高中数学解题方法技巧汇总
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学解题方法与技巧
高中数学解题方法与技巧高中数学是一门重要而复杂的学科,它不仅在高中数学考试中占有重要的比例,同时也是许多高考和各类外部考试的必要组成部分。
为了帮助学生在数学课堂中取得更好的成绩,下面将介绍一些高中数学解题方法与技巧。
一、问题分解法在解决复杂问题时,问题分解法是非常有用的一种方法。
这种方法的基本思路是,将问题按照各个部分进行分解,分别考虑每个部分,然后将所有的结果合并起来得到终极结果。
例如,在解决题目“一支船航行了一段距离之后返回原点,它来回所用的时间是8小时,来回的速度比为3:2,求船航行了多少距离?”时,可以将问题分解成为若干个小问题,如求往返的时间、速度比、来回的距离等等。
通过逐一解决这些小问题,最终得到整个问题的答案。
二、画图法画图法是解决高中数学问题的另一种重要方法。
它的基本思路是,在纸上画出与问题相应的几何图形,然后通过观察或推导得到问题的解答。
例如,在解决问题“一个长方形的周长为20,它的面积为16,求它的长和宽”时,我们可以通过画出长方形的图形来帮助我们理解和解决这个问题。
图中可以用x和y代替长和宽,然后根据周长和面积的定义式列出方程,最后求解x和y的值。
三、化繁为简法化繁为简法是另一种非常实用的高中数学解题方法。
它的基本思路是,将复杂问题简化成为容易解决的问题,然后逐步加以推导和扩展,最终得到原始问题的解决方案。
例如,在解决问题“证明勾股定理”时,可以先使用勾股定理来证明一个简单的三角形,然后逐步加以推导和扩展,最终得到原始问题的解决方案。
这样的解题方法可以帮助我们理解数学原理,提高我们的数学思维能力。
四、运用辅助工具的方法现代技术的发展使得数学解题不再仅限于传统的纸笔计算。
可以使用图形计算机软件、计算器、手机APP应用程序等现代化工具来辅助解题。
例如,在求解三角函数时,我们可以使用特定的计算器或手机APP来得到计算结果。
这些辅助工具可以缩短解题时间,减少计算错误,提高解题效率。
高中数学52个秒杀技巧
高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。
以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。
2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。
3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。
4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。
5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。
6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。
7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。
8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。
9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。
10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。
以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。
这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。
高中数学21种解题方法与技巧全汇总.pdf
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。
列函数 求最值 写结论 穿线法 穿线法是解高次不等式和分式不等式的最好方法。其一般思路是: 首项化正 求根标根 右上起穿 奇穿偶回
ห้องสมุดไป่ตู้
注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘 去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。
两种情况为且型
数学中两个最伟大的解题思路
(1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组
化简二次根式
基本思路是:把√m 化成完全平方式。即:
观察法
代数式求值 方法有: (1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法) 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。 解含参方程 方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是: (1)按照类型求解 (2)根据需要讨论 (3)分类写出结论
待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其 解题步骤是:
①设 ②列 ③解 ④写
复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。
高中数学解题技巧与方法
高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。
许多学生在面对数学题目时感到困扰,不知道如何下手。
本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。
一、理清思路在解题之前,首先要理清思路。
仔细阅读题目,分析题目的要求和条件。
可以在纸上做标记或者画图来帮助理解题目。
同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。
二、多角度思考在解题过程中,不要被固定的思维方式所限制。
尝试从不同的角度思考问题,寻找不同的解题思路。
这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。
三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。
因此,培养逻辑思维是解题的关键。
可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。
合理运用推理能力,可以更快地找到解题的方法。
四、归纳总结解题过程中,要善于归纳总结。
将解题的方法和思路记录下来,形成笔记或者思维导图。
这样有助于巩固所学知识,也方便在以后的学习中查阅。
通过总结,我们可以更好地掌握解题的技巧和方法。
五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。
可以选择一些专门的习题集或者题库进行练习。
在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。
六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。
可以向老师请教,或者与同学进行讨论。
他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。
总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。
掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。
加油吧!。
高中数学21种解题方法与技巧全汇总
01解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
02因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:04换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元05待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写06复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08化简二次根式基本思路是:把√m化成完全平方式。
即:09观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学50个解题小技巧
高中数学 50 个解题小技巧解题要讲究方式方法,考试才能轻松得高分,下面就是小编给大家带来的高中数学 50 个解题小技巧,希望大家喜欢!1 . 适用条件[直线过焦点],必有 ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。
x 为分离比,必须大于 1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若 f(x)=-f(x+k),则 T=2k ; (2)若 f(x)=m/(x+k) (m 不为 0),则 T=2k ; (3) 若 f(x)=f(x+k)+f(x-k),则 T=6k。
注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派 x 相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在 R 上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为 x= (a+b)/2(2) 函数 y=f(a+x)与 y=f(b-x)的图像关于 x= (b-a)/2 对称; (3)若 f(a+x)+f(a- x)=2b,则 f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于 R 上的奇函数有 f(0)=0; (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S 奇=na 中,例如 S13=13a7(13 和 7 为下角标); (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述 2 中各项在公比不为负一时成等比,在 q=-1 时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求 q6 . 数列的终极利器,特征根方程首先介绍公式:对于 an+1=pan+q(n+1 为下角标,n 为下角标),a1 已知,那么特征根 x=q/(1-p),则数列通项公式为 an= (a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
高中数学解题方法与技巧 必背公式总结
高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.在学习带参数的初等函数时,要抓住无论参数如何变化,有些性质不变的特点。
如函数的不动点,二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4.在常数建立问题中,利用二次函数的图像性质,灵活运用函数闭区间上的最大值和分类讨论的思想(分类讨论中要注意不要重复或遗漏),可以转化为极大值问题或二次函数的常数建立问题。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7.求参数的值域,要建立关于参数的不等式或方程,利用函数的值域或定义或求解不等式。
在转换公式的过程中,应优先考虑分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12.圆锥曲线的题目应优先考虑它们的定义。
如果直线与圆锥曲线相交的问题与弦的中点有关,则选择设定而不是求点差的方法,维耶塔定理公式的方法与弦的中点无关。
(使用维耶塔定理时,首先要考虑二次函数方程是否有根,即二次函数的判别式。
).13.解曲线方程的问题,如果知道曲线的形状,可以选择待定系数法。
如果不知道曲线的形状,采用的步骤是建立系统,设置点,列表化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
高中数学的解题技巧(三篇)
高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
高中数学考试的答题技巧
高中数学考试的答题技巧(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学考试的答题技巧不同高考数学题型,我们应该有不同的答题策略,高中数学考试的答题技巧有哪些你知道吗?下面是本店铺为大家整理的高中数学考试的答题技巧,仅供参考,喜欢可以收藏分享一下哟!数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
高中数学解题方法
高中数学解题方法
1. 利用平行四边形的性质解题
对于已知的平行四边形,我们可以利用其特点来解决相关问题。
例如,已知平行四边形的两条边相等,我们可以利用这一性质来求解未知边长。
2. 利用相似三角形的性质解题
在一些几何题中,我们可以利用相似三角形的性质来求解未知变量。
根据相似三角形的特点,可以建立等式,从而解出未知量。
3. 利用勾股定理解题
勾股定理是解决直角三角形问题的基本定理。
通过应用勾股定理,我们可以求解三角形的边长、角度等问题。
4. 利用二次方程解题
在代数问题中,一些问题可以通过建立二次方程来求解。
根据二次方程的求解方法,我们可以得到问题的答案。
5. 利用排列组合解题
排列组合是数学中用于解决计数问题的方法。
通过应用排列组合的原理,我们可以求解一些排列、组合的问题。
6. 利用函数的图像解题
在函数问题中,我们可以通过求解函数的零点、极值点等来解题。
利用函数的图像,我们可以获取一些与函数相关的信息。
7. 利用数列的性质解题
对于数列相关的问题,我们可以利用数列的递推关系、通项公式等性质来求解。
通过找到数列的规律,我们可以得到问题的答案。
8. 利用平面向量解题
平面向量是几何中常用的工具之一。
通过运用平面向量的性质,我们可以解决一些与向量相关的问题。
高中数学21种解题方法及技巧全汇总
高中数学21种解题方法与技巧全汇总解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值围的思路列欲求围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学这52种快速解题方法
高中数学这52种快速解题方法高中数学是学生学习中的一门重要课程,在高中数学学习过程中,有许多方法可以帮助我们快速解题。
本文将介绍52种高中数学的快速解题方法,希望对学生们在数学学习时有所帮助。
一、方程的快速解题方法:1.牛顿-莱布尼茨公式:对于高次方程,可以使用牛顿-莱布尼茨公式快速求导以及求解,以便解决方程。
2.易得关系:在解二元一次方程时,可以通过观察系数之间的关系,直接得到方程的解。
3.倍数法:有时,我们可以通过将方程两边同乘一个常数,以便简化方程求解的过程。
4.等比数列求和公式:在解等差数列求和问题时,我们可以使用等比数列求和公式,快速求解。
5.同底数幂等于同指数的求解法:当两个数的底数相等,指数相等时,我们可以将两个底数合并在一起,然后得到一个新的指数,进行计算。
二、几何图形的快速解题方法:1.同余三角形的性质:在几何图形中,应用同余三角形的性质,可以简化计算过程,快速解题。
2.双曲线的对称性:对于双曲线,我们可以利用其对称性质,快速求解问题。
3.相似三角形的定理:应用相似三角形的定理,可以快速解决三角形相似问题。
4.平行四边形的性质:利用平行四边形的性质,可以快速求解平行四边形的各种问题。
5.三角恒等式:在解三角形相关问题时,利用三角恒等式可以快速求解。
三、概率问题的快速解题方法:1.排列组合公式:在解决排列组合问题时,可以利用排列组合公式,快速计算结果。
2.互斥事件的概率:如果两个事件是互斥的,即它们不可能同时发生,我们可以直接将它们的概率相加来计算合并事件的概率。
3.独立事件的概率:对于独立事件,即它们的发生不受其他事件的影响,我们可以将它们的概率相乘来计算复合事件的概率。
4.条件概率:在解条件概率问题时,可以根据已知条件,利用条件概率公式,快速计算结果。
5.事件的补集:对于事件的补集,我们可以通过计算事件的补集的概率,再用1减去它的概率,来计算事件的概率。
四、数列的快速解题方法:1.利用等差数列的前n项和公式:在解等差数列问题时,我们可以利用等差数列的前n项和公式,快速求解。
高中数学答题技巧有哪些_解题方法
高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。
高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。
选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
高中数学52种快速破题方法
高中数学52种快速破题方法在高中数学学习中,有时我们会遇到一些难题需要快速破解。
这篇文章将介绍52种快速破题方法,帮助你提高数学解题的效率和准确性。
1. 简化分式:利用分子分母的公因式进行约分,简化计算过程。
2. 因式分解:将多项式进行因式分解,以简化复杂的运算。
3. 公式代入:当遇到已知条件和需要求解的变量可以通过一个已知公式联系时,直接代入计算。
4. 利用图形:如果问题涉及到几何形状,将其绘制成图形有助于解题。
5. 引入辅助线:在几何题中,通过引入辅助线能够推导出更多关系,简化解题过程。
6. 使用二次函数图像:对于最值问题,可以利用二次函数图像的开口方向来确定最值的位置。
7. 数列求和:对于数列的求和问题,可以利用数列求和公式或巧妙的变形来简化计算。
8. 分类讨论法:对于某些问题,可以将不同情况进行分类讨论来解决。
9. 倒推法:从已知结果倒推出有关条件,以确定解题的方法和步骤。
10. 利用对称性:在一些几何问题中,利用对称性可以简化证明或者找出另一方面的答案。
11. 分情况讨论:对于某些复杂问题,将其分解成几个简单情况分别讨论,最后合并结果。
12. 利用相似三角形:在几何问题中,利用相似三角形的性质可以快速求解各种长度和角度。
13. 数字根法:对于整数运算,可以利用数字根法来判断整除性质和进行简单计算。
14. 观察法:对于一些规律性问题,可以通过观察规律和找出特殊性质来解决。
15. 合并同类项:在多项式计算中,将具有相同变量幂次的项进行合并,简化运算过程。
16. 借位法:在计算过程中,若存在进位或借位,可以通过借位法进行加减运算。
17. 利用轴对称性:通过利用轴对称性,可以简化一些图形问题的证明或计算。
18. 利用余角关系:对于三角函数中的角度关系,可以利用余角关系进行简化运算。
19. 勾股定理:在解决直角三角形问题中,可以利用勾股定理确定未知边长。
20. 合理估算:对于某些题目,可以通过合理估算来获得近似的结果,以缩小解题范围。
高中数学解题技巧归纳总结大全
高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。
随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
所以,提高解题速度就要先解决“拖延症”。
比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。
这个过程对提高书写速度和思考效率都有较好的作用。
你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
高中数学解题方法技巧
高中数学解题方法技巧在高中阶段,数学是一个非常重要的学科,有些同学可能会觉得数学比较难学,但只要掌握了解题的方法和技巧,就能轻松应对各种数学题目。
下面将分享一些高中数学解题的方法和技巧。
一、审题小技巧在解数学题时,首先要仔细审题,弄清题目要求,了解题目的背景和条件。
可以通过画图、列式、设未知数等方法来帮助理解题意。
在审题的过程中,还要留意题目中可能存在的陷阱,避免盲目下结论,导致答案错误。
二、掌握基本公式在解各类数学题目时,必须牢记数学公式和定理,特别是几何相关的公式。
比如勾股定理、正弦定理、余弦定理等,熟练掌握这些公式可以帮助快速解题。
此外,也要了解各种基本函数的性质和相关公式,比如指数函数、对数函数等。
三、灵活应用解题方法不同的数学题目有不同的解题方法,要根据题目的特点灵活选择解题方法。
常见的解题方法包括代数法、几何法、逆向思维法等。
在解题时,可以通过分析题目的结构和特点,找到合适的解题思路,避免强行使用错误的方法。
四、建立数学思维数学是一门逻辑性很强的学科,要培养自己的数学思维,善于归纳总结问题的解题方法。
通过做大量的练习题,建立起对数学问题的敏感度和思维习惯,能够更好地理解问题并迅速解决。
五、合理规划解题步骤在解数学题时,要合理规划解题步骤,按部就班地进行,不要操之过急。
可以先从简单的问题入手,逐步提高难度,慢慢适应和掌握各类题型。
在解题过程中,注意化繁为简,将复杂的问题拆分为易解的小问题。
六、多角度思考问题解数学题时,可以从多个角度分析问题,思考不同的解题思路。
有时候换一种思维方式可能会得到不同的答案,所以要保持思维的开放性和灵活性,善于尝试不同的解题方法。
七、勤于总结经验在解题过程中,要勤于总结解题的经验和方法,将解题技巧归纳为思维模式,形成自己的解题体系。
通过总结提炼,逐步提高解题的效率和准确性,为将来更复杂的数学问题做好准备。
总之,高中数学解题并不难,只要掌握了正确的方法和技巧,积极学习并不断练习,相信每位同学都能够在数学领域取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录前言 (2)第一章高中数学解题基本方法 (3)一、配方法 (3)二、换元法 (7)三、待定系数法 (14)四、定义法 (19)五、数学归纳法 (23)六、参数法 (28)七、反证法 (32)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想 (35)二、分类讨论思想 (41)三、函数与方程思想 (47)四、转化(化归)思想 (54)第三章高考热点问题和解题策略 (59)一、应用问题 (59)二、探索性问题 (65)三、选择题解答策略 (71)四、填空题解答策略 (77)附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。
而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。
数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。
可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。
为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。
最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。
在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。
再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。
巩固性题组旨在检查学习的效果,起到巩固的作用。
每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。
第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x=(x+1x)2-2=(x-1x)2+2 ;……等等。
Ⅰ、再现性题组:1. 在正项等比数列{an }中,a1♦a5+2a3♦a5+a3∙a7=25,则 a3+a5=_______。
2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。
A. 14<k<1 B. k<14或k>1 C. k∈R D. k=14或k=13. 已知sin4α+cos4α=1,则sinα+cosα的值为______。
A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x2+5x+3)的单调递增区间是_____。
A. (-∞, 54] B. [54,+∞) C. (-12,54] D. [54,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____。
【简解】 1小题:利用等比数列性质am p-am p+=am2,将已知等式左边后配方(a3+a5)2易求。
答案是:5。
2小题:配方成圆的标准方程形式(x -a)2+(y -b)2=r 2,解r 2>0即可,选B 。
3小题:已知等式经配方成(sin 2α+cos 2α)2-2sin 2αcos 2α=1,求出sin αcos α,然后求出所求式的平方值,再开方求解。
选C 。
4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。
选D 。
5小题:答案3-11。
Ⅱ、示范性题组:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。
A. 23 B. 14 C. 5 D. 6【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则211424()()xy yz xz x y z ++=++=⎧⎨⎩,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式可得。
【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211424()()xy yz xz x y z ++=++=⎧⎨⎩。
长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=6112-=5所以选B 。
【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。
这也是我们使用配方法的一种解题模式。
例2. 设方程x 2+kx +2=0的两实根为p 、q ,若(p q )2+(q p)2≤7成立,求实数k 的取值范围。
【解】方程x 2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 , (p q )2+(q p )2=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 22484--≤7, 解得k ≤-10或k ≥10 。
又 ∵p 、q 为方程x 2+kx +2=0的两实根, ∴ △=k 2-8≥0即k ≥22或k ≤-22综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。
【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。
本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。
假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。
例3. 设非零复数a 、b 满足a 2+ab +b 2=0,求(a a b +)1998+(b a b+)1998 。
【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a b=ω (ω为1的立方虚根);或配方为(a +b)2=ab 。
则代入所求式即得。
【解】由a 2+ab +b 2=0变形得:(a b )2+(a b)+1=0 , 设ω=a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a,ω3=ω3=1。
又由a 2+ab +b 2=0变形得:(a +b)2=ab ,所以 (a a b +)1998+(b a b+)1998=(a ab 2)999+(b ab 2)999=(a b )999+(b a )999=ω999+ω999=2 。
【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。
一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。
【另解】由a 2+ab +b 2=0变形得:(a b )2+(a b )+1=0 ,解出b a =-±132i 后,化成三角形式,代入所求表达式的变形式(a b )999+(b a)999后,完成后面的运算。
此方法用于只是未-±132i 联想到ω时进行解题。
假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2=0解出:a =-±132i b ,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。
Ⅲ、巩固性题组:1. 函数y =(x -a)2+(x -b)2 (a 、b 为常数)的最小值为_____。
A. 8 B. ()a b -22 C. a b 222+ D.最小值不存在2. α、β是方程x 2-2ax +a +6=0的两实根,则(α-1)2 +(β-1)2的最小值是_____。
A. -494B. 8C. 18D.不存在3.已知x、y∈R+,且满足x+3y-1=0,则函数t=2x+8y有_____。