大学物理习题及解答(打印版)
大学物理试题库及答案详解pdf
大学物理试题库及答案详解pdf一、选择题1. 光在真空中的传播速度是()。
A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这个定律的数学表达式是()。
A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A二、填空题1. 电磁波的波速在真空中是恒定的,其值为______ m/s。
答案:299,792,4582. 根据热力学第一定律,能量守恒,即能量不能被创造或消灭,只能从一种形式转化为另一种形式。
其数学表达式为:ΔU = Q - W,其中ΔU表示内能的变化,Q表示______,W表示______。
答案:热量的转移;功的做功三、计算题1. 一个质量为5kg的物体从静止开始,受到一个恒定的力F=20N的作用,求物体在5秒内移动的距离。
答案:首先根据牛顿第二定律F=ma,可以计算出物体的加速度a=F/m=20N/5kg=4m/s²。
然后根据位移公式s=1/2at²,可以计算出物体在5秒内移动的距离s=1/2*4m/s²*(5s)²=50m。
2. 一个电容器的电容为2μF,当电压从0增加到5V时,求电容器储存的电荷量。
答案:根据电容的定义C=Q/V,可以计算出电容器储存的电荷量Q=CV=2*10^-6F*5V=10^-5C。
四、简答题1. 简述麦克斯韦方程组的四个方程。
答案:麦克斯韦方程组包括四个方程,分别是:- 高斯电场定律:∇·E = ρ/ε₀- 高斯磁场定律:∇·B = 0- 法拉第电磁感应定律:∇×E = -∂B/∂t- 安培环路定律(包含麦克斯韦修正项):∇×B = μ₀(J +ε₀∂E/∂t)2. 什么是量子力学的不确定性原理?答案:不确定性原理是量子力学中的一个基本原理,由海森堡提出。
大学物理试题答案及解析
大学物理试题答案及解析一、选择题1. 光年是表示距离的单位,它等于()。
A. 一年内光所行进的距离B. 一年内光所行进的时间C. 一年内光所行进的路程D. 一年内光所行进的速度答案:A解析:光年是天文学中用来表示距离的单位,它表示光在真空中一年内所行进的距离。
2. 根据牛顿第二定律,一个物体的加速度与作用在它上面的力成正比,与它的质量成反比。
这个定律的数学表达式是()。
A. \( F = ma \)B. \( F = \frac{m}{a} \)C. \( a = \frac{F}{m} \)D. \( a = \frac{m}{F} \)答案:C解析:牛顿第二定律指出,物体的加速度与作用在它上面的力成正比,与它的质量成反比,数学表达式为 \( a = \frac{F}{m} \)。
二、填空题1. 根据热力学第一定律,能量守恒,即能量不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
用公式表示为:\( \Delta U = Q- W \),其中 \( \Delta U \) 表示内能的变化,\( Q \) 表示系统吸收的热量,\( W \) 表示系统对外做的功。
2. 电磁波谱中,波长最长的是()。
答案:无线电波解析:电磁波谱中,波长从长到短依次为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
三、计算题1. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然遇到紧急情况需要刹车。
假设刹车过程中汽车的加速度为-5m/s²,求汽车从开始刹车到完全停止所需的时间。
答案:4秒解析:根据公式 \( v = u + at \),其中 \( v \) 是最终速度,\( u \) 是初始速度,\( a \) 是加速度,\( t \) 是时间。
已知\( v = 0 \),\( u = 20 \)m/s,\( a = -5 \)m/s²,代入公式得\( 0 = 20 - 5t \),解得 \( t = 4 \)秒。
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
(完整版)大学物理习题集.doc
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
大学物理考试题及答案
大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。
A. 力是物体间的相互作用,具有大小和方向。
B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。
C. 力的作用效果与力的作用点有关。
D. 以上选项均正确。
答案:D2. 物体做匀速直线运动时,下列说法正确的是()。
A. 物体的速度不变。
B. 物体的加速度为零。
C. 物体所受合力为零。
D. 以上选项均正确。
答案:D3. 关于功的定义,下列说法正确的是()。
A. 功是力和力的方向的乘积。
B. 功是力和力的方向的点积。
C. 功等于力的大小乘以物体在力的方向上的位移。
D. 功是力对物体所做的功。
答案:C4. 根据牛顿第二定律,下列说法正确的是()。
A. 物体的加速度与作用力成正比。
B. 物体的加速度与物体的质量成反比。
C. 加速度的方向与作用力的方向相同。
D. 以上选项均正确。
答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。
A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。
答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。
答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。
答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。
答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。
答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。
解:首先分解力F为水平分量和垂直分量。
大学物理习题与答案解析
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy
则
a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s
(完整word版)大学物理大题及答案
1 已知振动曲线如教材P112图所示, 试求: ( 1) 简谐振动方程;( 2) t = 0时振子的运动状态( 如何描述) ? ( 3) t =3/2s 时的相位;( 4) 4s 内振子的位移和路程。
题11.7图??? [分析与解答] (1)由振动曲线可知:A=2cm,T=4s,则ω=2π/T=π/2rad/s, 又因t=0时,由0y =Acos φ,得cos φ=1/2,即φ= ±π/3,由于0v <0, 故取初φ=π/3,则振动方程为 y=2cos(πt/2+π/3)cm(2)当t=0时,振子位于0y =A/2处,并沿-y 方向向平衡位置运动。
(3)t=3/2s 时的相位为 ωt + φ=π/2×3/2+π/3=13π/12 (4)由于T=4s ,所以在4s 内刚好完成一次完整的振动,即回到初始位置。
因此,位移 △y=0,所经历的路程S=4A=8cm 。
2. 已知平面谐波A = 5cm ,ν= 100Hz , 波速u = 400m/ s , 沿x 正方向传播, 以位于坐标原点O 的质元过平衡位置向正方向运动时为时间起点, 试求: (1) 点O 的运动方程; (2) 波动方程;(3) t = 1s 时, 距原点100cm 处质元的相位(1) 要建立O 点的运动方程,关键在于找三个特征量。
由题设条件可知,圆频率ω=2πv=200πrad/s.振幅A=5cm;t=0时,坐标原点O 处质点过平衡位置,且向正方向运动,则O 点的初相位0ϕ =-π/2(或3π/2),于是 O 点的运动方程为 0y =5cos(200πt-π/2)cm(2) 波沿x 轴的正方向传播。
波线上任一点质元的相位较O 点质元落后ωx/u,则波动方程为y=Acos[ω(t-x/u)+0ϕ]=5cos[200π(t-x/400)-π/2]=5cos(200π.t-π.x/2-π/2)cm(3)将t=1s,x=100cm=1m 代入波动方程,得y=5cos(200π-π/2-π/2)=5cos(199π)cmt=1s 时,距原点100cm 处质点的相位为199π(若取230πϕ=,则该点相位为201π)3.将波长λ= 632.8nm 的一束水平的He-Ne 激光垂直照射一双缝, 在缝后D= 2m 处的屏上, 观察到中央明纹和第1 级明纹的间距为14mm 。
(完整版)大学物理,课后习题,答案
第十七章 振 动1、 一物体作简谐振动,振动方程为 )cos(A x 4t πω+=。
求 4Tt =(T 为周期)时刻物体的加速度。
解:由振动加速度定义得)4 cos(222πωω+-==t A dtx d a代入4Tt =22422)442cos(ωππωA A a T t =+-==求得4Tt =时物体的加速度为222ωA 。
2、 一质点沿x轴作简谐振动,振动方程为)cos(x ππ312t 2104+⨯=-(SI )。
求:从t=0时刻起,到质点位置在x=-2cm 处,且向x轴正方向运动的最短时间间隔?解:用旋转矢量图求解,如图所示t=0时刻,质点的振动状态为:3sin 08.0)3 2sin(204.002.0)30cos(04.0)3 2cos(04.000<-=+⨯-===+=+=ππππππππt dt dx v mt x可见,t=0时质点在cm x 2=处,向x 轴负方向运动。
设t 时刻质点第一次达到cm x 2-=处,且向x 轴正方向运动0>v 。
则:πϕ=∆min5.02min===∆ππωπt (s )3、一物体作简谐振动,其速度最大值sm v m 2103-⨯=,其振幅 m A 2102-⨯=。
若t=0时,物体位于平衡位置且向x轴的负方向运动.求: (1)振动周期T ;(2)加速度的最大值m a ; (3)振动方程的数值式。
解:设物体的振动方程为) cos(ϕω+=t A x则)cos( )sin( 2ϕωωϕωω+-=+-=t A a t A v(1) 由, ωA v m =及sm v m 2103-⨯= 得物体的振动周期:πππωπ341031022 2222=⨯⨯⨯===--m v A T (s ) (2) 加速度最大值:)(105.4102)103(2222222s m A v A a m m ---⨯=⨯⨯===ω (3) 由t=o 时,0 , 0<=v x 得)0sin( 02.00)0cos(02.000<+⨯-==+=ϕωϕv x解之得:2πϕ=质点的振动方程为:)223cos(02.0π+=t x m4、两个物体作同方向、同频率、同振幅的简谐振动。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学物理试题及答案解析
大学物理试题及答案解析一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 3×10^5 km/sD. 2×10^5 km/s答案:A解析:光在真空中的传播速度是一个基本物理常数,其值为3×10^8 m/s,因此选项A是正确答案。
2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是()。
A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A解析:牛顿第二定律表明,作用在物体上的力等于物体质量与加速度的乘积,即F = ma。
因此,选项A是正确答案。
3. 一个物体从静止开始做匀加速直线运动,经过时间t后,其速度v和位移s的关系是()。
A. v = atB. s = 1/2at^2C. v = 2s/tD. s = vt答案:B解析:对于从静止开始的匀加速直线运动,位移s与时间t的关系为s = 1/2at^2,因此选项B是正确答案。
4. 两个点电荷q1和q2之间的库仑力F与它们之间的距离r的关系是()。
A. F ∝ 1/r^2B. F ∝ r^2C. F ∝ 1/rD. F ∝ r答案:A解析:根据库仑定律,两个点电荷之间的力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,即F ∝ 1/r^2。
因此,选项A是正确答案。
5. 理想气体状态方程为PV = nRT,其中P、V、n、R、T分别代表()。
A. 压强、体积、摩尔数、气体常数、温度B. 功率、速度、质量、加速度、时间C. 动量、位移、电荷量、普朗克常数、时间D. 功率、电流、电阻、欧姆定律常数、电压答案:A解析:理想气体状态方程PV = nRT中,P代表压强,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。
因此,选项A 是正确答案。
6. 波长λ、频率f和波速v之间的关系是()。
A. λ = v/fB. λ = vfC. λ = f/vD. λ = v^2/f答案:A解析:波长λ、频率f和波速v之间的关系为λ = v/f,因此选项A是正确答案。
大学物理试题及参考答案
大学物理试题及参考答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^7 m/sD. 3×10^6 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比,其数学表达式为:A. F = maB. a = F/mC. F = ma^2D. a = F^2/m3. 以下哪种波是横波?A. 声波B. 电磁波C. 光波D. 地震波4. 根据热力学第一定律,能量守恒,其数学表达式为:A. ΔU = Q + WB. ΔU = Q - WC. U = Q + WD. U = Q - W5. 以下哪种现象不属于电磁感应?A. 法拉第电磁感应定律B. 洛伦兹力C. 自感D. 互感6. 根据麦克斯韦方程组,以下哪个方程描述了变化的磁场产生电场?A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 麦克斯韦方程7. 以下哪种物质的热传导率最高?A. 木头B. 铜C. 玻璃D. 空气8. 根据量子力学,海森堡不确定性原理表明:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和动量可以同时精确测量9. 根据相对论,以下哪种效应描述了时间膨胀?A. 洛伦兹收缩B. 钟慢效应C. 质能等价D. 质量增加效应10. 以下哪种设备不是利用电磁波工作的?A. 微波炉B. 收音机C. 光纤通信D. 温度计二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等,方向相反,并且作用在不同的物体上。
2. 光的波长、频率和速度之间的关系可以用公式 c = λν 来表示。
3. 根据欧姆定律,电流 I = V/R,其中 V 代表电压,R 代表电阻。
4. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
大学物理_习题集(含答案)
《大学物理》课程习题集一、单选题11.下列哪一种说法是正确的()(A)运动物体加速度越大,速度越快(B)作直线运动的物体,加速度越来越小,速度也越来越小(C)切向加速度为正值时,质点运动加快(D)法向加速度越大,质点运动的法向速度变化越快2.下列说法中哪一个是正确的()(A)加速度恒定不变时,质点运动方向也不变(B)平均速率等于平均速度的大小(C)当物体的速度为零时,其加速度必为零(D)质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速3.关于向心力,以下说法中正确的是(A)是除物体所受重力、弹力以及摩擦力以外的一种新的力(B)向心力就是做圆周运动的物体所受的合力(C)向心力是线速度变化的原因(D)只要物体受到向心力的作用,物体就做匀速圆周运动4.如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率V0收绳,绳长不变,湖水静止,则小船的运动是()(A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动5.一质点作竖直上抛运动,下列的V-t图中哪一幅基本上反映了该质点的速度变化情况。
()6. 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A ) 与速度成正比 (B )与速度平方成正比(C )与速度成反比 (D )与速度平方成反比7. 抛物体运动中,下列各量中不随时间变化的是 ( )(A )v (B )v (C )t v d (D )dt v d8. 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作 ( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动9. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为( )(A )t d dr ; (B )dtr d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 10. 一质点在平面上作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V ,平均速率为V ,它们之间的关系必定有( )(A )V V V V == , (B )V V V V =≠ ,(C )V V V V ≠≠ , (D )V V V V ≠= ,11. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中,( )(A )物体的加速度是不断变化的。
(完整版)《大学物理》练习题及参考答案.doc
卡 循 是由两个平衡的 程和两个平衡的等 程 成的
11.如 所示,在E的匀 中,有一个半径
R的半
球面,若E的方向与半球面的 称 平行, 通 个半球面
的 通量大小 ⋯⋯⋯⋯⋯⋯⋯(
)
参看 本P172-173
A .
R2E
B .2 R2E
C.
2 R2E
D. 0
12.一点 荷,放在球形高斯面的中心 ,下列情况中通 高斯面
的速度为200m/s,则子弹受到的冲量为_____________.参看课本P55-56
41.将电荷量为2.0×10-8C的点电荷, 从电场中A点移到B点,电场力做功6.0×10-6J.
则A、B两点的电势差
UAB=__________ __ .
参看课本P181
42.
如图所示,图中
O点的磁感应强度大小
34.一人从10 m深的井中提水,起始 ,桶中装有10 kg的水,桶的 量1 kg,由
于水桶漏水,每升高1m要漏去0. 1 kg的水, 水桶匀速地从井中提到井口,人所作的功
____________.参看 本P70 (2-14)
35.量m、半径R、自 运 周期T的月球,若月球是密度均匀分布的 球体, 其 自 的 量是__________,做自 运 的 能是__________.参看 本
24.下列关于机械振 和机械波的 法正确的是⋯⋯⋯()参看 本P306
A.点做机械振 ,一定 生机械波
B.波是指波源 点在介 的 播 程
C.波的 播速度也就是波源的振 速度
D.波在介 中的 播 率与波源的振 率相同,而与介 无关
25.在以下矢量 中,属保守力 的是⋯⋯⋯⋯⋯⋯⋯()
A.静B.旋参看 本P180,212,258
《大学物理》练习题及详细解答-—电磁感应.docx
法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。
解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。
= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。
大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。
若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。
解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。
2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。
动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。
大学物理考试题目及答案
大学物理考试题目及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^5 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是什么?A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是:A. E = F/qB. E = qFD. E = F/g答案:A5. 一个理想的气体经历等压变化时,其体积与温度的关系遵循什么定律?A. 查理定律B. 盖-吕萨克定律C. 阿伏加德罗定律D. 波义耳定律答案:B6. 根据能量守恒定律,一个封闭系统的总能量是:A. 增加的B. 减少的C. 不变的D. 无法确定的答案:C7. 波长为λ的光波在介质中的折射率为n,当光波从真空进入该介质时,其波速会:A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 一个电路中的电流I与电阻R之间的关系由欧姆定律描述,该定律的数学表达式是什么?A. I = V/RB. I = VRD. I = V + R答案:A9. 根据热力学第一定律,一个系统的内能变化等于它与外界交换的热量和它对外做的功之和。
如果一个系统吸收了热量并且对外做功,那么它的内能将会:A. 增加B. 减少C. 不变D. 无法确定答案:A10. 两个点电荷之间的相互作用力遵循:A. 库仑定律B. 牛顿定律C. 高斯定律D. 毕奥-萨伐尔定律答案:A二、填空题(每题4分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,它的加速度是 _______ m/s²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q V = 4πε o r
9
q .o V = o 4πε o R
q
.o
x
r
R dq
10
圆弧圆心、圆环轴线上的电场?
例题 均匀带电圆盘,半径为R,电荷面密度为 σ,求轴线上离盘心距离为x的P点的电势。(取无穷远 为电势零点) 解 将圆盘分为若干个圆环, 利用圆环公式积分。 P
例题 求半径为R、总电量为q的均匀带电球面的电 势分布。 q 解 由高斯定理求出其场强分布:
习题一 7.用总分子数N、气体分子速率v和速率分布函数f(v)表 示 速率大于v0的那些分子的平均速率=_________ ;
习题二 7. 氢分子的质量为3.3×10-24g,如果每秒有1023个氢分子 沿着与容器器壁的法线成45°角的方向以105cm·s-1的速 率撞击在2.0cm2面积上(碰撞是完全弹性的),则此氢 气的压强为___________ *103 Pa 2.33 2.33* 一个分子碰撞一次动量的变化为
-q
a
R
+q
R o
c
R
将Vo代入功的式子,得
A∞ o = −
q πε o a
q 6 πεo R qqo 6πεo R
8
∴ Aac = −
7
例题 一均匀带电直线段,长为L,电量为q;求直 线延长线上离一端距离为d的P点的电势。(取无穷远 为电势零点) 解 将带电直线分 为许多电荷元dq(点电 荷),利用点电荷电势公 式积分:
∂V ∂V = 0, E z = − =0 ∂y ∂z
17
18
3
例题7.1 两平行金属板A、B,面积S, 相距d, 带电:QA,QB,求两板各表面上的 电荷面密度及两板间的电势差(忽略金属板的 边缘效应)。 解 (σ1+ σ2)S=QA (σ3+ σ4)S=QB P1点: P2点:
σ σ1 σ σ − 2 − 3 − 4 =0 2ε o 2ε o 2ε o 2ε 0 σ σ1 σ σ + 2 + 3 − 4 =0 2ε o 2ε o 2ε o 2ε 0
A B
(σ1+ σ2 )S=QA (σ3+ σ4)S=QB
A
B
s σ2
P1
σ1 σ1 σ 2 σ 3 σ 4 − − − =0 2ε o 2ε o 2ε o 2ε 0
σ σ1 σ σ + 2 + 3 − 4 =0 2ε o 2ε o 2ε o 2ε 0
σ3 σ4
P2
Байду номын сангаас
s σ1 σ2
P1
σ3 σ4 P
P2
例题 设空间电势分布为: V=2xy 2, 求空间电场分 布。 解
Ex = −
q q = 4πε o r 4πε o x 2 + R 2
∂V p ∂x =
x q
r
R
Ex = − Ey = −
1 q⋅x ⋅ 2 4πε o ( x + R 2 )3/ 2
∂V = −2 y 2 ∂x ∂V Ey = − = −4 xy ∂y � � � � � E = E x i + E y j = −(2 y 2 i + 4 xyj )
C 点电势
q1+q2
R3 C r R2
1
Ur =
q1 − q1 q + q2 + 1 + 4 4 π ε R πε o R3 4πεo r o 2
-q1
q1
oR
27
5
∞
-q1
r
q1
oR
U4 = ∫
∞
r
1
q +q q1 + q2 dr = 1 2 4πεo r 4πεo r 2
-q1
q1
两球的电势差:
q1 − q1 q + q2 + + 1 4πεo r 4πε o R2 4πε o R3
U内 − U 外 = ∫
=
25
R2
R1
q1 dr 4πε o r 2
R2 ≤r ≤ R3:
=
q1 q +q − q1 + + 1 2 4πε o R1 4πεo R2 4πε o R3
24
4
R1 ≤r ≤ R2:
q1+q2
r ≥ R3:
R2
q1+q2
R3 R2 oR
1
U2 = ∫
R2
r
q1 dr + 4πεor 2
∫R 0dr
2
R3
R3 r
+
=
∫
q1 + q2 dr R3 4πε r 2 o
(2)电荷分布如图所示,将点电荷qo从a经半园b移 到c的过程中,电场力对qo的功为 -qq (6πε R)。 o o 解 b A = q (V − V )
ac o a c
Va =
Vc =
=
V∞ = 0
V o=
q q ×4= 4πε o a πε o a
+q +q
o
-q +q
−q +q + =0 4πεo R 4πεo R −q +q + 4πε o ( 3 R) 4πε o R
R1
(2)
q1 q2 -q1 d1 -q2 d2
q1+q2
R2 R1
U1 = ∫ 0dr + ∫
r
q1 dr 4πεo r 2
∞
+
q2 d 2 = 2.3 × 10 3V εos
23
∫R
R3
2
0dr +
∫
R3
q1 + q2 dr 4πε o r 2
R3 R2 . -q1 r o R 1
q1
U A = U A − U B=
3 4
B 1 V
5. 理想气体向真空作绝热膨胀 (A) (A)膨胀后,温度不变,压强减小 (B)膨胀后,温度降低,压强减小 (C)膨胀后,温度升高,压强减小 (D)膨胀后,温度不变,压强不变 气体向真空绝热膨胀过程中, 气体没有对外界做功,A=0. Q=0, ∆E = 0 温度不变。 所以压强减小。
r>R: E2 =
(2)电势
∫ Ar ⋅4 π r
0
R
2
dr
=
4πε o r 2
AR 4 4εo r 2
r<R: V1 = r>R: V2 =
∫r
R
E1dr + ∫ E2dr =
R
∞
∫r
∞
E2 dr =
AR 4ε o r
4
A(R3 − r 3) AR3 + 12ε o 4εo
13
例题 一真空二极管,其主要构件是一个半径 R1=5×10-4m的圆筒形阴极A和一个套在阴极外的半径 R2=4.5 ×10-3m的同轴圆筒形阳极B,如图所示。阳极电 势比阴极高U=300伏, 忽略边缘效应, 求:(1)两极间的电场;(2)电子刚从阴极发出时所 受的力;(3)电子到达阳极时的速度。 解 (1) 设内外圆筒单位长度分别带电±λ,由高斯 定理,两极间的电场(例题): R1<r<R2: 1 A E.2 πr.l = ( −λl ) R1
5
Va =
∫a
∞
� � E ⋅ d l & Va =
∫a
零势点
� � E ⋅ dl
V =
外界
∫
带电体
dq 4 πε o r
b a
Va − Vb = ∫ E ⋅ dl
V=
气体 A
真空
B
Aab = q0 (Va − Vb )
q 4πεo r
w a = q 0V a
6
1
例题 (1)正六边形边长a,各顶点有一点电荷,如 图所示。将单位正电荷从无穷远移到正六边形中心o点 的过程中,电场力的功为 -q ( πεoa)。 解 Aab = q(Va − Vb ) +q +q A∞ o = +1(V ∞ − V o ) = - Vo a
σ3
P2
σ4
例题7.2 三块平行金属板,S=200cm 2 , ×10-7C, 不计边 d2=4.0cm, d1 =2.0cm,qA=3.0 =3.0× 缘效应,求B板和C板上的感应电荷及A板的 电势。 解 q1+q2= qA (1)
C A B
UA-UB=UA-UC d
q1 q2 -q1 -q2
E1d 1 = E 2d 2
εo
−λ ∴E = 2πε o r
B
R2
14
两极间的电势差:
λ R ln 2 U AB = ∫ − Edr = R 2πε o R1 U 故电场为 E = R r ⋅ ln 2 R1
R2
1
R1
A
B
R2
(2)电子刚从阴极发出时所受的电场力:
(3)电子到达阳极时的速度。由动能定理:
eU F = eE r = R1 = = 4.37 ×10 −14 N R2 R1 ln 方向沿半径指向阳极B 。 R1
∫
w a = V a dq
W= ∫
=
ro + l ro
q λ dx 4πε o x
R
o
q λ x ro l
16
dx
qλ r +l ln o 4πε o ro
15
� ∂V � ∂ V � ∂ V � E = −∇ V = − i− j− k ∂x ∂y ∂z
根据V= V(x,y,z ),求电场的分布 V=V(x,y,z V(x,y,z) 例题 求半径为R、均匀带电q的圆环轴线上一点 的电势和场强。 P 解 Vp =