初一上学期期中试卷
湖南省长沙市雅礼教育集团2023-2024学年上学期七年级期中考试数学试卷
23年秋初一雅礼教育集团期中考试数学试卷 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .20232.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒ 3C3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9310⨯C .10 310⨯D .114.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为()A .3.9B .3.90C .3.91D .3.905 5.(3分)下列计算正确的是() −=−36A .2B .a a 22321−=−−=C .110D .−=−a b a b 2(2)42−x 2+66.(3分)在代数式,1x x −+34,2,π, x57x ,3中,整式的个数有() A .2个B .3个C .4个D .5个 7.(3分)如图所示,直角三角尺的面积是()A .ab 21ab r −πB .2C .21ab r −π2D .21ab r −2 m n −+−=8.(3分)若|2|(3)02 −2024,则m n ()的值是()−A .1B .1C .2023 −D .20239.(3分)下列说法中正确的个数有 ( )±1①0是绝对值最小的有理数;②倒数等于本身的数有0和;a 的次数是1;④正整数、0③单项式和负整数统称为整数.A .1个B .2个C .3个D .4个10.(3分)多项式m x mx −+−|1|m (3)3− 是关于x 的二次三项式,则m 取值为()A .3−B .1−C .3或1−D .3或1二、填空题 (每小题3分,共18分)11.(3分)81的倒数等于.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为. −13.(3分)比较两个数的大小:0 5.14.(3分)单项式−x y 722的系数是.m n −2x y m 46x y 52n 15.(3分)单项式与是同类项,则+=.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122 化简后不含x 2 项,则m 的值是.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1) −÷+−⨯−2(24)4(4)()3(2;)−−+⨯−313518()22. 18.(6分)化简:(1)++−−−a a a a 62352222;x x x (2)−−−3[52(4)].+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值. 我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值; (2)如果3x y +=,求代数式6()332017x y x y +−−+的值.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)若该班级按方案A购票,4名老师全价购票的总费用为元,m名学生半价购票的总费用为元;若该班级按方案B购票,4名老师按6折优惠购票总费用为元,m 名学生按6折优惠购票总费用为元(请分别用数字或含m的代数式表示).(2)当学生人数40m=,且只能从A、B两种方案中选择一种购票时,请通过计算按A、=B两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4+名学生购票所需总费用)名教师购票所需总费用m23.(9分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,c a−0,a b−0.(2)化简:||||||−+−−−.c b a b c a24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” );(2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.23年秋初一雅礼教育集团期中考试数学试卷参考答案与试题解析 一、单项选择题 (每小题3分,共30分)−1.(3分)2023的相反数是()A . −20231−B .2023C .20231D .2023 【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.−【解答】解:2023的相反数为2023.故选:D .【点评】本题主要考查相反数,关键是掌握相反数的定义.2.(3分)我国幅员辽阔,南北冬季温差较大,12月份的某天同一时刻,我国最南端南沙群岛的曾母暗沙的气温是︒28C ,而北端漠河县的气温是︒ −25C ,则该时刻曾母暗沙的气温比漠河县的气温高()A .︒B 53C .︒−53CC .︒D 43C .︒3C 【分析】认真读懂题意,列算式,进行有理数的减法运算.【解答】解:−−=53(C)︒=+28(25)2825,故选:A .【点评】本题考查了有理数减法运算的应用,做题的关键是读懂题意理解正负数的意义,列出正确的减法算式.3.(3分)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()310⨯A .8310⨯B .9 310⨯C .10 310⨯D .11【分析】运用科学记数法进行变形、求解.=⨯=⨯300010310811【解答】解:3000亿, 故选:D . 【点评】此题考查了科学记数法的应用能力,关键是能准确理解并运用以上知识.4.(3分)用四舍五入法,把3.90456精确到百分位,取得近似值为(A .3.9B .3.90)D .C .3.91 3.905【分析】对千分位数字4进行四舍五入即可得.【解答】解:把3.90456精确到百分位,取得的近似值为3.90. 故选:B .【点评】本题考查近似数和有效数字,掌握四舍五入法解答是关键. 5.(3分)下列计算正确的是( ) A .236−=− B .22321a a −=C .110−−=D .2(2)42a b a b −=−【分析】根据合并同类项法则:把系数合并,字母部分不变;有理数的减法法则:减去一个数等于加上它的相反数;负整数指数幂:1((0p pa a a −=≠,p 为正整数)分别进行计算即可. 【解答】解:A 、239−=−,故原题计算错误;B 、22232a a a −=,故原题计算错误;C 、112−−=−,故原题计算错误;D 、2(2)42a b a b −=−,故原题计算正确; 故选:D .【点评】此题主要考查了合并同类项、有理数的减法、负整数指数幂,关键是掌握各计算法则.6.(3分)在代数式26x +,1−,234x x −+,π,5x,37x 中,整式的个数有( ) A .2个B .3个C .4个D .5个【分析】利用整式定义可得答案.【解答】解:在代数式26x +,1−,234x x −+,π,5x,37x 中,其中26x +,1−,234x x −+,π,37x 是整式,共有5个,故选:D .【点评】此题主要考查了整式,关键是掌握单项式和多项式合称为整式. 7.(3分)如图所示,直角三角尺的面积是( )A .12abB .2ab r π−C .212ab r π−D .212ab r −【分析】用三角形面积减去圆的面积即可.【解答】解:由三角形面积公式和圆的面积公式可得,直角三角尺的面积是212ab r π−,故选:C .【点评】本题考查列代数式,解题的关键是掌握三角形面积公式和圆的面积公式. 8.(3分)若2|2|(3)0m n −+−=,则2024()m n −的值是( ) A .1−B .1C .2023D .2023−【分析】根据非负数的性质,可求出m 、n 的值,然后代入代数式求解即可. 【解答】解:2|2|(3)0m n −+−=,20m ∴−=,30n −=, 解得2m =,3n =,20242024()(1)1m n ∴−=−=. 故选:B .【点评】本题考查了非负数的性质:偶次方,绝对值都是非负数,几个非负数的和为0时,这几个非负数都为0.9.(3分)下列说法中正确的个数有( )①0是绝对值最小的有理数;②倒数等于本身的数有0和1±; ③单项式a 的次数是1;④正整数、0和负整数统称为整数. A .1个B .2个C .3个D .4个【分析】根据绝对值,倒数,单项式的定义,有理数的分类逐项进行判断即可. 【解答】解:①0是绝对值最小的有理数,故符合题意; ②倒数等于本身的数有1±,故不符合题意; ③单项式a 的次数是1,故符合题意;④正整数、0和负整数统称为整数,故符合题意. 故选:C .【点评】本题考查单项式,绝对值,倒数,有理数的分类,掌握这些定义是正确判断的前提. 10.(3分)多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,则m 取值为( ) A .3B .1−C .3或1−D .3−或1【分析】多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,由此即可计算.【解答】解:多项式|1|(3)3m m x mx −−+−是关于x 的二次三项式,∴−=m |1|2∴=m ,3m =−,或1m −≠,30,∴=−m1,B 故选:.【点评】本题考查多项式的有关概念,绝对值的概念,关键是掌握多项式的次数,项的概念,并注意多项式的二次项不等于0.二、填空题 (每小题3分,共18分)11.(3分)818的倒数等于.. 【分析】根据倒数的定义即可得到结论.【解答】解:81的倒数等于8,故答案为:8.【点评】此题考查倒数的定义.此题比较简单,解题的关键是掌握倒数的定义.12.(3分)点A 、B −在数轴上对应的数分别为2 和10,则A 、B 两点间的距离为12. 【分析】求数轴上两点间的距离,用较大数减去较小数即可.【解答】解:−−= 10(2)12 , 故答案为:12.【点评】本题考查了求数轴上两点间的距离的方法,知道用较大数减较小数是即可.13.(3分)比较两个数的大小:0 >−5. 【分析】根据负数都小于0解答即可.−【解答】解:5 ∴>−是负数,05. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0是解题的关键.14.(3分)单项式 −72x y 2的系数是−72. 【分析】根据单项式系数的定义解答.【解答】解:单项式−x y 722的系数是−2.7故答案为:− 72.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解题的关键. 6x y 5215.(3分)单项式n−2x y m 与4m n 是同类项,则+=7.m =5【分析】根据同类项的定义求出,m n +n =2,再代入求出答案即可.【解答】解:6x y 52单项式n−2x y m 与4是同类项,∴=m 5n ,=24∴=n ,2m n +=+=,解得:527,故答案为:7.【点评】本题考查的是同类项的含义,熟记同类项的定义是解本题的关键.16.(3分)已知关于x 的多项式−+−−+x x mx x 4352122化简后不含x 2 项,则 m 的值是2.【分析】先合并同类项,再根据题意列出方程,解方程得到答案.【解答】解:−+−−+x x mx x 4352122=−−+m x x (42)462,由题意得:−=m 420m =,解得:2,故答案为:2.【点评】本题考查的是合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每题10分,共72分)17.(6分)(1)−÷+−⨯−2(24)4(4)()3;(2)−−+⨯−313518()22.【分析】(1)先算乘除法,再算加法即可;(2)先算乘方,再算乘法,最后算加减法即可.【解答】解:(1)−÷+−⨯−2(24)4(4)()3 ==−+(6)60;(2)−−+⨯−313518()22=−−+⨯995181=−=−−+95212.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.18.(6分)化简:(1)x x x ++−−−;(2a a a a 62352222)−−−3[52(4)].【分析】(1)原式合并同类项即可;(2)原式去括号合并即可得到结果.【解答】解:(1)++−−−a a a a 62352222=−+−+−=+a 21a a a a 65223222;x x x (2)−−−3[52(4)]=−−+x x x 3(528)=−+−x x x 3528=−8.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.+−−−2219.(6分)先化简,再求值:xy xy y xy y 2(32)2(),其中x =−1,y =2.【分析】利用整式的运算,化简代数式,代入数据求值.【解答】解:1x =−,2y =,222(32)2()xy xy y xy y ∴+−−−2223222xy xy y xy y =+−−+3xy =3(1)2=⨯−⨯6=−.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.20.(8分)近些年来我们的生活水平不断提高,曾经的奢侈品小轿车也越来越多地进入更多的家庭.小明家中买了一辆小轿车,他连续7天记录了小轿车每天行驶的路程(如表),以50km 为标准,多于50km 的部分记为“+”,不足50km 的部分记为“−”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米;(2)求出这7天中平均每天行驶多少千米?【分析】(1)根据正负数的意义求出第三天的路程即可;(2)根据平均数的定义计算即可.【解答】解:(1)第三天行驶了(5014)36−=(千米),答:第三天行驶了36千米;(2)平均每天行驶的路程为811148411650507−−−++−+=(千米), 答:这7天中平均每天行驶50千米.【点评】本题考查正负数的意义,解题的关键是理解用正负数表示两种具有相反意义的量.21.(8分)理解与思考:“整体思想”是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛.例如:如果2231x x +=,求代数式2232022x x ++的值.我们可以将223x x +作为一个整体代入:22232022(23)2022120222023x x x x ++=++=+=. 请仿照上面的解题方法,完成下面的问题:(1)如果2231x x +=−,求代数式2232025x x ++的值;(2)如果3x y +=,求代数式6()332017x y x y +−−+的值.【分析】将各式变形后代入已知数值计算即可.【解答】解:(1)2231x x +=−,∴原式12025=−+2024=;(2)3x y +=,∴原式6()3()2017x y x y =+−++3()2017x y =++332017=⨯+92017=+2026=.【点评】本题考查整式的化简求值,将原式进行正确的变形是解题的关键.22.(9分)本学期的十月份,正是秋高气爽的时节,某学校七年级甲班的4名老师决定带领本班m 名学生去长沙县某茶叶庄园参加秋季劳动实践活动.已知该活动基地每张门票的票价为30元,现有A 、B 两种购票方案可供选择:方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠.(1)若该班级按方案A 购票,4名老师全价购票的总费用为 120 元,m 名学生半价购票的总费用为 元;若该班级按方案B 购票,4名老师按6折优惠购票总费用为 元,m 名学生按6折优惠购票总费用为 元(请分别用数字或含m 的代数式表示). (2)当学生人数40m =,且只能从A 、B 两种方案中选择一种购票时,请通过计算按A 、B 两种方案购票分别所需的总费用来说明选择哪种方案更为优惠.(每种方案的总费用4=名教师购票所需总费用m +名学生购票所需总费用)【分析】(1)根据题意列出两个代数式即可;(2)把40m =代入(1)中的两个代数式进行计算,即可得出答案.【解答】解:(1)4名老师全价购票的总费用为430120⨯=(元),m 名学生半价购票的总费用为130152m m ⨯=(元), 4名老师按6折优惠购票总费用为43060%72⨯⨯=(元),m 名学生按6折优惠购票总费用为3060%18m m ⨯=;故答案为:120;15m ;72;18m ;(2)当40m =时,选择方案A 所需的费用为:1201540720+⨯=(元),选择方案B 所需的费用为:184072792⨯+=(元),720792<,∴选择方案A 更为优惠.【点评】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解题的关键.23.(9分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.24.(10分)我们规定:使得a b ab −=成立的一对数a ,b 为“积差等数对”,记为(,)a b .例如:因为1.50.6 1.50.6−=⨯,(2)2(2)2−−=−⨯,所以数对(1.5,0.6),(2,2)−都是“积差等数对”.(1)判断下列数对是否是“积差等数对”: ①1(1,)2(填“是”或者“否” );②(2,1) (填“是”或者“否” ); ③1(2−,1)− (填“是”或者“否” ); (2)若数对(,3)m 是“积差等数对”,求m 的值;(3)若数对(,)a b 是“积差等数对”,求代数式224[32(2)]2(32)6ab a ab a b a −−−−−+的值.【分析】(1)根据新定义内容进行计算,从而作出判断;(2)根据新定义内容列方程求解;(3)将原式去括号,合并同类项进行化简,然后根据新定义内容列出等式并化简,最后代入求值.【解答】解:(1)①111122−=⨯,1(1,)2∴是“积差等数对”; ②2121−≠⨯,(2,1)∴不是“积差等数对”;③11(1)(1)22−−−=−⨯−,1(2∴−,1)−是“积差等数对”; 故答案为:是;否,是;(2)(,3)m 是“积差等数对”,33m m ∴−=,解得:32m =−,m ∴的值为32−; (3)原式224(322)646ab a ab a b a =−−+−++2212488646ab a ab a b a =−−+−++ 44416ab a b =−++,(,)a b 是“积差等数对”,a b ab ∴−=,∴原式44()16ab a b =−−+4416ab ab =−+16=. 【点评】本题属于新定义内容,考查解一元一次方程,整式的加减—化简求值,理解“积差等数对”的定义,掌握解一元一次方程的步骤以及合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.25.(10分)如图所示,点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,其中a 是最大的负整数,b 、c 满足2(9)|12|0b c −+−=,且BC CD =.(1)a = ;d = ;线段BC = ;(2)若点A 以每秒3个单位长度的速度向左运动,同时点C 以每秒5个单位长度的速度向左运动,设运动的时间为t 秒,当A 、C 两点之间的距离为11个单位长度时,求运动时间t 的值;(3)若线段AB 和CD 同时开始向右运动,且线段AB 的速度小于线段CD 的速度.在点A 和点C 之间有一点M ,始终满足AM CM =,在点B 和点D 之间有一点N ,始终满足BN DN =,此时线段MN 为定值吗?若是,请求出这个定值,若不是,请说明理由.【分析】(1)根据题意列式计算即可;(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,根据题意列方程即可得到结论;(3)设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,根据题意列方程即可得到结论.【解答】解:(1)a 是最大的负整数,1a ∴=−;2(9)|12|0b c −+−=,90b ∴−=,120c −=,9b ∴=,12c =,1293BC CD ∴==−=,33915d ∴=++=,(2)由于点A 、C 同时向左,C 点的速度较快,因此点C 可能在点A 左侧,也可能点A 右侧,∴点A 表示的数为:13t −−,点C 表示的数为:125t −,|(13)(125)||213|11AC t t t ∴=−−−−=−=,解得1t =或12;(3)线段MN 为定值,设运动的时间为t 秒,线段AB 的速度为a ,线段CD 的速度为()b a b <,则点:1A at −+,点:9B at +,点:12C bt +,点:15D bt +,由题意可知:点M 为AC 中点,点N 为BD 中点,因此,可求得:11211:222at bt a b M t −++++=+;915:1222at bt a b N t ++++=+, 111312()2222a b a b MN t t ++=+−+=. 【点评】本题考查一元一次方程的应用,解题的关键是学会设未知数,构建方程解决问题.。
湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷
23年秋初一华益中学期中考试数学试卷 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分) −1.(3分)2的相反数是()A .2−B .2C .21D . −21 2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国 聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .6 0.11610⨯D .83.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|(1)−−12B .与2(2)−C .3−2与3D .322与 32()2 a b +<4.(3分)若0 ab <,0,则下列说法正确的是()A .a ,b 同号B . a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能5.(3分)关于整式,下列说法正确的是() A .x y 2的次数是2B .0不是单项式3πC .mn 的系数是3x x −−D .2332是三次三项式−2a b n 6.(3分)若5 5a b 32m n 与+的差仍是单项式,则m n的值是()A .2B .0 −C .1D .17.(3分)下列各式运用等式的性质变形,错误的是() a b =A .若,则+=+a b =B a c b c .若,则=c ca ba b =C .若,则=a b =D ac bc .若,则−=−a c b c −1A 8.(3分)如果数轴上的点对应的数为,点B 与 A 点相距3个单位长度,则点 B 所对 应的有理数为()A .2−B .4−C .2或4−D .2或49.(3分)某同学在解关于x x mx 的方程−=+313时,把m x =看错了,结果解得4,则该同m 学把看成了()−A .2B .2C .34D .27 10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C,则该地半夜的气温为. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为.13.(3分)已知a ,b a b ++−=满足|3|(2)02+,则a b ()2023的值是.14.(3分)已知轮船在逆水中前进的速度是a 千米时,水流的速度是5/千米 /时,则这轮船在顺水中前进的速度是/千米时. a a 2+−=1015.(3分)已知,则代数式 a a 2222021++的值是.16.(3分)若k x −−=||4k (5)60− 是关于x的一元一次方程,则k 的值为.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)−+−−⨯−2|23|2(1)32023.18.(6分)解方程:x x =−+−6312152.19.(6分)先化简,再求值:+−−−m m n m n 2(32)6()22,其中=−m 3,=n 3.20.(8分)(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:−+−−−b a a c c b ||||||; (2)已知=−A x x 532,=−+B x x 1162,求当=x 1时,求−A B 的值.21.(8分)如图,在长为++a ab 12,宽为−a ab 22的长方形纸板上裁去一个边长为b 的正方形.(1)求剩余纸板的周长C (用含a ,b 的代数式表示); (2)当=a 3,=b 1时,求C 的值.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克? (2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?23.(9分)已知关于x 的整式=+−+A x ax x 3322,整式=+−+B x ax x 24222,若a 是常数,且−A B 3不含x 的一次项. (1)求a 的值;(2)若b 为整数,关于x 的一元一次方程+−=bx x 230的解是整数,求+a b 5的值.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = ,a = ,b = ; (2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t秒,甲班的A 同学在数轴上位置C拿到最后一棒接力棒时,记为0t=,此时乙班的B同学已经位于数轴上数10的位置,A同学以每秒8米向左运动,B同学以每秒5米向左运动,两位同学到达D点立即停止运动.(1)当0t=时,A、B同学相距米;当1t=时,A、B同学在数轴上所表示的数为、.(2)①若t秒后A同学恰好追上B同学,求t;②当A同学到达终点D后,B同学还要经过多少秒到达D点.③分别取线段AC、BD中点为E、F,若在点A、B运动期间,4mEF nDA−始终保持不变(其中m,n为常数),求mn的值.23年秋初一华益中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)2的相反数是()A .2−B .2C .21D . −21 【分析】根据相反数的定义进行判断即可.−【解答】解:2的相反数是2,故选:A .【点评】本题考查相反数,掌握相反数的定义是正确判断的前提.2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .60.11610⨯D .8a ⨯10【分析】将一个数表示成n a 的形式,其中1||10<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1160万 ==⨯11600000 1.16107,故选:B .【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|−1B .2(1)−与2(2)−C .3−2与3D .322与32()2【分析】根据有理数的乘方运算法则、绝对值的意义可进行求解.【解答】解:A −−=、(2)2−−=−,|2|2 −−,所以(2)−−与|2|不相等不符合题意;−=−11B 、2 −=,(1)12(1)−2,所以与−12不相等不符合题意;−=−C 、(2)83−=−28,3(2)−,所以3−23与相等符合题意;D 、3924()2=,所以322与23()2不相等不符合题意;C 故选:.【点评】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解题的关键. 4.(3分)若0a b +<,0ab <,则下列说法正确的是( ) A .a ,b 同号B .a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能【分析】根据题意得知a 、b 异号,并且负数的绝对值较大,挖掘出这一条件后,再对四个选项逐一分析.【解答】解:0ab <,a ∴、b 异号,又0a b +<,∴负数的绝对值较大, 根据这一条件判断:A 、C 、D 选项错误;B 选项正确; 故选:B .【点评】本题考查了有理数的除法,两个不等于零的数相乘,两数相乘,同号为正,异号为负,并把绝对值相乘.5.(3分)关于整式,下列说法正确的是( ) A .2x y 的次数是2 B .0不是单项式C .3mn π的系数是3D .3223x x −−是三次三项式【分析】根据单项式的系数与单项式的次数的定义对A 、C 进行判断;根据单独的一个数字或字母也是单项式对B 进行判断;根据多项式的次数和项数的定义对D 进行判断. 【解答】解:A 、2x y 的次数是3,所以A 选项错误; B 、数字0是单项式,所以B 选项错误; C 、3mn π的系数是3π,所以C 选项错误;D 、3223x x −−是三次三项式,所以D 选项正确.故选:D .【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.也考查了多项式的定义. 6.(3分)若52n a b −与325m n a b +的差仍是单项式,则n m 的值是( ) A .2B .0C .1−D .1【分析】由52n a b −与325m n a b +的差仍是单项式知52n a b −与325m n a b +是同类项,据此可得3n =,25m n +=,解之求出m 的值,代入计算可得.【解答】解:52n a b −与325m n a b +的差仍是单项式,52n a b ∴−与325m n a b +是同类项,3n ∴=,25m n +=, 1m ∴=,则311n m ==,故选:D .【点评】本题主要考查同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.(3分)下列各式运用等式的性质变形,错误的是( ) A .若a b =,则a c b c +=+ B .若a b =,则a bc c=C .若a b =,则ac bc =D .若a b =,则a c b c −=−【分析】根据等式的性质,可得答案.【解答】解:A 、若a b =,则a c b c +=+,故A 不符合题意; B 、c 等于零时,除以c 无意义,故B 符合题意; C 、若a b =,则ac bc =,故C 不符合题意;D 、若a b =,则a c b c −=−,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质是解题关键.8.(3分)如果数轴上的点A 对应的数为1−,点B 与A 点相距3个单位长度,则点B 所对应的有理数为( ) A .2B .4−C .2−或4D .2或4−【分析】考虑在A 点左边和右边两种情形解答问题.【解答】解:在A 点左边与A 点相距3个单位长度的点所对应的有理数为4−; 在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故选:D .【点评】本题考查了数轴上两点间的距离,解题的关键是注意分类讨论.9.(3分)某同学在解关于x 的方程313x mx −=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( ) A .2−B .2C .43D .72【分析】将4x =代入313x mx −=+中解得m 的值即可.x =【解答】解:将4x mx 代入−=+313中可得−=+m 12143m =,解得:2,B 故选:. 【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)x 【分析】设有个人共同出钱买鸡,根据买鸡需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有x x x 个人共同出钱买鸡,根据题意得:−=+811513.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C ,则该地半夜的气温为︒−1C . 【分析】利用题意列出算式解答即可.【解答】解:+− =−163211920︒=−1C .故答案为:︒ −1C .【点评】本题主要考查了有理数的加减混合运算的应用,正确列出算式是解题的关键.3.90. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为【分析】把千分位上的数字6进行“四舍五入”即可.【解答】解:≈3.896 3.900.01)(精确到.故答案为:3.90.【点评】本题考查了近似数与精确度,熟练掌握精确度的定义是解答本题的关键.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.(3分)已知a ,a b ++−=b 满足|3|(2)02 +,则a b ()2023−的值是1.【分析】根据绝对值、偶次方的非负性求出a、b ,再根据有理数的乘方法则计算即可.a b 【解答】解:|3|(2)0++−=2∴+=a 30,,b −=20,∴=−a 3b =,2,∴+=−+=−a b ()(32)120232023,−故答案为:1.【点评】本题考查的是非负数的性质,熟记绝对值、偶次方具有非负性是解题的关键.14.(3分)已知轮船在逆水中前进的速度是a 时,水流的速度是5千米/千米/ 时,则这轮 a 船在顺水中前进的速度是+(10)/千米时.【分析】根据顺水速度=逆水速度+⨯2水流速度,把相关数值代入后化简即可.a +【解答】解:由题意得:船在静水中的速度为:5,∴a a ++=+这轮船在顺水中航行的速度是55(10)千米/时,a 故答案为:+(10).【点评】本题考查列代数式,解题的关键是顺水速度=逆水速度+⨯2水流速度.a a +−=15.(3分)已知102 a a 2,则代数式222021++的值是2023.a a +=【分析】根据题意得到12,再将代数式变形即可求值.a a 【解答】解:2+−=10∴+=a a 2,1,∴++=++=⨯+=a a a a 2220212()2021212021202322,故答案为:2023.【点评】本题考查了代数式求值,利用整体代入思想解决问题是解题关键.16.(3分)若k x −−=||4k (5)60−是关于x 的一元一次方程,则k−的值为5.【分析】直接利用一元一次方程的定义得出关于k 的方程求出答案.k x 【解答】解:(5)60−−=||4k −是关于x 的一元一次方程,∴−=k ||41k −≠50且,解得:k =−5.−5故答案为:.【点评】此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)320232|23|2(1)−+−−⨯−.【分析】先求绝对值和乘方,再作乘法和加减即可.【解答】解:原式812(1)=−+−⨯−812=−++5=−.【点评】本题考查含乘方的有理数运算,掌握相关的运算法则和公式是解题的关键.18.(6分)解方程:2152163x x +−=−. 【分析】先去分母,再去括号,移项,合并同类项,系数化成1即可.【解答】解:2152163x x +−=−,去分母,得2162(52)x x +=−−, 去括号,得216104x x +=−+,移项,得210641x x +=+−,合并同类项,得129x =,系数化成1,得34x =. 【点评】本题考查了解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.19.(6分)先化简,再求值:,其中,.【分析】直接去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式2262466m m n m n =+−−+22m n =+,当3m =−,3n =时,原式2(3)23=⨯−+⨯66=−+0=.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.20.(8分)(1)已知有理数,,在数轴上对应的点如图所示,化简:; (2)已知,,求当时,求的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B −,然后把1x =代入求值.【解答】解:(1)由数轴可得:0a b c <<<,且||||||a c b >>,0b a ∴−>,0a c −<,0c b −>, ||||||b a a c c b −+−−−()()()b a a c c b =−−−−−b a a c c b =−−+−+22a b =−+;(2)A B −322(5)(116)x x x x =−−−+3225116x x x x =−−+−326116x x x =−+−, 当1x =时,原式3216111160=−⨯+⨯−=.【点评】本题考查整式的加减−化简求值、数轴、绝对值,解题的关键是掌握绝对值性质.21.(8分)如图,在长为,宽为的长方形纸板上裁去一个边长为的正方形.(1)求剩余纸板的周长(用含,的代数式表示); (2)当,时,求的值.【分析】(1)根据长方形的周长公式进行解答即可;(2)把3a =,1b =代入求值即可.【解答】解:(1)剩余纸板的周长:222(12)a ab a ab +++−2222224a ab a ab =+++−2422a ab =−+;(2)把3a =,1b =代入得:243231232C =⨯−⨯⨯+=.【点评】本题主要考查了列代数式,整式加减的应用;解题的关键是熟练掌握整式加减混合运算法则,准确计算.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元千克收购,按9.5元千克进行苹果销售,运费及包装费等平均为2.5元千克,则李军该周销售苹果一共收入多少元?【分析】(1)根据表中数据计算即可;(2)根据表中数据计算即可;(3)根据(2)的数据计算即可.【解答】解:(1)13070200+=(千克),答:李军该周销售苹果最多的一天比最少的一天多200千克;(2)20007305070130205011014180⨯+−−+−++=(千克),答:李军该周实际销售苹果的总量是14180千克;(3)14180(9.55 2.5)28360⨯−−=(元),答:李军该周销售苹果一共收入28360元.【点评】本题主要考查正负数的计算,熟练掌握正负数的计算是解题的关键.23.(9分)已知关于的整式,整式,若是常数,且不含的一次项. (1)求的值;(2)若为整数,关于的一元一次方程的解是整数,求的值.【分析】(1)将A ,B 代入3A B −中计算后根据已知条件即可求得a 的值;(2)解方程并进行分类讨论后确定b 的值,然后将a ,b 的值代入5a b +中计算即可.【解答】解:(1)2332A x ax x =+−+,22422B x ax x =+−+,3A B ∴−223(332)(2422)x ax x x ax x =+−+−+−+2239962422x ax x x ax x =+−+−−+− 2(57)4x a x =+−+,3A B −不含x 的一次项,570a ∴−=,解得:75a =; (2)230bx x +−=,整理得:(2)3b x +=,原方程的解为整数,且b 为整数,1b ∴=±或3−或5−,当1b =时,75517185a b +=⨯+=+=;当1b =−时,75517165a b +=⨯−=−=; 当3b =−时,75537345a b +=⨯−=−=;当5b =−时,75557525a b +=⨯−=−=; 综上,5a b +的值为2或4或6或8.【点评】本题考查整式的化简求值及解一元一次方程,结合已知条件确定a ,b 的值是解题的关键.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = 1 ,a = ,b = ;(2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.【分析】(1)根据题干信息得出12a b =,21a b =,先方程20x m −=的解为12,求出1m =,即可得出答案;(2)先求出方程30x k +=的解为:3k x =−,在求出方程30x k +=的“美美与共”方程30kx +=的解为3x k=−,根据3k −和3k −都为整数,求出结果即可; (3)先求出方程12(21)x x −=−的解为:13x =,得出方程0ax b +=的解为13b x a =−=−,再求出方程0ax b +=的“美美与共”方程为0bx a +=,求出方程0bx a +=的解为:3a x b =−=−. 【解答】解:(1)21221||()0a b a b −+−=,120a b ∴−=,210a b −=,解得:12a b =,21a b =, 方程20x m −=的解为12,∴1202m ⨯−=,解得:1m =, ∴方程20x m −=与0ax b +=互为“美美与共”方程,2b ∴=,m a −=,1a ∴=−, 故答案为:1;1−;2;(2)存在;方程30x k +=的解为:3k x =−, 方程30x k +=的“美美与共”方程为:30kx +=,且其解为3x k=−, 关于x 的方程30x k +=与其“美美与共”方程的解都是整数, ∴3k −和3k−都为整数,3k ∴=±; (3)方程12(21)x x −=−的解为:13x =, 方程12(21)x x −=−的解也是方程0ax b +=的解,∴方程0ax b +=的解为13b x a =−=, 方程0ax b +=的“美美与共”方程为0bx a +=,∴方程0bx a +=的解为:3a x b=−=. 即方程0ax b +=的“美美与共”方程的解为3x =. 【点评】本题主要考查了方程的解,解一元一次方程,解题的关键是熟练掌握解方程的一般步骤准确计算.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t 秒,甲班的A 同学在数轴上位置C 拿到最后一棒接力棒时,记为0t =,此时乙班的B 同学已经位于数轴上数10的位置,A 同学以每秒8米向左运动,B 同学以每秒5米向左运动,两位同学到达D 点立即停止运动.(1)当0t =时,A 、B 同学相距 15 米;当1t =时,A 、B 同学在数轴上所表示的数为 、 .(2)①若t 秒后A 同学恰好追上B 同学,求t ;②当A 同学到达终点D 后,B 同学还要经过多少秒到达D 点.③分别取线段AC 、BD 中点为E 、F ,若在点A 、B 运动期间,4mEF nDA −始终保持不变(其中m ,n 为常数),求m n的值. 【分析】(1)根据数轴上两点间距离公式进行解答即可;(2)①根据t 秒后A 恰好追上B 时,A 同学的路程比B 同学的路程多15列方程求解即可; ②先求出A 到达D 所需要的时间,再求出B 到达D 所需要的时间,然后两个时间相减即可; ③分别用t 表示出E 、F 在数轴表示的数,然后求出线段653||2t EF −=,508DA t =−,进而求出6532t EF −=,然后代入4mEF nDA −并化简得出4(86)13050mEF nDA n m t m n −=−+−,根据4mEF nDA −为定值(其中m ,n 为常数)得出860n m −=,即可求解.【解答】解:(1)当0t =时,A 同学所在位置表示的数为25,B 表示的数为10, ∴此时A 、B 同学相距251015−=;当1t =时,A 同学在数轴上所表示的数为251817−⨯=,B 同学在数轴上所表示的数为10155−⨯=;故答案为:15;17;5;(2)解:①根据题意,得852510t t −=−,解得5t =; ②10(25)25(25)0.7558−−−−−=(秒), 答:当A 同学到达终点D 后,B 同学还要经过0.75秒到达D 点;③A 在数轴上所表示的数为258t −,B 在数轴上所表示的数为105t −,故258(25)508DA t t =−−−=−,E 在数轴上所表示的数为(258)252542t t −+=−, F 在数轴上所表示的数为(105)(25)15522t t −+−−−=, 线段长155653|254()|||22t t EF t −−−=−−=, 当B 同学运动到D 点时停止运动,所以总运动时间为10(25)75−−=(秒), ∴65302t −>,则6532t EF −=, 4mEF nDA ∴−,2(653)(508)m t n t =−−−(86)13050n m t m n =−+−,由于4mEF nDA −为定值,故860n m −=,解得43m n =. 【点评】本题主要考查的是数轴上两点之间的距离,一元一次方程的应用,熟练的利用方程思想解决数轴上的动点问题是解题的关键.。
湖南省2023-2024学年七年级上学期语文期中试卷(含答案)
湖南省2023-2024学年七年级上学期语文期中试卷姓名:__________班级:__________考号:__________题号一二三总分评分一、积累与运用(共20分)1.下列各组词语中,字形和加点字的注音完全正确的一项是()A.分歧.(qí)发髻.(jì)搓捻花枝召展B.静谧.(mì)黄晕.(yùn)衣裳截然不同C.祷.告(dǎo)确凿.(zuó)憔悴迫不及待D.菡萏..(hàn dàn)贮.蓄(zhù)搏学各得其所2.下面是一位同学分享自己进入新学期的感受,填入横线处的词语,最符合语境的一项是()初秋,在一个晴朗的午后,美丽的校园张开双臂,迎接我们的①。
映入眼帘的是古朴的建筑、郁郁葱葱的大树和波光粼粼的湖水。
原本还担心初中学习环境不如人意,眼前的景象却是让人②。
“③”,当清晨的光温柔地向我们问好,我们便回应以琅琅书声。
在这里,我们④,各展其长,一起为文明班级的创建和书香校园的建设贡献自己的一份力量。
A.莅临喜出望外一年之计在于春各得其所B.到来沾沾自喜一年之计在于春各取所需C.莅临沾沾自喜一日之计在于晨各取所需D.到来喜出望外一日之计在于晨各得其所3.【病句诊断】下列句子没有语病的一项是()A.中国是一个历史悠久的国家,千百年来,先贤哲人给我们留下了辉煌灿烂的许多文化遗产。
B.据报道,截至2020年底,全国约有1亿左右贫困人口实现脱贫,脱贫攻坚战取得了伟大的胜利。
C.广泛阅读文学名著,仔细观察多彩生活,适时记录生活点滴,是提高写作水平的有效途径。
D.在这次考试中,他之所以能取得第一名的好成绩,是因为平时能勤奋刻苦学习造成的。
4.依次填入下面文字横线处的语句,衔接最恰当的一项是()由于江河流域不同,它们的气息也是不同的,每个作家都有属于自己的江河。
对我而言,黑龙江、呼玛河、额尔古纳河是我的生命之河,感染它们的气息也就浓厚些。
河北省石家庄市2023-2024学年七年级上学期期中考试数学试卷(含解析)
2023—2024学年度第一学期期中考试初一数学注意事项:本试卷共6页,总分120分,考试时间90分钟.一、选择题(本题共16个小题,1—10题,每题3分:11—16题,每题2分,共42分,在每个小题的四个选项中只有一项是符合题目要求的)1. 的倒数是( )A. B. 2 C. -2 D.【答案】C解析:∵-0.5×(-2)=1,∴的倒数是是-2.故选C.2. 数轴上到表示的点的距离为3的点表示的数为()A. 1B.C. 5或D. 1或【答案】D解析:解:若要求的点在的左边,则其表示的数为;若要求的点在的右边,则其表示的数为.所以数轴上到-2点距离为3的点所表示的数是或1.故选:D.3. 如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是( )A. ﹣2B. 2C. ﹣6D. 6.【答案】D解析:,故选D.4. 若m、n满足|m+3|+(n+2)2=0,则mn的值为( )A. ﹣1B. 1C. 6D. ﹣6【答案】C解析:∵|m+3|+(n+2)2=0,∴m+3=0,n+2=0,解得,m=﹣3,n=﹣2,∴mn=﹣3×(﹣2)=6,故选:C.5. 下列空间图形中是圆柱的为( )A. B. C. D.【答案】A解析:解:A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.6. 值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 两点的距离最短D. 以上说法都不对【答案】B解析:解:把每一列最前和最后的课桌看作两个点,∴这样做的道理是:两点确定一条直线.故选:B7. 下列计算正确的是()A. B.C. D.【答案】C解析:A选项,,错误;B选项,,错误;C选项,,正确;D选项,,错误;故选:C.8. 下列说法正确是( )A. 射线比直线短B. 两点确定一条直线C. 经过三点只能作一条直线D. 两点间的长度叫两点间的距离【答案】B解析:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误.故选B9. 如图,能用、、三种方法表示同一个角的是( )A. B.C. D.【答案】A解析:解:A、、、三种方法表示的是同一个角,故此选项正确;B、、、三种方法表示的不一定是同一个角,故此选项错误;C、、、三种方法表示的不一定是同一个角,故此选项错误;D、、、三种方法表示的不一定是同一个角,故此选项错误;故选:A.10. 如果,则的补角等于( )A.B.C.D.【答案】C解析:解:∵,∴的补角,故选:C.11. 有个填写运算符号的游戏:在“”中的“□”内,填入+,﹣,×,÷中的某一个,然后计算结果,可使计算结果最小的符号为( )A + B. ﹣ C. × D. ÷【答案】B解析:解:;;;,∵,∴使计算结果最小的符号为“”.故选:B.12. 下列说法正确的是()A. 同号两数相乘,取原来的符号B. 一个数与相乘,积为该数的相反数C. 一个数与相乘仍得这个数D. 两个数相乘,积大于任何一个乘数【答案】B解析:、两数相乘,同号得正,此选项错误,不符合题意;、一个数与相乘,积为该数的相反数,此选项正确,符合题意;、一个数与相乘得,此选项错误,不符合题意;、两个数相乘,积不一定大于任何一个乘数,如,此选项错误,不符合题意;故选:.13. 如图,在数轴上,若点表示一个负数,则原点可以是()A. 点B. 点C. 点D. 点【答案】D解析:解:∵负数<0,∴在数轴上负数一定在原点的左侧,若点B表示负数,原点只能是点A.故选D.14. 如图,点C在的边上,用尺规作出了,作图痕迹中,弧是( )A. 以点C为圆心,为半径的弧B. 以点C为圆心,为半径的弧C. 以点E为圆心,为半径的弧D. 以点E为圆心,为半径的弧【答案】D解析:解:作图痕迹中,弧是以点为圆心,为半径的弧,故选:D.15. 如图,将三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,若∠C′AB′=60°,则∠CAB=( )A. 60°B. 85°C. 25°D. 15°【答案】A解析:三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,即故选:A.16. 如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数的点与圆周上表示数字( )的点重合.A. 0B. 1C. 2D. 3【答案】D解析:解:由题意得,在逆时针环绕时,圆周上表示的数字以0,3,2,1为一个循环组,依次循环,∵,且,∴数轴上表示数的点与圆周上表示数字3的点重合.故选:D.二、填空题(本题共计3小题,17、18题各3分,19题4分,共计10分)17. 数轴上与原点的距离不大于5 的表示整数的点有______个.【答案】11解析:∵数轴上到原点距离不大于5的所有数为:∣x-0∣≤5,即-5≤x≤5,∴满足条件的整数有:±5,±4,±3,±2,±1,0;共11个,故答案为1118. 已知a与b互为相反数,c与d互为倒数,x的绝对值等于2,则的值为___________【答案】±2解析:由题意得:a+b=0,cd=1,x=±2,当x=2时,a+b-cdx=0-1×2=-2,当x=-2时,a+b-cdx=0-1×(-2)=2,故答案±2.19. 如图所示是一个运算程序示意图,若开始输入的值为81,则第一次输出的结果为____,则第2023次输出的结果为____.【答案】①. 27 ②. 3解析:解:若开始输入的值为81,第1次:,第2次:,第3次:,第4次:,第5次:,第6次:,…,∴从第3次开始,奇数次运算输出的结果是3,偶数次运算输出的结果是1,∵2023是奇数,∴第2023次输出的结果为3,故答案为:27,3.20. 计算下列各式(1);(2);(3);(4).【答案】(1)(2)(3)(4)【小问1详解】【小问2详解】【小问3详解】;【小问4详解】;21. 一只小虫从某点出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:,,,,,,(1)通过计算说明小虫是否回到起点;(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【答案】(1)小虫回到起点(2)小虫共爬行了108秒【小问1详解】解:(厘米)答:小虫回到起点.【小问2详解】(秒);答:小虫共爬行了108秒.22. 如图,是线段上一点,是的中点,是的中点.(1)若,,求的长度.(2)若,求的长度.【答案】(1)3;(2)3.解析:解:(1)∵是的中点,是的中点,,,∴,,∴.(2)∵是的中点,是的中点,,∴.23. 请先阅读下列内容,然后解答问题:因为:,,,…,所以:++…+=+++…+==(1)猜想并写出:= ;(为正整数)(2)直接写出下面式子计算结果:++…+= ;(3)探究并计算:++…+【答案】(1);(2);(3)解析:解:(1),故答案为:(2)++…+===,故答案为:(3)原式=++…+=…+===24. (1)如图.在一条不完整的数轴上一动点向左移动4个单位长度到达点,再向右移动7个单位长度到达点.①若点表示的数为0,求点表示的数是 ,点表示的数是 ;②如果点、表示的数互为相反数,求点表示的数是 .(2)如图1.在一块长方形区域中布置了图中阴影部分所示的展区,其中的展台有三种不同的形状,其规格如图2所示.①该长方形区域的长可以用式子表示为 ;②根据图中信息,用等式表示,,满足的关系为 .【答案】(1)①,3;②;(2)①;②解析:解:(1)①点表示的数是,点表示的数为:;故答案为:;②设表示的数为,则:表示的数为,∴,∴,∴点表示的数为,∴点表示的数为;故答案为:;(2)①由图可知:长方形的长为:;故答案为:;②由图可知,长方形的宽可表示为:或,∴,∴;故答案为:.25. 将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起.(1)若,则的度数为 ;(2)若,求的度数;(3)猜想与之间存在什么数量关系?并说明理由:【答案】(1)(2)(3),理由见解析【小问1详解】解:由题意可得:,∵,∴,∵,∴;故答案为:;【小问2详解】解:∵,∴,∴;【小问3详解】解:猜想:,理由如下:∵,又∵,∴,即.26. 如图,点A、C、B在数轴上表示的数分别是-3、1、5.动点P、Q同时出发,动点P从点A出发,以每秒4个单位的速度沿匀速运动回到点A停止运动.动点Q从点C出发,以每秒1个单位的速度沿向终点B匀速运动,设点P的运动时间为.(1)当点P到达点B时,点Q表示的数为____________.(2)当时,求点P、Q之间的距离.(3)当点P在上运动时,用含t的代数式表示点P、Q之间的距离.(4)当点P、Q到点C的距离相等时,直接写出t的值.【答案】(1)3;(2)1;(3)当时,PQ=4-3t,当时,PQ=3t-4;(4),或,或,或.【解析】解析:(1),Q点运动距离为,Q点表示的数为,所以点Q表示的数为3;(2)当t=1时,P点表示的数为,Q点表示的数为,∴P、Q之间的距离为.(3)P点表示的数为,Q点表示的数为,.当时,PQ=4-3t.当时,PQ= 3t-4.(4),①PQ第一次相遇前:,解得:,②PQ第一次相遇:,解得:③PQ第二次相遇:,解得:,④PQ第二次相遇后:,解得:,综上,,或,或,或.。
湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷
23年秋初一湖南师大附中期中考试数学试卷一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖 +马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6,那么支出2元记 作( ) A .2−B .2C .4−D .4 2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 () 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .33.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32 4.(3分)下列各式正确的是() −−=−A .853 B .+=C 437a b ab .−=x x x 54−−−=D .2(7)55.(3分)下列方程中是一元一次方程的是 () x y A .+=x x ++=B 341.560 2C .−=D 342x x .+=x5036.(3分)下列说法正确的是()A .ab a bc 22−−521是四次三项式B .单项式xy 的系数是0C .x x 231−−的常数项是1x y xy 23D .231−+ 2x y 最高次项是27.(3分)下列方程变形中,正确的是()A .由 y =30y =,得323x =B .由,得 x =32 C .由−=23a a a =,得3b b D .由−=+2131b =,得2−2xy m 8.(3分)若和 x y n 3是同类项,则m 和n 的值分别为( )m =1A ., n =1m =1B ., n =3m =3C .,n =1m =3D .,n =3A 向左移动29.(3分)如图,数轴上一动点个单位长度到达点B ,再向右移动5个单位长C 表示的数为1C 度到达点.若点,则与点A 表示的数互为相反数的是() −A .7B .3−C .3D .2x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3 二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是.12.(3分)单项式 − 3x yz 523的系数是.a b +=13.(3分)若23742,则b a ++=. 14.(3分)如图是一个计算程序,若输入−a 的值为1,则输出的结果应为.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为 a ,则圈出的三个数之和为.(用含a 的式子表示)16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算2[5(2)](|4|)1⨯+−−−−÷3.218.(6分)化简求值:222()3(2)a ab a ab−−−,其中2a=−,3b=.19.(6分)解方程:(1)54(31)13x x+−=.(2)27231 32x x−−−=.20.(8分)阅读材料:对于任意有理数a,b,规定一种新的运算:()1a b a a b=+−,例如,252(25)113=⨯+−=;(1)计算3(2)−;(2)若(2)5x−=,求x的值.21.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,a b−0,c a−0.(2)化简:||||||c b a b c a−+−−−.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.24.(10分)定义:若关于x的方程0(0)ax b a+=≠的解与关于y的方程0(0)cy d c+=≠的解满足||(x y m m−=为正数),则称方程0(0)ax b a+=≠与方程0(0)cy d c+=≠是“m差解方程”.(1)请通过计算判断关于x的方程2512x x=−与关于y的方程3(1)1y y−−=是不是“2差解方程”;(2)若关于x的方程213x mx n−−=−与关于y的方程2(2)3(1)y mn n m−−−=是“m差解方程”,求n的值;(3)关于x,y的两个方程2(1)31x m−=−与方程3y mn n=+,若对于任何数m,都使得它们不是“2差解方程”,求n的值.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.23年秋初一湖南师大附中期中考试数学试卷参考答案与试题解析一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖+马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6 ,那么支出2元记 作() A .2−B .2C .4−D .4【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.+【解答】解:收入6元记作6−2元,则支出2元记作元,故选:B .【点评】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 ( ) 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .3a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,a 要看把原数变成时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n<是正整数;当原数的绝对值1时,n是负整数.=⨯【解答】解:468000 4.68105.B 故选:.a ⨯10n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32【分析】先算出 −−3||2,再求其相反数即可.【解答】解:22||33−−=−,23−的相反数为23, 故选:C .【点评】用到的知识点为:a 的相反数是a −;负数的绝对值是正数;负数的相反数是正数.4.(3分)下列各式正确的是( )A .853−−=−B .437a b ab +=C .54x x x −=D .2(7)5−−−=【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A 、85−−应等于13−,故本选项错误;B 、4a 和3b 不是同类项,不能合并,故本选项错误;C 、5x 和4x 指数不同,不是同类项,不能合并,故本选项错误;D 、2(7)5−−−=,故本选项正确.故选:D .【点评】此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.此题难度不大,属于基础题.5.(3分)下列方程中是一元一次方程的是( )A .341x y +=B .2560x x ++=C .342x x −=D .350x+= 【分析】根据一元一次方程的定义,逐个判断.【解答】解:方程341x y +=含有两个未知数,不是一元一次方程;方程2560x x ++=含有未知数的二次项,不是一元一次方程;方程342x x −=符合一元一次方程的定义,是一元一次方程; 方程350x+=不是整式方程,不是一元一次方程. 故选:C .【点评】本题考查了一元一次方程的定义,一元一次方程需满足以下三条:①只含有一个未知数;②未知数的次数是1;③整式方程.6.(3分)下列说法正确的是( )A .22521ab a bc −−是四次三项式B .单项式xy 的系数是0C .231x x −−的常数项是1D .23231x y xy −+最高次项是22x y【分析】直接利用多项式的项数、次数确定方法分别分析得出答案.【解答】解:A 、22521ab a bc −−是四次三项式,正确;B 、单项式xy 的系数是1,故此选项错误;C 、231x x −−的常数项是1−,故此选项错误;D 、23231x y xy −+最高次项是33xy −,故此选项错误;故选:A .【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.(3分)下列方程变形中,正确的是( )A .由03y =,得3y =B .由23x =,得23x = C .由23a a −=,得3a = D .由2131b b −=+,得2b =【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【解答】解:A 、由03y =,得0y =,故A 不符合题意; B 、由23x =,得32x =,故B 不符合题意; C 、由23a a −=,得3a =,故C 符合题意;D 、由2131b b −=+,得2b =−,故D 不符合题意;故选:C .【点评】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.(3分)若2m xy −和3n x y 是同类项,则m 和n 的值分别为( )A .1m =,1n =B .1m =,3n =C .3m =,1n =D .3m =,3n =【分析】相同字母的指数要相同可求出m 与n 的值.【解答】解:由题意可知:1n =,3m =,故选:C .【点评】本题考查同类项的概念,属于基础题型.9.(3分)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C A 表示的数为1.若点C ,则与点表示的数互为相反数的是 () −A .7B .3−C .3D .2【分析】先求出A 点表示的数,根据相反数的定义即可求解.【解答】解:数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C ,表示的数为1点C ,∴点B −表示的数为4,∴点A −表示的数为2,∴则与点A表示的数互为相反数的是2,故选:D.【点评】本题考查了相反数的定义,本题的解题关键是求出A 点表示的数.x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k.【解答】解:原式=+−−−x k xy y 22(13)38,因为不含xy 项,故−=k 130,解得: k =31 . C 故选:. 【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是16.【分析】直接利用绝对值的定义得出答案. −【解答】解:16的绝对值是:16.故答案为:16.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.12.(3分)单项式 −3x yz 523的系数是 −53.【分析】利用单项式系数定义可得答案.【解答】解:单项式2335x yz −的系数是35−, 故答案为:35−. 【点评】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.(3分)若23a b +=,则742b a ++= 13 .【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【解答】解:23a b +=,242(2)236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.14.(3分)如图是一个计算程序,若输入a 的值为1−,则输出的结果应为 5− .【分析】将1a =−代入计算程序中进行计算.【解答】解:当1a =−时,2[(1)(2)](3)4−−−⨯−+(12)(3)4=+⨯−+3(3)4=⨯−+94=−+5=−, 故答案为:5−.【点评】本题考查代数式求值,准确理解程序图,掌握有理数混合运算的运算顺序和计算法则是解题关键.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为 3a .(用含a 的式子表示)【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a ,∴其他两个数分别表示为7a −,7a +.∴三个数的和为+++−=a a a a 773.3故答案为:a . 【点评】本题考查列代数式,关键是注意每一竖列相邻两个数之间的关系,都是差7.16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是小师.【分析】因为10次对决中没有平局,那么小师6次剪刀只能对应小滨的2次石头和4次布,这6局中小师赢4局;同理,小师3次石头和1次布只能对应小滨4次剪刀,这4局中小师赢3局,由此推断出结论.【解答】解:因为10次对决中没有平局,所以小师6次剪刀只能对应小滨的2次石头和4次布,所以这6局中小师赢4局,同理,小师3次石头和1次布只能对应小滨4次剪刀,所以这4局中小师赢3局,所以小师共赢了+=局,小滨赢了3437局.故答案为:小师.【点评】本题考查的是推理论证,根据已知条件做出正确分析,注意每一步都有根据和理由.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算22[5(2)](|4|)1 ⨯+−−−−÷3.【分析】先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:22[5(2)](|4|)1⨯+−−−−÷3=⨯+−−−⨯ ==−+=⨯−−−2[5(8)](42)2(3)(8)682.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(6分)化简求值:−−−a ab a ab 2()3(2)22a =−,其中2b =3,.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:−−−a ab a ab 2()3(2)22=−−+=−+4a ab a ab a ab 2263222,a =−2把,=−22b =3代入得:原式.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(6分)解方程:(1)54(31)13x x +−=.(2)2723132x x −−−=. 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)去括号,得512413x x +−=,移项,得512134x x +=+,合并同类项,得1717x =,系数化为1,得1x =;(2)去分母,得2(27)3(23)6x x −−−=,去括号,得414696x x −−+=,移项,得496146x x +=++,合并同类项,得1326x =,系数化为1,得2x =.【点评】本题考查了解一元一次方程,能正确根据等式的基本性质进行变形是解此题的关键.20.(8分)阅读材料:对于任意有理数a ,b ,规定一种新的运算:()1ab a a b =+−,例如,252(25)113=⨯+−=; (1)计算3(2)−;(2)若(2)5x −=,求x 的值.【分析】(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案.【解答】解:(1)3(2)3(32)12−=⨯−−=;(2)由题意可得:(2)5x −=,2(2)15x −⨯−+−=,则4215x −−=,解得:1x =−. 【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.21.(8分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,故答案为:>,<,>;(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 15xy 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.【分析】(1)住房的总面积=长4y 宽2x 的客厅的面积+长2y 宽x 的厨房的面积+长x 宽y 的浴室的面积+长2x 宽2y 的卧室的面积;(2)将4x =, 2.5y =代入算出小明家住房面积,再乘以每平方米装修成本,即可得出全部装修完的成本.【解答】解:(1)42222y x y x x y x y ⨯+⨯+⨯+⨯824xy xy xy xy =+++15xy =(平方米). 故小明家住房面积为15xy 平方米;(2)4x =, 2.5y =,15154 2.5150xy ∴=⨯⨯=,150********⨯=(元).答:全部装修完的成本为90000元.故答案为:15xy ;90000.【点评】本题考查了整式的混合运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 ①③ (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.【分析】(1)根据定义列式计算后进行判断即可;(2)根据定义列得方程,解方程即可;(3)将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)8.190.9−+=−,8.1(9)0.9−÷−=,则①是“差商等数对”;11022−=,11122÷=,则②不是“差商等数对”; 11122−+=,11(1)22−÷−=,则③是“差商等数对”; 故答案为:①③;(2)由题意可得22a a −=,解得:4a =; (3)222(3)(52)a a a a −−+−222652a a a a =−++−234a a =+,当4a =时,原式23444481664=⨯+⨯=+=.【点评】本题考查整式的化简求值及实数的运算,结合已知条件列得正确的算式是解题的关键.24.(10分)定义:若关于x 的方程0(0)ax b a +=≠的解与关于y 的方程0(0)cy d c +=≠的解满足||(x y m m −=为正数),则称方程0(0)ax b a +=≠与方程0(0)cy d c +=≠是“m 差解方程”.(1)请通过计算判断关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是不是“2差解方程”;(2)若关于x 的方程213x m x n −−=−与关于y 的方程2(2)3(1)y mn n m −−−=是“m 差解方程”,求n 的值;(3)关于x ,y 的两个方程2(1)31x m −=−与方程3y mn n =+,若对于任何数m ,都使得它们不是“2差解方程”,求n 的值.【分析】(1)分别求解两个方程,根据定义判断即可;(2)分别求出方程的解,根据题意可得332334||22n m n m mn m −−−++−=,解出n 的值即可;(3)分别求出方程2(1)31x m −=−与方程3y mn n =+的解,再根据对于任何数m ,都使得它们不是“2差解方程”,即与m 无关,则可列出关于n 的一元一次方程,解出方程即可求解.【解答】解:(1)关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”,理由如下:2512x x =−的解为4x =,3(1)1y y −−=的解为2y =,|||42|2x y −=−=,∴关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”; (2)方程213x m x n −−=−的解为3322n m x −−=, 方程2(2)3(1)y mn n m −−−=的解为3342n m mn y −++=, 两个方程是“m 差解方程”,332334||22n m n m mn m −−−++∴−=, |34|2n ∴+=,14n ∴=−或54n =−; (3)2(1)31x m −=−化简得:231x m =+,解得:312m x +=, 3y mn n =+,解得:3mn n y +=, 3123m mn n x y ++∴−=−,9322(92)3266m mn n m n n +−−−+−==; 对于任何数m ,都使2(1)31x m −=−与3y mn n =+不是“2差解方程”,920n ∴−=,解得:92n =. 【点评】本题考查一元一次方程的解,绝对值方程,熟练掌握一元一次方程的解法,绝对值方程的解法,理解新定义是解题的关键.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 1.5 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.【分析】(1)先由非负数的性质求出5c =,2d =−,进而可得CD 的中点N 所对应的数;(2)首先依题意求出点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,然后根据R 为PQ 的中点,R 到点C 的距离为2,得∴22522t t −++−=,由此解出t 即可; (3)①依题意可得出M 对应的数;②由(2)可知:点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,再求出点E 所表示的数为735t −,点F 所表示的数为52t −,进而求出73||5t OE −=,|5|2t OF =−,从而得514|73||707|OE OF t t +=−+−,然后根据绝对值的意义进行分类讨论即可得出答案.【解答】解:(1)由非负数的性质得:30c d −+=,20d +=,解得:5c =,2d =−, CD ∴的中点N 所对应的数为:25 1.52−+=, 故答案为:1.5.(2)P 点从C 点出发,以每秒1个单位的速度向左运动,∴运动6秒后,点Q 开始运动,运动t 秒后,点P 所表示的数为:5(6)1t t −+=−−, Q 点从D 点出发,以每秒2个单位的速度向右运动,t ∴秒时,点Q 所表示的数为:22t −+, R 为PQ 的中点,则点R 所表示的数为:221322t t t −+−−−=, 又点R 到点C 的距离为2,∴3|5|22t −−=, 整理得:|13|4t −=,解得:9t =,或17t =即9或17秒时,R 到点C 的距离为2.(3)①M 为AB 靠近A 的三等分点时,M 对应的数为23x y +, M 为AB 靠近A 的四等分点时,M 对应的数为34x y +, 以此类推,⋯,M 为AB 靠近A 的5等分点时,M 对应的数为45x y +, 故答案为:45x y +. ②由(2)可知:点P 所表示的数为:1t −−,点Q 所表示的数为:22t −+, E 是PQ 最靠近Q 的五等分点,∴点E 所表示的数为:4(22)17925t t t −+−−−=,F 为PC 中点,∴点F 所表示的数为:15222t t −−+=−, 79||5t OE −∴=,|2|2t OF =−, 795145||14|2||79||287|52t t OE OF t t −∴+=⨯+⨯−=−+−, 当79t <时,514972873714OE OF t t t +=−+−=−,79t <,则1418t −>−,3714371819t ∴−>−=,即51419OE OF +>,当9728t 时,5147928719OE OF t t +=−+−=,当728t >时,514797281437OE OF t t t +=−+−=−,728t >,则1456t >,1437563719t ∴−>−=,即51419OE OF +>,综上所述:514OE OF +的最小值为19,此时9728t ,即947t , 故得当514OE OF +的最小值为19时,t 的取值范围是:947t . 【点评】此题主要考查了有理数与数轴,绝对值的意义,理解题意,读懂题目中新定义的分点公式,熟练掌握绝对值的意义,运用分类讨论思想进行分类讨论是解决问题的关键.。
北京四中2023-2024学年度第一学期初一年级期中测验语文试卷及答案
2023-2024学年度第一学期初一年级期中测验语文试卷班级________姓名________学号________成绩________考生须知1.本试卷共9页,共26道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写班级、姓名和学号。
3.答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
一、基础·运用(共14分)北京四中初一年级同学开展了以“文人与印章”为主题的综合实践学习,你所在的小组撰写了报告。
请你阅读以下报告,调整、补充、完善相关内容。
一、引言印章体现着我国悠久深厚的传统文化,文人与印章之间的故事让人津津乐道。
二、闻一多与印章抗战时期,闻一多先生在昆明,以刻印章为副业。
当时过境的外国人不少,有些外国人很羡慕中国人有私人印章。
他们觉得在小小的一块石头刻上自己的姓名,或阴或阳,或篆或隶,或粗犷..或细腻,非常有趣。
他们常登门造访..,请求闻一多先生为他们刻印章。
闻一多先生知识渊搏..,会给对方起一个吉祥高雅的中国名字,对方喜出望外,自然不会吝啬微薄..的钱财。
刻印章_____技术含量不高,_____也不轻松,视印石的大小软硬而用指力、腕力或臂力,小心翼...翼.地捏着一把小刀,伏在书桌上的不毛之地....长久工作,势必两眼昏花,肩耸背驼,手指磨损,疲倦不...堪.。
对于精益求精....的闻一多先生来说,刻印章已____文人雅事,____谋生苦事了。
1.对上面文段中加点词语的字形、字音判断说法正确的一项是()(2分)A.“粗犷”的意思是“粗率豪放”,读作cūkuàng。
B.因为表达的是“到某个地方拜访”的意思,所以“造访”一词中有错字。
C.因为表达的是“深而且广”的意思,所以“渊搏”一词中有错字。
D.“微薄”的意思是“数量少”,读作wēi báo。
2.填入上面文段画线处的关联词语,最恰当的一组是()(2分)A.因为所以不是就是B.虽然但是不是而是C.因为所以不是而是D.虽然但是不是就是3.上面文段中加点的词语使用不恰当的一项是()(2分)A.小心翼翼B.不毛之地C.疲倦不堪D.精益求精三、印章与题刻某名家收藏有一块长方形寿山石印章,刻诗一联“鹭拳沙岸雪,□□□□□”,对仗工,意境雅。
湖北省武汉市2023-2024学年七年级上学期语文期中考试试卷(含答案)
湖北省武汉市2023-2024学年七年级上学期语文期中试卷姓名:__________ 班级:__________考号:__________阅读下面的实用类文本,完成各题。
二手时间①朋友阿朱热爱旅行,近几年却似乎少了兴致。
事前攻略准备得越充分,游玩就越顺畅。
然而,到了旅行地,阿朱突然发现失去了最重要的体验——新鲜感。
②不仅是旅行,信息时代,模仿成为新的生活状态。
人也好,物也好,前面都有一面鲜红的旗帜,逗引着人们热切地追随。
短视频层出不穷,网络上各种体验笔记,稍微有点创意的,大家马上就跟风。
我们正在进行的,其实都是别人的“二手时间”。
③流行田园美学时,一到风和日丽的周末,朋友圈全是格子布、竹编提篮、莫兰迪色的气球,渲染出相同风格的郊外野餐。
新开发的古镇都标配统一的牛轧糖、手工酸奶、东北大板、煎饼果子、糖葫芦、银器、背景音乐,南北千里时尚的潮汐一线牵。
④张爱玲曾经感慨,生活在都市文化中的人,总是先看见海的图画,后看见海;先读到爱情小说,后知道爱。
我们对于生活的体验往往是第二轮的。
阿列克谢耶维奇也说:“今天的所有想法和所有语言全都来自别人,仿佛是昨天被人穿过的衣服。
”⑤信息时代,我们更容易把追随当成特立独行,在模仿中人云亦云。
看电影之前先去查看网络评分;外出吃饭,先打开点评App;旅行更不用说,要么跟着微信朋友圈的九宫格一拥而上,要么下载一份详细的攻略按图索骥。
年轻父母痴迷育儿专家的科学理念,老年人跟着各种偏方去养生。
海拔8848米的珠峰人潮汹涌,大家都在拥堵中获得征服的虚荣心和成就感。
中产阶级的“广场舞”是跑过不同城市的马拉松,不用牙齿咬住奖牌,就觉得不是积极上进的人生。
⑥微博和朋友圈成为人们卖力摇旗的舞台,名牌、潮流、热点是这条路上醒目的路牌。
短视频的火爆使得人们的某些行为呈病毒式扩散,不论是话语、食物,还是行为、姿势。
潮流借助科技的力量,正在呼啸而来,它席卷过普通人的生命,把他们变成空无的海滩。
我们以为的新鲜与奇特,不过是别人走过的风景,流利畅达中失去的恰是自己的探索和发现。
浙江省J12共同体联盟2024学年七年级上学期期中考试数学试卷
J12共同体联盟校学业质量检测2024(初一上)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
祝你成功!一、选择题(本题有10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在实数-1,0,√3,12中,属于无理数的是( ) A.-1 B.0 C .√3 D .12 2.2024年法国巴黎奥运会最大场馆是巴黎圣母院体育场,该场馆可容纳约77600人,其中77600用科学记数法表示为( )A.0.776×105B.7.76×104C.77.6×103D.776×1023.某日杭州市最高气温为11℃,最低气温为-2℃,则该日杭州市的最大温差为( )A.13℃B.11℃C.9℃D.7℃4.9的平方根是( )A.9B.±9C.3D.±35.下列计算正确的是( )A.3(a+b )=3a+bB.-a 2b+b 2a =0C.x 2+2x 2=3x 2D.2a+3b =5ab6.下列说法:① 若两个数乘积为1,则这两个数必互为倒数;② 任何正数都有两个互为相反数的平方根;③ 立方根等于本身的数有1,0,-1;④ 一个数的算术平方根一定比原数小.其中错误的是( )A.①B.②C.③D.④7.一条数轴上有两点A 与B ,已知点A 到原点O 的距离为3个单位,点B 在点A 的右侧且到点A 的距离为5个单位,则点B 所表示的数可能是( )A.8B.2C.-8或2D.8或28.某辆新能源车每次充电都会把电充满,下表记录了该车相邻两次充电时的情况。
(注:“累计里程“指汽车从出厂开始累计行驶的路程)在这段时间内,该车每100千米平均耗电量为( )A .403度 B.12.5度 C.8度 D.7.5度 充电时间 充电量(度) 充电时的累计里程(千米) 2024年9月30日 10 35000 2024年10月2日25 352009.如图,数轴上从左到右的三个点A,B,C把数轴分成了I,II,II,IV四个部分,点A,B,C对应的数分别是a,b,c。
2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案
2023—2024学年度第一学期石家庄市栾城区期中教学质量检测七年级数学一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1.如果气温升高时气温变化记作2+℃,那么气温下降4℃时气温变化记作( ) A .4+℃B .4−℃C .6+℃D .6−℃2.计算(1)5−−的结果是( ) A .4−B .4C .6−D .53.2023的相反数为( ) A .2023−B .2023C .12023−D .120234.下列绘制的数轴正确的是( ) A . B . C .D .5.单项式223x y−的系数和次数分别是( )A .2−,3B .-2,2C .23−,3 D .23−,2 6.下列各式中,计算正确的是( ) A .( 5.8)( 5.8)11.6−−−=− B .2144164−÷⨯=− C .322(3)72−⨯−=D .22(5)4(5)(3)45⎡⎤−+⨯−⨯−=⎣⎦7.计算2( 1.8)−的结果是( ) A .32.4B .32.4−C .3.24D .32.48.下列说法错误的是( ) A .直线l 经过点AB .点C 在线段上C .射线与线段有公共点D .直线a ,b 相交于点A9.某服装店新开张,第一天销售服装m 件,第二天比第一天少销售8件,第三天的销售量是第二天的2倍多3件,则这三天的销售量一共为( ) A .(421)m +件B .(421)m −件C .(331)m +件D .(331)m −件10.如图,用量角器度量AOB ∠和AOC ∠的度数下列说法中,正确的是( )A .110AOB ∠=︒B .AOB AOC ∠=∠ C .90AOB AOC ︒∠+∠=D .180AOB AOC ︒∠+∠=11.当1x =时,代数式37ax bx ++的值为4,则当1x =−时,代数式37ax bx ++的值为( ) A .4B .4−C .10D .1112.观察下列一组数:23−,45,67−,89,1011−,…,它们是按一定规律排列的,那么这一组数的第n 个数是( )A .221n n + B .2(1)21n n n −− C .2(1)21nn n −+ D .12n n ++ 二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交纵式表示752−,表示2369,则表示________.14.单项式3ax y −与46b x y 是同类项,则a b +=________.15.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +−的值为________. 16.如图,点O 在直线AB 上,581728AOC '''∠=︒.则BOC ∠的度数是________.17.图中几何体的截面(图中阴影部分)依次是________、________、________、________.18.121536︒'"=________°.(将度分秒转化成度)19.如图,在75⨯方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是点________.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成的,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,,按此规律摆下去,第n 个图案有________个三角形(用含n 的式子表示).三、解答题:(本大题共5个小题,共52分)21.计算(共10分)已知下列各有理数: 2.5−,3,4−,12−,32(1)在数轴上标出这些数表示的点:(2)用“<”号把这些数连接起来:________; (3)请将以上各数填到相应的横线上: 正有理数:________;负有理数:________. 22.计算(共10分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a =________,b =________; (2)根据记录的数据可知4个班实际购书共本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用. 23.(共10分)读句子画图:如图A 、B 、C 、D 在同一平面内(1)过点A 、D 画直线; (2)画射线CD ; (3)连结AB ;(4)连接AC 和BD 相交于点E ;(5)连结BC 并延长BC 到F ,使CF BC =. 24.(本题满分10分). 已知如图所示.(1)写出表示阴影部分面积的代数式;(两个四边形均为正方形) (2)求4cm a =,6cm b =时,阴影部分的面积. 25.(本题满分12分)已知120AOB ∠=︒,40COD ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠.(1)如图1,当OB ,OC 重合时,求AOE BOF ∠−∠的值;(2)如图2,当COD ∠从图1所示的位置开始绕点O 以每秒2°的速度顺时针旋转t 秒(010t <<).在旋转过程中,AOE BOF ∠−∠的值是否会因t 的变化而变化?若不变化,请求出该定值;若变化,请说明理由; (3)在(2)的条件下,求当COD ∠旋转多少秒时,12COF ∠=︒.2023—2024学年度第一学期石家庄市栾城区期中考试七年级数学答案一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1-5 BCABC6-10 DCBBD 11 C12 C二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.7416−14.715.3−16.1214232︒'''.17.圆形,三角形,六边形,圆形.18.12.2619.M20.31n+三、解答题:(本大题共5个小题,共52分)21.解(1)数轴上表示各点如下:………………………….5分(2)用“<”号把这些数连接起来:134 2.5322−<−<<<,…………………..8分(3)正有理数有:3,32;负有理数有:4−, 2.5−,12−……………….10分22.解(1)∵由于4班实际购入22本,且实际购买数量与计划购买数量的差值为8−,即可得计划购书量为30本,∴一班实际购入301545a=+=本,二班实际购入数量与计划购入数量的差值32302b=−=本,故答案依次为:45,2.……………….4分(2)4个班一共购入数量为:45322322122+++=本,故答案为:122………………..6分(3)∵1221582÷=,……………7分∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,……………8分∴最低总花费为:30(152)83023180⨯−⨯+⨯=元.……………………10分23.解(1)如图,直线AD即为所求;…………………2分(2)如图,射线CD即为所求;…………………4分(3)如图,线段AB 即为所求;…………………6分 (4)如图,点E 即为所求;…………………8分 (5)如图,线段CF 即为所求.…………………10分 24.解:(1)CDB BGF ECGF S S S S =−+△△正阴.........................2分2211()22a b b a b =+−⨯+…………………4分 ()2212a b ab =+−; 答:阴影部分面积为()2212a b ab +−;…………………..6分(2)当4cm a =,6cm b =时,()2212S a b ab =+−阴()22146462=⨯+−⨯……………………8分 ()214cm =,答:阴影部分的面积为214cm .…………………..10分 25.(1)解:因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC ∠=∠=︒,11402022BOF BOD ∠=∠=⨯︒=︒.…………..2分所以602040AOE BOF ∠−∠=︒−︒=︒;…………………4分(2)解:AOE BOF ∠−∠的值是定值.…………………..5分根据题意,得:2BOC t ∠=︒,则21202AOC AOB t t ∠=∠+︒=︒+︒,2402BOD COD t t ∠=∠+︒=︒+︒.………………………7分因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC t ∠=∠=︒+︒,1202BOF BOD t ∠=∠=︒+︒,……………..8分所以40AOE BOF ∠−∠=︒;…………………9分(3)解:根据题意,得()212BOF t ∠=+︒,…………………10分 所以21220t t +=+,………………….11分 解得8t =,所以当COD ∠旋转8s 时,12COF ∠=︒.………………………….12分。
2023—2024学年第一学期期中测试七年级语文含答案
2023—2024学年度第一学期期中质量监测七年级语文试题注意事项:1.本试卷共6页,总分120分,考试时间120分钟。
2.答题前,考生务必将本人姓名、学校、班级、准考证号用黑色签字笔填写在答题卡相应位置,并将准考证号对应数字用2B铅笔涂黑。
3.答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
第一部分(1-3题20分)1.(8分)七年级一班同学开展“记录我的初中新生活”学习活动,请你一起来完成。
小雨同学在日记本里记录了初中开学第一天的感受:“我终于可以看到新学校了,心里好激动啊!在校园里见到最多的颜色就是绿色,那浓绿像是①zhù蓄了终年的绿意。
校园是美丽的银河,朗朗书声是银河上回荡的②lín lín清波,老师踏着清波,把希望的种子播撒,希望就从这里开始。
希望,是茫茫天宇间的一个闪烁的星宿,勇敢勤奋的人会想尽办法去摘取,使之成为自己的现实;懒惰蠢钝的人只会永远地张着大口,茫然地看着希望飞逝。
经过小学六年的锻炼,使我们都成为一个个战士,拿上我们的武器,整装待发,向新学期的目标冲击!”(1)请把“千磨万击还坚劲”写在田字格内。
(2分)(2)请帮助小雨根据拼音写出相应的汉字。
①zhù②lín(2分)(3)语段中划横线句用了的修辞方法,同学们都觉得写得很不错。
(2分)(4)画波浪线句有一个语病,请你帮小雨写出修改意见。
.(2分)2.古诗文名句填空。
(7分)开学两个月的学习,同学们在古诗文中欣赏美景,感受诗情,学习方法。
我们一起在王湾《次北固山下》中欣赏“潮平两岸阔,(1)”的开阔平静,也在马致远《天净沙·秋思》中感受到“枯藤老树昏鸦,(2)”的凄凉萧瑟;我们在“正是江南好风景,(3)”中感受杜甫感慨时事之悲,也在“遥怜故园菊,(4)”中感受岑参对和平的渴望之切;我们也在《论语》中学习到“(5),思而不学则殆”的方法,认识到“学而时习之”的重要性。
2023-2024七年级第一学期期中英语试卷试题参考答案
There are three buildings in our school. A sports hall,one classroom buildings and a library. The library is between the classroom building and the sports hall. There are many trees and flowers in our school all year around. In my classroom,there is a flag of China on the front wall. There is a computer on the teacher's desk.
C.组词成句
56.My father’s job is at a police station.
57.There are thirty students in my class.
58.We haven’t got any apples.
59.The library is on the left of the playground.(名词位置可调换)
ห้องสมุดไป่ตู้五.语言运用
A单词拼写
46.hospital 47.breakfast 48.buildings 49.captial 50.Wednesday
B短语填空
51.Too much52.keep healthy/stay healthy/keep fit
53.How/What about 54.next to 55.go shopping
湖南省长沙市长郡教育集团2023-2024学年上学期七年级期中考试数学试卷
23年秋初一长郡教育集团期中考试数学试卷一、单项选择题 (本大题共10小题,每小题3分,共30分)1.(3分)2的倒数是()A .−21−B .2C .21 D .2 2.(3分)2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为()0.21610⨯A .62.1610⨯B .5 2.1610⨯C .621.610⨯D .43.(3分)如图,对4个足球的质量进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()−A . 3.5+B . 2.5 −C .0.3 +D .14.(3分)下列计算正确的是() a a 22A .55−=B .+=235a b ab +=C .34ab ba ab 222D .−=−23a a a 5.(3分)单项式−2xy 32的系数和次数分别是()A . −3,22B . −3,32C .3,32 −D .2,2 6.(3分)下列去括号中,正确的是()A .+−=−+x x (32)32B .−=−a b a b22(6)311C .−−=−−x x x x (2)222D .−−=−−a a 2(43)86x =57.(3分)若是关于 x x m +−=的方程2310的解,则m 的值为()−A .3−B .2−C .1D .08.(3分)若= a b ,m 是任意实数,则下列等式不一定成立的是()A .+=+B a m b m .−=−C a m b m .=D am bm .=m ma b9.(3分)已知方程++= a x ||4a (5)30−a 是一元一次方程,则的值为()A .5−B .5±C .5D .10.(3分)定义一种关于整数n F 的“”运算:(1)当 n n +是奇数时,结果为5;(2)当n 是偶数时,结果是n k 2(其中k 是使 nk 2是奇数的正整数),并且运算重复进行.n =例如:取58”运算是29,第一次经“F ,第二次经“”运算是34F ,第三次经“F ”运算是17,第四次经“ ”运算是22F ,⋯n =;若11,则第2023次运算结果是()A .1B .6C .3D .8二、填空题 (本大题共6小题,每小题3分,共18分)11.(3分)比较大小: −43−54(填“>”或“<”)12.(3分)若家用电冰箱冷藏室的温度是︒4C ,冷冻室的温度要比冷藏室低︒ 22C,则冷冻室的温度是. 6.537813.(3分)用四舍五入法,取近似值:≈(精确到0.01).−2a b m +14.(3分)若13 5a b 323n 与−可以合并成一项,则mn 的值是. 15.(3分)某种商品原价每件元,第一次降价打八折,第二次降价每件又减10b 元,第二次降价后的售价是元.16.(3分)如图,在数轴上有a ,a b +<b 两个实数,则下列结论:①0b a −>,②0,③>ab()02 −>,④()0 ab 3中,其中正确的有(结果填序号).三、解答题 (本大题共9小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:(1)−−−−+++(3)(5)(7)(4)(2;)−⨯+÷−2814(7)1;(3)简便运算: −⨯+−⨯−⨯−3321(45(1)51(5);)−+−⨯−−312(1)|3(3)|42.18.(4分)化简:(1)253531x x y y x −−+++; (2)223(432)2(14)x x x x −+−−−.19.(4分)解下列方程:(1)281x x +−=; (2)72992x x −=+.20.(6分)先化简,再求值:2224(25)2(3)xy x xy y x xy −−++−,其中1x =−,2y =.21.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米): 18,8−,15,7−,11,6−,10,5−问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?22.(6分)我们把“!n ”叫做“n 的阶乘”,其中n 为正整数. 规定1:!(1)(2)21n n n n =⋅−⋅−⋅⋯⨯⨯.例如6!654321720=⨯⨯⨯⨯⨯=.规定2:在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的.(1)按照以上的规定,计算:①4!= ;②50!49!= ;③2!3!⨯= ; (2)计算:(4!5!)3!−÷.23.(6分)甲三角形的周长为23610a b −+,乙三角形的第一条边长为22a b −,第二条边长为23a b −,第三条边比第二条边短224a b −−. (1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;24.(8分)有这样一道题“如果代数式53a b +的值为4−,那么代数式2()4(2)a b a b +++的值是多少?”,爱动脑筋的汤同学解题过程如下:原式22841062(53)2(4)8a b a b a b a b =+++=+=+=⨯−=−.汤同学把53a b +作为一个整体求解.整体思想是中学数学解题中的一种重要思想方法,请仿照上面的解题方法,完成下面的问题: 【简单应用】(1)已知23a a +=,则2222023a a ++= ; (2)已知23a b −=−,求3()755a b a b +−+−的值; 【拓展提高】(3)已知225a ab +=,226ab b −=−,求代数式22344a ab b ++的值.25.(8分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,这种解决问题的思想叫做数形结合思想.研究数轴我们发现了许多重要的规律:①若数轴上点A ,点B 表示的数分别为a ,b ,若A ,B 位置不确定时,则A ,B 两点之间的距离为:||a b −,若点A 在B 的右侧,即a b >,则A ,B 两点之间的距离为:a b −; ②线段AB 的中点表示的数为2a b+; ③点A 向右运动m 个单位长度(0)m >后,点A 表示的数为:a m +,点A 向左运动m 个单位长度(0)m >后,点A 表示的数为:a m −.同学们可以在数轴上取点验证上述规律,并完成下列问题. 【问题情境】如图:在数轴上点A 表示数3−,点B 表示数1,点C 表示数9,点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动,设运动时间为t 秒(0)t >.(1)请利用上述结论,结合数轴,完成下列问题:AB 表示点A 到点B 之间的距离,运动之前,AB 的距离为 ,A 点与C 点的中点为D ,则点D 表示的数为 ;运动t 秒后,点A 表示的数为 (用含t 的式子表示);(2)若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;(3)当点C 在点B 右侧时,是否存在常数m ,使2mBC AB −的值为定值?若存在,求m 的值,若不存在,请说明理由.23年秋初一长郡教育集团期中考试数学试卷参考答案与试题解析一、单项选择题 (本大题共10小题,每小题3分,共30分)1.(3分)2的倒数是()A .−21−B .2C .21D .2【分析】直接利用倒数的定义分析得出答案.【解答】解:2的倒数是:21. C 故选:.【点评】此题主要考查了倒数,正确把握定义是解题关键.2.(3分)2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为()0.21610⨯A .62.1610⨯B .5 2.1610⨯C .621.610⨯D .4a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n <1是正整数;当原数的绝对值时,n 是负整数.=⨯【解答】解:216000 2.16105.B 故选:.a ⨯10【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为n 的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n的值.3.(3分)如图,对4个足球的质量进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()−A . 3.5+B . 2.5−C .0.3+D .1【分析】超过标准质量的克数记为正数,不足标准质量的克数记为负数.绝对值越小越接近标准.【解答】解:绝对值越小越接近标准,−=| 3.5| 3.5,+=| 2.5| 2.5 ,−=|0.3|0.3|1|1+=,,∴−0.3最接近标准.故选:C .【点评】本题考查了正负数的意义,解题的关键是理解有理数的意义,明白绝对值越小越接近标准.4.(3分)下列计算正确的是( ) A .2255a a −= B .235a b ab +=C .22234ab ba ab +=D .23a a a −=−【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A .22254a a a −=,故本选项不符合题意; B .2a 与3b 不是同类项,所以不能合并,故本选项不符合题意; C .2ab 与23ba 不是同类项,所以不能合并,故本选项不符合题意;D .23a a a −=−,故本选项符合题意.故选:D .【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.5.(3分)单项式223xy −的系数和次数分别是( )A .2,23−B .2,33−C .2,33D .2−,2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式223xy −的系数和次数分别是23−,3.故选:B .【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.(3分)下列去括号中,正确的是( ) A .(32)32x x +−=−+ B .11(6)322a b a b −=−C .22(2)2x x x x −−=−−D .2(43)86a a −−=−−【分析】根据去括号和添括号的方法进行化简即可. 【解答】解:A 、(32)32x x +−=−,故该项不正确;B 、11(6)322a b a b −=−,故该项正确;C 、22(2)2x x x x −−=−+,故该项不正确;D 、2(43)86a a −−=−+,故该项不正确;故选:B .【点评】本题考查去括号和添括号,熟练掌握相关的知识点是解题的关键. 7.(3分)若5x =是关于x 的方程2310x m +−=的解,则m 的值为( ) A .3−B .2−C .1−D .0【分析】把5x =代入方程,即可得出关于m 的方程,求出方程的解即可. 【解答】解:把5x =代入方程2310x m +−=得:10310m +−=,解得:3m =−, 故选:A .【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键.8.(3分)若a b =,m 是任意实数,则下列等式不一定成立的是( ) A .a m b m +=+B .a m b m −=−C .am bm =D .a bm m= 【分析】根据等式的性质即可求出答案.【解答】解:A 、利用等式性质1,两边都加m ,得到a m b m +=+,原变形一定成立,故此选项不符合题意;B 、利用等式性质1,两边都减去m ,得到a m b m −=−,原变形一定成立,故此选项不符合题意;C 、利用等式性质2,两边都乘m ,得到am bm =,原变形一定成立,故此选项不符合题意;D 、成立的条件是0m ≠,原变形不一定成立,故此选项符合题意;故选:D .【点评】本题考查了等式的性质,解题的关键是熟练运用等式的性质.等式的性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.(3分)已知方程||4(5)30a a x −++=是一元一次方程,则a 的值为( ) A .5B .5−C .5±D .0【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,据此可得出关于a 的方程,继而可求出a 的值.a 【解答】解:由题可得−=||41 且+≠a 50a =5,解得,故选:A .【点评】此题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.10.(3分)定义一种关于整数 n 的“F ”运算:(1)当 n n +是奇数时,结果为5;(2)当n 是偶数时,结果是n k 2(其中k 是使 nk2是奇数的正整数),并且运算重复进行.n =例如:取58F ”运算是29,第一次经“,第二次经“F ”运算是34,第三次经“F ”运算是17,第四次经“F ”运算是22,⋯n =;若11,则第2023次运算结果是()A .1B .6C .3D .8n =11【分析】根据题中所给运算方式,分别求出时,前几次的运算结果,发现规律即可解决问题.【解答】解:由题知,当n =11时,第一次经“F ”运算是:+=11516;第二次经“F ”运算是: =11624;第三次经“F ”运算是:+=156;第四次经“F ”运算是: =236;第五次经“F ”运算是:+=358;第六次经“F ”运算是:=1823;由此可见:除第一次经“F ”运算的结果外,后面运算的结果按1,6,3,8循环出现, 且−÷=(20231)4505余2,所以第2023次运算结果是6.故选:B .【点评】本题考查数字变化的规律,能根据运算的结果发现除第一次经“F ”运算的结果外,后面运算的结果按1,6,3,8循环出现是解题的关键.二、填空题 (本大题共6小题,每小题3分,共18分)11.(3分)比较大小: −43>− 54>(填“”或“<”) 【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.3【解答】解:−=−<40.750,54−=−<0.80,|0.75|0.75−=,|0.8|0.8−=,0.750.8<,0.750.8∴−>−,3445∴−>−. 故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.12.(3分)若家用电冰箱冷藏室的温度是4C ︒,冷冻室的温度要比冷藏室低22C ︒,则冷冻室的温度是 18C ︒− .【分析】根据题意,冷冻室的温度=冷藏室的温度(4C)22C ︒︒−,计算即可.【解答】解:冷冻室的温度4C 22C 18C ︒︒︒=−=−.故填写18C ︒−.【点评】本题主要是考查了温差的概念,以及有理数的减法,是一个基础的题目. 有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.13.(3分)用四舍五入法,取近似值:6.5378≈ 6.54 (精确到0.01).【分析】把千分位上的数字7进行四舍五入即可.【解答】解:6.5378 6.54≈(精确到0.01).故答案为:6.54.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.14.(3分)若132m a b +−与3235n a b −可以合并成一项,则mn 的值是 6 .【分析】直接利用同类项的定义得出m ,n 的值,进而得出答案.【解答】解:依题意知,132m a b +−与3235n a b −是同类项,则13m +=,233n −=, 解得2m =,3n =,所以236mn =⨯=.故答案为:6.【点评】此题主要考查了同类项,正确把握合并同类项法则是解题关键.15.(3分)某种商品原价每件b 元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是 (0.810)b − 元.【分析】根据某种商品原价每件b 元,第一次降价打八折,可知第一次降价后的价格为0.8b 元,第二次降价每件又减10元,可以得到第二次降价后的售价.【解答】解:某种商品原价每件b 元,第一次降价打八折,∴第一次降价后的售价为:0.8b 元.第二次降价每件又减10元,∴第二次降价后的售价是(0.810)b −元.b 故答案为:−(0.810).【点评】本题考查列代数式,解题的关键是明确题意,能列出每次降价后的售价.16.(3分)如图,在数轴上有a ,b a b +<两个实数,则下列结论:①0b a −>,②0,③>a b()02−>,④()0 ab 3 中,其中正确的有 ②③④(结果填序号).【分析】观察数轴可得:<<a b 0且<a b ||||,再根据有理数的加减法运算,乘除运算,乘方运算,即可求解.【解答】解:观察数轴得:<<a b 0且<a b ||||,∴+>a b 0b a −>,0,> a b()02故①错误;②③正确;∴<ab 0∴<,()0ab 3∴−>,()0ab 3,故④正确;故答案为:②③④.【点评】本题主要查了数轴,有理数的加减法运算,乘除运算,利用数形结合思想解答是解题的关键.三、解答题 (本大题共9小题,共72分,解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:(1)−−−−+++(3)(5)(7)(4);(2)−⨯+÷− 2814(7)1;(3)简便运算:−⨯+−⨯−⨯−335(1)51(5)21;(4)−+−⨯−−312(1)|3(3)|42.【分析】(1)按照从左到右的顺序进行计算,即可解答;(2)先算乘除,后算加减,即可解答;(3)利用乘法分配律的逆运算进行计算,即可解答;(4)先算乘方,再算乘法,后算加减,有括号先算括号里,即可解答.【解答】解:(1)−−−−+++=−+−+(3)(5)(7)(4)3574=−+274=−1=−+54;(2)−⨯+÷−2814(7)1=−+−4(2) =−6;(3)−⨯+−⨯−⨯−335(1)51(5)21=−⨯−⨯+⨯33551524=−−+⨯33(1)524 =−⨯15=−5;(4)−+−⨯−−312(1)|3(3)|42=−+⨯−316|39|2 =−+⨯31662=−12=−+164.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.18.(4分)化简:(1)253531x x y y x −−+++;(2)223(432)2(14)x x x x −+−−−.【分析】(1)合并同类项即可;(2)去括号合并同类项即可.【解答】解:(1)原式(253)(53)1x x x y y =−++−+21y =+;(2)原式221296282x x x x =−+−++22074x x =−+.【点评】本题考查整式的加减,解题的关键是掌握整式加减的法则,属于中考常考题型.19.(4分)解下列方程:(1)281x x +−=;(2)72992x x −=+. 【分析】根据一元一次方程的解法,经过移项、合并同类项、系数化为1等过程即可.【解答】解:(1)281x x +−=,解:移项得,218x x +=+,合并同类项得,39x =,两边都除以3得,3x =;(2)移项得,79922x x −=+,合并同类项得,11112x −=,系数化为1得,2x =−. 【点评】本题考查一元一次方程的解法,掌握一元一次方程的解法步骤是正确解答的关键.20.(6分)先化简,再求值:2224(25)2(3)xy x xy y x xy −−++−,其中1x =−,2y =.【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算,即可解答.【解答】解:2224(25)2(3)xy x xy y x xy −−++−22242526xy x xy y x xy =−+−+−23xy y =−, 当1x =−,2y =时,原式23(1)226410=⨯−⨯−=−−=−.【点评】本题考查了整式的加减−化简求值,准确熟练地进行计算是解题的关键.21.(6分)2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行依次记录如下(单位:千米):18,8−,15,7−,11,6−,10,5−问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?【分析】(1)将题目中的数据相加,看最终的结果,即可得到B 地在A 地的那个方向,与A 地的距离是多少;(2)将题目中的数据都取绝对值然后相加与0.5相乘再与30作差即可解答本题.【解答】解:(1)(18)(8)15(7)11(6)10(5)28++−++−++−++−=.答:B 地在A 地的东面,与A 地相距28千米;(2)总路程18815711610580=+++++++=(千米)800.53010⨯−=(升).答:途中至少需要补充10升油.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际含义,找出所求问题需要的条件.22.(6分)我们把“!n ”叫做“n 的阶乘”,其中n 为正整数.规定1:!(1)(2)21n n n n =⋅−⋅−⋅⋯⨯⨯.例如6!654321720=⨯⨯⨯⨯⨯=.规定2:在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的.(1)按照以上的规定,计算:①4!= 24 ;②50!49!= ;③2!3!⨯= ; (2)计算:(4!5!)3!−÷.【分析】(1)利用阶乘的定义进行运算即可;(2)利用阶乘的定义及有理数的相应的法则进行运算即可.【解答】解:(1)①4!432124=⨯⨯⨯=;故答案为:24; ②50!49!5049!49!⨯=50=, 故答案为:50;③2!3!⨯21321=⨯⨯⨯⨯12=,故答案为:12;(2)(4!5!)3!−÷(24120)6=−÷966=−÷16=−.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.23.(6分)甲三角形的周长为23610a b −+,乙三角形的第一条边长为22a b −,第二条边长为23a b −,第三条边比第二条边短224a b −−.(1)求乙三角形第三条边的长;(2)甲、乙两个三角形的周长哪个大?请说明理由;【分析】(1)第三条边比第二条边短2(24)a a −−,所以用第二条边长2(3)a b −减去2(24)a b −−,求得第三条边长.(2)先将乙三角形的三条边相加得到乙三角形的周长,再用甲三角形的周长减去乙三角形的周长,所得的差大于0,说明甲三角形的周长大;所得的差小于0,说明乙三角形的周长大.【解答】解:(1)第二条边长为23a b −,第三条边比第二条边短224a b −−. ∴第三条边长:2222(3)(24)3244a b a b a b a b b −−−−=−−++=−+.答:乙三角形第三条边的长是4b −+.(2)乙三角形的周长为:222(2)(3)(4)264a b a b b a b −+−+−+=−+.甲、乙三角形的周长的差为:222(3610)(264)6a b a b a −+−−+=+.因为260a +>,所以甲三角形的周长较大.答:甲三角形的周长大.【点评】本题考查了因式分解的计算,关键根据题意写对式子.24.(8分)有这样一道题“如果代数式53a b +的值为4−,那么代数式2()4(2)a b a b +++的值是多少?”,爱动脑筋的汤同学解题过程如下:原式22841062(53)2(4)8a b a b a b a b =+++=+=+=⨯−=−.汤同学把53a b +作为一个整体求解.整体思想是中学数学解题中的一种重要思想方法,请仿照上面的解题方法,完成下面的问题:【简单应用】(1)已知23a a +=,则2222023a a ++= 2029 ;(2)已知23a b −=−,求3()755a b a b +−+−的值;【拓展提高】(3)已知225a ab +=,226ab b −=−,求代数式22344a ab b ++的值.【分析】(1)将2222023a a ++变形为22()2023a a ++,再将23a a +=代入计算即可.(2)将3()755a b a b +−+−变形为4(2)5a b −−−,即可得出答案.(3)将22344a ab b ++变形为223(2)2(2)a ab ab b +−−,即可得出答案.【解答】解:(1)222220232()20232320232029a a a a ++=++=⨯+=.故答案为:2029.(2)原式33755a b a b =+−+−485a b =−+−4(2)5a b =−−−,23a b −=−,∴原式4(3)57=−⨯−−=.(3)22344a ab b ++223(2)2(2)a ab ab b =+−−352(6)=⨯−⨯−1512=+27=.【点评】本题考查整式的加减−化简求值,熟练掌握运算法则是解答本题的关键.25.(8分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,这种解决问题的思想叫做数形结合思想.研究数轴我们发现了许多重要的规律:①若数轴上点A ,点B 表示的数分别为a ,b ,若A ,B 位置不确定时,则A ,B 两点之间的距离为:||a b −,若点A 在B 的右侧,即a b >,则A ,B 两点之间的距离为:a b −; ②线段AB 的中点表示的数为2a b +; ③点A 向右运动m 个单位长度(0)m >后,点A 表示的数为:a m +,点A 向左运动m 个单位长度(0)m >后,点A 表示的数为:a m −.同学们可以在数轴上取点验证上述规律,并完成下列问题.【问题情境】如图:在数轴上点A 表示数3−,点B 表示数1,点C 表示数9,点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动,设运动时间为t 秒(0)t >.(1)请利用上述结论,结合数轴,完成下列问题:AB 表示点A 到点B 之间的距离,运动之前,AB 的距离为 4 ,A 点与C 点的中点为D ,则点D 表示的数为 ;运动t 秒后,点A 表示的数为 (用含t 的式子表示);(2)若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;(3)当点C 在点B 右侧时,是否存在常数m ,使2mBC AB −的值为定值?若存在,求m 的值,若不存在,请说明理由.【分析】(1)根据背景知识①即可求出AB 的距离;根据②即可求出点D 表示的数;根据背景知识③即可写出点A 表示的数;(2)分别用t 的代数式写出点A ,B ,C 表示的数,分类讨论,根据背景知识②列方程求解即可;(3)用t 的代数式表示出BC ,AB 的长,再用代数式表示出2mBC AB −,根据其值为定值,即可确定m 的值,从而解决问题.【解答】解:(1)A 点表示数3−,B 点示数1,AB ∴的距离为:1(3)4−−=; 又点A 表示数3−,点C 表示数9,点D 为AC 中点,∴点D 表示的数为39:32−+=; A 点表示数3−,以每秒2个单位长度向左运动,∴运动t 秒后,点A 表示的数为:32t −−. 故答案为:4;3;32t −−;(2)由题意可知,t 秒时,A 点所在的数为:32t −−,B 点所在的数为:1t −,C 点所在的数为:94t −.分三种情况:①若B 为AC 中点,则(32)(94)12t t t −−+−−=.解得1t =; ②若C 为AB 中点,则(32)(1)942t t t −−+−−=.解得4t =; ③若A 为BC 中点,则194322t t t −+−−−=.解得16t =. 综上,当1t =或4或16时,A ,B ,C 三点中恰有一点为另外两点的中点;(3)存在.点C 在点B 右侧,点B 在点A 右侧,94(1)83BC t t t ∴=−−−=−,1(32)4AB t t t =−−−−=+,2(83)2(4)838288(32)mBC AB m t t m mt t m m t ∴−=−−+=−−−=−−+.当320m +=,即23m =− 时,结果与t 无关, 即24028()833mBC AB −=⨯−−=− 为定值, ∴存在常数23m =− 使2mBC AB −的值为定值. 【点评】本题考查一元一次方程的应用,数轴,列代数式,理解题意,能用代数式表示出点所表示的数是解题的关键.。
浙江省温州市2023-2024学年七年级上学期语文期中考试试卷2(含答案)
浙江省温州市2023-2024学年七年级上学期语文期中试卷姓名:__________ 班级:__________考号:__________1.请根据拼音写出相应的汉字。
2.通过古诗整理,完成赏析任务。
(1)【古诗整理单】(2)子曰:“,。
”温习旧知,能获得新的发现。
整理了以上古诗,我发现自然景物皆能入诗,而诗中这些景物又能传情。
(3)对啊,比如王湾在《次北固山下》借“雁”表达了情感。
(4)我们再来看看课外的诗歌吧。
比如《丰乐亭游春》中的第一、二句写了、、等景物来呈现春天的特点,真有意思。
(5)【注释】①台城:在今南京市鸡鸣山南。
此地为六朝皇宫所在地,是古代帝王荒淫享乐的场所。
晚唐诗人韦庄在王朝衰落时重游故地,作诗抒情。
②六朝:指吴、东晋、宋、齐、梁、陈。
两首诗歌都写到了绿柳鸟啼,但诗人抒发的情感却有所不同:。
相同的景物却能表现出不同的情感,真是一切景语皆情语啊!根据你的《朝花夕拾》阅读积累,完成下列任务。
3.鲁迅的童年是怎样的?我可以去读《二十四孝图》《从百草园到三味书屋》(填写相应的篇目)。
4.可爱的小鲁迅渐渐长大了,我可以从《琐记》(填写相应的篇目)中读到他的求学经历。
5.小组同学将参加“美文共欣赏”研读会,请你参与并完成任务。
6.太阳花新陈交替的过程活跃而生动,请将太阳花的状态填写在表格空白处。
7.根据要求,参考示例,给第③段画波浪线的句子进行朗读设计。
句子:只有太阳花,阳光愈是炽热,它开得愈加艳丽,愈加旺盛。
朗读设计:8.作者为了写太阳花,运用了多种巧妙的写作方法,请完成文章的旁批(1)(2)。
__________________________________________________________________________________________ 9.文章描绘花开和花谢都用了同一个“闪”字,但包含着太阳花丰富的形象内涵,请研读下面两个句子,加以阐述。
第①段:太阳花开了,在一层滚圆的绿叶下边,闪.出三朵小花。
2024-2025学年上海市初一上学期期中道德与法治试卷及解答参考
2024-2025学年上海市道德与法治初一上学期期中复习试卷(答案在后面)一、单项选择题(本大题有12小题,每小题4分,共48分)1、下列哪种行为是违反道德的?A、在公共场合大声喧哗B、尊重师长,团结同学C、诚实守信,遵守诺言D、关爱他人,乐于助人2、以下哪个法律是关于未成年人保护的基本法律?A、《中华人民共和国宪法》B、《中华人民共和国未成年人保护法》C、《中华人民共和国婚姻法》D、《中华人民共和国刑法》3、下列行为中,不属于道德范畴的是()A、拾金不昧B、诚信考试C、偷窃财物D、助人为乐4、以下关于法律的特征,说法错误的是()A、法律具有普遍约束力B、法律由国家制定或认可C、法律以强制力保证实施D、法律是由道德规范演变而来的5、根据《中华人民共和国未成年人保护法》,下列哪一项不属于对未成年人的保护措施?A. 学校应当关注未成年人的心理健康B. 家长可以对未成年人实施适当的体罚C. 社会应当为未成年人提供安全的成长环境D. 国家鼓励和支持社会组织提供有利于未成年人健康成长的服务6、在面对网络世界中的各种信息时,作为青少年应该:A. 相信所有网络信息都是真实的B. 随意发布个人隐私信息C. 学会辨别信息真伪,合理使用网络资源D. 拒绝使用互联网以免受到不良信息的影响7、下列哪种行为属于违法行为?A. 在公共场所大声喧哗B. 遵守交通规则,文明出行C. 在网上发布虚假信息D. 参加学校组织的公益活动8、以下哪种情况不属于公民的基本权利?A. 参与政治生活的权利B. 受教育的权利C. 享有平等权利D. 享有隐私权9、在日常生活中,我们应当如何对待网络信息?A. 无条件信任所有信息B. 只看不评论C. 批判性地接收并验证信息的真实性D. 完全拒绝网络信息 10、小明在公交车上看到一位老人没有座位,他应该怎么做?A. 继续坐着,假装没看见B. 主动让座给老人C. 等待别人先行动D. 向司机求助解决11、以下哪项行为属于道德范畴?A. 遵守交通规则B. 诚实守信C. 劳动创造D. 健康生活12、以下关于法治的说法,正确的是:A. 法治就是法律至上,人民在法律面前一律平等B. 法治就是国家的法律体系完善,法律制度健全C. 法治就是国家和社会治理的唯一方式D. 法治就是国家的法律体系完善,法律制度健全,人民在法律面前一律平等二、非选择题(本大题有5小题,第5小题12分,其他每题10分,共52分)第一题阅读材料:张华是一名初一的学生,最近他所在的学校举办了一场关于环保的活动。
沛县初一上学期语文期中考试试卷
一、基础知识(每题2分,共20分)1. 下列字音、字形完全正确的一项是()A. 畸形(jī xíng)稳健(wěn jiàn)B. 倔强(jué jiàng)恪守(kè shǒu)C. 璀璨(cuǐ càn)沉着(chén zhí)D. 沉沦(chén lún)磅礴(bàng bó)2. 下列词语中,没有错别字的一项是()A. 画龙点睛B. 载歌载舞C. 遮天蔽日D. 窃窃私语(应为窃窃私语)3. 下列句子中,没有语病的一项是()A. 学校为了提高教学质量,特聘请了著名教育家担任学校的顾问。
B. 这次比赛,他不仅跑得快,跳得也高。
C. 我们要学习雷锋精神,为人民服务。
D. 这本书非常有趣,让人一读就停不下来。
4. 下列成语中,使用正确的一项是()A. 画龙点睛(形容文章或说话时,在关键处加上一两句话,使内容更加生动有力)B. 一举两得(做一件事情,得到两方面的好处)C. 狐假虎威(比喻依仗别人的势力来欺压人)D. 随心所欲(想怎么做就怎么做,不受任何约束)5. 下列句子中,标点符号使用正确的一项是()A. “妈妈,我回来了!”我高兴地喊道。
B. “你们看,那是什么?”我问。
C. “这个字怎么读?”老师问。
D. “你真聪明!”老师笑着说。
二、古诗文阅读(每题2分,共8分)阅读下面的文言文,完成下列小题。
孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”子曰:“三人行,必有我师焉。
择其善者而从之,其不善者而改之。
”曾子曰:“吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩。
”(1)下列句子中,加点词的解释不正确的一项是()A. 学而时习之(时:按时,及时)B. 志于学(志:立志)C. 三十而立(立:立身,立足)D. 不逾矩(逾:超过)(2)下列句子中,加点词的用法不正确的一项是()A. 学而时习之(时:名词作状语,按时)B. 有朋自远方来(远:形容词作名词,远方)C. 三人行,必有我师焉(行:名词作动词,行走)D. 吾日三省吾身(日:名词作状语,每天)(3)下列句子中,加点词的意义和用法相同的一项是()A. 学而时习之(而:连词,表递进)B. 三人行,必有我师焉(有:动词,存在)C. 曾子曰:“吾日三省吾身”(曰:动词,说)D. 吾十有五而志于学(而:连词,表承接)(4)下列句子翻译正确的一项是()A. 学而时习之,不亦说乎?(学习并且时常温习所学的知识,不是很愉快吗?)B. 有朋自远方来,不亦乐乎?(有朋友从远方来,不是很快乐吗?)C. 三人行,必有我师焉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.单选1.It’s ten o’clock now. Tom and his brother ______ the room.A. cleaningB. is cleaningC. are cleaning2.Thanks _____ telling us the interesting story.A. forB. toC. with3.He saw a dog______ on the ground.A. liesB. lyingC. to lie4.They are working to get ready_____ the meeting.A. toB. ofC. for5.Do you have a _______ festival in your country?A. traditionB. traditionalC. traditions6.-Is your brother learning a dragon dance? -________.A. Yes, it isB. No, she isC. Yes, he is.7.She is looking forward to ______ the zoo.A. visitB. visitingC. visits8.There_______ a birthday party tomorrow.A .is going to have B. is going to be C. is going to has9.-Will there be schools in the future? -_______.A. Yes, there will.B. No, there will.C. Yes, there is.10.-_______ do you have a football match in your school? -Twice a year.A. How longB. How manyC. How often11.I want to go to Xi’an _______.A. by planesB. by trainC. by a bike12.You can’t be late for class_______.A. in futureB. in the futureC. in futures13.London is famous _____Buckingham Palace.A. toB. forC. as14.The river is six______ kilometers long.A. thousandB. thousands ofC. thousands15.Swimming is ______ than walking.A. tiringB. tiredC. more tiring二.完型填空Hello, everyone. My name is WuPing. I am a (an) (1)_____girl. I (2) _____ a happy family. There are (3) _____people in my family—my father, my mother andmy two brothers. They are in China, my homeland(祖国) , (4) ______ I am in England with my (5) ______, my mother’s sister. I study here. I am (6)_____ Class7. In my class, there are only 23 (7)______, (8)______ are from different(不同的) countries. King Ming is my friend, and he is from South Korea(韩国). Lee young-ae is his (9) ______ film star(电影明星). His parents are in England with (10) _____ . I often go to his home.( )1.A.Chinese B. China C. English( )2.A.am B. have C. has( )3.A.six B. four C. five( )4.A. but B. or C. so( )5. A. sister B. aunt C. uncle( )6. A. under B. on C. in( )7. A. students B. teachers C. parents( )8. A. He B. They C. You( )9. A.favourite B. good C. well( )10.A.he B. me C. him三.阅读理解(A)Jim is an English boy. He comes to China with his father and mother. They come here to work. Jim comes here to study. He is in No. 5 Middle School. He gets up early every day. He isn’t late for school. He studies h ard. He can read and write English well. He often helps us with our English, and we often help him with his Chinese. After class he likes playing football, swimming, running, jumping and riding. He makes many friends here. We are glad to stay with him. On Sunday he often helps his mother clean the house, mend something or do the shopping. He likes Chinese food very much. He likes living here. He likes Chinese students very much. We all like him , too.根据短文内容,判断以下句子的正误。
对的在括号内填“T ”,错的填“ F ”。
( )1. He gets up late every day.( )2. He often teaches us English.( )3. After class , he likes singing and playing basketball.( )4. On Sundays he often helps his mother clean the house..( )5. H e doesn’t like Chinese food.( B )Man: Good morning, sir! Can I help you?Mr. Black: Yes, please.Man: What can I do for you?Ann: A hamburger and some French Fries.Mr. Black: Would you like something to drink?Ann: A glass o f Coke. Man: With ice? Ann: Yes, thank you.Mr. Black: Tom, what would you like?Tom: I’m not hungry(不饿).Just a big glass of Coke with ice, please.Mr. Black: No food?Tom: No. What would you like , dad?Mr. Black: I’d like some rice and fish, and a glass of Coke with ice.根据文章,选择正确的答案:( )1.How many people are there in the dialogue(对话)?A. ThreeB. FourC.Five( )2.Where do you think this dialogue may happen (发生) ?A. At schoolB. At homeC. In a restaurant( )3.What does Ann want to drink?A. CokeB. teaC. We don’t know( )4.Does Tom want to eat something?A. YesB. NoC. We don’t know( )5.Mr.Black wants to eat______.A.some French fries。
B.a hamburgerC.some rice and fish( C )Emma and Emily are twin sisters. They are eleven. They are students in a middle school in Chicago(芝加哥). Their father is Mr. Brown. He is in a white coat. Their mother, Mrs. Brown, is in black shoes. Emma is in an orange sweater. Emily is in a yellow sweater. Emile is their brother. He is in a purple shirt and blue trousers. The twins are in a green car. The car is behind some red flowers. The flowers are between two tall and big trees.根据此短文内容,回答下列问题。
1.How many children do .Mr. and Mrs. Brown have?2.What colour coat does Mr.Brown wear?3.Who is in the green car?4.Who is Emma and Emily’s brother?5.How many colours are there in the passage? What are they?四.用所给词的适当形式填空。