度大小v = .2秒末物体的加速度大小a = .0.89 m/s1.39 m/s 2 例4-2质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v(v A > v B )的两质点A 和B ,受到相同的冲量作用,则 (A) A 的动量增量的绝对值比B 的小. (B) A 的动量增量的绝对值比B 的大. (C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等.[ C ] *例4-3质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 点时,轨道作用于质点的冲量的大小为 (A) m v (B)2m v(C)3m v (D) 2m v [ C ]例4-4一人用恒力F推地上的木箱,经历时间∆t 未能推动木箱,此推力的冲量等于多少?木箱既然受了力F的冲量,为什么它的动量没有改变?答:推力的冲量为t F ∆.动量定理中的冲量为合外力的冲量,此时木箱除受力F外还受地面的静摩擦力等其它外力,木箱未动说明此时木箱的合外力为零,故合外力的冲量也为零,根据动量定理,木箱动量不发生变化. 例4-5如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重) 解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x )(00v m t f y ∆--=∆将t q m m ∆=∆代入得v m x q f =,0v m y q f =∴14922=+=y x f f f Nf与x 轴正向夹角为α = arctg (f x / f y ) = 57.4°由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.hAvAxyαf y ∆tt f ∆f x ∆t例4-6在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力) (A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ] 例4-7质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒. 令子弹穿出时物体的水平速度为v '有m v 0 =m v +M v 'v '=m (v 0 -v )/M=3.13 m/s T=Mg+M v 2/l=26.5 N(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向)负号表示冲量方向与0v方向相反.例4-8如图所示,质量M = 2.0 kg 的笼子,用轻弹簧悬挂起来,静止在平衡位置,弹簧伸长x 0 = 0.10 m ,今有m = 2.0 kg 的油灰由距离笼底高h = 0.30 m 处自由落到笼底上,求笼子向下移动的最大距离. 解:油灰与笼底碰前的速度gh 2=v 0/x Mg k =碰撞后油灰与笼共同运动的速度为V ,应用动量守恒定律V M m m )(+=v ①油灰与笼一起向下运动,机械能守恒,下移最大距离∆x ,则x g m M kx V m M x x k ∆∆++++=+)(21)(21)(2120220② 联立解得:3.0)(20222020=+++=∆m M M hx m Mx m x M mx m 例4-9假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C)角动量不守恒,动能守恒.(D)角动量守恒,动量也守恒. [ A ] *例4-10 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB (B) L A =L B ,E KA <E KB(C) L A =L B ,E KA >E KB (D) L A <L B ,E KA <E KB [ C ]Mm0v【练习题】4-1一颗子弹在枪筒里前进时所受的合力大小为 t F 31044005⨯-=(SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则子弹在枪筒中所受力的冲量I = ;子弹的质量m = .0.6 N·s 2 g 4-2如图,两个长方形的物体A 和B 紧靠着静止放在光滑的水平桌面上,已知m A =2 kg ,m B =3 kg .现有一质量m =100g 的子弹以速率v 0=800 m/s 水平射入长方体A ,经t =0.01 s ,又射入长方体B ,最后停留在长方体B 内未射出.设子弹射入A 时所受的摩擦力为F= 3×103 N ,求: (1) 子弹在射入A 的过程中,B 受到A 的作用力的大小. (2) 当子弹留在B 中时,A 和B 的速度大小. 解:子弹射入A 未进入B 以前,A 、B 共同作加速运动.F =(m A +m B )a , a=F/(m A +m B )=600 m/s 2B 受到A 的作用力N =m B a =1.8×103N 方向向右A 在时间t 内作匀加速运动,t 秒末的速度v A =at .当子弹射入B 时,B 将加速而A 则以v A的速度继续向右作匀速直线运动.v A =at =6 m/s取A 、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒,子弹留在B中后有B B A A m m m m v v v )(0++=m/s 220=+-=BAA B m m m m v v v4-3 质量m =2kg 的质点在力i t F 12=(SI)的作用下,从静止出发沿x 轴正向作直线运动,前三秒内该力作用的冲量大小为 ;前三秒内该力所作的功为 .54N ·s729 J*4-4光滑圆盘面上有一质量为m 的物体A ,拴在一根穿过圆盘中心O 处光滑小孔的细绳上,如图所示.开始时,该物体距圆盘中心O 的距离为r 0,并以角速度ω 0绕盘心O 作圆周运动。
大学物理学习指导下答案
大学物理学习指导答案全解练习一:1-3:D B D ;4、3031ct v v +=,400121ct t v x x ++= 5、s 3;6、14rad, 15rad/s, 12rad/s27、解:(1)j t t i t r)4321()53(2-+++=;(2))/(73;)3(34s m j i v j t i dt rd v s t +=++===;(3))/(12s m j dtvd a ==8、解xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v 练习二:1、C ;2、B ;3、j 8,j i 4+-,4412arctg arctg -+ππ或;4、32ct ,ct 2,R t c 42,R ct2;5、212t t +,212t +;6、2010θθθθtg tg tg tg ++7、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴ tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船 8、解:(1)由23Rbt dtd R dt ds v -===θ得: Rbt dt dva 6-==τ,4229t Rb R v a n == (2)n n n e t Rb e Rbt e a ea a ˆ9ˆ6ˆˆ42+-=+=τττ练习三1、C ,2、A ,3、D ,4、2121)(m m g m m F +-+,)2(1212g m F m m m ++;5、0.41cm6、解:取弹簧原长时m 2所在处为坐标原点,竖直向下为x 轴,m 1,m 2的受力分析如上图所示。
大学物理学习指导详细答案
第十章 热力学【例题精选】例10-1两个完全相同的气缸内盛有同种气体,设其初始状态相同,今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:(A) 气缸1和2内气体的温度变化相同. (B) 气缸1内的气体温度变化较大. (C) 气缸1内的气体的温度变化较小. (D) 两气缸内的气体的温度无变化. [ B ]例10-2 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是(A) 等压过程.(B) 等体过程.(C) 等温过程.(D) 绝热过程. [ A ]例10-3用公式T C E V ∆=∆ν(式中V C 为定体摩尔热容量,视为常量,ν 为气体摩尔数)计算理想气体内能增量时,此式(A) 只适用于准静态的等体过程. (B) 只适用于一切等体过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程.[ D ]例10-4 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是: (A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功. [ B ] 例10-5 、一定量理想气体,从A 状态 (2p 1,V 1)经历如图所示的直线过程变到B 状态(2p 1,V 2),则AB 过程中系统作功W = ;内能改变∆E = .1123V p 0 例10-6 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中: 过程气体对外作功最多; 过程气体内能增加最多.等压 等压例10-7 比热容比γ=1.40的理想气体进行如图所示的循环.已知状态A 的温度为300 K .求:(1) 状态B 、C 的温度; (2) 每一过程中气体所吸收的净热量. (普适气体常量R =8.31 11K mol J --⋅⋅)Vp p 2p3)解:由图得 p A =400 Pa , p B =p C =100 Pa , V A =V B =2 m 3,V C =6 m 3. (1) C →A 为等体过程,据方程p A /T A = p C /T C 得 T C = T A p C / p A =75 KB →C 为等压过程,据方程V B /T B =V C T C 得 T B = T C V B / V C =225 K(2) 根据理想气体状态方程求出气体的物质的量(即摩尔数)ν 为ν = p A V A /RT A =0.321 mol 由γ=1.4知该气体为双原子分子气体,R C V 25=,R C P 27= B →C 等压过程吸热 1400)(272-=-=B C T T R Q ν J .C →A 等体过程吸热1500)(253=-=C A T T R Q ν J .循环过程 ΔE =0,整个循环过程净吸热 600))((21=--==C B C A V V p p W Q J .∴ A →B 过程净吸热: Q 1=Q -Q 2-Q 3=500 J例10-8 如图所示,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1) 解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa 大气压p 0=1.013×105 Pa , p 1>p 0 可见,气体的降温过程分为两个阶段:第一阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2 (1) )(23)(21211T T R T T C Q V -=-= ==1122)/(T p p T 365.7 K ∴ Q 1= 428 J(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J例10-9 一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机效率为 ;热机每一循环作功 J .20% 400例10-10 两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的 两个热源之间,已知这两个循环曲线所包围的面积相等.则: (A) 两个热机的效率一定相等.(B) 两个热机从高温热源所吸收的热量一定相等. (C) 两个热机向低温热源所放出的热量一定相等.(D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等. [ D ]例10-11 温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 (A) 25% (B) 50% (C) 75% (D) 91.74% [ B ] 例10-12 热力学第二定律表明: (A) 不可能从单一热源吸收热量使之全部变为有用的功. (B) 在一个可逆过程中,工作物质净吸热等于对外作的功.(C) 摩擦生热的过程是不可逆的.(D) 热量不可能从温度低的物体传到温度高的物体. [ C ] 例10-13 “理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律. (B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ C ] 例10-14 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ A ]【练习题】10-1 质量为0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅) 解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知 )(12T T C M ME Q V m o l-=∆==623 J(2) 定压过程,p = 常量, )(12T T C M MQ p mol-==1.04×103 J ∆E 与(1) 相同. W = Q - ∆E =417 J (3) Q =0,∆E 与(1) 同 W = -∆E=-623 J (负号表示外界作功)10-2 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)解:(1) 等温过程气体对外作功为 ⎰⎰===333ln d d V V V V RT V VRTV p W =8.31×298×1.0986 J = 2.72×103 J(2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 03003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ=2.20×103 J10-3 ν 摩尔的某种理想气体,状态按p a V /=的规律变化(式中a 为正常量),当气体体积从V 1膨胀到V 2时,气体所作的功W = ;气体温度的变化T 1─T 2= .).V /1V /1(a 212- ).V 1V 1(R a 212-ν (SI)10-4 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = 1.0×105 Pa ,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K ,再经绝热过程温度降回到T 2 = 300 K ,求气体在整个过程中对外作的功. 解:等压过程末态的体积 101T T V V =等压过程气体对外作功 )1()(01000101-=-=T TV p V V p W =200 J根据热力学第一定律,绝热过程气体对外作的功为 W 2 =-△E =-νC V (T 2-T 1) 这里00RT V p =ν,R C V 25=,则500)(2512002==--=T T T V p W J 气体在整个过程中对外作的功为 W = W 1+W 2 =700 J .10-5 一定量的单原子分子理想气体,从A 态出发经等压过程膨胀到(m 3)p 1×4×B 态,又经绝热过程膨胀到C 态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.解:由图可看出 p A V A = p C V C 从状态方程 pV =νRT 可知T A =T C ,因此全过程A →B →C 的 ∆E =0.B →C 过程是绝热过程,有Q BC = 0. A →B 过程是等压过程,有 )(25)( A A B B A B p AB V p V p T T C Q -=-=ν=14.9×105 J . 故全过程A →B →C 的 Q = Q BC +Q AB =14.9×105 J .根据热一律Q =W +∆E ,得全过程A →B →C 的 W = Q -∆E =14.9×105 J .10-6 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0=300K 的初态,后经过一等体过程,温度升高到T 1=450K ,再经过一等温过程,压强降到p =p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p /C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量. (普适气体常量R = 8.31 J·mol -1·K -1)解:(1) 由35=V pC C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23=(2) 该理想气体的摩尔数 ==000RT Vp ν 4 mol在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J 全过程中气体对外作的功为 011ln p p RT W ν= 式中p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln⨯==T T RT W ν J . 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J .10-7 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及 所吸收的热量Q .(2)整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J .B →C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J(2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 Jm 3) 510-8 一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .500 100 10-9 有一卡诺热机,用290 g 空气为工作物质,工作在27℃的高温热源与 -73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3 kg/mol ,普适气体常量R =8.31 11K mol J --⋅⋅)33.3% 8.31×103 J 10-10 1mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各过程系统吸收的热量;(2) 经一循环系统所作的净功;(3) 循环的效率. (循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693) 解:(单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 K T b = (V b /V a )T a =300 K(1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热))(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热)Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热)(2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%10-11 1 mol 单原子分子的理想气体,经历如图所示的可逆循环,联结ac 两点的曲线Ⅲ的方程为2020/V V p p =, a 点的温度为T 0 试以T 0 , 普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。
《大学物理学》(赵近芳 主编)第二版 课后习题答案(上下册)第一单元
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。
大学物理上学习指导作业参考答案(1)
大学物理上学习指导作业参考答案(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分()2 213x x +=v 1分2、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m 处,初速度v 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t ⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分 ()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.O RP解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l l d d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船第二章 运动与力课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.N2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大 (取g =10 m/s 2)解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少环与绳间的摩擦力多大m 1m 22a解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-= 1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2/ L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分LOO ′rO O ′ d r T (r ) T (r +d )第三章 动量与角动量课 后 作 业hAv1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少( 空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有 S 1 = v x t ①h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F和y F 分别作的功.解:(1)位矢 j t b i t a rωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kL kx x L F -=+- ② 2分由② 解出 kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy l my f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =l a l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分 )ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r β 2分解上述5个联立方程得: T =11mg / 8 2分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分Am 1 ,l1v2俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 g m m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 23分aaO y x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间如以飞船上的时钟计算,所需时间又为多少年解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分 以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴ )1111(22122220c c c m W v v ---==4.72×10-14 J =2.95×105 eV 2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件二者在何位置开始分离解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k 有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程; (2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+= 由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动, k = π2. 3分 又 mm k π==ω 4分m T 22=π=ω3分4、一物体同时参与两个同方向的简谐振动: )212cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )cos(2122122212φφ-++=A A A A A ① 2分 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分由题意,t = 0时v 0 = 0;x = x 0则02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分 而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有 05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分3/17π-=φ 1分∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求(1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时 0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分则反射波的表达式是 ])(2cos[2ππ++-+-=φλνxOP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P ,2分 可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K .3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) 5 A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量. 气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中 ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分BAOVp p 2V 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中1 2 3 1 2 3 a bcV (L)p (atm)气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:Oadcbp (×105 Pa)V (×10-3 m 3)2312(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分(2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分(3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R ,T a T c = (p a V a p c V c )/R 2=(12×104)/R 2T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量) A BC DO Vp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ) )/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= 4分 根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C CB B T p T p 11 ∵ p A = p B , pC = pD ,∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Q η 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环的热机效率;(2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 4分 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分 (2) ='-='η121T T 425 K 2分。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理:第1章习题参考答案
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m/s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为习题1-7图02222d d d d v s h s t l hll t s v +-=-==负号表示船在水面上向岸靠近.船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m/s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m /s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h += 电梯下降的距离为习题1-9图 习题1-10图2021at t v h +=' 又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t 而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0cos παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''== 欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a 即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222min 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm )(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S。
大学物理课后答案第1章质点运动学习题解答
大学物理课后答案第1章质点运动学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第1章质点运动学习题解答1-1 如图所示,质点自A 点沿曲线运动到B 点,A 点和B 点的矢径分别为A r 和B r 。
试在图中标出位移r ∆和路程s ∆,同时对||r ∆和r ∆的意义及它们与矢径的关系进行说明。
解:r ∆和s ∆如图所示。
||r ∆是矢径增量的模||A B r r -,即位移的大小;r ∆是矢径模的增量A B A B r r r r -=-|||| ,即矢径长度的变化量。
1-2 一质点沿y 轴作直线运动,其运动方程为32245t t y -+=(SI )。
求在计时开始的头3s 内质点的位移、平均速度、平均加速度和所通过的路程。
解:32245t t y -+=,2624t v -=,t a 12-=)(18)0()3(m y y y =-=∆)/(63s m y v =∆= )/(183)0()3(2s m v v a -=-= s t 2=时,0=v ,质点作反向运动)(46|)2()3(|)0()2(m y y y y s =-+-=∆1-3 一质点沿x 轴作直线运动,图示为其t v -曲线图。
设0=t 时,m 5=x 。
试根据t v -图画3出:(1)质点的t a -曲线图;(2)质点的t x -曲线图。
解:⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v(1)dtdv a = ,可求得: ⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v质点的t a -曲线图如右图所示(2)dt dx v = ,⎰⎰=t x vdt dx 00, 可求得:20≤≤t 时,⎰⎰+-=tx dt t dx 05)2020(, 520102+-=t t x 62≤≤t 时,⎰⎰⎰+++-=t x dt t dt t dx 2205)5.215()2020(, 3015452-+=t t x 106≤≤t 时,⎰⎰⎰⎰-++++-=tx dt t dt t dt t dx 662205)5.775()5.215()2020(, 210754152-+-=t t x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-+-≤≤-+≤≤+-=∴)106( 21075415)62( 301545)20( 52010222t t t t t t t t t x质点的t x -曲线图如右图所示。
大学物理学习指导答案Word版
大学物理学习指导习题详解目录第一章质点运动学................................................................... (1)第二章牛顿定律................................................................... . (3)第三章动量守恒定律和能量守恒定律 (5)第四章刚体的转动................................................................... (8)第五章热力学基础................................................................... .. (11)第六章气体动理论................................................................... .. (13)第七章静电场................................................................... . (15)第八章静电场中的导体和介质................................................................... (21)第九章稳恒磁场................................................................... (28)第十章磁场中的磁介质................................................................... (35)第十一章电磁感应................................................................... (36)第十二章机械振动................................................................... (43)第十三章机械波................................................................... (45)第十四章 电磁场普遍规律..................................................................................49 第十五章 波动光学..............................................................................................51 第十六章 相对论..................................................................................................55 第十七章 量子力学. (57)第一章 质点运动学1. 由dtdy v dt dx v y x ==,和速度的矢量合成可知,质点在(x,y )处的速度大小2/122⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=dt dy dt dx v 。
大学物理教程习题答案上海交通大学出版社
大学物理教程习题答案上海交通大学出版社 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT习题 11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221tt =+,利用222t n a a a =+有: 22221n t a a a t =-=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学【例题】例1-1 A t= 1.19 s 例1-2 D 例1-3 D 例1-4 B例1-5 3 3 例1-6 D 例1-7 C 例1-8 证明:2d d d d d d d d v xv v t x x v t v K -==⋅= ∴ d v /v =-K d x ⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v ∴ v =v 0e -Kx 例1-9 1 s 1.5 m 例1-10 B【练习题】1-1 x=(y-3)21-2 -0.5m/s -6m/s 2.25m 1-3 D1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小t a 必为常数,即321t t t a a a ==,现在虽然321a a a ==, 但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即321t t t a a a ≠≠,故该质点不作匀变速率运动。
1-5 D1-6 证明:设质点在x 处的速度为v , 62d d d d d d 2x txx t a +=⋅==v v ()x xxd 62d 02⎰⎰+=v v v()2 213 x x +=v1-7 16 R t 2 4 rad /s 2 1-8 Hv/(H-v) 1-9 C第二章 质点运动定律【例题】例2-1 B 例2-2 B例2-3 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律 tmK d d vv =- ∴ ⎰⎰=-=-vv 00v vd d ,vvd d t t m K t m K ∴ m Kt /0e -=v v(2) 求最大深度 tx d d =v t x m Kt d e d /0-=v t x mKt txd e d /000-⎰⎰=v∴ )e 1()/(/0m Kt K m x --=vK m x /0max v =例2-4 D例2-5 答:(1) 不正确。
向心力是质点所受合外力在法向方向的分量。
质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。
即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。
(2) 不正确。
作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。
例2-6 B 例2-7 A【练习题】2-1 θcos /mg θθc o ss i n gl2-2 0 2g2-3 C2-4 证明:小球受力如图,根据牛顿第二定律 tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件:t = 0, v = 0. ⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v2-5 B2-6 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f 和质量为m 的物块对它的拉力F 的合力提供,当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反,因M 物块相对于转台静止,故有F + f max =M r max ω2 F - f max =M r min ω2 m 物块是静止的,因而 F = m g 又 f max =μs M g 故 2.37M Mg mg r 2s max =ωμ+=mm 4.12M Mgmg r 2s min=ωμ-=mm第三章 机械能和功【例题】 例3-1 C例3-2 B例3-3 18 J 6 m/s例3-4 解:设弹簧伸长x 1时,木块A 、B 所受合外力为零,即有: F -kx 1 = 0 x 1 = F /k设绳的拉力T 对m 2所作的功为W T 2 ,恒力F 对m 2所作的功为为W F ,木块A 、B 系统所受合外力为零时的速度为v ,弹簧在此过程中所作的功为W K 。
对m 1、m 2系统,由动能定理有 W F +W K =221)(21v m m + ① 对m 2有 W F +W T 2=2221v m ② 而 W K =k F kx 221221-=-, W F =Fx 1=kF 2 代入①式可求得 )(21m m k F +=v由②式可得+-=F T W W 22221v m ])(21[2122m m m k F +--=)(2)2(21212m m k m m F ++-=例3-5 解:(1) 位矢j i r t b t a ωωsin cos += (SI) t a x ωc o s=, t b y ωsin = t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v在B 点(0,b ) ,0cos =t ω,1sin =t ω E KB =2222212121ωma m m y x =+v v(2) j i F y x ma ma +==j i t mb t ma ωωωωsin cos 22--由A →B ⎰⎰-==02d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 例3-6 证明: 由P =F v 及F =ma ,P =ma v 代入 t a d d v = P =tm d d vv由此得P d t =m v d v ,两边积分,则有 ⎰⎰=ttm t P 0d d v v∴ 221v m Pt =∴ m Pt /2=v 例3-7 R GmM 32 RGmM3-例3-8 答:W 并不是合外力所作的功。
因为物体所受的力除了人的作用力F 外,还有重力P =mg ,根据动能定理,合外力所作的功等于物体动能的增量,则可写为221v m mgh Fh =- 即 021)(2+=-v m h P F 所以 mgh m Fh W +==221vW 是人对物体所作的功,而不是物体所受合外力所作的功。
例3-9 C例3-10 解:(1)根据功能原理,有 mgh m fs -=2021v ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ )ctg 1(220αμ+=g h v =4.5 m(2) 根据功能原理有fs m mgh =-221v αμc t g 212m g hm g h m -=v []21)ctg 1(2αμ-=gh v =8.16 m/s【练习题】3-1 320J 8 m/s 3-2 C 3-3 D3-4 g 2g3-5 20kx 2021kx -3-6 2112r r r r GMm- 2121r r r r GMm- 3-7 k/2r 23-8 解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量,由题意有 222121v m kx x f r -=- 而mg f k r μ=由此得木块开始碰撞弹簧时的速率为 mkx gx k 22+=μv = 5.83 m/s3-9 2(F-μmg)2/k3-10 证明:物体m 向上作匀加速直线运动,根据牛顿第二运动定律有ma Kmg mg F =--θsinKg g m F a --=θsin )/(物体动能的增量maS m m m E K=-=-=∆)(21212121222122v v v v ]s i n)/[(Kg g m F mS --=θK m g S S mg FS --=θsin 第四章 动量和角动量【例题】例4-1 0.89 m/s 2.96 m/s 2 例4-2 C 例4-3 C例4-4 答:推力的冲量为t ∆F ,动量定理中的冲量为合外力的冲量,此时木箱除受力F 外还受地面的静摩擦力等其它外力,木箱未动说明此时木箱的合外力为零,故合外力的冲量也为零,根据动量定理,木箱动量不发生变化。
例4-5 解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度 gh 20=v设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆设A 对煤粉的平均作用力为f ,由动量定理写分量式:0-∆=∆v m t f x )(00v m t f y ∆--=∆将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f = ∴ 14922=+=y x f f f N f 与x 轴正向夹角为α = arctg (f x / f y ) = 57.4°由牛顿第三定律,煤粉对A 的作用力f ′= f = 149 N ,方向与图中f 相反。
例题4-5答案图例4-6 C例4-7 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置,因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒。
令子弹穿出时物体的水平速度为v ' 有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s T =Mg+M v 2/l =26.5 N(2) s N 7.40⋅-=-=∆v v m m t f (设0v 方向为正方向)负号表示冲量方向与0v 方向相反。
例4-8 解:油灰与笼底碰前的速度 gh 2=v 0/x Mg k =碰撞后油灰与笼共同运动的速度为V ,应用动量守恒定律 V M m m )(+=v ①油灰与笼一起向下运动,机械能守恒,下移最大距离∆x ,则x g m M kx V m M x x k ∆∆++++=+)(21)(21)(2120220 ② 联立解得: 3.0)(20222020=+++=∆m M M hx m Mx m x M mx m例4-9 A 例4-10 C【练习题】4-1 0.6 N·s 2 g4-2 解:子弹射入A 未进入B 以前,A 、B 共同作加速运动,F =(m A +m B )a a=F/(m A +m B )=600 m/s 2B 受到A 的作用力 N =m B a =1.8³103N 方向向右A 在时间t 内作匀加速运动,t 秒末的速度v A =at ,当子弹射入B 时,B 将加速而A 则以v A的速度继续向右作匀速直线运动.v A =at =6 m/s取A 、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒,子弹留在B 中后有B B A A m m m m v v v )(0++= m /s220=+-=BAA B m m m m v v v 4-3 54 N ²s 729 J4-4 2212020)23(mv mr +ω4-5 解:(1) 木块下滑过程中,以木块、弹簧、地球为系统机械能守恒,选弹簧原长处为弹性势能和重力势能的零点,以v 1表示木块下滑x 距离时的速度,则0sin 2121212=-+αMgx M kx v 求出: =-=Mkx gx 21sin 2αv 0.83 m/s 方向沿斜面向下。