九年级数学一元二次方程-PPT课件
合集下载
苏教版九年级数学上册《一元二次方程》课件(共19张PPT)
谢谢观赏
You made my day!
我们,还在路上……
2x22x240
x2 20
2x21x9 2 40
5x21x02.20
2x22x240
能用一个一般形式表示一元二次方程吗?
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0)
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2bx的c形式0,我们把
ax2bxc0
(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
一次项系数
二次项系数
为什么要 限制a≠0
a
x
2
+
b
x
+
c
=
0
,b,c可 (a、b、c为常数且a ≠ 0)
以为零吗 a x 2 叫
?
二次项
b x叫一次项
c叫常数项
即学即用
指出下列方程的二次项、一次项和常数项及它们的系数:
x2 2
x(192x)24
整式方程, 然后整理看 是否符合另 外两个条件.
(5 ).x 2 3 ( x 1 )( x 2 )
(6 ).ax 2 b x c 0
(7 ).m x 2 0 ( m 为 不 等 于 0 的 常 数 )
把情境中的四个一元二次方程化简为右 边为0的形式
x2 20
2x21x9 2 40
5x21x02.20
解:根据勾股定理,得
x2(x1)2 52
x2 2
x(192x)24
5(1x)2 7.2
x2(x1)2 52 这四个方程是不是一元一次方程?有何特点?
?
You made my day!
我们,还在路上……
2x22x240
x2 20
2x21x9 2 40
5x21x02.20
2x22x240
能用一个一般形式表示一元二次方程吗?
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0)
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2bx的c形式0,我们把
ax2bxc0
(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
一次项系数
二次项系数
为什么要 限制a≠0
a
x
2
+
b
x
+
c
=
0
,b,c可 (a、b、c为常数且a ≠ 0)
以为零吗 a x 2 叫
?
二次项
b x叫一次项
c叫常数项
即学即用
指出下列方程的二次项、一次项和常数项及它们的系数:
x2 2
x(192x)24
整式方程, 然后整理看 是否符合另 外两个条件.
(5 ).x 2 3 ( x 1 )( x 2 )
(6 ).ax 2 b x c 0
(7 ).m x 2 0 ( m 为 不 等 于 0 的 常 数 )
把情境中的四个一元二次方程化简为右 边为0的形式
x2 20
2x21x9 2 40
5x21x02.20
解:根据勾股定理,得
x2(x1)2 52
x2 2
x(192x)24
5(1x)2 7.2
x2(x1)2 52 这四个方程是不是一元一次方程?有何特点?
?
人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
华师大版九年级数学上册《一元二次方程》课件(14张PPT)
谢谢观赏
You made my day!
我们,还在路上……
20.根据问题,列出关于x的方程:在圣诞节到来之际,九(3)班所 有的同学准备送贺卡相互祝贺,所有同学送完后共送了1 640张, 求九(3)班有多少同学? 解:设九(3)班有x名同学,根据题意,得x(x-1)=1640
21.k为何值时,关于x的方程(k+3)(k-1)x2+(k-1)x+5=0. (1)是一元一次方程? 解:∵(k+3)(k-1)=0且k-1≠0,∴k=-3.即当k=-3时, 原方程是一元一次方程 (2)是一元二次方程? 解:∵(k+3)(k-1)≠0,∴k≠-3且k≠1.即当k≠-3且k≠1时, 原方程是一元二次方程
22.1 一元二次方程
1.只含有一个未知数,并且未知数的最高次数是__2__的整式 方程,叫做一元二次方程.
2.判断一个方程是否是一元二次方程,必须满足下列条件:(1) 是___整__式___方程;(2)只含有一个未知数;(3)未知数的最高次数 是__2__;(4)二次项系数不能为__0__.
3.关于 x 的一元二次方程的一般形式是 ax2+bx+c=0(a,b, c 是已知数,a≠0),其中___a_是二次项系数,__b__是一次项系 数;__c__是常数项.注意:“a≠0”是一元二次方程一般形式 的一个重要组成部分.
A.x(3x-4)=0
B.5x2=x(1-2x)源自C.(2x+1)(1-x)=0 D.x(1-x)=x
知识点3:一元二次方程的根
7.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值
是(A )
A.-3
B.3
C.0
D.0或3
8.(1)(2014·哈尔滨)若x=-1是关于x的一元二次方程x2+3x+
You made my day!
我们,还在路上……
20.根据问题,列出关于x的方程:在圣诞节到来之际,九(3)班所 有的同学准备送贺卡相互祝贺,所有同学送完后共送了1 640张, 求九(3)班有多少同学? 解:设九(3)班有x名同学,根据题意,得x(x-1)=1640
21.k为何值时,关于x的方程(k+3)(k-1)x2+(k-1)x+5=0. (1)是一元一次方程? 解:∵(k+3)(k-1)=0且k-1≠0,∴k=-3.即当k=-3时, 原方程是一元一次方程 (2)是一元二次方程? 解:∵(k+3)(k-1)≠0,∴k≠-3且k≠1.即当k≠-3且k≠1时, 原方程是一元二次方程
22.1 一元二次方程
1.只含有一个未知数,并且未知数的最高次数是__2__的整式 方程,叫做一元二次方程.
2.判断一个方程是否是一元二次方程,必须满足下列条件:(1) 是___整__式___方程;(2)只含有一个未知数;(3)未知数的最高次数 是__2__;(4)二次项系数不能为__0__.
3.关于 x 的一元二次方程的一般形式是 ax2+bx+c=0(a,b, c 是已知数,a≠0),其中___a_是二次项系数,__b__是一次项系 数;__c__是常数项.注意:“a≠0”是一元二次方程一般形式 的一个重要组成部分.
A.x(3x-4)=0
B.5x2=x(1-2x)源自C.(2x+1)(1-x)=0 D.x(1-x)=x
知识点3:一元二次方程的根
7.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值
是(A )
A.-3
B.3
C.0
D.0或3
8.(1)(2014·哈尔滨)若x=-1是关于x的一元二次方程x2+3x+
初三数学中考专题复习 一元二次方程 课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
解一元二次方程ppt课件
21.2 解一元二次方程
重
难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根
读
C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.
解
[解题思路] 按照下面的顺序进行求解.
读
[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-
;
(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程
考
点
21.2.1 配 方 法
清
单 ■考点一 直接开平方法
解
读
原理 根据平方根的意义进行“降次”,转化为一元一次方程求解
人教版初中数学九年级上册一元二次方程课件PPT
18m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?
8m
18m2
5mቤተ መጻሕፍቲ ባይዱ
解:设所求的宽度为xm,则中间地毯的宽表示为_(_5_-_2_x_)_m___,长表示为__(_8_-_2_x_)m_, 则方程列为_(_8_-_2_x_)_(_5_-_2_x_)=__1_8 ,整理得__4_x_2_-_2_6_x_+_2_2__=__0__.
★ 知识拓展
1)若a b c 0,则一元二次方程ax2 bx c 0必有一解为 1.
2)若a b c 0,则一元二次方程ax2 bx c 0必有一解为-1. 3)若4a 2b c 0,则一元二次方程ax2 bx c 0必有一解为 2.
随堂训练
例5 已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1, 求a+b+c的值.
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
知识讲解
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
新课导入
变式:
桌上有一张矩形纸片,长25cm,宽15cm,在它的四角各剪去一个同样的
正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制
作的无盖方盒的底面积为300cm2,那么纸片各角应剪去的正方形边长为多
少厘米?
设剪去的正方形边长为x cm,则无盖方盒的底面的长为(25-2x) cm , 宽为( 15-2x ) cm ,根据题意,可列方程为
8m
18m2
5mቤተ መጻሕፍቲ ባይዱ
解:设所求的宽度为xm,则中间地毯的宽表示为_(_5_-_2_x_)_m___,长表示为__(_8_-_2_x_)m_, 则方程列为_(_8_-_2_x_)_(_5_-_2_x_)=__1_8 ,整理得__4_x_2_-_2_6_x_+_2_2__=__0__.
★ 知识拓展
1)若a b c 0,则一元二次方程ax2 bx c 0必有一解为 1.
2)若a b c 0,则一元二次方程ax2 bx c 0必有一解为-1. 3)若4a 2b c 0,则一元二次方程ax2 bx c 0必有一解为 2.
随堂训练
例5 已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1, 求a+b+c的值.
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
知识讲解
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
新课导入
变式:
桌上有一张矩形纸片,长25cm,宽15cm,在它的四角各剪去一个同样的
正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制
作的无盖方盒的底面积为300cm2,那么纸片各角应剪去的正方形边长为多
少厘米?
设剪去的正方形边长为x cm,则无盖方盒的底面的长为(25-2x) cm , 宽为( 15-2x ) cm ,根据题意,可列方程为
一元二次方程课件ppt
• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
人教版九年级上册 第二十一章 21.1 一元二次方程 课件(共25张PPT)
m_≠__±__1__时,它是一元二次方程;当m_=_1____时,它是 一元一次方程。
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
一元二次方程ppt课件
定义
一元二次方程是一个整式方程, 其一般形式为ax^2 + bx + c = 0 ,其中a、b、c是常数,且a≠0。
解释
一元二次方程只含有一个未知数, 并且未知数的最高次数是2。
举例
如2x^2 + 3x - 4 = 0,3x^2 - 5x + 2 = 0等。
一元二次方程的一般形式
形式
ax^2 + bx + c = 0,其中a、b 、c是常数,且a≠0。
判断下列哪个方程有两个不相 等的实数根,并说明理由: x^2 + 2x + 1 = 0
综合练习题
对于任何一个一元二次方程,如 何判断它的根的情况?
根据一元二次方程的特点,如何 利用配方法求解其根?
对于一个一元二次方程,如果它 的根的判别式小于0,那么这个
方程有什么特点?
CHAPTER 07
总结与回顾
• 如果Δ>0,方程有两个不同的实数解;
根的判别式的性质
• 如果Δ=0,方程有两个相同的实 数解;
• 如果Δ<0,方程没有实数解。
根的判别式的应用
通过根的判别式,我们可以快速判断一元二次方程的实数解的情况,不 需要求解方程。
在数学、物理、工程等领域中,根的判别式被广泛应用于解决涉及二次 方程的问题。
加强对一元二次方程的应用,结合实际 生活和相关学科,拓展应用领域。
进一步学习其他数学知识和方法,为后 培养自主学习和终身学习的意识,不断
续学习和工作打下坚实的基础。
学习和进步。
THANKS FOR WATCHING
感谢您的观看
公式法
通过配方法或公式法求解。
求根公式法
当Δ=b^2-4ac≥0时,方程有 实数解。此时,x=(b±√Δ)/(2a)。
一元二次方程是一个整式方程, 其一般形式为ax^2 + bx + c = 0 ,其中a、b、c是常数,且a≠0。
解释
一元二次方程只含有一个未知数, 并且未知数的最高次数是2。
举例
如2x^2 + 3x - 4 = 0,3x^2 - 5x + 2 = 0等。
一元二次方程的一般形式
形式
ax^2 + bx + c = 0,其中a、b 、c是常数,且a≠0。
判断下列哪个方程有两个不相 等的实数根,并说明理由: x^2 + 2x + 1 = 0
综合练习题
对于任何一个一元二次方程,如 何判断它的根的情况?
根据一元二次方程的特点,如何 利用配方法求解其根?
对于一个一元二次方程,如果它 的根的判别式小于0,那么这个
方程有什么特点?
CHAPTER 07
总结与回顾
• 如果Δ>0,方程有两个不同的实数解;
根的判别式的性质
• 如果Δ=0,方程有两个相同的实 数解;
• 如果Δ<0,方程没有实数解。
根的判别式的应用
通过根的判别式,我们可以快速判断一元二次方程的实数解的情况,不 需要求解方程。
在数学、物理、工程等领域中,根的判别式被广泛应用于解决涉及二次 方程的问题。
加强对一元二次方程的应用,结合实际 生活和相关学科,拓展应用领域。
进一步学习其他数学知识和方法,为后 培养自主学习和终身学习的意识,不断
续学习和工作打下坚实的基础。
学习和进步。
THANKS FOR WATCHING
感谢您的观看
公式法
通过配方法或公式法求解。
求根公式法
当Δ=b^2-4ac≥0时,方程有 实数解。此时,x=(b±√Δ)/(2a)。
认识一元二次方程PPT课件
感悟新知
1 方程x2+x-12=0的两个根为( ) A.x1=-2,x2=6 B.x1=-6,x2=2 C.x1=-3,x2=4 D.x1=-4,x2=3
知3-练
感悟新知
知3-练
2 若关于x的一元二次方程ax2+bx+c=0(a≠0)有 一个根为1,则下列结论正确的是( ) A.a+b+c=1 B.a-b+c=0 C.a+b+c=0 D.a-b+c=1
答:小青蛙比大青蛙少吃了__2_6__只虫子。
算一算,说一说。
54
61
36
70
2.用小棒摆一摆,算一算。
98
35
摆一摆略。
归纳总结:
计算两位数加、减整十数,先把两位数拆分成整十数和 一位数,再把整十数相加、减,最后和一位数相加。
(讲解源于《典中点》)
一共吃了多少只虫子?
易错辨析(选题源于《典中点》)
知2-讲
一般地,任何一个关于x的一元二次方程,经 过整理,都能化成如下形式:ax²+bx+c=0 (a≠0)这 种形式叫做一元二次方程的一般形式 . 特别提醒: a ≠ 0是方程ax2+bx+c=0 是关于x 的一元二次方程的 前提;反之,如果方程ax2+bx+c=0 是关于x 的一元 二次方程,则必隐含a≠0这一条件.
4.
55
86
18
24
96
65
6
78
作业 请完成《典中点》的“应用提升练”和“思 维拓展练”习题,具体内容见习题课件。
感悟新知
知1-讲
如图,一个长为10 m的梯子斜靠 在墙上,梯子 的顶端A处到地面的距离为8 m. 如果梯子的顶端沿 墙面下滑1 m,那么梯子的底端B在地面上滑动的距 离是多少米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.x2+x12=0
B.ax2+bx+c=0
C.(x-1)(x+2)=1 D.3x2-2xy-5y2=0
(2)(2011·武汉)若Ex1v,ax2l是ua一t元io二n次o方n程lyx.2+4x+3=0 的两个根,
ted 则wxit1xh2的A值s是p(ose).Slides for .NET 3.5 Client Profile 5.2
A.4
B.3
C.-4
D.-3
Copyright 2019-2019 Aspose Pty Ltd.
(3)(2011·潍坊)关于 x 的方程 x2+2kx+k-1=0 的根的情况描述正
确的是( )
A.k 为任何实数,方程都没有实数根
B.k 为任何实数,方程都有两个不相等的实数根
上一页
下一页
中考典例精析
解C法二o:pya=ri1g,hb=t -240,1c9=-1.2019 Aspose Pty Ltd.
b2-4ac=(-4)2-4×1×1=12>0.
x=4±2 12=2± 3,
x1=2+ 3,x2=2- 3.
上一页
下一页
中考典例精析
首页
方法总结:
解一元二次方程有以下几种方法:(1)直接开平方法;(2)配方法;
(3)公式法;(4)因式分解法.
解一元二次方程时,要注意根据方程的特点,选择适当的方法求解.
一般地,若方程左边是一E个v完a全lu平a方t式io,n右o边n是ly一. 个非负数或完全平方式 ted,w应i采th用A直s接p开o平s方e法.S;l若id能e因s式fo分r解.就N用E因T式3分.5解法C;li当e两nt种P方r法o都fi行le 5.2
考C点o五py列ri一g元h二t 2次0方1程9解-应2用01题9 Aspose Pty Ltd.
列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题步
骤一样,即审、找、设、列、解、答六步.
温馨提示:
在应用根与系数的关系时,一定要保证一元二次方程有实数根.
上一页
下一页
中考典例精析
首页
(1)(2011·兰州)下列方程中是关于 x 的一元二次方程的是( )
数根,即 x1=x2=-2ba;
(3)b2-4ac<0⇔一元二次方程 ax2+bx+c=0(a≠0)没有实数根.
温馨提示:
只有一元二次方程,E才v具a有lu根a的ti判on别式o.n因ly此.在逆用判别式时,一定 ted要w保it证h二A次s项p系o数s不e.等S于li零d.es for .NET 3.5 Client Profile 5.2
(C1)bo2-p4yacr>ig0h⇔t一2元0二1次9方-2程0a1x2+9bAx+scp=o0(sae≠0P)有ty两个L不td相. 等的
实数根,则
x1,2=-b±
b2-4ac
2a
;
(2)b2-4ac=0⇔一元二次方程 ax2+bx+c=0(a≠0)有两个相等的实
上一页
下一页
考点知识精讲
首页
x1=-p2+
-q+p22,x2=-p2-
-q+p22.
3 . 公 式 法 : 如 果 方 程 ax2 + bx + c =0 且 b2 - 4ac≥0 , 则 x =
-b± b2-4ac
2a
.
上一页
下一页
考点知识精讲
首页
4.因式分解法:若 ax2+bx+c=(ex+f)(mx+n),则 ax2+bx+c=0
ted次w方i程th.Aspose.Slides for .NET 3.5 Client Profile 5.2 (2)CB o由p一yr元ig二h次t方2程0根1与9系-2数0的1关9系A知sxp1xo2=scae=P3.ty Ltd.
(3)B ∵Δ=(2k)2-4(k-1)=4k2-4k+4=4(k-12)2+3 ∴无论 k 取何值,均有 Δ≥3,方程都有两个不相等的实数根.
考点知识精讲
首页
考点一 一元二次方程的定义
在整式方程中,只含有__一___个未知数,并且含未知数项的最高次数
是__2__,这样的整式方程叫一元二次方程,一元二次方程的标准形式是
___a_x_2_+__b_x_+__c_=__0_(_a_≠_0_)___.
考点二 一元二次方E程v的a常lu用a解ti法on only.
Copyright 2019-2019 Aspose Pty Ltd. 一元二次方程根与系数之间的关系
1.若关于 x 的一元二次方程 ax2+bx+c=0(a≠0)有两根分别为 x1、
x2,则 x1+x2=-ba,x1·x2=ca.
2.(简易形式)若关E于vxa的lu一a元t二io次n方o程nxl2+y.px+q=0 有两个根分别 ted w为ixt1h、xA2,s则pox1+sex2=.S-lpid,ex1s·xf2o= 3.5 Client Profile 5.2
的根为 x1=-fe,x2=-nm.
考点三一元二次方程根的判别式
关于 x 的一元二次E方v程aalux2+atbixo+nc=o0n(al≠y.0)的根的判别式为 b2-
ted w4acit,h一A般s用p符o号seΔ.表S示lid.es for .NET 3.5 Client Profile 5.2
首页
C.k为任何实数,方程都有两个相等的实数根
D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等
的实数根和有两个相等的实数根三种
【点拨】本组题考查一元二次方程的相关概念和解法.
Evaluation only.
【解答】(1)C 把(x-1)(x+2)=1 整理得 x2+x-3=0,是一元二
ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 1.直接开平方法:如果 x2=a(a≥0),则 x=± a,则 x1= a,x2=- a. 2.C配o方p法y:r如ig果hxt2+2p0x+1q9=-02且0p12-94qA≥0s,p则oxs+ep22P=-tyq+Lp2td2..
上一页
下一页
中考典例精析
首页
(2019·南京)解方程x2-4x+1=0.
【点拨】本题考查一元二次方程的解法.
【解答】解法一:移项,得 x2-4x=-1.
配方,得 x2-4x+4=-1+4,(x-2)2=3.
由此可得 x-2=± 3E. valuation only. ted witxh1=A2+sp3,osx2=e2.S-li3d.es for .NET 3.5 Client Profile 5.2