2013-2014学年浙江省宁波市慈溪市八年级(下)期末数学试卷
2013-2014学年浙江省宁波市慈溪市八年级(上)期末数学试卷
2013-2014学年浙江省宁波市慈溪市八年级(上)期末数学试卷一、选择题(每小题3分,共36分).C D.C<C,cm,2cm,cm8.(3分)根据图象可得不等式组(m>0的常数)的解为()10.(3分)如图,是一储水容器,当水从上方倒入容器(每秒倒入的水量相同)中时,水位高度h 与倒水时间t 的函数图象是( ). C D .11.(3分)如图,梯子AB 斜靠在墙面上,墙壁AC 与地面BC 互相垂直,且此时AC=BC ,当梯子的顶端A 下滑a 米时,梯足B 沿CB 方向滑动了b 米,则a 与b 的大小关系是()12.(3分)有一块两条直角边长分别为3m 和4m 的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直 mC 10+)二、填空题(每小题3分,共18分)13.(3分)对于任意实数a ,用不等号连结|a| _________ a (填“>”或“<”或“≥”或“≤”)14.(3分)若点(0,y 1),(﹣2,y 2)在一次函数y=﹣2x+b 的图象上,则y 1,y 2的大小关系是 _________ .15.(3分)(2012•犍为县模拟)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题: _________ .16.(3分)如图,已知∠ABC=130°,∠C=50°,AB ∥DE ,则∠D= _________ .17.(3分)如图,△ABO中,AO=AB,点B(10,0),点A在第一象限,C,D分别为OB、OA的中点,且CD=6.5,则A点坐标为_________.18.(3分)已知一次函数y=﹣x+与x轴,y轴分别交于点A,B,直线l经过点O,且l∥AB,点F在l上,且AF=AB,则OF=_________.三、解答题(第19、20题各6分,第21题7分,第22、23题各8分,第24题9分,第25题10分,第26题12分,共66分)19.(6分)解不等式组,把解表示在数轴上,并与出它的整数解.20.(6分)已知:如图,B,C,B三点在同一条直线上,AC∥DE,AB=CD,∠ACD=∠B.若AC=3,DE=5,求BE 的长.21.(6分)已知l1:直线y=﹣x+3和l2:直线y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标;(2)经过点A且平行于l2的直线的解析式.22.(8分)如图,坐标平面内等腰直角三角形ABC的顶点A的坐标是(﹣1,1),BC∥x轴,AB=2.(1)写出B、C两点的坐标;(2)画出△ABC向右平移2个单位后的△A′B′C′,写出点C′的坐标;(3)若点P是线段BC上任一点,用恰当的方法表示点P的坐标.23.(8分)已知线段a,b.(1)用直尺和圆规作△ABC,使AB=AC=a,且BC边上的中线AD长为b;(2)若a=10,b=8,求△ABC的面积.24.(9分)水果店进1吨水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损坏而不能出售,售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于3400元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?25.(10分)甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.甲车离A地的路程s1(km)与行驶的时间t(h)之间的函数关系,如图中线段OP所示;乙车离A地的路程s2(km)与行驶的时间t(h)之间的函数关系,如图中线段MN所示,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别求出线段MN、OP的函数关系式;(2)求出a的值;(3)设甲、乙两车之间的距离为s(km),求s与甲车行驶时间t(h)的函数关系式,并求出s的最大值.26.(12分)如图,点B是x轴正半轴上一动点,点A是线段OB垂直平分线上的点,P为y轴正半轴上一动点,且∠OPB=∠OAB=α(α为锐角).(1)求证:∠AOP=∠ABP;(2)如图1,若∠AOB=60°,PO=2,求:①PB的长;②PA的长.(3)已知,点A的纵坐标是3,问当点B在x轴正半轴上移动时(如图2),PO+PB的长是否会发生改变?若不变,求出PO+PB的值;若会改变,请说明理由.2013-2014学年浙江省宁波市慈溪市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分).C D.C<=≠C,cm,2cm,cm)),∴cm7.(3分)下列条件中,△ABC与△DEF不一定全等的是()8.(3分)根据图象可得不等式组(m>0的常数)的解为()解:根据图象可知,不等式﹣9.(3分)(2006•仙桃)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()10.(3分)如图,是一储水容器,当水从上方倒入容器(每秒倒入的水量相同)中时,水位高度h 与倒水时间t 的函数图象是( ). C D.11.(3分)如图,梯子AB 斜靠在墙面上,墙壁AC 与地面BC 互相垂直,且此时AC=BC ,当梯子的顶端A 下滑a 米时,梯足B 沿CB 方向滑动了b 米,则a 与b 的大小关系是( )12.(3分)有一块两条直角边长分别为3m和4m的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直C10+)m;=2+5==2(=5+5+2=10+2二、填空题(每小题3分,共18分)13.(3分)对于任意实数a,用不等号连结|a|≥a(填“>”或“<”或“≥”或“≤”)14.(3分)若点(0,y1),(﹣2,y2)在一次函数y=﹣2x+b的图象上,则y1,y2的大小关系是y1<y2.15.(3分)(2012•犍为县模拟)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.16.(3分)如图,已知∠ABC=130°,∠C=50°,AB∥DE,则∠D=100°.17.(3分)如图,△ABO中,AO=AB,点B(10,0),点A在第一象限,C,D分别为OB、OA的中点,且CD=6.5,则A点坐标为(5,12).OB=×AC=18.(3分)已知一次函数y=﹣x+与x轴,y轴分别交于点A,B,直线l经过点O,且l∥AB,点F在l上,且AF=AB,则OF=±1.)AF=AF=故答案为三、解答题(第19、20题各6分,第21题7分,第22、23题各8分,第24题9分,第25题10分,第26题12分,共66分)19.(6分)解不等式组,把解表示在数轴上,并与出它的整数解.,.20.(6分)已知:如图,B,C,B三点在同一条直线上,AC∥DE,AB=CD,∠ACD=∠B.若AC=3,DE=5,求BE 的长.21.(6分)已知l1:直线y=﹣x+3和l2:直线y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标;(2)经过点A且平行于l2的直线的解析式.22.(8分)如图,坐标平面内等腰直角三角形ABC的顶点A的坐标是(﹣1,1),BC∥x轴,AB=2.(1)写出B、C两点的坐标;(2)画出△ABC向右平移2个单位后的△A′B′C′,写出点C′的坐标;(3)若点P是线段BC上任一点,用恰当的方法表示点P的坐标.23.(8分)已知线段a,b.(1)用直尺和圆规作△ABC,使AB=AC=a,且BC边上的中线AD长为b;(2)若a=10,b=8,求△ABC的面积.BD=24.(9分)水果店进1吨水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损坏而不能出售,售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于3400元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?≈25.(10分)甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.甲车离A地的路程s1(km)与行驶的时间t(h)之间的函数关系,如图中线段OP所示;乙车离A地的路程s2(km)与行驶的时间t(h)之间的函数关系,如图中线段MN所示,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别求出线段MN、OP的函数关系式;(2)求出a的值;(3)设甲、乙两车之间的距离为s(km),求s与甲车行驶时间t(h)的函数关系式,并求出s的最大值.,,=﹣26.(12分)如图,点B是x轴正半轴上一动点,点A是线段OB垂直平分线上的点,P为y轴正半轴上一动点,且∠OPB=∠OAB=α(α为锐角).(1)求证:∠AOP=∠ABP;(2)如图1,若∠AOB=60°,PO=2,求:①PB的长;②PA的长.(3)已知,点A的纵坐标是3,问当点B在x轴正半轴上移动时(如图2),PO+PB的长是否会发生改变?若不变,求出PO+PB的值;若会改变,请说明理由.。
浙江省慈溪市八年级上学期期末考试数学试题解析版
浙江省慈溪市八年级上学期期末考试数学试题一、选择题(本大题共12小题,共36.0分)1.如图所示的五角星是轴对称图形,它的对称轴共有A. 1条B. 3条C. 5条D. 无数条【答案】C【解析】解:五角星的对称轴共有5条,故选:C.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.一次函数的图象与y轴的交点坐标为A. B. C. D.【答案】A【解析】解:当时,,一次函数的图象与y轴的交点坐标为.故选:A.代入求出y值,进而即可得出发一次函数的图象与y轴的交点坐标.本题考查了一次函数图象上点的坐标特征,代入求出y值是解题的关键.3.若,则下列各式正确的是A. B. C. D.【答案】B【解析】解:若,则,即A项错误,B.若,不等式两边同时乘以得:,不等式两边同时加上3得:,即B项正确,C.若a和b同为负数,若,,即C项错误,D.若,不等式两边同时乘以,,即D项错误,故选:B.根据不等式的性质和绝对值的定义,结合“”,依次分析各个选项,选出正确的选项即可.本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.4.下列各组数据作为三角形的三边长,能构成直角三角形的是A. 2,3,4B. 5,6,8C. 2,,3D. ,2,3【答案】C【解析】解:A、,不符合勾股定理的逆定理,故此选项不合题意;B、,不符合勾股定理的逆定理,故此选项不合题意;C、,符合勾股定理的逆定理,故此选项符合题意;故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.明铭同学在“求满足不等式的x的最小整数和最大整数”时,先在如图轴上表示这个不等式的解,然后,很直观的找到了所要求的、的值为A. ,B. ,C. ,D. ,【答案】D【解析】解:将该不等式x的范围表示在数轴上如下:由数轴知,最小整数,最大整数,故选:D.将该不等式x的范围表示在数轴上,结合数轴可得答案.本题主要考查一元一次不等式组的整数解,解题的关键是熟练将不等式x的范围准确地表示在数轴上.6.如图,已知,,添加下列条件中哪一个能使 ≌A. B. C. D.【答案】B【解析】解:,,,当时, ,依据SAS即可得到 ≌ ;当 或或时,不能使 ≌ ;故选:B.根据条件求出,再根据全等三角形的判定定理判断即可.本题全等三角形的判定的应用,全等三角形的5种判定方法中,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.在平面直角坐标系中,若点在第二象限,则m的取值范围是A. B. C. D.【答案】D【解析】解:根据题意,得:,解得,故选:D.根据第二象限内点的横坐标为负、纵坐标为正得出关于m的不等式组,解之可得.本题主要考查解一元一次不等式组的能力,解题的关键是根据点的坐标特点列出关于m 的不等式组.8.在中,,,则BC边上的高为A. 12B. 10C. 9D. 8【答案】A【解析】解:作于D,,,由勾股定理得,,故选:A.作于D,根据等腰三角形的性质求出BD,根据勾股定理计算,得到答案.本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.9.我国国内平信邮资标准是:每封信的质量不超过20g,付邮资元;质量超过20g后,每增加不足20g按照20g计算增加元,如图表示的是质量与邮资元的关系,下列表述正确的是A. 当时,元B. 当元时,C. q是p的函数D. p是q的函数【答案】D【解析】解:由图象,则.故选:D.根据图象,可得以x为自变量的函数y的解析式.本题考查分段函数的应用,考查函数的图象,考查学生分析解决问题的能力,属于中档题.10.某经销商销售一批多功能手表,第一个月以200元块的价格售出80块,第二个月起降价,以150元块的价格将这批手表全部售出,销售总额超过了万元,则这批手表至少有A. 152块B. 153块C. 154块D. 155块【答案】C【解析】解:设这批手表有x块,解得,这批手表至少有154块,故选:C.根据题意设出未知数,列出相应的不等式,从而可以解答本题.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.11.如图,直线与x轴、y轴分别交于点A、B,在坐标轴上找点P,使为等腰三角形,则点P的个数为A. 2B. 4C. 6D. 8【答案】C【解析】解:如右图所示,当时,是等腰三角形,当时,是等腰三角形,当时,是等腰三角形,当时,是等腰三角形,当时,是等腰三角形,当时,是等腰三角形,故选:C.根据题意可以划出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.12.如图,锐角中,,若想找一点P,使得 与 互补,甲、乙、丙三人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;丙:作BC的垂直平分线和 的平分线,两线交于P点,则P即为所求.对于甲、乙、丙三人的作法,下列叙述正确的是A. 三人皆正确B. 甲、丙正确,乙错误C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确【解析】解:甲:如图1,,,,甲正确;乙:如图2,延长AC交于E,连接PE,PD,,,,,,即 ,乙不正确,丙:如图3,过P作于G,作于H,平分 ,,是BC的垂直平分线,,≌ ,,,,,,丙正确;故选:B.甲:根据作图可得,利用等边对等角得:,由平角的定义可知:,根据等量代换可作判断;乙:根据圆内接四边形对角互补可得: ,再由圆周角定理和等边对等角可计算 ,可作判断;丙:利用角平分线的性质,作辅助线,证明 ≌ ,可得,作判断即可.本题考查了角平分线的性质、圆内接四边形的性质、线段垂直平分线的性质及基本作图,正确的理解题意是解题的关键.二、填空题(本大题共6小题,共18.0分)13.命題“等腰三角形两腰上的高线相等”的逆命题是______命題填“真”或“假”【解析】解:等腰三角形两腰上的高线相等的逆命题是如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形,是真命题.故答案为:真.正确的命题即为真命题,把一个命题的条件和结论互换就得到它的逆命题.本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题.14.为说明命题:“对于任意实数x,都有”是假命题,请举一个反例:______.【答案】【解析】解:当时,,所以“对于任意实数x,都有”是假命题,故答案为:.找到一个实数使得即可.本题考查了命题与定理的知识,属于实数的基础知识,难度不大.15.一次函数,当时,y的取值范围是______.【答案】【解析】解:当时,,,随x的增大而减小,当时,y的取值范围是,故答案为:.首先代入求得x的值,然后根据一次函数的增减性确定其取值范围即可.本题考查了一次函数的性质,根据一次函数的性质确定其增减性是解答本题的关键,难度不大.16.定义:等腰三角形的顶角与一个底角的度数的比值称为这个等腰三角形的“特征值”,记作k,若等腰中, ,则它的特征值______.【答案】或【解析】解:当 为顶角时,则底角 ;此时,特征值;当 为底角时,则顶角为;此时,特征值;故答案为:或.分两种情况: 为顶角或 为底角,再根据三角形内角和定理可求得底角或顶角的度数,即可得到它的特征值k.本题主要考查竺腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键,注意分类讨论.17.如图,在中, ,,AB的垂直平分线交AB于D,交AC于E,若,则______.【答案】【解析】解:如图,连接BE,的垂直平分线交AB于D,交AC于E,,中, ,D是AB的中点,,又,,设,则,,中,,即,解得,,故答案为:.依据直角三角形斜边上中线的性质以及勾股定理,即可得到AC的长,设,则,再根据勾股定理列方程,即可得出AE的长.本题主要考查了勾股定理以及线段垂直平分线的性质的运用,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.18.星期日早晨,小青从家出发匀速去森林公园溜冰,小青出发一段时间后,他妈妈发现小青忘带了溜冰鞋,于是立即骑自行车沿小青行进的路线匀速去追赶,妈妈追上小青后,立即沿原路线匀速返回家,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的三分之二,小青继续以原速度步行前往森林公园,妈妈与小青之间的路程米与小青从家出发后步行的时间分之间的关系如图所示,当妈妈刚回到家时,小青到森林公园的路程还有______米【答案】700【解析】解:由图象得:小青步行速度:米分,由函数图象得出,妈妈在小青10分后出发,15分时追上小青,设妈妈去时的速度为v米分,,,.故答案为:700由图象可知:家到森林公园总路程为1600米,分别求小青和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的三分之二”,得速度为80米分,可得返回时又用了分钟,此时小青已经走了分,还剩分钟的总程.本题考查了一次函数的图象的性质的运用,路程速度时间之间的关系的运用,分别求小青和妈妈的速度是关键,解答时熟悉并理解函数的图象.三、解答题(本大题共8小题,共66.0分)19.解不等式组:.【答案】解:由 得:,由 得:,.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到无解.20.如图,在中, .用直尺和圆规作 的平分线交BC于保留痕迹;若,求 的度数.【答案】解:如图所示,AD即为所求.,,平分 ,,,,.【解析】根据角平分线的尺规作图即可得;由知 ,再由角平分线知 ,结合可得答案.本题主要考查作图基本作图,解题的关键是熟练掌握角平分线的尺规作图及直角三角形的性质.21.如图,已知,,BD与AC相交于点O.求证:.【答案】证明:,,,≌,且【解析】由题意可证 ≌ ,可得 ,由等腰三角形的性质可得.本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.22.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,的顶点都在格点上小正方形的顶点称为格点,请解答下列问题:作出关于y轴对称的,点与A、与B对应,并回答下列两个问题:写出点的坐标: 已知点P是线段上任意一点,用恰当的方式表示点P的坐标.若平移后得,A的对应点的坐标为,写出点B的对应点的坐标.【答案】解:如图所示:图的坐标;点P的坐标;点的坐标.【解析】根据点坐标关于y轴对称的特征,找到三个顶点的对称点,顺次连接即可得到关于y轴对称的三角形;线段上点的纵坐标都是4,横坐标,据此可求解;根据,可知平移的方向和距离,从而求出的坐标.本题主要考查了点坐标关于坐标轴对称的特征,以及点的平移特征,掌握点的对称、平移后坐标的变化规律是解题的关键.23.如图,直线l:为常数,且经过第四象限.若直线l与x轴交于点,求m的值;求m的取值范围:判断点是否在直线l上,若不是,判断在直线l的上方还是下方?请说明理由.【答案】解:直线l:为常数,且,直线l与x 轴交于点,,解得,;由题意可得,,解得,;当时,,点P不在直线l上,,又,,,点P在直线l的下方.【解析】根据直线l与x轴交于点,可以求出m的值;根据函数图象和题意,可以得到关于m的不等式组,从而可以得到m的取值范围;将代入函数解析式,可以得到相应的函数值,从而可以判断点P是否在直线l 上,再根据判断和m的取值范围可以判断点P在直线l的上方还是下方.本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.24.我市创全国卫生城市,某街道积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.求温馨提示牌和垃圾箱的单价各是多少元?如果该街道需购买温馨提示牌和垃圾箱共3000个.求购买温馨提示牌和垃圾箱所需费用元与温馨提示牌的个数x的函数关系式;若该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?【答案】解:设温馨提示牌的单价为a元,解得:,则,答:温馨提示牌、垃圾箱的单价分别为50元和150元;由题意可得,,即购买温馨提示牌和垃圾箱所需费用元与温馨提示牌的个数x的函数关系式是:;由题意得,,解得:,为整数,共有201种可供选择的方案,,w随x的增大而减小,当时,w取得最少值,此时元,,答:有201种可供选择的方案,其中购买温馨提示牌1200个,垃圾桶1800个时所需资金最少,最少为330000元.【解析】根据购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍,可以列出相应的一元一次方程,从而可以解答本题;根据题意可以写出w与x的函数关系式;根据题意可以得到关于x的不等式组,从而可以求得x的取值范围,再根据一次函数的性质即可得到所需资金最少的方案,并求出最少需要多少元.本题考查一次函数的应用、一元一次方程的应用、一元一次不等式组的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.如图,在中, ,,D在BC边上,P,Q是射线AD上两点,且,.求证: ≌ .若,.求: 的长; 的面积.【答案】解:,,,,≌ ., ,,由得: ,,,,,,即,.如图,过B作,垂足为H,,,,,.【解析】根据 ,,,即可得到 ≌ . 依据勾股定理可得,即,再根据全等三角形的对应边相等,即可得到.过B作,垂足为H,依据勾股定理即可得到,进而得出等腰的面积.本题考查了等腰直角三角形的性质,全等三角形的性质和判定以及勾股定理的综合运用,添加恰当辅助线构造直角三角形是本题的关键.26.如图,已知直线交x轴于A,交y轴于B,过B作,且,点C在第四象限,点.求点A,B,C的坐标;点M是直线AB上一动点,当最小时,求点M的坐标;点P、Q分别在直线AB和BC上,是以RQ为斜边的等腰直角三角形直接写出点P的坐标.【答案】解:当时,,当时,,,过C作轴,垂足为H,,,, ,≌ ,,,,,作点C关于直线AB的对称点,点在直线BC上,且连结交直线AB于M,设直线的解析式为则,解得,,,;当点P在第二象限时,如下图,过点P作y轴的平行线交过点Q与x轴的平行线于点G,交x轴于点H,延长GQ交y 轴于点M,, ,,又 ,,≌ ,,,设:点P、Q的坐标分别为、,,即:,,即:,联立 并解得:,故点P的坐标,当点P在第一象限时,同理可得:点P的坐标为,故:点P的坐标为或【解析】证明 ≌ ,即可求解;作点C关于直线AB的对称点,连结交直线AB于M,确定直线的解析式即可求解;分点P在第一、二象限两种情况,分别求解即可.本题为一次函数综合题,主要考查了三角形全等、等腰直角三角形性质等知识点,难度不大,但要避免出现情况的遗漏.。
2013-2014学年上学期期末考试(含答案)八年级数学
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
最新2022学年第二学期八年级下学期期末教学质量检测数学试题(含答案)
八年级数学本试卷共三大题23小题,其4页,满分100分.考试时间90分仲,不能使用计算器.注意事项:1. 答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上,3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案:改动的答案也不能超出指定的区域.不准使用铅笔(除作图外),圆珠笔和涂改液,不按以上要求作答的答案无效。
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的. )1.设x1、x2是方程x²+x-1=0的两根,则x1+x2=(*)(A)-3(B)-1(C) 1(D) 32.若8与最简二次根式1 a是同类二次根式,则a的值为(*)(A) 7(B) 9(C) 2(D) 13.点(m. -1)在一次函数y=-2x+1的图象上,则m的值为(*).(A) m=-3(B) m=-1(C) m=1(D) m=24. 甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是S²甲=4, S²乙=10,则成绩比较稳定的是(*)(A) 甲(B)乙(C)甲和乙一样(D)无法确定5.下列各比值中,是直角三角形的三边之比的是(*)(A) 1:2:3(B) 2:3:4(C) 3:4;6(D) 1:3:26.四边形ABCD中,已知AB// CD,下列条件不能判定四边形ABCD 为平行四边形的是(*)(A) AB=CD(B) AD=BC(C) AD∥BC(D)∠A+∠B= 180°7.下列各式中,运算正确的尼(*)(A)22-)(=-2(B)102=+8(C)82⨯=4(D) 2-22=8.如图,平行四边形ABCD的对角线AC、BD相交于点O, B.已知AD=5,BD=8, AC=6,则△OBC的面积为(*)(A) 5(B) 6(C) 8(D) 129.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是(*)(A)4,5(B)4.5,6(C)5, 6(D) 5.5, 610. 如图,已知一次的数y=kx+b的图象与x轴,y轴分别交于点(2, 0),点(0, 3).有下列结论:①关于x的方程k+b=0的解为x=2; ②当x>2时, y<0; ③当x<0时,y<3.其中正确的是(*)(A) ①②(B)①③(C)②③(D)①②③二、填空题(本大愿共6小题,每小题3分,共18分.)11.若关于x的一元二次方程x²- 2x+c= 0没有实数根。
2022-2023学年浙江省宁波市重点中学八校联考八年级(下)期中数学试卷(含解析)
2022-2023学年浙江省宁波市重点中学八校联考八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列方程中,是一元二次方程的是( )A. x−2y =0B. 1x −x =1C. 2x 2=x−1D.2. 2的倒数是( )A. − 2B. −22 C. 2 D.223. 下列式子中,属于最简二次根式的是( )A. 7B.12C. 20D. 0.014. 将方程x 2+2x−8=0通过配方转化为(x +a )2=b 的形式,下列结果中正确的是( )A. (x +1)2=8B. (x +1)2=9C. (x−1)2=9D. (x−1)2=105. 下列说法正确的是( )A. 九年级某班的英语测试平均成绩是98.5,说明每个同学的得分都是98.5分B. 数据4,4,5,5,0的中位数和众数都是5C. 要了解一批日光灯的使用寿命,应采用全面调查D. 若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S 2甲=1.25,S 2乙=0.96,则说明乙组数数据比甲组数据稳定6. 已知ab <0,则 a 2b 化简后为( )A. a bB. −a bC. a −bD. −a −b7. 已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( )A. a =−3,b =1B. a =3,b =1C. a =−32,b =−1D. a =−32,b =18. 小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇⋅赤壁怀古》:“大江东去浪淘尽,千古风流人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿同.哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是x ,则可列方程为( )A. 10x+(x−3)=(x−3)2B. 10(x+3)+x=x2C. 10x+(x+3)=(x+3)2D. 10(x+3)+x=(x+3)29. 如图,在四边形纸片ABCD中,∠A+∠B=150°,将纸片折叠,使点C、D落在边AB上的点C′、D′处,折痕为MN,则∠AMD′+∠BNC′=( )A. 50°B. 60°C. 70°D. 80°10. 如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba的值为( )A. 5−12B. 5+32C. 5+12D. 2+1二、填空题(本大题共6小题,共18.0分)11. 要使x−3有意义,则x的取值范围是.12. 若一组数据x,3,1,6,3的平均数和众数相等,则x的值为______ .13. 一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为______ .14. 我们知道方程x2+2x−3=0的解是x1=1,x2=−3,现给出另一个方程(2x+3)2+2( 2x+3)−3=0,它的解是______.15. 对于竖直向上抛出的物体,在不考虑空气阻力的情况下,有如下的关系式:ℎ=vt−12g t2,其中ℎ是物体上升的高度,v是抛出时的速度,g是重力加速度(g≈10m/s2),t是抛出后的时间.如果一物体以25m/s的初速度从地面竖直向上抛出,经过______ 秒钟后它在离地面20 m高的地方.16. 若等腰△ABC的一边长6,另两边长恰好是关于x方程x2−10x+m=0的两个实数根,则△ABC的面积为______ .三、解答题(本大题共7小题,共52.0分。
2022-2023学年四川省成都市武侯区西川中学八年级(上)期末数学试卷
2022-2023学年四川省成都市武侯区西川中学八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项1.(4分)下列各数中是无理数的是()A.3.5B.C.D.2.(4分)下列计算正确的是()A.B.C.D.3.(4分)下列句子是命题的是()A.作线段AB=aB.a与b谁大C.你喜欢数学吗D.任何一个三角形一定有直角4.(4分)点P(﹣3,5)关于y轴的对称点的坐标是()A.(﹣3,﹣5)B.(3,﹣5)C.(5,﹣3)D.(3,5)5.(4分)已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+3的图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定6.(4分)对于一次函数y=3x+2,①图象必经过点(﹣1,﹣1);②图象经过第一、二、四象限;③当x >1时,y<0;④y的值随着x值的增大而增大,以上结论正确的个数是()A.0个B.1个C.2个D.3个7.(4分)如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是()A.20B.﹣15C.﹣10D.58.(4分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分:共16分,答案写在答题卡上)9.(4分)函数y=的自变量x的取值范围是.10.(4分)如图,将长方形ABCD沿对角线AC折叠,得到如图所示的图形,点B的对应点是点B′,B′C与AD交于点E.若AB=2,BC=4,则AE的长是.11.(4分)如图,长方形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是.12.(4分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解是.三、解答题(本大题共6个小题,共52分,解答过程写在答题卡上)13.(12分)计算:(1);(2).14.(6分)解方程组:.15.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;(2)若△ABC与△A2B2C2关于直线成轴对称,且点A的对称点为A2(2,1),请画出直线l及△A2B2C2,并求出线段AA2的长度.16.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示:(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85(2)结合两队成绩的平均数中中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手的成绩较为稳定.17.(8分)已知:如图所示,AB∥CD,∠A=∠F,∠D=∠E.求证:AF⊥DE.18.(10分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=y,CQ=x,4求y与x的函数表达式(不要求写自变量的取值范围);(3)当△OCQ是等腰三角形时,求CP的长度.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知方程组和的解相同,则2m﹣n=.20.(4分)定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=.21.(4分)已知,则值为.22.(4分)在直角坐标系中,如图所示,把∠BAO放在直角坐标系中,使射线AO与x轴重合,已知∠BAO =30°,OA=OB=1,过点B作BA1⊥OB交x轴于A1,过A1作B1A1⊥BA1交直线AB于点B1,过点B1作B1A2⊥B1A1交x轴于点A2,再过A2依次作垂线…,则△A1B1A2的面积为,△A n B n A n+1的面积为.23.(4分)如图,∠MON=90°,已知△ABC中,AC=BC=25,AB=14,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)甜蜜公司要把240吨白砂糖运往江浙的A,B两地,先用大小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨每辆和10吨每辆,运往A地的费用为:大车630元每辆,小车420元每辆,运往B地的费用为:大车750元每辆,小车550元每辆.(1)求这两种货车各多少辆?(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨.请你设计出使总运费最少的方案并求出最少的总运费?25.(10分)已知∠ACB=90°,AC=2,CB=4.点P为线段CB上一动点,连接AP,△APC与△APC′关于直线AP对称,其中点C的对称点为点C′.直线m过点A且平行于CB(1)如图①:连接AB,当点C落在线段AB上时,求BC′的长;(2)如图②:当PC=BC时,延长PC′交直线m于点D,求△ADC′面积;(3)在(2)的条件下,连接BC′,直接写出线段BC′的长.26.(12分)如图,已知直线l1:y=﹣x+8与直线l2:y=x交于点M,直线l1与坐标轴分别交于A,C两点.(1)分别求点A和点M的坐标;(2)在直线y=x上找一点D,使△ADM的面积等于△AOM的面积的2倍,求出点D的坐标;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB∥x轴交CM于点B.①在x轴上是否存在一点H,使得△PBH为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;②设点P的纵坐标为n,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF与△MOC 重叠部分的面积为S,求S与n之间的函数关系式,并写出相应n的取值范围.。
浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)
2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。
八年级下期末考试数学试卷四套试卷(含答案)
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
2023-2024学年广东省肇庆市八年级(下)期末数学试卷(含答案)
2023-2024学年广东省肇庆市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图象中,不能表示y是x的函数的是( )A. B. C. D.2.在平行四边形ABCD中,如果∠A+∠C=160°,那么∠C等于( )A. 80°B. 60°C. 40°D. 20°3.下列各组数中,能作为直角三角形三边长的是( )A. 4,5,6B. 5,8,13C. 1,1,2D. 1,3,44.下列运算中正确的是( )A. (−3)2=−3B. 2+3=5C. 10÷5=2D. 13×6=25.满足k>0,b=3的一次函数y=kx+b的图象大致是( )A. B. C. D.6.在▱ABCD中,AC、BD是对角线,补充一个条件使得四边形ABCD为菱形,这个条件可以是( )A. AC=BDB. AB=ACC. AC⊥BDD. ∠ABC=90°7.已知点M(m,y1),N(−1,y2)在直线y=−x+1上,且y1>y2,则m的取值范围是( )A. m<−1B. m>−1C. m<1D. m>18.下表记录了甲、乙、丙、丁四名运动员选拔赛成绩的平均数−x与方差S2.根据表中数据,要从中选择一名成绩好,又发挥稳定的运动员参加比赛,应该选择( )甲乙丙丁平均数−x/cm561560561560方差S215.5 3.5 3.515.6A. 甲B. 乙C. 丙D. 丁9.房梁的一部分如图所示,其中BC⊥AC,∠B=60°,BC=2,点D是AB的中点,且DE⊥AC,垂足为E,则AE的长是( )A. 3B. 2C. 5D. 410.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论中正确结论的个数是( )①DE=EF;②四边形DFBE是菱形;③BM=3FM;④S△AOE:S△BCF=2:3.A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
最新浙江省2022-2022年八年级下期末数学试卷含答案解析
八年级(下)期末数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠12.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=33.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm28.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B 两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2022-2022学年河南省周口市周口港区八年级(下)期末数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=3【考点】二次根式的混合运算.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵ +不能合并,故选项A错误;∵4﹣3=4﹣6,故选项B错误;∵2×3=18,故选项C错误;∵÷=3,故选项D正确;故选D.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条【考点】线段垂直平分线的性质;正弦定理与余弦定理;角平分线的性质.【分析】由角平分线的性质可得AD=DE,∠ABD=∠DBE,由垂直平分线性质可得BD=DC,∠DBE=∠DCE,已知AD,则结合这些信息可以求得AB,BE,CE的长.【解答】解:∵DE是BC的垂直平分线,∴BD=DC,BE=EC,∠DBE=∠DCE,DE⊥BC,∵∠ABC的平分线BD交AC于点D,∴∠ABD=∠DBE,∵AD⊥AB,DE⊥BE,∴DE=AD=2,∵∠BAC=90°,∴∠DBE=∠DCE=∠ABD=30°,∴AB=AD•tan30°=2.在Rt△ABD和Rt△EBD中,∴△ABD≌△EBD(AAS),即AB=BE,∴AB=BE=EC=2.即图中长为2的线段有3条.故选:C.【点评】此题主要考查了角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±1【考点】分式的值为零的条件;合并同类项;单项式;分式有意义的条件.【分析】根据合并同类项的法则、单项式的定义、分式有意义的条件和分式的值为零的条件进行计算.【解答】解:A、原式=2a2b,故本选项错误;B、﹣x2是单项式,且系数是﹣1,故本选项正确;C、使式子有意义的x的取值范围是a≠﹣1,故本选项错误;D、若分式的值等于0,则a=±1且a+1≠0,即a=1,故本选项错误;故选:B.【点评】本题考查了分式有意义的条件,分式的值是零的条件,合并同类项以及单项式的定义.属于基础题,难度不大.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°【考点】直角三角形斜边上的中线;轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E 恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CE D=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】由图形的特点可知,每个阴影部分的面积都等于正方形面积的,据此解题.【解答】解:由正方形的性质可知,每个阴影部分的面积都等于正方形面积的,故图中四块阴影部分的面积和为一个正方形的面积,即22=4cm2.故选:B.【点评】本题主要考查了正方形的特性及面积公式,解答本题的关键是发现每个阴影部分的面积都等于正方形面积的.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是3﹣2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=﹣2+2=3﹣2.故答案为:3﹣2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 4.8cm .【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为 5 .【考点】三角形中位线定理.【分析】由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90 分.【考点】加权平均数.【分析】先计算孔明数学得分的折算后的分值,然后用综合得分﹣数学得分的折算后的得分,计算出的结果除以40%即可.【解答】解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.【考点】勾股定理;矩形的判定与性质.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=5,∴∠ABC=30°,BC=AC×tan60°=5,∵AB∥CF,∴BM=BC×sin30°=5×=,CM=BC×cos30°=,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=﹣.故答案为:﹣.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .【考点】三角形中位线定理;勾股定理.【专题】压轴题;动点型.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.【考点】二次根式的混合运算;零指数幂.【分析】(1)根据二次根式的除法、乘法以及合并同类项可以解答本题;(2)根据平方差公式和零指数幂可以解答本题.【解答】解:(1)÷﹣×+=﹣+2=4+;(2)(+1)(﹣1)+﹣()0=3﹣1+2﹣1=1+2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【考点】矩形的判定与性质.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【解答】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【考点】中位数;条形统计图;算术平均数;众数;方差.【专题】图表型.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),.【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用.【分析】(1)作AD⊥ON于D,求出AD的长即可解决问题.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,求出BC的长,利用时间=计算即可.【解答】解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.【点评】本题考查勾股定理的应用、圆的有关知识,解题的关键是理解题意,学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.21.(10分)(2022•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【考点】一次函数的应用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】一次函数的应用.【专题】压轴题;推理填空题.【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1 =300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.【点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】三角形综合题.【分析】(1)①在Rt△ABC中,可求得AB,由PB=AB﹣PA可求得PB,过C作CD⊥AB于点D,则可求得CD=AD=DB,可求得PD的长,在Rt△PCD中可求得PC的长;②把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)过C作CD⊥AB于点D,由(1)中②的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用=可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得的值.【解答】解:(1)①∵△ABC是等腰直角三角形,AC=1+,∴AB===+,∵PA=,∴PB=AB﹣PA=,如图1,过C作CD⊥AB于点D,则AD=CD=AB=,∴PD=AD﹣PA=,在Rt△PCD中,PC==2,故答案为:;2;②PA2+PB2=PQ2,证明如下:如图1,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=(AD﹣PD)2=(CD﹣PD)2=CD2﹣2CD•PD+PD2,PB2=(BD+PD)2=(CD+PD)2=CD2﹣2CD•PD+PD2,∴PA2+PB2=2CD2+2PD2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△CPQ为等腰直角三角形,且∠PCQ=90°,∴2PC2=PQ2,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2;(2)证明:如图2,过C作CD⊥AB于点D,。
浙江省宁波市慈溪市八年级科学下学期期末考试试题(扫描版) 华东师大版(1)
浙江省宁波市慈溪市2015-2016学年八年级科学下学期期末考试试题慈溪市2015学年第二学期八年级期末测试科学试卷参考答案和评分意见一、选择题(每题选一个符合要求的答案。
每小题2分,共40分。
)1—5 CDBDD 6—10 AACBA 11—15 ACDCA 16—20 BBBCB二、填空题(每空2分,共30分)21、振动设置屏障或传播过程22、(1)37 甲(2)神经系统和激素(内分泌系统)23、(1)晶状体视网膜(2)条件24、(错一条扣1分,最多扣2分)25、(1)断路(开路)(2)0 小于小于三、实验探究题(每空2分,共24分)26、小于不正确 0.327、(1)10 (2)倒立、放大(3)靠近28、(1)(2)(3)定值电阻的阻值明显不同29、(2)②在胚芽鞘的A区和B区都插入云母片(3)①尖端②若乙组和丙组直立生长,甲组和丁组向光弯曲生长四、解答题(30-32题每题6分,33题8分,共26分)30、(1)电磁感应(2)将磁铁南北极对调,向下快速插入螺线管或将原来已经插入的磁铁快速向上拔出(3)静止31、(1)D (2)横截面积(3)⑤⑦32、解:(1)在甲图中,R1=U1/I=2V/0.4A=5Ω(1分)U2=U-U1=6V-2V=4V (1分)R2=U2/I=4V/0.4A=10Ω(1分)(2)在乙图中,通过R1的电流I1=U/R1=6V/5Ω=1.2A (1分)通过R1的电流I2=U/R2=6V/10Ω=0.6A (1分)电流表示数I=I1+I2=1.2A+0.6A=1.8A (1分)答:(1)R1、R2的阻值分别为5Ω和10Ω。
(2)乙图中电流表示数为1.8A。
33、(1)铁制品的重力G=mg=1kg×10N/kg=10N;(1分)由图乙知,当F=G=10N时,电阻R=10Ω,则电路中电流I=U/(R+ R0)=6V/(10Ω+ 20Ω)=0.2A;(1分)U R0=IR0=0.2A×20Ω=4V (1分)(2)4kg铁制品的重力G′=m′g=4kg×10N/kg=40N;此时电路中的电流I′= U′/ R0=5V/20Ω=0.25A;(1分)电阻R两端的电压U R=6V﹣5V=1V;(1分)则R的阻值为R′=U R/ I′=1V /0.25A =4Ω(1分)由图象知,FR=100N•Ω,则当R=4Ω时,F=100N•Ω/4Ω=25N;(1分)所以吸引力F′=40N﹣25N=15N.(1分)答:(1)通过小灯泡的电流为0.2A;(2)此时压敏电阻的阻值为4Ω;电磁铁P对铁制品的吸引力为15N.说明:1、本卷中开放性解答,只要表述正确合理均可给分。
【真卷】2014-2015年浙江省宁波市慈溪市八年级下学期期末数学试卷与解析
2014-2015学年浙江省宁波市慈溪市八年级(下)期末数学试卷一、选择题(每题3分,共36分)1.(3分)二次根式中,x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.(3分)下列标志中不是中心对称图形的是()A.B.C.D.3.(3分)有一组数据:1,3,3,4,5,这组数据的众数为()A.1 B.3 C.4 D.54.(3分)图象在第二、四象限的反比例函数是()A.y=﹣2x B.y= C.y=(x<0)D.y=﹣5.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC6.(3分)下列算式正确的是()A.2×3=6B.÷= C.5﹣2=3D.÷=7.(3分)在坐标系中,▱ABCD的对角线交于原点O,若A(﹣2,3),则点C 的坐标为()A.(3,﹣2)B.(2,﹣3)C.(﹣3,2)D.(﹣2,﹣3)8.(3分)一元二次方程2x2﹣2x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根9.(3分)下列命题中正确的是()A.对角线相等且平分一个内角的平行四边形是正方形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直的四边形是菱形10.(3分)如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.211.3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x=15 D.(x+1)(4﹣0.5x)=1512.3分)点A(a,b),B(a﹣1,c),其中a<0,且b<c,则A,B两点可能在下列()函数的图象上.A.y=2x+3 B.y=﹣C.y= D.y=(x>0)二、填空题(每题6小题,每小题3分,共18分)13.3分)比较大小:32(填“>”,“=”或“<”)14.3分)n边形的内角和是1800°,则n=.15.3分)方程2x2﹣8x+3=0配方后可写出(x+m)2=b的形式为.16.3分)若干名工人某天生产同一种零件,生产的零件数整理成条形统计图(如图所示),则他们生产零件的平均数为.17.(3分)用反证法证明“直角三角形两锐角中至少有一个不小于45°”,应先假设这个直角三角形中的每一个锐角都.18.(3分)如图,点P在反比例函数y=(x>0)的图象上,PN⊥PM,M为y轴负半轴上的一点,N为x轴上的点,且PM=PN,则ON﹣OM的值为.三、解答题(8小题,共66分)19.(5分)计算:6﹣+.20.(7分)解方程:(1)2x2﹣5x=0;(2)3x2﹣5x﹣2=0.21.(7分)实践与探索:定义:两组邻边分别相等,且对边不相等的四边形称为筝形,如图1,四边形ABCD 是筝形,其中AB=AD,CB=CD,且AB≠CD.(1)①命题“菱形是筝形”是命题(填“真”或“假”);②请说出筝形和菱形的相同点和不同点(各两条);(2)请仿照图2的画法,在图3所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①筝形和菱形顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形,与原图案不能是放大或缩小的关系;③将新图案中的四个筝形都涂上阴影(建议用一系列平行四边形斜线表示阴影).22.(8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.23.(8分)如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE 到点F,使得EF=BE,连结CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求AB的长.24.(9分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(a,6),B(3,a+1)两点(1)求反比例函数的解析式;(2)根据图象直接写出满足不等式kx+b﹣<0的x的取值范围;(3)求△AOB的面积.25.(10分)随着人民生活水平的不断提高,我市家庭桥车的拥有量逐年增加,据统计,某小区2012年底拥有家庭轿车192辆,2014年底家庭轿车的拥有量达到300辆.(1)若该小区2012年底到2015年底家庭轿车拥有量的年平均增长率都相同,求这三年的年平均增长率及该小区到2015年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.26.(12分)如图1,在正方形ABCD中,C,B两点分别在x轴,y轴的正半轴上,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①直接写出BC,DE的长;②根据已知及求得的线段OB、BC、DE的长,猜想并写出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1,交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE是否仍有与(1)中相同的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求正方形ABOC的边长.2014-2015学年浙江省宁波市慈溪市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)二次根式中,x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【解答】解:∵二次根式有意义,∴x﹣1≥0,∴x≥1.故选:B.2.(3分)下列标志中不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故A选项错误;B、是中心对称图形,故B选项错误;C、不是中心对称图形,是轴对称图形,故C选项正确;D、是中心对称图形,故D选项错误;故选:C.3.(3分)有一组数据:1,3,3,4,5,这组数据的众数为()A.1 B.3 C.4 D.5【解答】解:这组数据中3出现的次数最多,故众数为3.故选:B.4.(3分)图象在第二、四象限的反比例函数是()A.y=﹣2x B.y= C.y=(x<0)D.y=﹣【解答】解:∵反比例函数的图象位于二、四象限,∴k<0,D选项符合,故选:D.5.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.6.(3分)下列算式正确的是()A.2×3=6B.÷= C.5﹣2=3D.÷=【解答】解:∵,故选项A错误;∵,故选项B错误;∵无法合并,故选项C错误;∵,故选项D正确;故选:D.7.(3分)在坐标系中,▱ABCD的对角线交于原点O,若A(﹣2,3),则点C 的坐标为()A.(3,﹣2)B.(2,﹣3)C.(﹣3,2)D.(﹣2,﹣3)【解答】解:如图所示:∵四边形ABCD是平行四边形,对角线交于原点O,∴点A与点C关于原点O对称,∵点A(﹣2,3),∴点C(2,﹣3),故选:B.8.(3分)一元二次方程2x2﹣2x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【解答】解:∵△=(2)2﹣4×2×3=0,∴方程有两个相等的实数根.故选:B.9.(3分)下列命题中正确的是()A.对角线相等且平分一个内角的平行四边形是正方形B.对角线相等的四边形是矩形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直的四边形是菱形【解答】解:对角线相等且平分一个内角的平行四边形是正方形,A正确;对角线相等的平行四边形是矩形,B错误;对角线互相平分、垂直且相等的四边形是正方形,C错误;对角线互相垂直的平行四边形是菱形,D错误,故选:A.10.(3分)如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选:B.11.(3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15【解答】解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.12.(3分)点A(a,b),B(a﹣1,c),其中a<0,且b<c,则A,B两点可能在下列()函数的图象上.A.y=2x+3 B.y=﹣C.y= D.y=(x>0)【解答】解:∵a<0,∴a﹣1<0.∵b<c,∴此函数的图象在第二或第三象限内,y随x的增大而减小.故选:C.二、填空题(每题6小题,每小题3分,共18分)13.(3分)比较大小:3<2(填“>”,“=”或“<”)【解答】解:∵3=,2=,∴3<2,故答案为:<.14.3分)n边形的内角和是1800°,则n=12.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=1800°,解得n=12.故答案为:12.15.(3分)方程2x2﹣8x+3=0配方后可写出(x+m)2=b的形式为(x﹣2)2=.【解答】解:移项,得2x2﹣8x=﹣3,二次项系数化成1得x2﹣4x=﹣,配方x2﹣4x+4=,则(﹣2)2=.故答案是:(x﹣2)2=.16.(3分)若干名工人某天生产同一种零件,生产的零件数整理成条形统计图(如图所示),则他们生产零件的平均数为 4.9.【解答】解:由图可知生产零件的平均数为=4.9,故答案为:4.9.17.(3分)用反证法证明“直角三角形两锐角中至少有一个不小于45°”,应先假设这个直角三角形中的每一个锐角都小于45°.【解答】解:用反证法证明“直角三角形两锐角中至少有一个不小于45°”,应先假设这个直角三角形中的每一个锐角都小于45°,故答案为:小于45°.18.(3分)如图,点P在反比例函数y=(x>0)的图象上,PN⊥PM,M为y 轴负半轴上的一点,N为x轴上的点,且PM=PN,则ON﹣OM的值为2.【解答】解:如图,过P分别作x轴、y轴的垂线,垂足分别为A、B,设PM交x轴于点C,∴∠PAN=∠PBM=90°,四边形PAOB为矩形,∵PM⊥PN,∴∠PCN+∠PNA=∠OCM+∠OMC=90°,∵∠PCN=∠OCM,∴∠PNA=∠PMB,在△PAN和△PBM中∴△PAN≌△PBM(AAS),∴PB=PA,BM=AN,∴矩形PAOB为正方形,可设P点坐标为(x,x),代入反比例函数解析式可得x2=3,解得x=或x=﹣(舍去),∴BO=OA=,∴ON﹣OM=OA+AN﹣OM=OA+BM﹣OM=OA+OB=2,故答案为:2.三、解答题(8小题,共66分)19.(5分)计算:6﹣+.【解答】解:6﹣+==﹣1.20.(7分)解方程:(1)2x2﹣5x=0;(2)3x2﹣5x﹣2=0.【解答】解:(1)2x2﹣5x=0x(2x﹣5)=0∴x=0或2x﹣5=0,解得,;(2)3x2﹣5x﹣2=0(3x+1)(x﹣2)=0∴3x+1=0或x﹣2=0,解得,.21.(7分)实践与探索:定义:两组邻边分别相等,且对边不相等的四边形称为筝形,如图1,四边形ABCD是筝形,其中AB=AD,CB=CD,且AB≠CD.(1)①命题“菱形是筝形”是假命题(填“真”或“假”);②请说出筝形和菱形的相同点和不同点(各两条);(2)请仿照图2的画法,在图3所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①筝形和菱形顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形,与原图案不能是放大或缩小的关系;③将新图案中的四个筝形都涂上阴影(建议用一系列平行四边形斜线表示阴影).【解答】解:(1)①命题“菱形是筝形”是假命题;②筝形和菱形的相同点:两组邻边相等,对角线互相垂直;不同点:菱形四边相等,筝形只两组邻边分别相等;菱形对角相等,筝形对角不相等;(2)如图所示:.22.(8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【解答】解:(1)=(82+81+79+78+95+88+93+84)=85,=(92+95+80+75+83+80+90+85)=85.这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适.理由如下:由(1)知=,∵=,s甲2<s乙2,∴甲的成绩较稳定,派甲参赛比较合适.注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,酌情给分.如派乙参赛比较合适.理由如下:从统计的角度看,甲获得8(5分)以上(含85分)的概率,乙获得8(5分)以上(含85分)的概率,∵P2>P1,∴派乙参赛比较合适.23.(8分)如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE 到点F,使得EF=BE,连结CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求AB的长.【解答】(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC,2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC=BE,∴四边形BCFE是菱形.(2)解:∵四边形BCFE是菱形,∠BCF=120°,∴∠ACB=60°,∵BC=BE,∴△BEC是等边三角形,∴∠BEC=60°,∵E是AC的中点,CE=4,∴AE=EC=BE=4,∴∠A=30°,∴∠ABC=180°﹣∠ACB﹣∠A=90°.在Rt△ABC中,AB=.24.(9分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(a,6),B(3,a+1)两点(1)求反比例函数的解析式;(2)根据图象直接写出满足不等式kx+b﹣<0的x的取值范围;(3)求△AOB的面积.【解答】解:(1)∵A(a,6),B(3,a+1)两点在反比例函数y=(x>0)的图象上,∴6a=3(a+1),∴a=1即A(1,6),B(3,2).∴m=6,∴反比例函数的解析式为:y=;(2)根据图象可知不等式kx+b﹣<0的x的取值范围x的取值范围是0<x<1或x>3;(3)∵A(1,6),B(3,2)在一次函数y=kx+b的图象上,∴一次函数的解析式为:y=﹣2x+8,分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.令﹣2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S=S△AOD﹣S△BOD=×4×6﹣×4×2=8.△AOB25.(10分)随着人民生活水平的不断提高,我市家庭桥车的拥有量逐年增加,据统计,某小区2012年底拥有家庭轿车192辆,2014年底家庭轿车的拥有量达到300辆.(1)若该小区2012年底到2015年底家庭轿车拥有量的年平均增长率都相同,求这三年的年平均增长率及该小区到2015年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.【解答】解:(1)设家庭轿车拥有量的年平均增长率为x,则192(1+x)2=300,解得x=0.25=25%或x=﹣2.25(不合题意,舍去),则300(1+25%)=375(辆).答:这三年的年平均增长率是25%,该小区到2015年底家庭轿车将达到375辆;(2)设该小区可建室内车位a个,露天车位b个,则,由①得b=150﹣5a,代入②得20≤a≤,∵a是正整数,∴a=20或21,当a=20时b=50,当a=21时b=45.∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.26.(12分)如图1,在正方形ABCD中,C,B两点分别在x轴,y轴的正半轴上,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①直接写出BC,DE的长;②根据已知及求得的线段OB、BC、DE的长,猜想并写出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1,交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE是否仍有与(1)中相同的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求正方形ABOC的边长.【解答】解:(1)①如图1,∵四边形ABOC是正方形,∴∠BAC=90°,由勾股定理得:BC==2,∴BE=BC=,∴OE=BE=,设DE=x,则OD=﹣x,∵BD平分∠OBE,∴,∴,x=2﹣,∴DE=2﹣,则BC=2,DE=2﹣;②∵OB=AB=2,BC=2,DE=2﹣,∴BC+DE=×+2﹣=2,∴OB=BC+DE;(2)如图2,OB=+DE,理由是:过D作DF⊥OB于F,∵∠BAC=∠B1AC1=90°,∴∠B1AB=∠CAC1,∵AB=AC,∠ABB1=∠ACC1=90°,∴△ABB1≌△ACC1,∴B1A=C1A,∴AB1=B1C1,∵∠B1DA=∠AOB+∠OB1D=45°+∠DB1O,∠DB1A=∠DB1P+∠AB1P=45°+∠DB1P,∵B1D平分∠OB1P,∴∠OB1D=∠DB1P,∴∠B1DA=∠DB1A,∴AB1=AD=,∵OD=DF=DE,AO=OB,∴AD+OD=OB,∴+DE=OB,∴OB=+DE;(3)如图2,∵B1E=6,C1E=4,∴B1C1=6+4=10,由(2)得:OB=+DE=5+DE,∵DE=DF=OF,∴OB=5+OF,∴BF=5,∵B1F=B1E=6,∴BB1=1,设正方形ABOC的边长为x,则OB1=x+1,OC1=x﹣1,由勾股定理得:(x+1)2+(x﹣1)2=102,解得:x=±7,∴正方形ABOC的边长为7.。
2013-2014学年浙江省宁波市慈溪市八年级(下)期末数学试卷
2013-2014学年浙江省宁波市慈溪市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.若=a ,则( )By=BA . ∠1+∠2=180°B . ∠2+∠3=180°C . ∠3+∠4=180°D . ∠2+∠4=180°=B=0①甲乙两组学生成绩平均水平相同;②乙组成绩较稳定;③乙组中成绩不低于38分的人数不少于甲组;④甲组得37分的人数与乙组得38分的人数相同.7 ﹣13.在△ABC 中,D 、E 分别是AB 、AC 的中点,DE=4,则BC= .14.如图,已知▱ABCD 的周长是20cm ,且AB :BC=3:2,则AB=cm .15.方程2x 2﹣4x+m=0有一个根为﹣1,则它的另一个根为 .16.数据2,3,2,1,2的方差是 .17.将矩形ABCD 折叠,使得对角线的两个端点A 、C 重合,折痕所在直线交直线AB 于点E ,如果AB=4,BE=1,则BC 的长为 .18.如图,直线y=x ﹣2与反比例函数y=(x >0)的图象交于点C ,与x 轴交于点A ,过A 作AB ⊥x 轴,交反比例函数图象与点B .若AC=BC ,则△OBC 的面积为 .三、解答题(本大题共有8小题,共66分)19.(5分)计算:.20.(7分)解方程:(1)x (x ﹣3)=x ﹣3; (2)2x 2﹣3x=4.21.(8分)如图,一次函数y 1=x+1的图象与反比例函数(k 为常数,且k≠0)的图象都经过点A (m ,2)(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,y 1和y 2的大小. 第14题图第18题图22.(8分)实践与探索:已知一个正方形.(1)折叠并裁剪:八大正方形的对折2次,得到一个小正方形,再把这个小正方形剪掉一个直角梯形,然后展开,图1是小红同学画出的一种展开图,请你在图2中的两个正方形虚线框中个画出一种与图1不同的可能的展开图(形状一样,位置不一样算同一种).(2)剪拼:各设计一种方案:在图3中把一个正方形剪一刀,使剪得的两块图形能够拼成一个三角形;在图4中把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且拼成的三角形既不是直角三角形也不是等腰三角形,画出裁剪线及拼成的三角形,并附以简要说明.23.(8分)在对全市初中生的体质健康测试中,青少年体质研究中心随机抽取的10名女生的立定跳远的成绩(单位:厘米)如下:123,191,216,191,159,206,191,210,186,227.(1)通过计算,样本数据(10名女生的成绩)的平均数是190厘米,中位数是厘米,众数是厘米;(2)本市一初中女生的成绩是194厘米,你认为她的成绩如何?说明理由;(3)研究中心分别确定了一个标准成绩,等于或大于这个成绩的女学生该项素质分别被评定为“合格”、“优秀”等级,其中合格的标准为大多数女生能达到,“优秀”的标准为全市有一半左右的学生能够达到,你认为标准成绩分别定为多少?说明理由;按拟定的合格标准,估计该市4650人中有多少人在合格以上?24.(8分)如图,某农场建一个矩形的养鸡场,鸡场的一边靠墙(墙长15m),另三边用40m长的木栏围成.(1)按原设计,鸡场面积须128m2,问该鸡场的长、宽各位多少米?(2)为了在现有条件下扩大养殖规模,改变鸡场的长和宽,能使鸡场的面积达到210m2吗?若能,请求出此时鸡场的长和宽;若不能,请说明理由.25.(10分)如图,在△ABC中,∠ABC=90°,D为AC的中点,过点C作CE⊥BD于点E,作∠GAB=∠CAB,CE的延长线与AG交于点F,点G在AF的延长线上,且FG=BD,连结BG、DF(1)求证:①BD∥AG;②四边形BGFD为菱形;(2)已知AG=15,CF=3,求菱形BGFD的边长.26.(12分)如图,直线y=﹣x+1与x,y轴分别交于A、B两点,P(a,b)为双曲线y=(x>0)上的一动点,PM⊥x轴与M,交线段AB于F,PN⊥y轴于N,交线段AB于E (1)求E、F两点的坐标(用a,b的式子表示);(2)当a=时,求△EOF的面积.(3)当P运动且线段PM、PN均与线段AB有交点时,探究:①BE、EF、FA这三条线段是否能组成一个直角三角形?说明理由;②∠EOF的大小是否会改变?若不变,求出∠EOF的度数,若会改变,请说明理由.。
浙江省宁波市海曙区部分学校2023-2024学年八年级上学期期末数学试题(含解析)
.B....下列二次根式是最简二次根式的是()C3.2和25cm的两根木棒,如果不改变木棒的长度,要将木棒首尾顺次相接钉成一个三角形木架,那么在下列长度的木棒中不能选取的是( )A .B .6.已知点和点A .B .7.等腰三角形的一个角是.....如图,平面直角坐标系中,的顶点坐标分别是,与有交点时, )SAS SSS ()1,3A --(B ()3,3-(80(1,1)A (3,1)B x b +ABCA .1个B .二.填空题(每题3分,共11.人字梯中间一般会设计一12.已知y 是13.命题“直角三角形斜边的中线等于斜边的一半14.如图,已知增加其他字母)15.如图,在中,.已知,Rt ABC △E 10cm AB =AC =16.如图,函数和的解集为 .17.在全民健身环城越野赛中,甲、乙两名选手的行程像(全程)如图所示.有下列说法:跑了10千米;③甲比乙先到达终点;18.已知点,,2y x =-(2,4)A -(2,4)B21.在平面直角坐标系中的位置如图所示.(1)作关于轴成轴对称的;(2)将向右平移个单位,作出平移后的;则此三角形的面积为__________.(3)在轴上求作一点,使的值最小,点的坐标为__________.22.疫情放开之后,商场为刺激消费推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商场会员,则所有商品价格可获九折优惠.(1)以(元)表示商品价格,(元)表示支出金额,分别写出两种购物方案中关于的函数解析式;(2)若某人计划在商场购买价格为元的电视机一台,请分析选择哪种方案更省钱?23.阅读:如图1,在△ABC 中,3∠A +∠B =180°,BC =8,AC =10,求AB 的长.小明的思路:如图2,作BE ⊥AC 于点E ,在AC 的延长线上取点D ,使得DE =AE ,连接ABC xOy ABC y 111A B C △ABC 4222A B C △x P 2PB PC P x y y x 7000(1)的坐标为_________,线段的长为_________.B OAc m【详解】解:小明从家中出发,到离家1.2千米的早餐店吃早餐,距离逐渐增大,当吃早餐时,距离不变,当返回学校时,距离变小,到达学校距离不再变化.故选:B.9.B【分析】考查了一次函数的综合应用.利用数形结合的思想,确定边界点的值,是解题的关键.将,的坐标分别代入直线中求得b 的值,即可得到b 的取值范围.【详解】解:直线经过点B 时,将代入直线中,可得,解得;直线经过点C 时,将代入直线中,可得,解得;故b 的取值范围是.故选:B .10.C【分析】(1)根据等边△AOB 和等边△CBD 易判断△OBC ≌△ABD ;(2)根据(1)容易得到∠OAE=60°,根据直角三角形30°所对的直角边等于斜边的一半可以得到AE=2,根据勾股定理可求得点E 的坐标;(3)根据(1)容易得到∠DAC =60°,是一个固定的值;(4)根据△OBC ≌△ABD ,可得四边形ABDC 的面积S=S △ACD+S △ABD=S △ACD+S △OBC ,即可解题.【详解】(1)∵△AOB 是等边三角形,∴OB=AB ,∠OBA=∠OAB=60°,又∵△CBD 是等边三角形∴BC=BD ,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC ,即∠OBC=∠ABD ,()3,1B ()2,2C y x b =+()3,1B y x b =+13b =+2b =-y x b =+(1,2)C y x b =+21b =+1b =21b -≤≤11.三角形具有稳定性【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故答案为三角形具有稳定性.【点睛】此题考查三角形的性质,关键是根据三角形的稳定性解答.12.6【分析】本题考查待定系数法求解析式,已知自变量的值求函数值.设y 关于x 的正比例函数解析式为,把时,代入,求得k 的值,即正比例函数解析式,再把,求解即可.【详解】设y 关于x 的正比例函数解析式为,∵当时,,∴,解得,∴y 关于x 的正比例函数解析式为,∴当时,.故答案为:6.13.真【分析】把命题的条件和结论互换就得到它的逆命题.然后判断真假即可.【详解】解:命题“直角三角形斜边上的中线是斜边的一半”的逆命题是“一边上的中线等于这边的一半的三角形是直角三角形”,为真命题,理由如下:∵AD=CD ,∴∠A=∠DCA ,同理∠DCB=∠B .y kx =2x =-4y =3x =-y kx =2x =-4y =24k -=2k =-2y x =-3x =-()236y =-⨯-=(3)作图见解析,.【分析】()根据轴对称图形的性质作图即可;()根据平移的性质作图即可,利用割补法即可求出该三角形的面积;()作点关于轴的对称点,连接,交轴于点,点即为所求,由图形即可写出点的坐标;本题考查了作轴对称图形,作平移后的图形,三角形面积,轴对称最短路线问题,坐标与图形,掌握作轴对称和平移的性质是解题的关键.【详解】(1)解:如图,即为所求;(2)解:如图,即为所求,()2,01232B x D CD x P P P -111A B C △222A B C △。
2019-2020学年浙江省宁波市北仑区八年级下学期期末数学试卷 (解析版)
2019-2020学年浙江省宁波市北仑区八年级第二学期期末数学试卷一、选择题1.五边形的内角和是()A.180°B.360°C.540°D.720°2.下列计算正确的为()A.+=B.×=C.=4D.﹣=3.下列各图中,不是中心对称图形的为()A.B.C.D.4.用反证法证明“a≥b”时应先假设()A.a≤b B.a>b C.a<b D.a≠b5.在某次考试后,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力,根据这个要求,“听、说、读、写”四项技能测试比较合适的权重设计为()A.3:3:2:2B.5:2:1:2C.1:2:2:5D.2:3:3:2 6.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.在平面直角坐标系中,菱形ABCD的顶点的坐标A、B、C分别为(﹣2,0),(0,1),(2,0),则顶点D的坐标为()A.(0,﹣1)B.(﹣2,1)C.(2,1)D.(0,﹣2)8.为了美化校园环境,某区第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元,设前三个季度用于绿化投资的平均增长率为x.那么x满足的方程为()A.18 (1+2x)=90B.18 (1+x)2=90C.18+18 (1+x)+18 (1+2x)=90D.18+18 (1+x)+18 (1+x)2=909.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1B.1.5C.2D.2.510.定义新运算:a※b=,则函数y=4※x的图象可能为()A.B.C.D.二、填空题(每小题5分,共30分)11.二次根式中字母a的取值范围是.12.已知一组数据为:3,x,6,5,4,若这组数据的众数是4,则x的值为.13.若x=4是二次方程x2+ax﹣4b=0的解,则代数式a﹣b的值为.14.在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于点A(a,﹣6),则k=.15.如图,菱形ABCD中,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的边长为10,一条对角线为12时,则阴影部分的面积为.16.如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N,∠ACB=45°,AN=1,AF=3,则EF=.三、解答题(第17-19题6分,第20.21题各8分,第22.21题10分,第24题12分,第25题14分,共80分)17.计算:(1)(+)×;(2)()2﹣+.18.解方程:(1)(x﹣4)2﹣3=0;(2)4(x﹣3)=2x(x﹣3).19.某射击队伍正在进行射击训练,现有两位选手的5次射击成绩如下所示:甲:7环,8环,9环,8环,10环乙:6环,9环,10环,8环,10环(1)分别求甲、乙两位选手的射击成绩的中位数和众数;(2)经过计算甲的方差为1.04环2,乙的方差为2.24环2.所以选手更加稳定.20.如图,已知点A(2,m)是反比例函数y=的图象上一点,过点A作x轴的垂线,垂足为B,连结OA,△ABO的面积为6.(1)求k和m的值;(2)直线y=2x+a(a≤0)与直线AB交于点C与反比例函数图象交于点E,F;①若a=0,已知E(p,q),则F的坐标为(用含p,q的坐标表示);②若a=﹣2.求AC的长.21.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.22.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额﹣进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.23.小王为探究函数y=(x>3)的图象经历了如下过程.(1)列表,根据表中x的取值,求出对应的y值,将空白处填写完整;x… 3.54 4.55 5.56…y…321…(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)结合由y=(x>0)图象到y=图象的变化,猜想由y=的图象经过向的平移变化可以得到y=(x≠﹣3)图象.y=(x≠﹣3)的对称轴是.24.(1)如图1,四边形ACDE中,△ABC与△BDE均为直角三角形,且AB⊥BE,∠BEA=45°,求证:△ABC≌△BED.(2)如图2,点A(1,2),连结OA,将射线OA绕点O按逆时针方方向旋转45°.得到射线OB,AC⊥OA交OB于点C,分别过点A,点C作x轴,AD的垂线,垂足分别为D,E,由(1)得(填写两个三角形全等),所以CE=,AE=,C的坐标为,则直线OB的解析式为.(3)如图3,点A(3,3)在反比例函数y=的图象上,B(0,2)作射线AB,将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象的另一支于点C,求点C的坐标.25.如图1,在平面直角坐标系xOy中,直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,点E,点G分别为AB,OE中点,点A,B关于点G的对称点分别为C,D,则称四边形ABCD为直线AB的伴随四边形,直线CD为直线AB的伴随直线.(1)若伴随四边形为矩形,则k=;(2)已知伴随直线为y=﹣4x,四边形ABCD的面积为25,求直线AB的解析式;(3)如图2,连结CG,与x轴交于点H,若△BHC为等腰三角形且k>0,求k的值.参考答案一、选择题(每小题4分,共40分,下面每小题给出的四个选项中,只有一个是正确的)1.五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和为:(n﹣2)•180°(n≥3,且n为整数),求出五边形的内角和是多少度即可.解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.2.下列计算正确的为()A.+=B.×=C.=4D.﹣=【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断.解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=2,所以C选项错误;D、与﹣不能合并,所以D选项错误.故选:B.3.下列各图中,不是中心对称图形的为()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A.正五边形是轴对称图形,不是中心对称图形,故本选项符合题意;B.矩形既是轴对称图形又是中心对称图形,故本选项不合题意;C.平行四边形不是轴对称图形,是中心对称图形形,故本选项不合题意;D.圆既是轴对称图形又是中心对称图形,故本选项不合题意;故选:A.4.用反证法证明“a≥b”时应先假设()A.a≤b B.a>b C.a<b D.a≠b【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“a≥b”时,应先假设a<b.故选:C.5.在某次考试后,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力,根据这个要求,“听、说、读、写”四项技能测试比较合适的权重设计为()A.3:3:2:2B.5:2:1:2C.1:2:2:5D.2:3:3:2【分析】根据加权平均数的定义可得答案.解:根据“具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力”的要求,∴符合这一要求的权重是B选项5:2:1:2,故选:B.6.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】根据根的判别式判断即可.解:∵x2﹣3x+6=0,△=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.7.在平面直角坐标系中,菱形ABCD的顶点的坐标A、B、C分别为(﹣2,0),(0,1),(2,0),则顶点D的坐标为()A.(0,﹣1)B.(﹣2,1)C.(2,1)D.(0,﹣2)【分析】根据题意画出图形,根据菱形的性质即可得出结论.解:如图所示,∵菱形ABCD的对角线互相垂直平分,A、B、C分别为(﹣2,0),(0,1),(2,0),∴D(0,﹣1).故选:A.8.为了美化校园环境,某区第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元,设前三个季度用于绿化投资的平均增长率为x.那么x满足的方程为()A.18 (1+2x)=90B.18 (1+x)2=90C.18+18 (1+x)+18 (1+2x)=90D.18+18 (1+x)+18 (1+x)2=90【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元”,可得出方程.解:设前三个季度用于绿化投资的平均增长率为x,那么依题意得18+18 (1+x)+18 (1+x)2=90.故选:D.9.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1B.1.5C.2D.2.5【分析】根据勾股定理得到AB=5,根据平行线的性质和角平分线的定义得到∠ABD=∠ADB,求得AB=AD=5,连接BF并延长交AD于G,根据全等三角形的性质得到BF=FG,AG=BC=3,求得DG=5﹣3=2,根据三角形中位线定理即可得到结论.解:∵AC⊥BC,∴∠ACB=90°,∵BC=3,AC=4,∴AB=5,∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD=5,连接BF并延长交AD于G,∵AD∥BC,∴∠GAC=∠BCA,∵F是AC的中点,∴AF=CF,∵∠AFG=∠CFB,∴△AFG≌△CFB(AAS),∴BF=FG,AG=BC=3,∴DG=5﹣3=2,∵E是BD的中点,∴EF=DG=1.故选:A.10.定义新运算:a※b=,则函数y=4※x的图象可能为()A.B.C.D.【分析】根据题目中的新运算,可以得到函数y=4※x的图象对应的函数解析式,从而可以解答本题.解:根据新定义运算可知,y=4※x=,(1)当x≥4时,此函数解析式为y≥11,函数图象在第一象限,以(4,1)为端点且在第一象限的射线,故可排除A、B、C;(2)当x<4时,此函数是反比例函数,图象在一、三象限.故选:D.二、填空题(每小题5分,共30分)11.二次根式中字母a的取值范围是a≥2.【分析】由二次根式中的被开方数是非负数,可得出a﹣2≥0,解之即可得出结论.解:根据题意得:a﹣2≥0,解得:a≥2.故答案为:a≥2.12.已知一组数据为:3,x,6,5,4,若这组数据的众数是4,则x的值为4.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.解:这组数据中的众数是4,即出现次数最多的数据为4.故x=4.故答案为:4.13.若x=4是二次方程x2+ax﹣4b=0的解,则代数式a﹣b的值为﹣4.【分析】将x=4代入到x2+ax﹣4b=0中即可求得a﹣b的值.解:∵x=4是一元二次方程x2+ax﹣4b=0的一个根,∴42+4a﹣4b=0,∴a﹣b=﹣4.故答案为:﹣4.14.在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于点A(a,﹣6),则k=12.【分析】先根据y=3x求得A的坐标,再把点A的坐标代入反比例函数的解析式即可求出k的值.解:∵点A(a,﹣6)在正比例函数y=3x的图象上,∴﹣6=3a,解得a=﹣2,∴A(﹣2,﹣6)∵点A(﹣2,﹣6)在反比例函数y=的图象上,∴k=﹣2×(﹣6)=12,故答案为12.15.如图,菱形ABCD中,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的边长为10,一条对角线为12时,则阴影部分的面积为48.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解:连接AC、BD,如图所示:∵四边形ABCD是菱形,∴AB=10,OB=OD=BD=6,OA=OC,AC⊥BD,∴OA===8,∴AC=2OA=16,∴菱形ABCD的面积=AC×BD=×16×12=96,∵O是菱形两条对角线的交点,∴阴影部分的面积=×96=48;故答案为:48.16.如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N,∠ACB=45°,AN=1,AF=3,则EF=2.【分析】连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.由Rt△EHA≌Rt △EGC(HL),推出AH=CG,由Rt△EHF≌Rt△EGF(HL),推出FH=FG,由△AON≌△COF(ASA),推出AN=CF,推出AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,由EF=FH,即可解决问题.解:连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.∵∠AEC=∠AFC=90°,∴∠AEC+∠AFC=180°,∴A,E,C,F四点共圆,∴∠AFE=∠ACE=45°,∴∠EFA=∠EFG=45°,∵EH⊥FA,EG⊥FG,∴EH=EG,∵∠ACE=∠EAC=45°,∴AE=EC,∴Rt△EHA≌Rt△EGC(HL),∴AH=CG,∵EF=EF,EH=EG,∴Rt△EHF≌Rt△EGF(HL),∴FH=FG,∵AB∥CD,∴∠OAN=∠OCF,∵∠AON=∠COF,OA=OC,∴△AON≌△COF(ASA),∴AN=CF,∴AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,∵EF=FH,∴AN+AF=EF.∵AN=1,AF=3,∴EF=2,故答案为:2.三、解答题(第17-19题6分,第20.21题各8分,第22.21题10分,第24题12分,第25题14分,共80分)17.计算:(1)(+)×;(2)()2﹣+.【分析】(1)根据乘法分配律可以解答本题;(2)根据二次根式的加减法可以解答本题.解:(1)(+)×=1+=1+3;(2)()2﹣+=3﹣2+2=3.18.解方程:(1)(x﹣4)2﹣3=0;(2)4(x﹣3)=2x(x﹣3).【分析】(1)根据解一元二次方程的方法﹣直接开平方法解答即可;(2)根据解一元二次方程的方法﹣因式分解法解答即可.解:(1)(x﹣4)2﹣3=0,(x﹣4)2=3,∴x1=+4,x2=﹣+4;(2)4(x﹣3)=2x(x﹣3),(4﹣2x)(x﹣3)=0,∴x1=2,x2=3.19.某射击队伍正在进行射击训练,现有两位选手的5次射击成绩如下所示:甲:7环,8环,9环,8环,10环乙:6环,9环,10环,8环,10环(1)分别求甲、乙两位选手的射击成绩的中位数和众数;(2)经过计算甲的方差为1.04环2,乙的方差为2.24环2.所以甲选手更加稳定.【分析】(1)根据中位数、众数的计算方法进行计算即可;(2)通过比较方差,得出成绩的稳定,较好的选手即可.解:(1)甲:7,8,8,9,10,乙:6,8,9,10,10,因此甲成绩从小到大排列处在中间位置的数是8,因此中位数是8,乙成绩从小到大排列处在中间位置的数是9,因此中位数是9,甲成绩出现次数最多的是8,因此众数是8,乙成绩出现次数最多的是10,因此众数是10,(2)∵1.04<2.24.即甲的方差小于乙的方差,∴甲的成绩比较稳定,较好,故答案为:甲.20.如图,已知点A(2,m)是反比例函数y=的图象上一点,过点A作x轴的垂线,垂足为B,连结OA,△ABO的面积为6.(1)求k和m的值;(2)直线y=2x+a(a≤0)与直线AB交于点C与反比例函数图象交于点E,F;①若a=0,已知E(p,q),则F的坐标为(﹣p,﹣q)(用含p,q的坐标表示);②若a=﹣2.求AC的长.【分析】(1)根据反比例系数k的几何意义求得k,得到反比例函数的解析式,代入A (2,m),即可求得m的值.(2)①根据中心对称即可求得C点的坐标;②求得C的坐标,即可求得AC的长.解:(1)∵点A(2,m)是反比例函数y=的图象上一点,过点A作AB⊥x轴于点B,∴S△AOB=|k|=6,∴|k|=2×6=12,∵图象在第一象限,∴k=12,∴反比例函数y=(x>0),∴2m=12,解得m=6;(2)①若a=0,则y=2x是正比例函数,∵直线y=2x+a(a≤0)与反比例函数图象交于点E,F,且E(p,q),∴F(﹣p,﹣q),故答案为(﹣p,﹣q);②若a=﹣2,则函数为y=2x﹣2,把x=2代入得,y=2,∴C(2,2),∵A(2,6),∴AC=6﹣2=4.21.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.22.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额﹣进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是250件,当天销售利润是3250元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元).故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x2﹣98x+2385=0,整理,得:x1=53,x2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.23.小王为探究函数y=(x>3)的图象经历了如下过程.(1)列表,根据表中x的取值,求出对应的y值,将空白处填写完整;x… 3.54 4.55 5.56…y…6321…(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)结合由y=(x>0)图象到y=图象的变化,猜想由y=的图象经过向x轴的负方向平移3个单位的平移变化可以得到y=(x≠﹣3)图象.y=(x≠﹣3)的对称轴是直线y=x﹣3与直线y=﹣x+3.【分析】(1)当x=3.5时,y==6,同理当x=5.5时,y=;(2)描点描绘出以下图象,(3)结合由y=(x>0)图象到y=图象的变化和函数的图象即可得到结论.解:(1)当x=3.5时,y==6,同理当x=5.5时,y=,故答案为6,;(2)描点描绘出以下图象,(3)猜想由y=的图象经过向x轴的负方向的平移3个单位可以得到y=(x ≠﹣3)图象.y=(x≠﹣3)的对称轴是直线y=x+3与直线y=﹣x﹣3.故答案为平移3个单位,直线y=x+3与直线y=﹣x﹣3.24.(1)如图1,四边形ACDE中,△ABC与△BDE均为直角三角形,且AB⊥BE,∠BEA=45°,求证:△ABC≌△BED.(2)如图2,点A(1,2),连结OA,将射线OA绕点O按逆时针方方向旋转45°.得到射线OB,AC⊥OA交OB于点C,分别过点A,点C作x轴,AD的垂线,垂足分别为D,E,由(1)得△AEC≌△ODA(填写两个三角形全等),所以CE=2(或AD),AE=1(或OD),C的坐标为(﹣1,3),则直线OB的解析式为y=﹣3x.(3)如图3,点A(3,3)在反比例函数y=的图象上,B(0,2)作射线AB,将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象的另一支于点C,求点C的坐标.【分析】(1)在△ABC和△BED中,∠BED=∠ABC,∠EDB=∠ACB,BE=AB,即可求解;(2)由(1)同理可得:△AEC≌△ODA(AAS),则CE=AD=2,AE=OD=1,C 的坐标为(﹣1,3),即可求解;(3)利用△AEF≌△FDB求出a=1,则F(2,1),再求出直线AF的解析式,进而求解.解:(1)∵AB⊥BE,∠AEB=45°,∴AB=BE,∵∠BED+∠EBD=90°,∠ABC+∠EBD=90°,∴∠BED=∠ABC,在△ABC和△BED中,∠BED=∠ABC,∠EDB=∠ACB,BE=AB,∴△ABC≌△BDE(AAS);(2)由(1)同理可得:△AEC≌△ODA(AAS),∴CE=AD=2,AE=OD=1,C的坐标为(﹣1,3),则直线OB的解析式为t=﹣3x;故答案为:△AEC≌△ODA;2(或AD);1(或OD);(﹣1,3);y=﹣3x;(3)如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,根据(1)同理可得△AEF≌△FDB,设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,则OD=2﹣1=1,DF=3﹣a=3﹣1=2,∴F(2,1),设直线AF的解析式为y=kx+b,则,解得,∴y=2x﹣3①,把点A点坐标代入y=并解得:k=9,故反比例函数的表达式为:y=②,联立①②并解得:(舍去)或,∴C(﹣,﹣6),故点C的坐标为:(﹣,﹣6).25.如图1,在平面直角坐标系xOy中,直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,点E,点G分别为AB,OE中点,点A,B关于点G的对称点分别为C,D,则称四边形ABCD为直线AB的伴随四边形,直线CD为直线AB的伴随直线.(1)若伴随四边形为矩形,则k=±1;(2)已知伴随直线为y=﹣4x,四边形ABCD的面积为25,求直线AB的解析式;(3)如图2,连结CG,与x轴交于点H,若△BHC为等腰三角形且k>0,求k的值.【分析】(1)连接GB,GC,GA,GD,先求出OA=|b|,OB=|﹣|,由矩形的性质可得∠DAB=90°,由三角形中位线定理可证∠GEB=∠DAB=90°,由线段垂直平分线的性质可得OA=OB,即可求解;(2)由中心对称的性质可证四边形ABCD是平行四边形,可得AB∥CD,S△ABO=S平,可得k=﹣4,×|b|•|﹣|=×25,即可求解;行四边形ABCD(3)分三种情况讨论,由等腰三角形的性质和两点距离公式可求解.解:(1)如图1,连接GB,GC,GA,GD,∵直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,∴点A(0,b),点B(﹣,0),∴OA=|b|,OB=|﹣|,∵点A,B关于点G的对称点分别为C,D,∴BG=DG,CG=AG,∵四边形ABCD是矩形,∴∠DAB=90°,∵BG=DG,AE=BE,∴GE∥AD,∴∠GEB=∠DAB=90°,∵AE=BE,OE⊥AB,∴OA=OB,∴|b|=|﹣|,∴k=±1,故答案为:±1;(2)如图,连接BG,DG,CG,AG,∵直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,∴点A(0,b),点B(﹣,0),∴OA=|b|,OB=|﹣|,∵点A,B关于点G的对称点分别为C,D,∴BG=DG,CG=AG,∴四边形ABCD是平行四边形,∴AB∥CD,S△ABO=S平行四边形ABCD,∴k=﹣4,×|b|•|﹣|=×25,∴b=±10,∴直线AB的解析式为y=﹣4x+10或y=﹣4x﹣10;(3)∵点E,点G分别为AB,OE中点,点A(0,b),点B(﹣,0),点O(0,0),∴点E(﹣,),点G(﹣,),当HC=HB时,∵HC=HB,∴∠HBC=∠HCB,又BC∥OE,∴∠HOG=∠HGO,∴OH=HG,∴OB=GC=AG,∴(﹣)2+()2=(﹣)2,∴k=当BH=BC时,∵BH=BC,∴∠BCH=∠BHC,∵OG∥BC,∴∠BCH=∠HGO,∴∠BHC=∠HGO,∴OH=OG,∴OB=BH+OH=BC+OG=3OG,∴9[(﹣)2+()2]=(﹣)2,∴k=,当CH=CB时,∵CH=CB,∴∠CHB=∠CBH,∵∠AOB=90°,AE=BE,∴OE=AE=BE,∴OE∥BC,BE∥OC,∴四边形OCEB是平行四边形,∴OC=BE=BC=OE,∴∠CBH=∠COH,∴∠COH=∠CHB,与图形不符合,故CH=CB不成立,综上所述:k=或k=.。
XXX 2014-2015学年八年级下学期期末数学试卷(含答案)
XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列根式中,是最简二次根式的是()A。
$\frac{1}{2}$ $\sqrt{2}$ B。
3 $\sqrt{2}$ C。
8 D。
12 $\sqrt{2}$2.下列计算正确的是()A。
3+2=5 B。
3×2=6 C。
12-3=9 D。
8÷2=43.下列各点在函数y=2x的图象上的是()A。
(2,-1) B。
(-1,2) C。
(1,2) D。
(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。
1,1,2 B。
2,3,4 C。
2,3,5 D。
3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。
甲比乙的成绩稳定 B。
乙比甲的成绩稳定 C。
甲、乙两人的成绩一样稳定 D。
无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。
$\sqrt{33}$ B。
6 C。
4 D。
$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。
y1>y2 B。
y1=y2 C。
y1<y2 D。
无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。
4cm B。
5cm C。
6cm D。
8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。
4cm B。
5cm C。
6cm D。
8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。
2024-2025学年浙江省宁波市慈溪市慈吉实验学校八年级(上)月考数学试卷(10月份)(含答案)
2024-2025学年浙江省宁波市慈溪市慈吉实验学校八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形是轴对称图形的为( )A. B. C. D.2.下列长度的三条线段能组成三角形的是( )A. 1,2,1B. 2,3,6C. 6,8,11D. 1.5,2.5,43.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是( )A. SASB. ASAC. AASD. SSS4.若a>b,则( )A. a−1≥bB. b+1≥aC. 2a+1>2b+1D. a−1>b+15.等腰三角形两条边长分别是6和8,则其周长为( )A. 20B. 22C. 20或22D. 246.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,10,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有( )A. 1个B. 2个C. 3个D. 4个7.如图,已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形8.将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A. 85°B. 75°C. 65°D. 60°9.如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,直角∠EDF在△ABC内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是( )①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤2CD.A. ①②B. ①③C. ②③D. ①②③10.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图以直角三角形的各边为边分别向同侧作正方形,若知道图中阴影部分的面积之和,则一定能求出( )A. 正方形ABED的面积B. 正方形ACFG的面积C. 正方形BCMN的面积D. △ABC的面积二、填空题:本题共6小题,每小题4分,共24分。
浙江省宁波市慈溪市文锦书院2023-2024学年八年级下学期期中数学试题
浙江省宁波市慈溪市文锦书院2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 2.下列式子中是最简二次根式的是( )A B C D 3.用反证法证明命题“四边形中至少有一个角是钝角或直角”,应首先假设这个四边形中( ) A .没有一个角是锐角B .每一个角都是钝角或直角C .至少有一个角是钝角或直角D .所有角都是锐角4.一元二次方程210x x +-=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5.若一组数据1,2,3,x ,5,6的众数为5,则这组数据的中位数为( )A .3B .3.5C .4D .56.下列命题是真命题的是( )A .一组对边平行另一组对边相等的四边形是平行四边形B .一组邻边相等的平行四边形是菱形C .对角线相等的四边形是矩形D .对角线垂直的四边形是菱形7.如图,ABCD Y 对角线AC ,BD 相交于点O ,2AE BE ==,3EO =,则ABCD Y 的周长为( )A .5B .10C .15D .208.已知01x <<,且17xx +=的值为( )A .B .CD 9.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x ,则根据题意,下列方程正确的是( )A .()21619x -=B .()21619-=xC .()29116-=xD .()29116+=x10.如图,在矩形ABCD 中,O 为AC 的中点,过点O 作AC 的垂线,分别交DC 于点F ,交AB 于点E ,G 是AE 的中点,且30AOG ∠=︒,有下列结论:①3DC OG =;②12OG BC =;③连结AF ,CE ,四边形AECF 为菱形;④16AOE ABCD S S =矩形△其中正确的是( )A .②③B .③④C .①②④D .①③④二、填空题11x 的取值范围是.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.已知一组数据1x ,2x ,3x ,…,n x .的方差是1.5,则另一组数据12x ,22x ,32x ,…,2n x 的方差是.14.已知1x ,2x 是方程2310x x -+=的两实根,则1212x x x x ++=.15.在ABC V 中,已知两边3a =,4b =,第三边为c .若关于x 的方程()21404x c x +-+=有两个相等的实数根,则该三角形的面积是.16.如图,在ABCD Y 中,AC 是对角线,=90ACD ∠︒,E 是BC 的中点,AF 平分BAC ∠,连接CF ,EF .若CF AF ⊥,5AB =,13BC =,则EF 的长为.三、解答题17.计算与解方程:(1)(332;(2)230--=x .18.如图分别是4×5的网格,点A ,B 均在格点上,请按要求画出下列图形,所画的图形的各个顶点均在格点上.(1)请在图中画一个四边形ABCD ,使得四边形ABCD 为轴对称图形;(2)请在图中画一个四边形ABEF ,使得四边形ABEF 为中心对称图形且不是轴对称图形. 19.某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调整,井绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m 的值为______;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校一周的课外阅读时间大于6h 的学生人数.20.如图,在ABCD Y 中,点E ,F 分别在BC ,AD 上,且BE=FD ,求证:四边形AECF 是平行四边形.21.数学老师在课堂上提出一个问题:“ 1.414L ,它是无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,王英举手回1来表示它的小数部分,张老师夸奖王英真聪明,肯定了她的说法.现请你根据王英的说法解答下列问题:(1)(2)若a b a b +(3)已知6x y =+,其中x 是一个正整数,01y <<,求2(3)x y +的值.22.在“五一”期间,某水果超市调查两种新疆干枣A B 、的销售情况,下面是调查员的对话:小王:干枣A 的进价是每千克8元,售价16元,干枣B 的进价是每千克14元,售价20元. 小张:当干枣B 销售价每千克20元时,每天可售出30千克,若每千克降低1元,平均每天可多售出10千克.根据他们的对话,解决下面所给的问题:(1)该水果店第一次用2500元直接购进这两种干枣共200千克,问这两种干枣各购进多少千克?若全部售出,共获得多少利润?(2)为了给顾客优惠,将销售价定为每千克多少元时,才能使干枣B平均每天的销售利润为200元?23.问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP 的表达式;若不存在,请说明理由.∠,E、F分别24.在矩形ABCD中,4cm8cm==,O为AC中点,AC平分EAF,AB BC、、,且EF经过点O.在边AD、BC上,连结AF CE EF(1)如图1,求证四边形AFCE 为菱形,并求AF 长;(2)如图2,动点P 、O 分别从A 、C 两点同时出发,沿AFB △和CDE V 各边匀速运动一周.即点P 自A F B A →→→停止,点Q 自C D E C →→→停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,请画出符合题意的图形,并求a 与b 满足的数量关系式.。
浙江省宁波市慈溪市2023-2024学年八年级上学期期末语文试卷(含解析)
2023-2024学年浙江省宁波市慈溪市八年级(上)期末语文试卷一、序言(8分)1.(8分)阅读“序言”,完成问题。
同学们,本学期的语文学习悄然结束。
这个学期,我们阅读了鲜活客观的新闻、真实生动的传记、(zhāng)显情谊的散文、各具特色的科普作品、古(pǔ)典雅的古代诗词……这些作品( )承载着文人的智慧,( )能陶冶我们的情操。
子曰:“温故而知新,可以为师矣。
”请你劳驾梳理知识,走进多彩的语文学习天地。
(1)根据拼音写出相应的汉字。
(2分)①(zhāng) 显②古(pǔ) (2)给文中加点字“悄”选择正确的读音是 (2分)A.qiāoB.qiǎo(3)为了让语言连贯,请在文中括号处选择一组正确的关联词是 (2分)A.不仅……而且……B.不是……就是……C.一边……一边……(4)序言中的画线句表达不够得体,请修改一下。
(2分)二、古诗词阅读路径梳理(14分)2.(8分)古诗词填空。
阅读古诗词,我们可以通过意象把握情感。
如“(1) ,芳草萋萋鹦鹉洲”(崔颢《黄鹤楼》)中的“芳草”寄托了多少文人的别情离绪;“岂不罹凝寒?(2) ”(刘桢《赠从弟(其二)》)中的“松柏”寄托了诗人高洁的情怀;“(3) ,(4) ”(陶渊明《饮酒(其五)》)中的“菊”隐含归隐的闲适之情。
阅读古诗词,我们可以通过直抒胸臆的词语把握情感。
如“(5) ,绿杨阴里白沙堤”(《钱塘湖春行》)中的“爱”流露出白居易对早春西湖的喜爱。
阅读古诗词,我们可以通过典故把握情感。
如“九万里风鹏正举。
(6) ,(7) (李清照《渔家傲》)中用《逍遥游》中“大鹏”的典故来表达词人的腾飞之志;“(8) ,长歌怀采薇”(《野望》)中用“采薇”的典故暗指诗人与世间隔绝、隐居不仕的状态。
3.(6分)阅读下面的古诗,补全对话。
雁门太守行李贺黑云压城城欲摧,甲光向日金鳞开。
角声满天秋色里,塞上燕脂凝夜紫。
半卷红旗临易水,霜重鼓寒声不起。
报君黄金台上意,提携玉龙为君死。
2023-2024学年安徽省六安市金安区轻工中学八年级(下)期末数学试卷+答案解析
2023-2024学年安徽省六安市金安区轻工中学八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列是勾股数是()A.3,1,2B.2,3,4C.5,4,3D.5,7,62.若,则m的值是()A. B. C. D.3.用配方法将方程化成的形式,则的值是()A.4B.C.D.4.若算式的值是有理数,则k的值可以是()A. B. C. D.5.如图,在▱ABCD中,AC与BD交于点O,已知,,则的周长为()A.11B.12C.13D.156.若关于x的一元二次方程没有实数根,则a的值可以是()A. B.0 C.1 D.37.如图,正六边形ABCDEF和正方形ABGH有公共边AB,连接CG交EF于点M,则的度数为()A.B.C.D.8.某节体育课中,有14名学生立定跳远成绩如下表,则这些学生立定跳远成绩的中位数、众数分别为()成绩人数132341A.、B.、C.、D.、9.如图,在一块矩形的劳动实践基地上有三条同宽的道路,横向有一条,纵向有两条,除道路外,剩下的是种植面积.已知该矩形基地的长为34米,宽为18米,种植面积为480平方米,则劳动基地中的道路宽为()A.1米B.米C.2米D.米10.如图,在矩形ABCD中,,,点E是BC上一点,以AE为对称轴将折叠,点B恰好落在CD上,落点为连接BF交AE于点H,取DF的中点G,连接GH,则()A.5B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
11.若是最简二次根式,且m为整数,则m的最小值是______.12.已知a,b是一元二次方程的两个根,则______.13.“接天莲叶无穷碧,映日荷花别样红”,包公园的荷花绽放了.在平静的水平面上,如图,一朵荷花才露尖尖角,已知露出水面的部分AB为6cm,突然一阵清风扶过,它随风倾斜从CA倾斜至CD,BD为水平面,荷花尖恰好浸入水面,已知该朵荷花偏离原地12cm,即,则水深BC的长为______14.如图,AC是菱形ABCD的对角线,点E和点F分别是AC和CD上的点,若,则的度数为______;若,,则的最小值为______.三、解答题:本题共9小题,共90分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年浙江省宁波市慈溪市八年级(下)期末数学试卷
一、选择题(每小题3分,共36分)
1.若=a ,则( )
B
y=
B
A . ∠1+∠2=180°
B . ∠2+∠3=180°
C . ∠3+∠4=180°
D . ∠
2+∠4=180°
=
B
=0
①甲乙两组学生成绩平均水平相同;
②乙组成绩较稳定;
③乙组中成绩不低于38分的人数不少于甲组;
④甲组得37分的人数与乙组得38分的人数相同.
7 ﹣
13.在△ABC 中,D 、E 分别是AB 、AC 的中点,DE=4,则BC= .
14.如图,已知▱ABCD 的周长是20cm ,且AB :BC=3:2,则AB=
cm .
15.方程2x 2﹣4x+m=0有一个根为﹣1,则它的另一个根为 .
16.数据2,3,2,1,2的方差是 .
17.将矩形ABCD 折叠,使得对角线的两个端点A 、C 重合,折痕所在直线交直线AB 于点E ,如果AB=4,BE=1,则BC 的长为 .
18.如图,直线y=x ﹣2与反比例函数y=(x >0)的图象交于点C ,与x 轴交于点A ,过A 作AB ⊥x 轴,交反比例函数图象与点B .若AC=BC ,则△OBC 的面积为 .
三、解答题(本大题共有8小题,共66分)
19.(5分)计算:.
20.(7分)解方程:
(1)x (x ﹣3)=x ﹣
3; (2)2x 2﹣3x=4.
21.(8分)如图,一次函数y 1=x+1的图象与反比例函数
(k 为常数,且k≠0)的图
象都经过点A (m ,2)
(1)求点A 的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x >0时,y 1和y 2的大小. 第14题图
第18题图
22.(8分)实践与探索:已知一个正方形.
(1)折叠并裁剪:八大正方形的对折2次,得到一个小正方形,再把这个小正方形剪掉一个直角梯形,然后展开,图1是小红同学画出的一种展开图,请你在图2中的两个正方形虚线框中个画出一种与图1不同的可能的展开图(形状一样,位置不一样算同一种).
(2)剪拼:各设计一种方案:在图3中把一个正方形剪一刀,使剪得的两块图形能够拼成一个三角形;在图4中把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且拼成的三角形既不是直角三角形也不是等腰三角形,画出裁剪线及拼成的三角形,并附以简要说明.
23.(8分)在对全市初中生的体质健康测试中,青少年体质研究中心随机抽取的10名女生的立定跳远的成绩(单位:厘米)如下:123,191,216,191,159,206,191,210,186,227.
(1)通过计算,样本数据(10名女生的成绩)的平均数是190厘米,中位数是厘米,众数是厘米;
(2)本市一初中女生的成绩是194厘米,你认为她的成绩如何?说明理由;
(3)研究中心分别确定了一个标准成绩,等于或大于这个成绩的女学生该项素质分别被评定为“合格”、“优秀”等级,其中合格的标准为大多数女生能达到,“优秀”的标准为全市有一半左右的学生能够达到,你认为标准成绩分别定为多少?说明理由;按拟定的合格标准,估计该市4650人中有多少人在合格以上?
24.(8分)如图,某农场建一个矩形的养鸡场,鸡场的一边靠墙(墙长15m),另三边用40m长的木栏围成.
(1)按原设计,鸡场面积须128m2,问该鸡场的长、宽各位多少米?
(2)为了在现有条件下扩大养殖规模,改变鸡场的长和宽,能使鸡场的面积达到210m2吗?若能,请求出此时鸡场的长和宽;若不能,请说明理由.
25.(10分)如图,在△ABC中,∠ABC=90°,D为AC的中点,过点C作CE⊥BD于点E,作∠GAB=∠CAB,CE的延长线与AG交于点F,点G在AF的延长线上,且FG=BD,连结BG、DF
(1)求证:
①BD∥AG;
②四边形BGFD为菱形;
(2)已知AG=15,CF=3,求菱形BGFD的边长.
26.(12分)如图,直线y=﹣x+1与x,y轴分别交于A、B两点,P(a,b)为双曲线y=
(x>0)上的一动点,PM⊥x轴与M,交线段AB于F,PN⊥y轴于N,交线段AB于E (1)求E、F两点的坐标(用a,b的式子表示);
(2)当a=时,求△EOF的面积.
(3)当P运动且线段PM、PN均与线段AB有交点时,探究:
①BE、EF、FA这三条线段是否能组成一个直角三角形?说明理由;
②∠EOF的大小是否会改变?若不变,求出∠EOF的度数,若会改变,请说明理由.。