试讲PPT-基本放大电路(第1部分).
合集下载
基本放大电路-课件
EXIT
模拟电子技术
一、特点及主要技术指标
特点
功率放大电路是一种能够向负载提供足够大的功
率的放大电路。因此,要求同时输出较大的电压和电
无
流。 管子工作在接近极限状态。一般直接驱动负载,
锡 职
带载能力要强。
业
技
术 学
主要技术指标
院
(1)最大输出功率Pom :在电路参数确定的情况下负载
可能获得的最大交流功率。
T2 +
uo
–
优点:具有良好的低 频特性,可以放大缓慢 变化的信号;无大电容 和电感,容易集成。
缺点:静态工作点相 互影响,分析、计算、 设计较复杂;存在零 点漂移。
EXIT
模拟电子技术
2.阻容耦合
优点:直流通路是相互独
+Vcc 立的,电路的分析、计算
无 锡 职 业 技 术 学 院
Rb11 C1
Rs
EXIT
模拟电子技术
由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。
截止失真
无 锡 职 业 技 术 学 院
注意:对于PNP管,由于是负电源供电,失真的 表现形式,与NPN管正好相反。
EXIT
模拟电子技术
四、放大电路的动态参数
1.交流通路
交流电流流经的通路,用于动态分析。对于交流通路:
(2)转换效率 :最大输出功率与电源提供的功率之比,
即
= Pom / PV
EXIT
模拟电子技术
思考题1:功率放大电路与前面介绍的电
压放大电路有本质上的区别吗?
无本质的区别,都是能量的控制与转换。不同
之处在于,各自追求的指标不同:电压放大电路
基本放大电路ppt课件
首先,画出直流通路;在输入特性曲线上,作出直线VBE =VCC-IBRb,
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态
电
压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态
电
压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。
第02章基本放大电路(第1部分)PPT课件
+Cb2
T
+
Rc
RL uo
VCC
-
基本放大电路的习惯画法
Cb1
+
+
Rb u
i
- VBB
+
Cb2
T
+
Rc
RL
u o
VCC
-
Rb
Cb1
+
+
u i
-
+
+VCC Rc
Cb2
T
+
RL
u o
-
2.2.2.设置静态工作点的必要性
一、静态工作点——Ui=0时电路的工作状态
由于电源的
存在,电路
中存在一组 R b1
放大作用,电路核心
+
ui -
VBB
IC
Rc
Rb
T+
VCC
IB
uo
•
-
IC
IB
T
+
+
Rb
+
Rc
UCE
uo
VBB
UBE
VCC
ui
-
-
-
IC
IB
T
+
+ Rb
+
UCE
ui VBB
UBE
-
-
-
+
Rc
uo
R
VCC
L
-
耦合电容: 电解电容,有极性,
大小为10F~50F
Cb1+
+
+
Rb ui - VBB
+
放大电路的基础(共10张PPT)
输 耦 放大电路的输出相当于负载的信号源,该信号源的内阻称为电路的输出电阻。
us — 信号源电压
入 us — 信号源电压
合
信 电 Ro 越小,uot 和 uo 越接近。
4 us = 20 mV,Rs = 600 ,比较不同 Ri 时的 ii 、ui。
号 路 将输入信号源与放大器输入端进行连接。
us — 信号源电压
RS +
+ ui
Ri
us –
–
1
R+o uot
RL
–
+ uo
–
2
计算:
Ro
u i
us RL
0
测量:
1
RS us =0
1
uo
uotRL Ro RL
Ro
(uot uo
1)RL
放大 电路
2i
+ u
–
2 Ro
uot — 负载开路时的输出电压;
uo — 带负载时的输出电压, Ro 越小,uot 和 uo 越接近。
uo — 输出电压
ii — 输入电流
io — 输出电流
1.2 放大电路的主要性能指标
1 ii
io 2
R + 放大 us — 信号源电压
S
+ u Au = uo/ui
i
u 电路 – 4 us = 20 mV,Rs = 600
Au = uo/ui
,比较不同 Rsi 时的 ii 、ui。
– 放大电路的输出相当于负载的信号源,该信号源的内阻称为电路的输出电阻。
1 Au = uo/ui
1、 放大倍数 ( f ) — 相频特性
RL 2
基本放大电路PPT课件以NPN管共射为例
(2)静态参数:静态工作点Q点。
NO.2 放大电路的2种工作状态
1、静态 ——放大电路没有输入信号,即Ui=0。
(3)静态工作点:放大电路输入电压Ui为零时,晶体管各极 的电流和管压降称为静态工作点Q,记做 IBQ、 ICQ( IEQ )、 UBEQ 和 UCEQ 。
NO.2 放大电路的2种工作状态
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
RC +C2
C1
+
V
+
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
Us和Rs:输入信号源的等效电路
Us:信号源电压,通常是正弦交流信号
VCC
Rs:信号源内阻
Ui:放大器的输入电压
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
• ①直接耦合(静态工作点易受影响,输入信号在 Rb上有压降损失) • ②阻容耦合(隔离输入输出与电路的直流联系,同时能使交流信号
顺利输入输出。)
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成:
RC +C2
C1 +
V
VCC +
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
不看输入端与输出端,先分析三极管共射放大电路(直流电源+偏置电阻)。
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成 (3)常用的偏置电路
• 固定偏置电路(不能稳定Q点) • 分压式偏置电路(能稳定Q点)
NO.2 放大电路的2种工作状态
1、静态 ——放大电路没有输入信号,即Ui=0。
(3)静态工作点:放大电路输入电压Ui为零时,晶体管各极 的电流和管压降称为静态工作点Q,记做 IBQ、 ICQ( IEQ )、 UBEQ 和 UCEQ 。
NO.2 放大电路的2种工作状态
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
RC +C2
C1
+
V
+
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
Us和Rs:输入信号源的等效电路
Us:信号源电压,通常是正弦交流信号
VCC
Rs:信号源内阻
Ui:放大器的输入电压
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
• ①直接耦合(静态工作点易受影响,输入信号在 Rb上有压降损失) • ②阻容耦合(隔离输入输出与电路的直流联系,同时能使交流信号
顺利输入输出。)
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成:
RC +C2
C1 +
V
VCC +
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
不看输入端与输出端,先分析三极管共射放大电路(直流电源+偏置电阻)。
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成 (3)常用的偏置电路
• 固定偏置电路(不能稳定Q点) • 分压式偏置电路(能稳定Q点)
基本放大电路图教学课件PPT
• (b) Use Multi-sim to verify your results in part (a).
2.6 基本放大电路的派生电路
• 1 复合管 • 2 阻容耦合复合管共射放大电路 • 3 阻容耦合复合管共集放大电路
4 共射-共基放大电路的交流通路 5 共集-共基放大电路的交流通路
1. 复合管
1.FET的几种应用方式:
• ⑴.FET开关电路 • ⑵.FET放大元件 • ⑶.FET压控电阻: • ⑷.FET恒流源电路:
2.自生柵偏压JFET Amp.
Ci
ui
Rg
Vdd
Rd
CO
+
Rs
-
uo
CS
JFET Amp.静态分析
• DC通路计算Q:
UGS
JFET Amp.动态分析
AC通路计算Q:
Cc
Rs
Cb
us ∽
Re
uo RL
⑴.共集放大电路的直流通路和交流通路
Rb Re
直流通路
Rb
Rs
Re
RL
交流通路
共集放大电路的交流通路
Rs
Rb
Rc
RL
⑵.共集放大电路的RO等效电路
Rs Rb
Us=0 -
Re uo
⑶. 基本共集放大电路的交流等效电路
直接耦合
Rb
⑷.共集放大电路的输出电阻
Rs Rb
Ro
共集Amp.的性能特点:
• ⑴.无电压放大作用; • ⑵.有电流放大能力;
• ⑶.Ri 较大; • ⑷.Ro较小;
• ⑸.输出跟隨输入改变;
p.205
2.共基放大电路
C1
RS Re
Rb1
2.6 基本放大电路的派生电路
• 1 复合管 • 2 阻容耦合复合管共射放大电路 • 3 阻容耦合复合管共集放大电路
4 共射-共基放大电路的交流通路 5 共集-共基放大电路的交流通路
1. 复合管
1.FET的几种应用方式:
• ⑴.FET开关电路 • ⑵.FET放大元件 • ⑶.FET压控电阻: • ⑷.FET恒流源电路:
2.自生柵偏压JFET Amp.
Ci
ui
Rg
Vdd
Rd
CO
+
Rs
-
uo
CS
JFET Amp.静态分析
• DC通路计算Q:
UGS
JFET Amp.动态分析
AC通路计算Q:
Cc
Rs
Cb
us ∽
Re
uo RL
⑴.共集放大电路的直流通路和交流通路
Rb Re
直流通路
Rb
Rs
Re
RL
交流通路
共集放大电路的交流通路
Rs
Rb
Rc
RL
⑵.共集放大电路的RO等效电路
Rs Rb
Us=0 -
Re uo
⑶. 基本共集放大电路的交流等效电路
直接耦合
Rb
⑷.共集放大电路的输出电阻
Rs Rb
Ro
共集Amp.的性能特点:
• ⑴.无电压放大作用; • ⑵.有电流放大能力;
• ⑶.Ri 较大; • ⑷.Ro较小;
• ⑸.输出跟隨输入改变;
p.205
2.共基放大电路
C1
RS Re
Rb1
共射极基本放大电路-ppt课件全
稳定电路的静态工作点。
上一页 下一页 返回
共射极基本放大电路
(2) 静态工作点的估算
直流通路如图(b)所示。
当三极管工作在放大区时,IBQ很小。当满
足I1>>IBQ时,I1≈I2,则有:
UBQ Rb1Rb2Rb2VCC
IEQ
UB
UBEQ Re
IC Q IEQ
I BQ
I CQ
U CE V Q C C IC(R Q c R e)
IBS
ICS
VCC
Rc
上一页
下一页
返回
共射极基本放大电路 4. 动态分析
所谓动态,是指放大电路输入信号ui不为零
时的工作状态。当放大电路中加入正弦交流信号
ui时,电路中各极的电压、电流都是在直流量的
基础上发生变化,即瞬时电压和瞬时电流都是由 直流量和交流量叠加而成的。
上一页 下一页 返回
共射极基本放大电路
共射极基本放大电路
1) 保证三极管工作在放大区 2) 保证信号有效的传输 2. 放大电路中电压、电流的方向及符号规定 1) 电压、电流正方向的规定 为了便于分析,规定:电压的正方向都以输入、 输出回路的公共端为负,其他各点均为正;电流方 向以三极管各电极电流的实际方向为正方向。
上一页 下一页 返回
1. 静态图解法
以图7(a)所示共射放大电路为例,分析静态时,电容C1和
C2视为开路,这时电路可画成图7(b)所示的直流通路。三极管
的静态工作点的四个量,在基极回路中有IBQ和UBEQ,在集电极
回路中有ICQ和UCEQ,下面分别进行讨论。
上一页 下一页 返回
共射极基本放大电路
返回
共射极基本放大电路
基本放大电路教学课件1
结论:
(3) 若参数选取得当,输出电压可比输入电压大, 即电路具有电压放大作用。
ui
uo
O
t
O
t
(4) 输出电压与输入电压在相位上相差180°, 即共发射极电路具有反相作用。
1. 实现放大的条件
(1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。
(2) 正确设置静态工作点,使晶体管工作于放大 区。
——静态工作点Q:IB、IC、UCE 。 分析方法:估算法、图解法。
分析对象:各极电压电流的直流分量。
所用电路:放大电路的直流通路。
设置Q点的目的: (1) 使放大电路的放大信号不失真; (2) 使放大电路工作在较佳的工作状态,静态是
动态的基础。
1. 用估算法确定静态值
1. 直流通路估算 IB 由KVL: UCC = IB RB+ UBE
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
EB
iE
+ uo –
共发射极基本电路
+ EC
–
RS +
es –
RB C1
+ + ui
–
RC
+UCC +C2
iB iC + + TuCE + uB–E – RL uo
iE
–
单电源供电时常用的画法
共射放大电路的电压放大作用
es –
C1 +
+
ui + ––
iB iC + + TuCE
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 通频带 A Am 0.7Am
放大倍数随频率 变化曲线——幅 频特性曲线
3dB带宽 fL 下限截 止频率 上限截 fH 止频率 f
通频带: fbw=fH–fL
5. 非线性失真系数D
定义:输出波形中的谐波成分总量与基波成分之比。 设基波幅值为A1,谐波幅值分别为A2 、A3 、…,则
A2 2 A3 2 D ( ) ( ) A1 A1
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
输出电阻的定义:
uo Ro = io
RL ,
us 0
输出电阻是表明放大电路带负载能力的,Ro越
小,放大电路带负载的能力越强,反之则差。
A
放大电路
RO
+
~ uo
-
+
uo
Ro B
RL
负载
RL uO uo RL RO uo RO ( 1) RL uo
uCE uo
(2)Q点过低→信号进入截止区
iC
信号波形
uCE uo 称为截止失真
(3)Q点过高→信号进入饱和区
iC 信号波形
称为饱和失真 uCE uo
截止失真和饱和失真 统称“非线性失真”
回顾复习---基本共射放大电路的工作原理
1、基本共射放大电路的组成及各元件的作用
2、设置静态工作点的必要性以及估算 3、放大电路的分析方法
+ VC C
R b1 Rc
IBQ
ICQ
Cb 2
Cb 1
+
UBEQ I EQ
-
ui=0时
ui -
+
T+
-
UCEQ
uo RL -
.
+
由于(IBQ,UBEQ) 和( ICQ,UCEQ )分别对应于输入、输 出特性曲线上的一个点,所以称为静态工作点。
IB IBQ Q UBE UBEQ
IC
ICQ
Q
IB UCE
交流负载线的作法:
直流负载线方程: U CE VCC I C RC 斜 率为-1/RC
iC RL 交流负载线方程: uCE VCC
(1)先作直流负载线。
(0, VCC ) RC
斜 率为-1/R'L
( R'L=RL∥Rc)
iC
(2)再作交流负载线。
斜 率为-1/R'L
) iC RL uCE (UCEQ ICQ RL
直流
UCEQ 6V
M(VCC,0) (12 , 0)
uCE (V)
工作点
IB=40μA IC=1.5mA UCEQ=6V
二. 用图解法分析放大器的动态工作情况
1. 交流放大原理(设输出空载) iB 静态工作点 iC
ib
ic
ib
Q
ui
uBE
iCE
uce
假设在静态工作点的基础上,输 入一微小的正弦信号 ui
ui Rb +
ic iC ICQ
( 2)
uce uCE UCEQ (3)
uCE UCEQ (iC I CQ ) RL ) iC RL uCE (UCEQ ICQ RL
iC RL ( 4) uCE VCC
其中:
UCEQ I CQ RL VCC
直流通路和交流通路 静态分析(求静态工作点Q点)----图解法
2.4 放大电路的交流模型分析法
思路:将非线性的BJT等效成一个线性电路
条件:交流小信号
ic ib
+
T
+
+
ib
+
ic 二端口 网络 u ce +
+
u be +
u ce +
u be + -
+
+
+
1、简化的h参数等效电路
得三极管简化的h参数等效电路。
uo +
RL
负载
放大——把微弱的电信号的幅度放大。
一个微弱的电信号通过放大器后,输出电压或电流的幅值
得到了放大,但它随时间变化的规律不能变,即不失真。
二.放大电路的主要技术指标
1.放大倍数——表示放大器的放大能力
根据放大电路输入信号的条件和对输出信号的要求,放大器可分为四种
类型,所以有四种放大倍数的定义。
第二章 基本放大电路
2.1 放大电路的基本概念及性能指标 2.2 单管共射放大电路的工作原理 2.3 放大电路的图解分析法 2.4 放大电路的模型分析法 2.5 共集和共基放大电路及BJT电流源电路
2.1 放大电路的概念及主要性能指标
一.放大的概念
ii
+
io
+
RS uS 信号源
+
+
+
ui +
放大电路
VCC (0, ) RC
Q(U
CEQ
, ICQ )
注意:
uCE , 0) (VCC , 0) (VCC
(1)交流负载线是有交流 输入信号时工作点的运动轨迹。
(2)空载时,交流负载线与直流负载线重合。
4.非线性失真与Q的关系 (1)合适的静态工作点 iC ib 可输出 的最大 不失真 信号
Cb1
+
+Cb2 +
+
T
+
ui +
Rb VBB
Rc RL VCC
uo -
基本放大电路的习惯画法
Cb1
+
Cb2 T
+
+
ui +
Rb VBB
Rc RL VCC
uo Rb Cb1
+
Rc T
+VCC Cb2
+
+
ui +
RL
uo -
2.2.2.设置静态工作点的必要性
一、静态工作点——Ui=0时电路的工作状态 由于电源的 存在,电路 中存在一组 直流量。
UCEQ
二、 静态工作点的估算
将交流电压源短路,将电容开路。 画出放大电路的直流通路
直流通路的画法:
+ VC C
R b1 Cb 1 Rc Cb 2
ui -
+
T
开路
开路 +
uo RL -
.
用估算法分析放大器的静态工作点 ( IBQ、UBEQ、ICQ、UCEQ)
画直流通路:
+ VC C
R b1 Rc
uCE VCC ( ICQ IC )RC
(VCC ICQ RC ) IC RC
IC +△IC I B +△IB T Rb
+ +
+△UCE UCE
+
(VCC ICQ RC ) (IC RC ) UCEQ (IC RC )
uo IC RC ic RC
注意:uce与ui反相!
各点波形
+ VC C
Rc Cb 2
uo
iB
iC
R b1 Cb 1
uCE
ui
uo比ui幅度放大且相位相反
2. 交流放大原理(输出端加负载)
+ VC C
R b1 Cb 1 Rc Cb 2
ui -
+
T
uo RL -
.
+
画出交流通路
+
+
T Rc RL
+
ui R b +
u
o
-
+
+
ic ib
+
T
+
+
+
+
b
ib rbe
e
Hale Waihona Puke icc+
u be +
u ce +
+
+
u be +
β i b u ce +
26mV r 其中: be=200 (1 β ) I E (mA)
2. 放大器的交流分析(动态分析)
1. 画出放大器的微变等效电路
(1)画出放大器的交流通路 (2)将交流通路中的三极管用h参 数等效电路代替
6. 最大不失真输出电压
定义:当输入电压再增加就会使输出波形产生非线性失真时 的输出电压。
有效值:
最大值: 峰峰值:
U om
2U om
Uopp
U opp 2 2U om
7. 最大输出功率与效率
定义1:在输出信号不失真的情况下,负载上能够获得的最 大功率 Pom 。 定义2:最大输出功率 Pom与直流电源提供的总功率 P V 之比。
2.3.1 直流通路与交流通路
直流通路
交流通路
Rb Cb1
+
Rc T
+VCC Cb2
+
+
ui +
RL
uo -
直流通路
交流通路
2.3.2. 图解法 一、 用图解法分析放大器的静态工作点 Rb 150KΩ 直流负载线 斜率:
K= tg
i C (mA)
iC
+
uCE
—
VCC
RC
VCC
VBB
ui