电磁场与电磁波第一章习题答案
1电磁场与电磁波第一章习题答案
1电磁场与电磁波第⼀章习题答案第⼀章习题解答1.2给定三个⽮量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2z a求:⑴⽮量A 的单位⽮量A a ;⑵⽮量A 和B 的夹⾓AB θ;⑶A ·B 和A ?B ⑷A ·(B ?C )和(A ?B )·C ;⑸A ?(B ?C )和(A ?B )?C解:⑴A a =A A(x a +2y a -3z a )⑵cos AB θ =A ·B /A BAB θ=135.5o⑶A ·B =-11, A ?B =-10x a -y a -4z a⑷A ·(B ?C )=-42(A ?B )·C =-42⑸A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a1.3有⼀个⼆维⽮量场F(r) =x a (-y )+y a (x),求其⽮量线⽅程,并定性画出该⽮量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值⾯⽅程。
解:等值⾯⽅程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +z e 在点P (2,-1,0)的梯度。
解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3y x a +182x 2y y a +z e z a 得ψ?=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平⾯x=0,y=0,z=0及z=2所包围的区域,设此区域的表⾯为S:⑴求⽮量场A 沿闭合曲⾯S 的通量,其中⽮量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x) ⑵验证散度定理。
电磁场与电磁波_课后答案(冯恩信_著)
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。
解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。
电磁场与电磁波课后答案第1章
第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。
解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。
(1)判断是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。
(2)三角形的面积求点到点的距离矢量及的方向。
解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。
解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。
解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设为一已知矢量,而,和已知,试求。
解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解(1)在直角坐标系中、、故该点的直角坐标为。
(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。
解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。
证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。
解在由、和围成的圆柱形区域,对矢量验证散度定理。
解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。
解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。
解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。
再求对此回路所包围的曲面积分,验证斯托克斯定理。
合工大电磁场与电磁波第一章习题答案
A ⋅∇f = ( r × ∇f ) ⋅∇f = ( ∇f × ∇f ) ⋅ r = 0 ,得证。
1-7 求函数ψ = x yz 的梯度及ψ 在点 M ( 2,3,1) 沿一个指定方向的方向导数,此方向上的
2
单位矢量 l = e x
0
3 4 5 + ey + ez 。 50 50 50
= ∇f ( r ) ⋅ r + f ( r ) ∇ ⋅ r
5
= f ' ( r ) ∇r ⋅ r + 3 f ( r ) r = f ' (r ) ⋅ r + 3 f (r ) r ' = rf ( r ) + 3 f ( r )
若使 ∇ ⋅ F = 0 ,即 rf
'
( r ) + 3 f ( r ) = 0 ,这是一阶微分方程,具体求解方法如下:
(2) ∇ ⋅ A = 4 − 2 x + 2 z ,
∇ ⋅ A M (1,1,3) = 8 ;
(3) A = xyzr = xyz xe x + ye y + ze z = x yze x + xy ze y + xyz e z
2 2 2
(
)
∇ ⋅ A = 2 xyz + 2 xyz + 2 xyz = 6 xyz ,
1-8 在球坐标系中,已知 Φ = 解:
Pe cos θ , Pe 、 ε 0 为常数,试求矢量场 E = −∇Φ 。 4 πε 0 r 2
E = −∇Φ e Φ − φ r θ r sin θ P cos θ P sin θ = er e + eθ e 3 2πε 0 r 4πε 0 r 3 ∂ ∂ ∂ ∂ = − er − eθ r
《电磁场和电磁波》课后习题解答(第一章)
第一章习题解答【习题Ll解】【习题L2解】【习题L3解】(1)要使ALR,则须散度A-B=O所以从Z∙5=T+3H8c=0可得:3b+8c=l即只要满足3b÷8c=l就可以使向量二和向量了垂直。
(2)要使4||月,则须旋度AxB=O所以从可得b=-3,c=-8【习题1・4解】A=I2以+9e y+6z,B=CIeX+be y,因为3JLA,所以应有A∙3=0g∣j(12久+9e y+e z^∙^ae x+Z?Gy)=12Q+9/?=0(I)又因为同=1;所以病存=1;(2)一4由⑴,⑵解得Q=±《,"=+W【习题1.5解】由矢量积运算规则4_B=A?C a x a2a3=(%Z-+(a3x-a x z)e y+(01y-a2x)e7xyz =8名+纥5+BZeZ取一线元:dl=e x dx+e y dy+e z dz则有dx_dy_dz则矢量线所满足的微分方程为丁二万一=Hιy xy"z或写成=常数)a2z-a3ya3x-a l za↑y-a2x求解上面三个微分方程:可以直接求解方程,也可以采用以下方法d(qx)="(/丁)二d(%z)a i a2z-a i a3ya2a3x-a l a2za l a3y-a2a i xxdx_ydy_ZdZx(a2z-a3y)y{a3x-a x z)z(a l y-a2x)由(1)(2)式可得d(a2y)=k(a2a3x-aλa2z)ydy=k(a3xy-a}yz)(4)对⑶⑷分别求和所以矢量线方程为【习题L6解】矢量场A=(αxz+x2)eχ+Sy+孙2)0+{z-z1-∖-cxz-2xyz)e z假设A是一个无源场,则应有divΛ=O即:divA=V•4=空L+空L+空■=O∂x∂y∂z因为A=axz+X2∕ξ=by+xy1A z=z-z1+cxz-2xyzx所以有divA=az+2x+b+2xy+l-2z+cχ-2xy=X(2+c)÷z(a-2)+b+l=0 得a=2,b=-1,c=-2【习题1.7解】设矢径r的方向与柱面垂直,并且矢径不到柱面的距离相等(r=a)f∙ds-[rds=a∖ds=a2πah所以,①=S JSJS【习题1.8解】φ=3X2y i A=X2yze v+3xy2e^而rot((∕A)=Vx(以)=×A÷V^×A又=巴?十3?+再等=6xye x+3jc2e y ox-oy∂z所以+9x3y2e v-lSx2y3e v+6x3y2ze z=3X2y2[(9X一X2)e x-9yeγ+4xze z]【习题1.9解】所以&CyCzrotA=VXA=———∂x∂y∂zA x A y A(-1+1)&+(4/Z-4xz)e、+(2y-2y)&=6由于场H的旋度处处等于0,所以矢量场A为无旋场。
电磁场与电磁波(版)课后答案谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波第一章复习题练习答案
电子信息学院电磁场与电磁波第一章复习题练习姓名学号班级分数1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。
8:解:不总等于,讨论合理即可9. 已知直角坐标系中的点P1(-3,1,4)和P2(2,-2,3):(1)在直角坐标系中写出点P1、P2的位置矢量r1和r2;(2)求点P1到P2的距离矢量的大小和方向;(3)求矢量r1在r2的投影;解:(1)r1=-3a x+a y+4a z;r2=2a x-2a y+3a z(2)R=5a x-3a y-a z(3) [(r1•r2)/ │r2│] =(17)½10.用球坐标表示的场E=a r 25/r2,求:(1)在直角坐标系中的点(-3,4,-5)处的|E|和E z;(2)E与矢量B=2a x-2a y+a z之间的夹角。
解:(1)0.5;2½/4;(2)153.611.试计算∮s r·d S的值,式中的闭合曲面S是以原点为顶点的单位立方体,r为空间任一点的位置矢量。
解:学习指导书第13页12.从P(0,0,0)到Q(1,1,0)计算∫cA·d l,其中矢量场A的表达式为A=ax 4x-ay14y2.曲线C沿下列路径:(1) x=t,y=t2;(2)从(0,0,0)沿x轴到(1,0,0),再沿x=1到(1,1,0);(3)此矢量场为保守场吗?解:学习指导书第14页13.求矢量场A =a x yz+a y xz+a z xy 的旋度。
A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。
u ∇=x a u x ∂∂+y a u y ∂∂+z a u z ∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)15.求矢量场A =a x x 2y+a y yz+a z 3z 2在点P (1,1,0)的散度。
电磁场与电磁波(第4版)第1章部分习题参考解答
G G G G G G G G G G G G ( A ⋅ B) A − ( A ⋅ A) B = ( A ⋅ C ) A − ( A ⋅ A)C G G G G G G G G G G 由于 A ⋅ B = A ⋅ C ,于是得到 ( A ⋅ A) B = ( A ⋅ A)C
G ex G ey G ez
G G G G G 解: A × B = 2 3 −4 = −ex 13 + e y 22 + ez 10 −6 − 4 1
G G G G G G G G G ( A × B) ⋅ C = (−ex 13 + ey 22 + ez 10) ⋅ (ex − ey + ez ) = −25 G C = 12 + (−1) 2 + 12 = 3 G G G G G G G G ( A × B) ⋅ C 25 所以, A × B 在 C 上的分量为 ( A × B)C = =− = −14.43 G 3 C
G G G G G G G G G G G r1 = ey − ez 2 , r2 = ex 4 + ey − ez 3 , r3 = ex 6 + ey 2 + ez 5 G G G G G G G G G G G 则 R12 = r2 − r1 = ex 4 − ez , R23 = r3 − r2 = ex 2 + ey + ez 8 , G G G G G G R31 = r1 − r3 = −ex 6 − ey − ez 7 G G G G G G G 由此可得 R12 ⋅ R23 = (ex 4 − ez ) ⋅ (ex 2 + ey + ez 8) = 0
电磁场与电磁波第一章复习题练习答案
电子信息学院电磁场与电磁波第一章复习题练习姓名学号班级分数1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。
8:解:不总等于,讨论合理即可9. 已知直角坐标系中的点P1(-3,1,4)和P2(2,-2,3):(1)在直角坐标系中写出点P1、P2的位置矢量r1和r2;(2)求点P1到P2的距离矢量的大小和方向;(3)求矢量r1在r2的投影;解:(1)r1=-3a x+a y+4a z;r2=2a x-2a y+3a z(2)R=5a x-3a y-a z(3) [(r1•r2)/ │r2│] =(17)½10.用球坐标表示的场E=a r 25/r2,求:(1)在直角坐标系中的点(-3,4,-5)处的|E|和E z;(2)E与矢量B=2a x-2a y+a z之间的夹角。
解:(1)0.5;2½/4;(2)153.611.试计算∮s r·d S的值,式中的闭合曲面S是以原点为顶点的单位立方体,r为空间任一点的位置矢量。
解:学习指导书第13页12.从P(0,0,0)到Q(1,1,0)计算∫cA·d l,其中矢量场A的表达式为A=ax 4x-ay14y2.曲线C沿下列路径:(1) x=t,y=t2;(2)从(0,0,0)沿x轴到(1,0,0),再沿x=1到(1,1,0);(3)此矢量场为保守场吗?解:学习指导书第14页13.求矢量场A =a x yz+a y xz+a z xy 的旋度。
A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。
u ∇=x a u x ∂∂+y a u y ∂∂+z a u z ∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)15.求矢量场A =a x x 2y+a y yz+a z 3z 2在点P (1,1,0)的散度。
电磁波第一章加答案
第1章 矢量分析
第一章 矢量分析
电磁场与电磁波
第1章 矢量分析
本章内容
本章重点介绍与场分析有关的数学基础内容。 1.1 场的概念 1.2 标量场 1.3 矢量场的通量和散度 1.4 矢量场的环量和旋度 1.5 几个重要的公式 1.6 亥姆霍兹定理 1.7 三种常用坐标系
电磁场与电磁波
M0 沿
l
8
方向的方向导数
lim (M ) (M0 )
l l0 M0
l
电磁场与电磁波
第1章 矢量分析
方向导数的计算
cos cos cos
l x
y
z
式中:co、s、 、co分s别、为colrs与x—,y—,z坐标的lr 轴方的向夹余角弦。。
l M0M M0 N M0 N
N
cos
r ur
ur
ngl0 gradgl0
M0N
ur
grad gl 0
l
电磁场与电磁波
梯度的运算
第1章 矢量分析
直角坐标系:
grad
x
evx
y
evy
z
evz
哈密顿算符
( x
evx
y
evy
z
f (u) f (u)u
式中:C为常数; u, v为坐标变量函数;
电磁场与电磁波
第1章 矢量分析
1.3 矢量场的通量与散度
1.3.1 矢量线(力线)
矢量线的疏密表征矢量场的大小
矢量线上每点的切向代表该处矢量场的方向
电磁场与电磁波课后答案_郭辉萍版1-6章
A A
=
A
=
1 49
( ax +2 ay -3 az )/
14
错误!未找到引用源。 cos = A · B / A B AB AB =135.5o
错误!未找到引用源。 A · B = 11, A B = 10 ax ay 4 az 错误!未找到引用源。 A ·( B C )= 42
( A B )· C = 42
=
27 2
A • ds =193
错误!未找到引用源。 •AdV = (6 6x)dV =6 ( cos 1)d d dz =193 V
V
V
即:
A • ds =
•AdV
s
V
1.13 求矢量 A = ax x+ ay x y2 沿圆周 x2 + y2 = a2 的线积分,再求 A 对此圆周所包围的表
(z z’)]
R = R3
即: ( 1 ) R
=
R R3
第二章 习题解答
2.5 试求半径为 a,带电量为 Q 的均匀带电球体的电场。 解:以带电球体的球心为球心,以 r 为半径,作一高斯面,
由高斯定理 D • dS =Q,及 D E 得, S
错误!未找到引用源。 r a 时,
由 D • dS = Q 4 r2 ,得
曲
曲
A• d S = (3y z)dxdz = 6
xoz
xoz
A• d S = 3x2dydz =0
yoz
yoz
上
A
•
d
S
+
下
A
•
d
S
=
上
(6
cos
)d
d
电磁场与电磁波答案(第四版)
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e(3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由cos AB θ===A B A B g ,得1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A =A cos ABθ==A B B g (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
电磁场与电磁波课后答案_郭辉萍版1-6章
第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。
矢量A 的单位矢量A a ; 错误!未找到引用源。
矢量A 和B 的夹角AB θ; 错误!未找到引用源。
A ·B 和A ⨯B错误!未找到引用源。
A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。
A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。
A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。
cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。
A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。
A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。
A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。
电磁场与电磁波(第四版)课后答案 第一章_习题
2),
cos
EB
25 r3
(ex x
ey
y
ez z
)
ex 2 ey 2 ez
EB
0.5 22 (-2)2 12
25 (2x 2 y r3 0.5 3
z)
0.8957
arccos(0.8957) 153.6
C•B
A
C•A
B
2 erx ery 2 erz 3 5 0 6 ery 4 erz
erx 2 ery 40 erz 5
r A
r B
r C
=
r A
•
r C
r B
r A
•
r B
Cr
5 0 6
e
e
er
r 2 sin r sin
r
r
r 2 sin
r
Ar
rA r sin A sin cos
e
r sin
r cos cos
e
r
r sin sin
r
2
er sin
r
cos
sin
(7)A •
rr BC
=
rr A B
r •C
r ex
r ey
2
r ez
3
erx •0
er y 4
电磁场与电磁波第四版第一章部分答案
电磁场与电磁波习题1.1给定三个矢量A 、B 和C 如下:A →=e x +e y 2-e y 3,B →=-e y 4+e z ,C→=e y 5-e z 2.求:(1)e A → (2)B A -;(3)B A •;(4)θAB (5)A →在B →上的分量;(6)A →×C→;(7)()C B A ⨯•和()C B A •⨯;(8)() C B A ⨯⨯和()C B A ⨯⨯。
解:(1)e A → =A A =x y y √1+4+9=x√14+y √14-z√14(2)B A -=|e x +e y 6−e z 4|=√53(3)B A •=-8-3=-11 (4)cos θAB =√238,故θAB =135.5°(5)|A|→ cos θAB =B BA •=√17(6)=⨯C A |e x e y e z12−350−2|=−ex 4−e y 13−e z 10(7)=⨯C B e x 8+e y 5+e z 20()()42-=•⨯=⨯•C B A C B A(8)=⨯⨯C B A |e x e y e z−10−1−450−2|=e x 2−e y 40+e z 5()=⨯⨯C B A |e x e y e z12−38520|=e x 55−ey 44−e z 111.4给定两矢量=A e x 2+e y 3−e z 4和=B e x 4−e y 5+e z 6,求它们之间的夹角和A →在B →上的分量。
解:|A|→ =√4+9+16=√29|B →|=√16+25+36=√77cos θAB =√2233=−√2233故θAB =131°|A |∙cos θAB =-3.5321.9用球坐标表示的场E →=e r 25r 2。
(1)求在直角坐标中点(-3,4,-5)处的|E|→ 和E x ;(2)求在直角坐标中点(-3,4,-5)处E →与矢量B →=e x 2−e y 2+e z 构成的夹角。