步进电机运动控制系统设计
基于单片机的步进电机多轴运动控制系统设计
摘要步进电机是将电脉冲信号转变成角位移的执行机构,其转速、停止位置只与脉冲信号的频率和脉冲数有关,具有误差小,易控制等特点,广泛应用于机械、电子、纺织、化工、石油等行业。
尤其是在医疗行业中,比如在 X 光扫描方面,都会用到电机,步进电机的优点使其成为医疗行业里最为适用的电机。
本设计中的多轴控制系统可以运用在 X 光扫描仪等多种仪器上。
本设计选用 STC89C55RD+型单片机作为核心控制单元,实现 M35SP-7 型步进电机的多轴运动控制,并通过 RS232 串口实现与上位 PC 机通讯功能。
设计中运用单片机软件编程方式实现步进电机环形分配器功能,用 P1.0 口、P1.1 口、P1.2 口和P1.3 口分别控制四相步进电机的 A 相、B 相、C 相和 D 相绕组的通电顺序,软件上采用查表方法实现单双八拍工作方式环形脉冲分配。
步进电机驱动部分采用ULN2003A 驱动芯片,实现功率放大,驱动步进电机。
最后使用 Proteus 软件绘制了单片机控制步进电机多轴运动的原理图。
上述设计经实验验证是有效可行的。
关键词单片机,步进电机,多轴运动,串口通讯AbstractStepper motor is an implementing mechanism that convert the electronic pulse intoangle displacement.Its speed and the stop position only about the frequencyand pulseseveral of the pulse signal,its characteristics are minor error,easy to control and so on,itis widely applied to mechanical, electronic, textile, chemical, oil, etc. Especially in themedical industry,such as an x-ray scanning,need motors.Stepper motor'sadvantagesmake it become the most suitable medical industry machine.The multi-axiscontrolsystem in the design can be used on a variety of instruments such as an x-ray scanning.This design choose STC89C55RD + SCM as the core of the control unit,to realizeM35SP-7 type stepper motor's multi-axis control,and use RS232 serial torealize PCcommunication function.This design use SCM software programming realize steppermotor circular distribution function,P1.0, P1.1, P1.2 and P1.3 respectively controllingA, B, C and D phases' electricity order on the four phase step motor's.Software is usedon look-up table method teak eight single working way circular pulse distribution.Thisdesign use ULN2003A realize power amplifier to drive stepper motor.Finally Keywords:SCM, Stepper Motor, Multi-axis motion, serial communicationusingProteus to draw the principle diagram of the SCM control stepper motormulti-axismotion.The above design experiments showed is effective and feasible.基于单片机的步进电机多轴运动控制系统设计 目 录第一章 引言..........................................................................................................................1 1.1 选题背景............................................................................................ (1)1.2 研究意义 (1)1.3 发展状况 (2)1.4 课题主要研究的内容 ................................................... 3 第二章 控制系统硬件设计 ........................................................................................... (4)2.1 单片机控制系统原理............................................................................................ (4)2.1.1 单片机的种类............................................................................................ (4)2.1.2 单片机的发展历程............................................................................................ (4)2.1.3 51 单片机的引脚安排 (5)2.1.4 单片机的结构............................................................................................ (7)2.2 步进电机............................................................................................ (11)2.2.1 M35SP-7 步进马达的性能参数 (12)2.2.2 步进电机原理............................................................................................ (13)2.2.3 驱动控制系统组成..............................................................................................182.2.4 步进电机的应用............................................................................................ (21)2.2.5 步进电机的单片机控制 (22)2.2.6 步进电机的多轴联动 (23)2.3 ULN2003A 驱动芯片............................................................................................4.1 单片机程序设计........................................................................................... (34)4.2 程序实现与调试........................................................................................... (34)第五章结论与展望........................................................................................... . (37)5.1 结论........................................................................................... . (37)5.2 展望........................................................................................... . (37)参考文献 .......................................................................................... .. (38)致谢........................................................................................... . (40)附录........................................................................................... . (41)声明........................................................................................... . (48)第一章引言1.1 选题背景不仅在大型工业中,在医疗过程中也需要机械的帮助,利用步进电机的多轴控制可以让医疗设备精确的扫描人体的各个部位,为治疗带来更精确的数据来正确、快速的治疗病人。
步进电机运动控制系统硬件部分的设计
步进 电机 是将 电脉 冲信号 转变为角位移 或线位移 的开 环 控制元件 。 在非超载 的情 况下 , 电机 的转速 、 停止 的位置 , 只取
( ) L /R G 3 ) 5 A EP O ( 0 。地址锁存信号输 出端 /P O E R M编程 脉 冲输入 端 ;
Байду номын сангаас
决于脉 冲信号 的频率和 脉冲数 , 不受负载变 化的影 响 , 而 即给
输入 和输 出 , 反向放大器 可 以配置 为片 内振荡 器 。 该 石晶振荡 和陶瓷振 荡均可采用 。 如采 用外部时钟 源驱动器件 ,T 2 X AL 应 不接受 。有余输入 至内部时钟信 号 ,要 通过一个 二分频触发
器, 因此对外部 时钟信号 的脉 宽无任何 要求 , 但必 须保证脉 冲
了一 种 灵 活 性 高 且 价 廉 的方 案 11 单 片 机 的 引 脚 功 能 .
除 , 通过 正确 的控制信 号组 合 , 可 并保 持 A E管脚 处 于低 电 L 平 1 来 完成 。在芯 片擦 操作 中 , 码阵 列全被 写“ ” 0ms 代 1 且在
任何非空 存储字节被重复编程 以前 , 该操作 必须被执行 。
此外 ,T9 5 设有稳态 逻辑 , 以在低 到零频 率的条件 A 8C 1 可
下静态逻 辑 , 持两种软件 可选的掉 电模式 。在闲置模 式下 , 支
C U停止工作 。 R M定时器 、 P 但 A 计数器 、 口和中断系统仍在 串 工作 。 在掉 电模 式下 , 保存 R AM 的内容并 且冻结振荡器 , 禁止
所用其他 芯片功能 , 到下一 个硬件复位 为止。 直
单 片机是 一种时序 电路 , 必须有 脉 冲信号 才能工作 , 其 在
步进电机运动控制系统设计
步进电机运动控制系统设计设计时考虑到CPU在执行指令时可能受到干扰的冲击,导致程序”跑飞”或者进入”死循环”,因此,设计了看门狗电路,使用的是MAXIM公司生产的微处理系统监控集成芯片MAXI813。
本文还详细地给出了相关的硬件框图和软件流程图,并编制了该汇编程序。
步进电机最早是在1920年由英国人所开发。
1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。
以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的系统中。
在生产过程中要求自动化、省、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。
步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
随着微和技术的发展,步进电机的需求量与日俱增,在各个国民领域都有应用。
步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。
步进电机可以直接用数字信号驱动,使用非常方便。
一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。
步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。
在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。
因此非常适合于单片机控制。
步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。
步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。
传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
机电一体化系统设计05 步进电机运动控制系统
5.1步进电动机与驱动
1 步进电动机的特点、种类、工作原理
厚 励德 志达 勤理 工
(1)步进电动机的特点 ① 控制精度由步进角决定( )。 ② 抗干扰能力强,在电机电特性工作范围 内,不产生丢步或无法工作等现象。 ③ 电机每转动一步进角,尽管存在一定的 转角误差,但电机转动360时,转角累计误 差将归零。 ④ 控制性能好,不会产生“丢步 ”现象 (频繁启动、停止、变换)。 ⑤易于与计算机实现对接。
变频信号
方向信号
步进电机驱动电路的组成
一种四相步进电机驱动实用电路
或
厚 励德 志达 勤理 工
0.1μ f 0.1μ f
步进脉冲输出
0.1μ f
定时器引 脚布局
引脚布局
引脚布局
步进脉冲
线圈
方 向 控 制
线圈
7476 7486
线圈
线圈
(1)环形脉冲分配器
厚 励德 志达 勤理 工
由于步进电机的工作原理是各绕组必须按 一定的顺序通电变化才能正常工作(A B C A B ……;A AB B BC C CA A AB B ……),完成这种通电 顺序变化规律的部件称为环形脉冲分配器。 实现脉冲环形分配的方法主要有三种: 软件分频——可充分利用计算机资源降低 硬件成本,可适用多相脉冲分配,但将占用 计算机运行时间,影响步进电机的运行速度。 IC集成电路分频(DDT分频器)——灵活性 强,可搭接成任意通电顺序的环形分配器, 不站用计算机的工作时间。
功率放大器是实现控制信号与步进电机匹配的 重要组件。 常见的步进电机功率放大器的组成与特点如下: ·单电压功率放大电路
w w w
特点:电路结构简单,但串联R2消耗能量降低放大 功率;电感较大使电路对脉冲反应较慢,输出波形 差。主要用于转速要求不高的小型步进电机控制。
基于STM32和FPGA的多通道步进电机控制系统设计共3篇
基于STM32和FPGA的多通道步进电机控制系统设计共3篇基于STM32和FPGA的多通道步进电机控制系统设计1本文介绍了基于STM32和FPGA的多通道步进电机控制系统设计。
一、设计目标本次设计的目标是:设计一个可控制多路步进电机的系统,具备高效、可靠的控制方式,实现步进电机多通道运动控制的目标。
二、硬件选型1、主控芯片STM32本设计采用STM32作为主控芯片,STM32系列微控制器具有高性能、低功耗、高集成度、易于开发等优点,非常适合此类控制系统。
2、FPGA本设计采用FPGA作为数据处理和控制模块,FPGA具有可编程性和高速、低功耗的特点,在电机控制系统中有广泛的应用。
3、步进电机步进电机具有速度可调、定位精度高等特点,很适合一些高精度的位置控制系统。
4、电源模块电源模块负责为整个系统提供稳定的电源。
5、驱动模块驱动模块负责驱动步进电机,其控制原理为将电机的输入电流拆分为若干个短脉冲信号,每一个短脉冲信号控制一个步距运动。
三、系统设计1、STM32控制器设计STM32控制器是本系统的核心,其功能是读取FPGA发送的控制信号和控制步进电机的运动。
STM32控制器处理的信号主要包括方向信号、脉冲信号、微步子段等控制参数,将这些参数按照驱动模块的需求分发到各个驱动模块中,从而控制步进电机的运动。
2、FPGA模块设计FPGA模块是本系统的数据处理模块,其主要功能是接收STM32发送的指令,进行解码并且转化为步进电机的控制信号,以驱动步进电机的运动,同时FPGA模块还负责将电机的运动数据反馈回STM32,以保证整个系统的稳定运行。
3、驱动模块设计驱动模块是本系统的控制模块,其主要功能是将电机的输入电流拆分成若干个短脉冲信号,每一个短脉冲信号控制一个步距运动,从而实现对步进电机的控制。
四、系统流程1、系统初始化整个系统初始化主要包括STM32控制器的初始化、FPGA模块的初始化、各个驱动模块的初始化、电源模块的初始化,当系统初始化完成后,所有硬件设备均已经准备完成,可以开始正常的运行。
步进电机角度控制设计教程
步进电机角度控制设计教程步进电机是一种常用的电动机,它的运动可以被精确地控制。
步进电机的角度控制设计是指如何精确地控制电机的旋转角度。
本教程将介绍步进电机角度控制的基本原理和设计方法。
一、步进电机的基本原理步进电机由定子和转子组成,定子由电磁线圈组成,转子上有几个磁性极对。
当电流通过定子线圈时,会产生磁场,与磁性极对相互作用,从而引起转子的运动。
步进电机的运动分为两种模式:全步进和半步进。
全步进模式下,电机每次运动一个步距角度,而半步进模式下,电机每次运动一半步距角度。
根据需要,可以选择使用全步进模式或半步进模式。
二、步进电机角度控制设计方法1.确定步距角度首先,要确定所需的步距角度。
步进电机一般有1.8度、0.9度或0.45度等常见步距角度。
根据应用需要,选择合适的步距角度。
2.驱动电路设计步进电机需要一个驱动电路来控制电流的大小和方向,以实现精确的角度控制。
常用的驱动电路有单相和双相驱动电路。
单相驱动电路适合全步进模式,双相驱动电路适合半步进模式。
驱动电路一般由功率电路和控制电路组成。
功率电路负责控制电流的大小和方向,控制电路负责接收控制信号并产生相应的驱动信号。
3.控制信号设计控制信号是控制步进电机运动的关键。
通常使用微控制器或其他控制器来产生控制信号。
控制信号的频率和波形决定了电机的运动方式。
在全步进模式下,控制信号的频率应为电机的旋转频率,控制信号的波形为方波。
在半步进模式下,控制信号的频率是全步进模式的一半,控制信号的波形为方波和脉冲。
4.位置检测和反馈控制为了实现精确的角度控制,通常需要在步进电机上添加位置检测和反馈控制。
位置检测可以使用光电编码器、磁编码器等位置传感器实现,反馈控制可以根据位置检测结果对控制信号进行调整。
三、步进电机角度控制实例下面以一个步进电机角度控制实例来说明设计方法的具体步骤。
假设需要控制一个1.8度步距角度的步进电机,使用双相驱动电路和微控制器产生控制信号。
单片机步进电动机控制系统设计
前言单片机是一个单芯片形态、面向控制对象的嵌入式应用计算机系统。
它的出现及发展使计算机技术从通用型数值计算领域进入到智能化的控制领域。
从此,计算机技术在两个重要领域-—通用计算机领域和嵌入式计算机领域都得到了极其重要的发展,并正在深深地改变着我们的社会。
采用8031单片机控制步进电机,可实现步进电动机正反转控制和步进电动机的无级调速。
分析了步进电机的工作原理,讨论了系统硬件和软件的设计方法,并给出了步进电机的四相八拍单片机控制的具体实现方法。
该系统操作简单,降低了成本,提高了系统的可靠性。
步进电机具有控制方便和体积小等特点,因此在智能仪表和位置控制中得到了广泛的应用。
近年来大规模集成电路的发展以及各种单片机的迅速发展和普及,为设计功能强、价格低的步进电机控制驱动器提供了先进的技术和充足的资源.步进电动机是一种将电脉冲信号转换成相应角位移或线位移的电动机,它的运行需要专门的驱动电源,驱动电源的输出受外部的脉冲信号控制。
每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。
脉冲的数量决定了旋转的总角度,脉冲的频率决定了电动机旋转的速度,改变绕组的通电顺序可以改变电机旋转的方向。
在数字控制系统中,它既可以用作驱动电动机,也可以用作伺服电动机.它在工业过程控制中得到广泛的应用,尤其在智能仪表和需要精确定位的场合应用更为广泛。
1 单片机的基本知识1。
1 概述单片微型计算机简称单片机,由于它的结构及功能均是按工业控制要求设计的,所以其确切的名称应是单片微控制器(Single Chip Microcontroller).它是把微型机算计的各个功能部件:中央处理器CPU、随机存储器RAM、只读存储器ROM、并行I/O接口、定时器/计数器及串行通信接口等集成在一块芯片上,构成一个完整的微型计算机系统,故又把它称为单片微型计算机系统(Single Chip Microcomputer).由于单片机面对的是测控对象,突出的是控制功能,所以它从功能和形态上来说都是应控制领域应用的要求而诞生的.随着单片机技术的发展,它在芯片内集成了许多面对测控对象的接口电路,如ADC、DAC、高速I/O口、PWM、WDT等。
基于ST-200PLC步进电机运动控制系统设计
设计控制系统中有 7个数字量输入和 3个
1系统的方案设计
本 系 统 设 计 实 现 三 个 主 要 功 能 :对 步 进
出高 电平 “ 1 ” , 方 向 脉 冲 使得 步 进 电机 按 相
s 7 — 2 0 0 CP U2 2 6型号 P L C结构紧凑 、扩展 性强 ,具有 丰富的功 能单元 ,可满足 中小复杂 的控制系统要求,故 本设计 中选用此型号作为 系统控 制器 。 结合步进 电机 的成本性能要求 ,选用两相 5 6系 列 的 DM5 6 7 6 A型 步进 电机 ,这 种步 进 电机机构简单、响应快、 距角小 、步进频率 高、经久耐用、力矩 - 惯性 比高等。 选用与 D M5 6 7 6 A型步进 电机 配套的 D MD4 0 3步进 电 机驱动器。
为 VW2 0 0 =v w2 0 ( ) 一Vw 1 0 ,步进 电机 的速度 选用 C P 2 4 3 - 1 通 信模块 ,来实 现对系 统 就相应 的增加 。按 下减速 指令时接通 I O . 4 ,执 的远程控制。 行 子程 序 S B R一 1 加 法指 令 ,每 按一 次,高速
2 . 2 I / 0 分 配 及硬 件接 线
通过对步进 电机运的周 期为 V W2 0 0 =V W2 0 0 + V W1 0 。步 进
电机 的速度就相应的减小。
器人的各种 动作。 为此本论文将 以此为 切入点 ,
设计 出一套基 于 P L C 的 步 进 电 机 运 动 控 制 系
基于51单片机的步进电机控制系统设计
基于51单片机的步进电机控制系统设计步进电机是一种特殊的直流电动机,具有定角度、定位置、高精度等特点,在许多领域得到广泛应用,如机械装置、仪器设备、医疗设备等。
本文将基于51单片机设计一个步进电机控制系统,主要包括硬件设计和软件设计两部分。
一、硬件设计步进电机控制系统的硬件设计主要包括51单片机、外部电源、步进电机驱动模块、以及其他辅助电路。
1.51单片机选择由于步进电机控制需要执行复杂的算法和时序控制,所以需要一个性能较高的单片机。
本设计选择51单片机作为主控芯片,因为51单片机具有丰富的外设接口、强大的计算能力和丰富的资源。
2.外部电源步进电机需要较高的电流供给,因此外部电源选择稳定的直流电源,能够提供足够的电流供电。
电源电压和电流的大小需要根据具体的步进电机来确定。
3.步进电机驱动模块步进电机驱动模块是连接步进电机和51单片机的关键部分,它负责将51单片机输出的脉冲信号转化为对步进电机的驱动信号,控制步进电机准确转动。
常用的步进电机驱动芯片有L297、ULN2003等。
4.其他辅助电路为了保证步进电机控制系统的稳定运行,还需要一些辅助电路,如限流电路、电源滤波电路、保护电路等。
这些电路的设计需要根据具体的应用来确定。
二、软件设计1.系统初始化系统初始化主要包括对51单片机进行外部中断、定时器、串口和IO 口等初始化设置。
根据实际需求还可以进行其他模块的初始化设置。
2.步进电机驱动程序步进电机的驱动程序主要通过脉冲信号来控制电机的转动。
脉冲信号的频率和脉冲宽度决定了电机的转速和运行方向。
脉冲信号可以通过定时器产生,也可以通过外部中断产生。
3.运动控制算法步进电机的运动控制可以采用开环控制或闭环控制。
开环控制简单,但无法保证运动的准确性和稳定性;闭环控制通过对电机转动的反馈信号进行处理来调整脉冲信号的生成,从而实现精确的运动控制。
4.其他功能设计根据具体的应用需求,可以加入其他功能设计,如速度控制、位置控制、加速度控制等。
基于51单片机的步进电机控制系统设计与实现
步进电机工作原理
步进电机是一种基于磁场的控制系统,工作原理是当电流通过定子绕组时,会 产生一个磁场,该磁场会吸引转子铁芯到相应的位置,从而产生一定的角位移。 步进电机的角位移量与输入的脉冲数量成正比,因此,通过控制输入的脉冲数 量和频率,可以实现精确的角位移和速度控制。同时,步进电机具有较高的分 辨率和灵敏度,可以满足各种高精度应用场景的需求。
二、系统设计
1、硬件设计
本系统主要包括51单片机、步进电机、驱动器、按键和LED显示等部分。其中, 51单片机负责接收按键输入并控制步进电机的运动;步进电机用于驱动负载运 动;驱动器负责将51单片机的输出信号放大,以驱动步进电机。LED显示用于 显示当前步进电机的状态。
2、软件设计
软件部分主要包括按键处理、步进电机控制和LED显示等模块。按键处理模块 负责接收用户输入,并根据输入控制步进电机的运动;步进电机控制模块根据 按键输入和当前步进电机的状态,计算出步进电机下一步的运动状态;LED显 示模块则负责实时更新LED显示。
三、系统实现
1、按键输入的实现
为了实现按键输入,我们需要在主程序中定义按键处理函数。当按键被按下时, 函数将读取按键的值,并将其存储在全局变量中。这样,主程序可以根据按键 的值来控制步进电机的转动。
2、显示输出的实现
为了实现显示输出,我们需要使用单片机的输出口来控制显示模块的输入。在 中断服务程序中,我们根据设定的值来更新显示模块的输出,以反映步进电机 的实时转动状态。
基于单片机的步进电机控制系统需要硬件部分主要包括单片机、步进电机、驱 动器、按键和显示模块等。其中,单片机作为系统的核心,负责处理按键输入、 控制步进电机转动以及显示输出等功能。步进电机选用四相八拍步进电机,驱 动器选择适合该电机的驱动器,按键用于输入设定值,显示模块用于显示当前 步进电机的转动状态。
外文翻译--步进电机运动控制系统设计
密级分类号编号成绩本科生毕业设计 (论文)外文翻译原文标题Stepper Motor Motion Control System Design 译文标题步进电机运动控制系统设计作者所在系别机械工程系作者所在专业机械设计制造及其自动化作者所在班级作者姓名作者学号指导教师姓名指导教师职称完成时间2012 年 2 月的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。
在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。
因此非常适合于单片机控制。
步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。
步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。
传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
一步进电机的工作原理步进电机是一种用电脉冲进行控制 ,将电脉冲信号转换成相位移的电机 ,其机械位移和转速分别与输入电机绕组的脉冲个数和脉冲频率成正比 ,每一个脉冲信号可使步进电机旋转一个固定的角度.脉冲的数量决定了旋转的总角度 ,脉冲的频率决定了电机运转的速度.当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
二步进电机详细调速原理步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电的调速。
基于单片机控制的步进电机调速系统的设计
基于单片机控制的步进电机调速系统的设计步进电机是一种常用的电机类型,它通常用来实现精确定位和控制运动。
步进电机的控制需要一个精确的调速系统来确保稳定的运行和准确的位置控制。
本文将基于单片机控制的步进电机调速系统进行设计。
首先,我们需要选择合适的硬件以及编程平台。
本设计选择使用Arduino Uno作为单片机控制器,它具有易用性和强大的控制功能。
步进电机选择了NEMA 17型号,它具有较高的分辨率和扭矩输出。
接下来,进行电路设计与连接。
将步进电机的四个线圈连接到单片机的GPIO引脚上,并使用电流驱动模块控制电机的供电。
通过连接外部电源,电流驱动器将为步进电机提供稳定的电流,以确保电机能够正常工作。
在编程方面,首先需要编写初始化代码,配置单片机的GPIO引脚以及串口通信功能。
然后,可以使用Arduino提供的步进电机库来控制电机的旋转。
该库提供了简单的命令来控制步进电机的转动方向和转速。
为了设计调速系统,我们可以使用一个旋转编码器来实时监测电机的转速。
旋转编码器将会测量电机的转动次数,从而计算出电机的转速。
在单片机的程序中,我们可以设置一个目标转速,并根据旋转编码器的数据来调整电机的驱动频率。
为了实现平滑的调速过程,我们可以使用PID控制算法来调整电机的驱动频率。
PID控制算法是一种经典的反馈控制算法,它可以根据目标值和实际值之间的差异来调整控制信号。
通过不断地比较电机的实际速度与目标速度,PID控制算法可以动态地调整电机的驱动频率,以达到稳定的调速效果。
最后,我们可以设计一个用户界面来设置目标速度和监控电机的运行状态。
通过串口通信功能,单片机可以与上位机进行数据交互,用户可以通过上位机发送指令来设置目标速度,并且可以实时监测电机的转速和运行状态。
总结起来,基于单片机控制的步进电机调速系统设计需要进行硬件选择与连接、软件编程以及用户界面设计。
通过合理地选择硬件和软件方案,以及使用PID控制算法,我们可以实现一个稳定且准确的步进电机调速系统。
步进电机控制系统设计
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,具有快速启动能力,定位精度高,能够直接接受数字量,因此被广泛地应用于数字控制系统中,如数模转换装置、精确定位、计算机外围设备等,在现代控制领域起着非常重要的作用。
本设计运用了8086 CPU芯片以及74273芯片、8255A芯片和步进电机以及7位小功率驱动芯片ULN2003A、指示灯等辅助硬件电路,设计了步进电机正反转及调速系统。
绘制软件流程图,进行了软件设计并编写了源程序,最后对软硬件系统进行联合调试。
该步进电机的正反转及调速系统具有控制步进电机正反转的功能,还可以对步进电机进行调速。
关键词:步进电机;正反转;调速控制;ULN2003A芯片;8086微机系统1、课程设计任务书1.1任务和目的 (4)1.2设计题目 (4)1.3内容和要求 (4)1.4列出使用元器件和设备清单 (4)2、绪论 (4)3、步进电机的总体方案 (6)4、步进电机的硬件设计 (7)4.1总体设计思路 (7)4.2电路原理图 (10)4.3线路连接图 (11)5、步进电机软件设计 (12)5. 1流程图 (12)5.2控制程序 (14)&调试说明 (19)6.1调试过程 (19)6.2调试缺陷 (19)7、总结收获 (19)8、参考文献 (20)附录:元器件及设计清单1. 课程设计任务书1.1任务和目的掌握微机硬件和软件综合设计的方法。
1.2设计题目步进电机控制系统设计1.3内容和要求1. 基本要求:控制步进电机转动,要求转速1步/1秒;设计实现接口驱动电路。
2. 提高要求:改善步进电机的控制性能,控制步进电机转/停;正转/反转;改变转速(至少3挡);1.4列出使用元器件和设备清单8086cpu可编程并行接口8255指示灯键盘74LS138译码器驱动模块步进电机2. 绪论步进电机又称脉冲电动机或阶跃电动机,国外一般称为Step motor或Steeping motor、Stepper servo Steppe,等等。
基于PLC的步进电机运动控制系统设计
机电工程系基于PLC的步进电机运动控制系统设计专业:测控技术与仪器指导教师:xxx姓名: xxx _______________(2011年5月9日)目录一、步进电机工作原理 (1)1。
步进电机简介 (1)2。
步进电机的运转原理及结构 (1)3。
旋转 (1)4。
步进电动机的特征 (2)1)运转需要的三要素:控制器、驱动器、步进电动机 (2)2)运转量与脉冲数的比例关系 (2)3)运转速度与脉冲速度的比例关系 (2)二、西门子S7-200 CPU 224 XP CN (2)三、三相异步电动机DF3A驱动器 (3)1。
产品特点 (3)2。
主要技术参数 (3)四、PLC与步进电机驱动器接口原理图 (5)五、PLC控制实例的流程图及梯形图 (5)1.控制要求 (5)2。
流程图 (5)3.梯形图 (6)六、参考文献 (6)七、控制系统设计总结 (6)基于PLC的步进电机运动控制系统设计一、步进电机工作原理1.步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2.步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A'就是A,齿5就是齿1)3.旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
步进电机控制系统设计
步进电机控制系统设计目录1绪论 (3)1.1 步进电机概述 (3)1.2 步进电机的特征 (3)1.3 步进电机驱动系统概述 (4)1.4 课题研究的主要内容 (4)2步进电机驱动系统的方案论证 (5)2.1 步进电机驱动系统简介 (5)2.2 步进电机驱动器的特点 (5)2.3 混合式步进电机的驱动电路分类和性能比较 (6)2.3.1 双极性驱动器与单极性驱动器 (6)2.3.2 单电压驱动方式 (8)2.3.3 高低压驱动方式 (9)2.3.4 斩波恒流驱动 (10)2.4 方案的确定 (10)3混合式步进电动机驱动控制系统硬件设计 (11)3.1单片机最小系统 (11)3.2 红外遥控电路 (12)3.2.1 红外发射电路 (12)3.2.2 红外接收电路 (13)3.3 LCD显示电路 (14)3.4 双机通讯 (15)3.5 步进电机驱动部分 (16)3.5.1 单极性步进电机驱动 (16)3.5.2 双极性步进电机驱动 (18)3.6 电源电路 (18)4 软件设计 (19)4.1 主机LCD显示菜单程序 (19)4.2 双机通讯程序 (20)4.3 下位机步进电机驱动程序 (22)5 驱动器试验结果 (24)5.1 概述 (24)5.2 试验内容和结论 (24)总结 (26)参考文献 (27)1绪论1.1 步进电机概述步进电机是将电脉冲信号转换为角位移或线性运动的执行器。
它由步进电机及其动力驱动装置组成,形成开环定位运动系统。
当步进驱动器接收到脉冲信号时,它驱动步进电机以设定方向以固定角度(步进角度)旋转。
脉冲输入越多,电机旋转的角度越大;输入脉冲的频率越高,电机的速度越快。
因此,可以通过控制脉冲数来控制角位移,从而达到精确定位的目的;同时,通过控制脉冲频率可以控制电机转速,从而达到调速的目的。
根据自身结构,步进电机可分为三类:反应型(VR),永磁型(PM)和混合型(HB)。
混合式步进电机具有无功和永磁两种优点,应用越来越广泛。
步进电机系统开发方案
步进电机系统开发方案
步进电机是一种通过控制电流大小和方向来驱动转子旋转的电机,它具有定位精度高、控制简单、响应迅速等优点,因此在许多自动化控制系统中得到了广泛应用。
步进电机的系统开发方案主要包括硬件设计和软件编程两个方面。
首先是硬件设计方面,主要需要设计电机驱动电路、控制器和电源等。
1. 电机驱动电路:根据步进电机的特性,采用适当的驱动方式,如全步进驱动、半步进驱动或微步进驱动。
电机驱动电路可以选择使用集成驱动芯片,也可以使用离散元件组成的驱动电路。
2. 控制器:设计一个控制器来控制步进电机的运动,通常采用单片机作为控制器,通过读取传感器的反馈信号确定电机的位置,并根据预定的控制算法来驱动电机旋转。
3. 电源:选择合适的电源供应步进电机系统,电源的稳定性和功率大小需要满足电机系统的需求。
其次是软件编程方面,主要包括控制算法的设计和编程实现。
1. 控制算法设计:根据步进电机的运动特性和系统需求,设计合适的控制算法,确定电机应该如何旋转以达到预定位置。
2. 程序编写:使用编程语言编写程序,在控制器上实现控制算法。
程序需要读取传感器数据、控制驱动电路以及与外部设备进行通信。
最后是整体系统测试和调试。
进行系统集成后,需要进行综合测试,验证硬件和软件的功能正常,并且达到了预期的性能要求。
如果发现问题,需要进行调试和优化,直到系统能够稳定
可靠地运行。
在步进电机系统的开发过程中,需要充分考虑各个组件之间的配合和协作,选用合适的硬件和软件设计方案,并进行系统测试和调试,才能确保最终的步进电机系统性能优良、稳定可靠。
步进电机多轴运动控制系统的研究
步进电机多轴运动控制系统的研究1. 本文概述随着现代工业自动化和精密控制技术的快速发展,步进电机因其高精度、易于控制等特点,在多轴运动控制系统中扮演着至关重要的角色。
本文旨在深入研究步进电机在多轴运动控制系统中的应用,探讨其控制策略、系统设计及性能优化等方面的问题。
本文将概述步进电机的基本原理和工作特性,分析其在多轴运动控制中的优势。
接着,将重点探讨步进电机在多轴控制系统中的控制策略,包括开环控制和闭环控制,以及这两种控制策略在实际应用中的优缺点比较。
本文还将详细讨论多轴运动控制系统的设计与实现,包括硬件选型、软件编程及系统集成等方面。
特别关注步进电机与控制器之间的接口技术、运动控制算法的实现,以及系统在实际工作环境中的稳定性和可靠性。
本文将探讨步进电机多轴运动控制系统的性能优化方法,包括速度、精度和效率等方面的提升策略。
通过实验验证和数据分析,评估不同优化策略的实际效果,为步进电机在多轴运动控制系统中的应用提供理论指导和实践参考。
本文将从原理分析、控制策略、系统设计到性能优化等多个方面,全面深入研究步进电机在多轴运动控制系统中的应用,旨在为相关领域的研究和实践提供有益的参考和指导。
2. 步进电机原理及特性步进电机是一种特殊的电机类型,其运动不是连续的,而是按照固定的步长进行。
这种电机的特性使其非常适合需要精确控制位置和速度的应用场景。
步进电机通常被用在开环控制系统中,因为它们不需要持续的反馈信号来调整其运动。
步进电机的工作原理基于电磁学。
电机内部包含一系列电磁极,当电流通过这些电磁极时,它们会产生磁场。
这些磁场与电机内部的永磁体相互作用,产生旋转力矩,从而使电机转动。
通过控制电流的方向和顺序,可以控制电机的旋转方向和步长。
步进电机的主要特性包括其步距角、定位精度和动态性能。
步距角是电机每接收一个脉冲信号所转动的角度,这个角度通常很小,可以在5到8之间。
定位精度是指电机能够准确到达的目标位置,这主要取决于电机的制造精度和控制系统的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着数字电子计算机的广泛应用,单片机的应用也已深入到了社会领域的各个方面。
为此选本次毕业设计课题为:基于P89C668单片机的步进电机运动控制系统的研发,P89C668单片机属于.Philips的增强型8051系列。
本设计是利用单片机来控制步进电机的运转,通过键扫描,程序的控制来实现步进电机的起、停,正、反转,加、减速的运动状态。
本次设计应用到的开发工具是:Protel DXP2004和uVision2,本系统是应用汇编语言进行控制的。
正文中首先简单描述了课题背景,开发环境和需要完成的功能;接着介绍了系统方案设计,其中包括硬件选型和开发工具两部分,论述了本次毕业设计所应用的各种设备的功能及其工作过程,此部分为系统的硬件设计做作准备;最后详细介绍了系统硬件的设计,附有相应的电路图,并给出了系统的硬件设计总图。
在正文中还简单描述了增强型8051单片机的电路接口的硬件调试。
关键词:单片机,步进电机,8051ABSTRACTAlong with the digital computer widespread application, the monolithic integrated circuit application also thoroughly arrived social domain each aspect, For this anthology graduation project topic is: Based on the P89C668 Single chip Microcomputer. Stepping Motor movement control system research and development, the P89C668 Single chip Microcomputer belongs to Philips the enhancement 8051 series. This design is controls a Stepping Motor revolution using Single chip Microcomputer, through the key scanning, the procedure control realizes Stepping Motor stops, the reverse, adds the state of motion which, decelerates, This design applies the development kit is Proter DXP2004 andμVision2, this system carries on the control using the assembly language.In the main text first simply described the topic background, the function which the development environment and needs to complete; Then introduced the system plan design, including the hardware shaping and its the work process which this graduation project applies, this part for system hardware design, attaches the corresponding circuit diagram, and has produced the system hardware design assembly drawing. Also simply described the enhancement 8051 Single chip Microcomputer electric circuit connections hardware debugging in the main text.Keyword: Single chip Microcomputer, Stepping Motor, 8051前言本次毕业设计的课题是基于P89C668的步进电机运动控制系统设计,在设计阶段,对三极管,二极管,电阻,电容,发光二极管,P89C系列单片机,光电隔离器,步进电动机驱动器等元器件有了比较好的了解,并拟定了相应的总系统设计。
在本次设计过程中,掌握了基本的集成电路的基本分类方法和功能查找方法,以及工作特性,掌握了实验开发板的基本使用方法,掌握了固件开发集成环境μVision的基本使用方法,对Protel DXP2004的使用有了很好的掌握,学会了实验开发板的在线调试方法等,本设计可分为硬件设计,软件设计两个主要的部分。
其中,硬件部分,是对单片机做选型和处理步进电动机的选用。
对8031和P89C668两种单片机做了分析比较,确定了使用:P89C668单片机。
软件部分结合本设计的特点和自己的实际情况,用汇编语言完成软件部分的程序设计,并结合硬件进行了调试。
设计本身就是一项辛苦又有趣,而且可以调动积极性的活动。
通过这次设计,使我学到了很多新的知识,使我把以前学习的有关电子、控制以及单片机等课程的知识加以综合的运用。
这次设计让我认识很深。
第一章绪论1.1 课题背景步进电动机是一种能完成增量运动的电磁机械,它将输入的数字脉冲信号转换成电机转轴的输出角度。
在开环方式下,步进电机的输出步数总是和输入指令的脉冲数相等,每个脉冲都使电机转轴前进一个步进角,并依靠它特有的定位转矩将转轴准确地锁定在相应的步距位置。
但是,在开环控制方式下,步进电动机的速度控制有着较大难度:在高速运行时,电机易丢失输入脉冲,造成失步;在低速时,步进电动机的转速响应有较大波动,运行不平稳;特别是当电机负载变化时,电机的转速波动更大,调整更不容易。
当输入脉冲频率很低时,步进电机转子就处于步进运行状态,由于步进电机具备快速启动和停止的能力,它的步距角和转速仅与脉冲频率有关而不受电压波动和负载变化的影响,也不受环境条件的影响,在不丢步的情况下运行,其步距误差不会长期积累.正是因为上述优点,它已经被广泛地用于自动控制系统中作为执行元件.同时随着近年来大规模集成电路的发展以及各种单片机的迅速发展和普及,利用单片机与集成电路来控制步进电机不但灵活、方便、易于实现,而且它还具有成本低的特点.步进电动机是本次毕业设计需要设计的一个很重要的元件,而单片机在本次毕业设计中也是一个需要解决的十分重要的元件。
现在对单片机的发展情况作相应的介绍:1976年,首例4位8048微控制器问世,1980年,首例8位MCS一51微控制器问世,掀起第一次嵌入式浪潮,各个微电子公司竞相研制自己的微控制器。
20年来传统微控制器的更新,归纳如下几个方面:1.微控制器的CPU仍以CISC(复杂指令集系统)为主,但向RISC(简单指令集系统)演化。
2.提升指令执行速度提高8位的振荡器频率或减少每机器周期包含的振荡周期数,都可以提高指令的执行速度,如Philips公司把12MHz的805l从每机器周期所含振荡器周期数由12改为6,获得2倍速,因此,提升8位微控制器工作频率已经受到普遍的重视。
3.集成大容量片上FLASH存储器,实现ISP、IAP近几年,8位微控制器竞相采用FLASH存储器,已成趋势,因为它集成密度高、价格便宜、技术先进、可以取代PROM、EPROM、0TP和EEPROM等。
Philips 公司推出的兼容于8051的P89C668单片机是具有32KB/64KB FLASH的芯片,由于片上集成了1KB的引导和擦除/烧录用ROM固件,所以能够更好地支持ISP 和IAP,顺便指出,P89C668还增加了片上RAM,最多到8KB。
4.普遍使用混合信号集成技术用CMOS工艺将数字和模拟电路集成于一个片上的技术已经成熟,有力的削减了片外的附加器件,提高了性能并缩短了产品上市时间。
5.增加可联网的外设接口目前,大量的独立键盘,小型掌上电脑也使用了MCS一51系列的83C51。
因此要求将内嵌8位微控制器地设备接入Internet地呼声渐高。
6.追求低电压、低功率、低价位、PLC(少腿芯片)降低工作电压无疑可以成平方地降低功率,所以开始出现多电压供电的微控制器,CPU部分工作于1.5V~2.5V,而I/0口工作于3.3V~5V。
为实现低功耗,应尽可能将片外器件集成于一个片上,这样便于一同暂停,一同休眠或部分运行。
当代(即第二代)嵌入式微控制器,主流情况如下:1.DSP与MPU相结合,协助解决网络与多媒体所需实时处理的高速运算问题,DSP进入今日嵌入式的芯核,与MPU构成芯核的左右脑。
2.今日嵌入式芯核的MPU多是RISC结构,取其特有的高速度,低能耗,小尺寸,低价位的特点。
3.32位的RISC—DSP,双核结构成为今日嵌入式芯片的主流形式。
新一轮32位嵌入式应用的兴起,8位微处理器和32位微处理器相辅相成结合,构成了五彩斑斓的实际应用系统。
同时,也说明了805l系列单片机的软硬件机构至今仍有生命力,借助于操作系统的威力,805l系列单片机仍可以继续在嵌入式系统发挥更大的作用。
8位微控制器因其价廉,指令短,易于开发使用,加上嵌入式C语言的普及,片上FLASH存储的采用和多种多样的集成,将持续受到普遍的欢迎。
当今,8051系列单片机已经是一个在特性上与其他系列有较大的差异,由不同厂家生产,多种型号芯片组成的单片机大家庭,805l系列的各种芯片超过了400种。
Philips是最早获得MCS-5l技术授权的公司,也是后继发展805l产品最多、最系统的公司。
该公司的805l增强核集中反应了最新技术对MCS-51核的全面提升。
在此基础上集中生产了3个基础系列的主干产品,即:P89C51x2/52X/54X2/58X2与P89C60X2/61x2系列(完全以8051增强核为基础);P89CRA2/RB2/RC/RD2(增强+PCA)和P89C660/662/664/668(8051增强核+PCA+I2C)。
Philips公司单片机功能多,品种齐全,其中的增强型8051系列功能更为强大,因此本课题拟采用该公司的.P89C668单片机作为控制芯片。
1.2 课题研究意义毕业设计是大学教学中的重要环节,是大学生能力培养的重要手段。
是对基础知识和专业知识的一次综合性考查,是大学生进入社会前的一次提前练兵,对大学生未来的生活和工作起到非常重要的作用。
本次的设计课题是基于P89C668单片机的步进电机运动控制系统的研发。