高三数学一轮复习同步12函数模型及其应用理新人教B版
新课标高考数学理一轮复习课件:2.8 《函数模型及其应用》新人教版必修
考点三 分段函数问题 【案例3】 某公司生产某种电子仪器的固定 成本为20 000元,每生产一台仪器需增加投入100 元.已知总收益满足函数R(x)
=400x-12x2 ,0≤x≤400; 其中 x 是仪器的 80 000, x>400,
月产量. (1)将利润表示为月产量的函数f(x); (2)当月产量为何值时,公司所获利润最大?最
(1)从药物释放开始,每立方米空气中的含药量y(毫克) 与时间t(小时)之间的函数关系式为__________________ ________________________________________________.
考点二 二次函数问题 【案例2】 某市现有从事第二产业人员100万人,平 均每人每年创造产值a万元(a为正常数),现在决定从中分 流出x万人去加强第三产业.分流后,继续从事第二产业 的人员平均每人每年创造产值可增加2x%(0<x<100),而 分流出的从事第三产业的人员,平均每人每年可创造产值 1.2a万元.在保证第二产业的产值不减少的情况下,分流 出多少人,才能使该市第二、三产业的总产值增加最多? 关键提示:“保证第二产业的产值不减少”转译为数 学语言是一个“二次不等式模型”,“该市第二、三产业 的总产值增加最多”转译为数学语言是一个“二次函数的 最值问题”.
2.函数模型的应用实例
根据收集的数据的特点,通过建立函数模型,解决实
际问题的基本过程如下:
1.某地区植被被破坏,土地沙化越来越严重,最
近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和
0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系
式较为近似的是
()
A.y=0.2x
B.y=110(x2+2x)
高三数学理人教版一轮训练函数模型及其应用
第9节函数模型及其应用【选题明细表】知识点、方法题号一次、二次函数模型2,3,7,8指数、对数函数模型1,4,10函数模型的综合应用5,6,9,11,12,13基础巩固(时间:30分钟)1.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( C )(A)y=100xﻩ(B)y=50x2-50x+100(C)y=50×2x(D)y=100log2x+100解析:根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.故选C.2.(2017·广元三模)某城区按以下规定收取水费:若每月用水不超过20 m3,则每立方米水费按2元收取;若超过20 m3,则超过的部分按每立方米3元收取,如果某户居民在某月所交水费的平均价为每立方米2.20元,则这户居民这月共用水( D )(A)46 m3ﻩ(B)44 m3(C)26 m3ﻩ(D)25 m3解析:设这户居民这个月共用水x立方米,20×2+(x-20)×3=2.2x,40+3x-60=2.2x,0.8x=20,x=25.他这个月共用了25立方米的水.故选D.3.有一批材料可以建成200 m的围墙,如果用此材料一边靠墙围成一个矩形场地,中间用同样材料隔成三个面积相等的矩形,如图所示,则围成矩形场地最大面积为( B )(A)2000 m2ﻩ(B)2 500 m2(C)2800 m2ﻩ(D)3 000 m2解析:设每个小矩形长为x,宽为y,则4x+3y=200,S=3xy=x(200-4x)=-4x2+200x=-4(x-25)2+2 500,所以x=25时,Smax=2 500(m2).故选B.4.某工厂2017年生产某产品2万件,计划从2018年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg 2=0.301 0,lg 3=0.4771)( D)(A)2021年(B)2022年ﻩ(C)2023年(D)2024年解析:设再过n年这家工厂生产这种产品的年产量超过6万件,根据题意,得2(1+20%)n>6,即1.2n>3,两边取对数,得nlg 1.2>lg 3,所以n>≈6.031 6.所以n=7,即2017+7=2024.所以从2024年开始这家工厂生产这种产品的年产量超过6万件.故选D.5.(2017·山西长治期中)制作一个面积为1 m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(够用,又耗材最少)是( C)(A)4.6 mﻩ(B)4.8 mﻩ(C)5 m (D)5.2 m解析:设一条直角边为x,则另一条直角边是,斜边长为,故周长C=x++≥2+2≈4.82,当且仅当x=时等号成立,故较经济的(够用,又耗材最少)是5 m.故选C.6.(2016·长春联合测试)某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这只股票的盈亏情况(不考虑其他费用)为( B )(A)略有盈利(B)略有亏损(C)没有盈利也没有亏损(D)无法判断盈亏情况解析:设该股民购这只股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这只股票略有亏损.故选B.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为m.解析:设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400(m2).答案:208.某人根据经验绘制了2017年元旦前后,从12月21日至1月7日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿千克.解析:前10天满足一次函数关系式,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得解得k=,b=,所以y=x+,则当x=6时,y=.答案:能力提升(时间:15分钟)9.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加的面积分别为198.5公顷、399.6公顷和793.7公顷,则沙漠增加面积y(公顷)关于年数x的函数关系较为近似的是( C )(A)y=200x(B)y=100x2+100x(C)y=100×2x(D)y=0.2x+log2x解析:对于A,x=1,2时,符合题意,x=3时,相差较大,不符合题意; 对于B,x=1时,符合题意,x=2,3时,相差较大,不符合题意;对于C,x=1,2,3时,y值都近似符合题意;对于D,x=1,2,3时,相差较大,不符合题意.故选C.10.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P mg/L与时间t h间的关系为P=P0e-kt.若在前5个小时消除了10%的污染物,则污染物减少50%所需要的时间约为(已知lg 2=0.301 0,lg 3=0.477 1)( B )(A)26小时(B)33小时ﻩ(C)36小时 (D)42小时解析:由题意,前5个小时消除了10%的污染物,因为P=P0e-kt,所以(1-10%)P0=P0e-5k,所以k=-ln 0.9;则P=P0,当P=50%P0时,有50%P0=P0,所以ln0.9=ln 0.5,所以t=≈33,即污染物减少50%需要花33小时.故选B.11.已知投资x万元经销甲商品所获得的利润为P=;投资x万元经销乙商品所获得的利润为Q=(a>0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a 的最小值为 .解析:设投资乙商品x万元(0≤x≤20),则投资甲商品(20-x)万元. 利润分别为Q=(a>0),P=,因为P+Q≥5,0≤x≤20时恒成立,则化简得a≥,0≤x≤20时恒成立.(1)x=0时,a为一切实数;(2)0<x≤20时,分离参数a≥,0<x≤20时恒成立,所以a≥,a的最小值为.答案:12.(2017·南昌二模)网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足x=3-函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.解析:由题知t=-1,(1<x<3),所以月利润:y=(48+)x-32x-3-t=16x--3=16x-+-3=45.5-[16(3-x)+]≤45.5-2=37.5,当且仅当x=时取等号,即月最大利润为37.5万元.答案:37.513.某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k 是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入g(8)的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.解:(1)据题意g(3)=32+3k=309,解得k=100,所以g(n)=n2+100n,(n≤5)第5个月的净收入为g(5)-g(4)=109(万元),所以,g(8)=g(5)+3×109=852万元.(2)g(n)=即g(n)=若不投资改造,则前n个月的总罚款3n+×2=n2+2n,令g(n)-500+100>70n-(n2+2n),得g(n)+n2-68n-400>0.显然当n≤5时,上式不成立;当n>5时,109n-20+n2-68n-400>0, 即n(n+41)>420,又n∈N,解得n≥9.所以,经过9个月投资开始见效.。
高考数学一轮复习目录
高考数学一轮复习书目一、集合与常用逻辑用语1.1集合的概念与运算1.2命题及其关系、充分条件与必要条件1.3简洁的逻辑联结词、全称量词与存在量词二.函数1.1函数及其表示2.2函数的单调性与最值2.3函数的奇偶性与周期性2.4一次函数、二次函数2.5指数与指数函数2.6对数与对数函数2.7幂函数2.8函数的图象及其变换2.9函数与方程2.10函数模型及其应用三、导数及其应用3.1导数、导数的计算3.2导数在函数单调性、极值中的应用3.3导数在函数最值及生活实际中的应用3.4 微积分基本定理四、三角函数、解三角形4.1随意角和弧度制及随意角的三角函数4.2同角三角函数的基本关系及三角函数的诱导公式4.3三角函数的图象与性质4.4函数y=Asin(ωx+φ)的图象与性质4.5简洁的三角恒等变换4.6正、余弦定理及其应用举例五、平面对量5.1平面对量的概念及其线性运算5.2平面对量的基本定理及坐标运算5.3平面对量的数量积及其应用六、数列6.1数列的概念与简洁表示法6.2等差数列及其前n项和6.3等比数列及其前n项和6.4数列的通项与求和6.5数列的综合应用七、不等式7.1不等式的概念与性质7.2一元二次不等式及其解法7.3二元一次不等式组与简洁的线性规划问题7.4基本不等式及其应用八.立体几何8.1空间几何体的结构及其三视图与直观图8.2空间几何体的表面积与体积8.3空间点、直线、平面之间的位置关系8.4直线、平面平行的判定及其性质8.5直线、平面垂直的判定及其性质8.6空间向量及其运算8.7空间向量的应用九、解析几何9.1直线及其方程9.2点与直线、直线与直线的位置关系9.3圆的方程9.4直线与圆、圆与圆的位置关系9.5椭圆9.6双曲线9.7抛物线9.8直线与圆锥曲线的位置关系9.9曲线与方程十.计数原理10.1分类加法计数原理与分步乘法计数原理10.2排列与组合10.3二项式定理十一、概率与统计11.1事务与概率11.2古典概型与几何概型11.3离散型随机变量及其分布列11.4二项分布及其应用11.5离散型随机变量的均值与方差、正态分布11.6随机抽样与用样本估计总体11.7变量间的相关关系十二、选修部分选修4-4坐标系与参数方程选修4-5不等式选讲十三、算法初步、推理与证明、复数12.1算法与程序框图12.2基本算法语句12.3合情推理与演绎推理12.4干脆证明与间接证明12.5数学归纳法12.6数系的扩充与复数的引入。
2025届高中数学一轮复习课件《函数模型及其应用》PPT
第27页
题型 函数模型解决实际问题的多维研讨 维度 1 构建二次函数模型 典例 3(2024·河北张家口模拟)新能源汽车环保、节能,以电代油,减少碳排放,既符 合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到 2025 年中国的汽车 总销量将达到 3 500 万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公 司某年初购入一批新能源汽车充电桩,每台 13 500 元,到第 x 年年末(x∈N*)每台设备的累 计维修保养费用为(300x2+3 200x)元,每台充电桩每年可给公司收益 8 000 元.( 19≈4.36) (1)每台充电桩第几年年末开始获利; (2)每台充电桩在第几年年末时,年平均利润最大.
2
所以
t=log0.80.4=llgg 00..48=lg lg
45=2llgg22--llgg55=2llgg22--11--llgg22=23llgg 22--11≈23××00..330011--11= 5
--00..309987≈4.103,最接近 4 h.故选 B.
解析
高考一轮总复习•数学
典例 2(2024·山东济南一中月考)随着社会的发展,人与人的交流变得广泛,信息的拾 取、传输和处理变得频繁,这对信息技术的要求越来越高,无线电波的技术也越来越成
熟.其中电磁波在空间中自由传播时能量损耗满足传输公式:L=32.44+20lg D+20lg F,
其中 D 为传输距离,单位是 km,F 为载波频率,单位是 MHz,L 为传输损耗(亦称衰减),
高考一轮总复习•数学
第28页
解:(1)设每台充电桩在第 x 年年末的利润为 f(x)元, 则 f(x)=8 000x-(300x2+3 200x)-13 500=-300x2+4 800x-13 500, 令 f(x)>0,解得 8- 19<x<8+ 19, 此表达式,回答了“第几年年末开始获利”,语言表达→代数表达,估算求整数解. 又 19≈4.36,∴3.64<x<12.36, ∵x∈N*,∴每台充电桩从第 4 年年末开始获利. (2)设 g(x)为每台充电桩在第 x 年年末的年平均利润, 则 g(x)=fxx=-300x+13 x500+4 800.
2021版新高考数学一轮复习第二章2.9函数模型及其应用课件新人教B版
第九节ꢀ函数模型及其应用内容索引【教材·知识梳理】1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=blogx+c(a,b,c为常数,b≠0,a>0且a≠1)a幂函数模型f(x)=ax n+b (a,b为常数,a≠0)2.三种函数模型的性质ꢀꢀ函数性质ꢀꢀy=a x (a>1)y=log a x(a>1)y=x n (n>0)在(0,+∞)上的增减性递增递增单调_____单调_____单调递增相对平稳增长速度越来越快越来越慢随x 的增大,逐渐表随x 的增大,逐渐表y 轴x 轴现为与____平行现为与____平行图象的变化随n 值变化而各有不同值的比较存在一个x ,当x>x 时,有log x<x n <a x 00a【常用结论】“对勾”函数:形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.(2)当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.【知识点辨析】(正确的打“√”,错误的打“×”)(1)函数y=2x的函数值比y=x2的函数值大.(ꢀꢀ)(2)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(ꢀꢀ)(3)幂函数增长比直线增长更快.(ꢀꢀ),使(ꢀꢀ)(4)不存在x提示:(1)×.当x=-1时,2-1<(-1)2.(2)×.“指数爆炸”是针对b>1,a>0的指数型函数y=a·b x+c.(3)×.幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)×.当a∈(0,1)时存在x,使【易错点索引】序号易错警示典题索引1 2 3 4 5忽略图象的横纵坐标的意义忽略图象的变化趋势考点一、T1考点一、T2、4考点二、T3忽略函数的表示方法(列表)忽略自变量的取值考点三、角度1考点三、角度2忽略基本不等式成立的条件【教材·基础自测】1.(必修1P67例4改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是(ꢀꢀ)A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元【解析】选D.由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为×(40+60+30+30+50+60)=45(万元),故D错误.2.(必修1P69习题2-3AT7改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.ꢀ【解析】利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.答案:183.(必修1P120巩固与提高T9改编)某动物繁殖量y(只)与时间x(年)的关系为(x+1),设这种动物第2年有100只,则到第8年繁殖到________只.ꢀy=alog3【解析】依题设知alog3=100,a=100.当x=8时,y=100log9=200.33答案:200考点一ꢀ利用图象刻画实际问题ꢀ【题组练透】1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是(ꢀꢀ)A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,故选A.2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图【解析】选C.设BC=x m,则DC=(16-x)m,由得a≤x≤12.矩形面积S=x(16-x)≤=64.当x=8时取等号.当0<a≤8时,u=f(a)=64;当a>8时,由于函数在[a,12]上为减函数,=f(a)=a(16-a).所以当x=a时,矩形面积取最大值Smax3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是(ꢀꢀ)【解析】选A.若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.4.(2020·广州模拟)某罐头加工厂库存芒果m(kg),今年又购进n(kg)新芒果后,欲将芒果总量的三分之一用于加工芒果罐头.被加工为罐头的新芒果最多为f(kg),最少为f(kg),则下列选项中最能准确描述f,f分别与n的关系的是1212世纪金榜导学号(ꢀꢀ)【解析】选A.要使得被加工为罐头的新芒果最少,尽量使用库存芒果,即当≤m,n≤2m时,f=0,当n>2m时,f=-m=>0,对照图象舍去C,D;要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当≤n,n≥时f 1=>n,n<时f1=n,因为<2m,所以A符合题意.,当22【规律方法】ꢀ判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二ꢀ已知函数模型求解实际问题ꢀ【典例】1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+ 20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是(ꢀꢀ)ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀA.100台C.150台B.120台D.180台2.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)=已知某家庭2016年前三个月的煤气费如表:月份用气量4 m3煤气费4元一月份二月份三月份25 m335 m314元19元若四月份该家庭使用了20 m3的煤气,则其煤气费为A.11.5元B.11元C.10.5元D.10元(ꢀꢀ)3.某农场种植一种农作物,为了解该农作物的产量情况,现将近四年的年产量f(x)(单位:万斤)与年份x(记2015年为第1年)之间的关系统计如下:x1234f(x) 4.00 5.627.008.86则f(x)近似符合以下三种函数模型之一:①f(x)=ax+b;②f(x)=2x+a;③f(x)=x2+b.则你认为最适合的函数模型的序号是________.ꢀ【解题导思】序号联想解题1 2 3由销售收入不小于总成本,想到销售收入≥总成本由f(x)的解析式考虑用待定系数法求A,B,C的值由三个模拟函数选择,想到逐个验证求解【解析】1.选C.设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+ 5x-3 000(0<x<240,x∈N*).令f(x)≥0,得x≥150,所以生产者不亏本时的最低产量是150台.2.选A. 根据题意可知f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5.3.若模型为②,则f(1)=2+a=4,解得a=2,于是f(x)=2x+2,此时f(2)=6,f(3)=10, f(4)=18,与表格中的数据相差太大,不符合;若模型为③,则f(1)=1+b=4,解得b =3,于是f(x)=x2+3,f(2)=7,f(3)=12,f(4)=19,此时,与表格中的数据相差太大,不符合;若模型为①,则根据表中数据得解得a=,经检验是最适合的函数模型.答案:①【规律方法】ꢀ求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.【变式训练】1.(2020·中山模拟)据统计,一名工人组装第x件某产品所用的时间(单位:min)为f(x)=(A,c为常数).已知某工人组装第4件产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是(ꢀꢀ)A.75,25B.75,16C.60,25D.60,16【解析】选D.由题意可知4<A,则2.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P=lg n来记录A菌个数的资料,其中n为A菌的个数,现A A A有以下几种说法:≥1;①PA②若今天的P值比昨天的P值增加1,则今天的A菌个数比昨天的A菌个数多10;A A③假设科学家将B菌的个数控制为5万,则此时5<P<5.5(注:lg 2≈0.3).A则正确的说法为________.(写出所有正确说法的序号)【解析】当n=1时,P=0,故①错误;若P=1,则n=10,若P=2,则n=100,故②错误;A A A A A AB菌的个数为n=5×104,所以n==2×105,所以P=lg n=lg 2+5.又因为B A A Alg 2≈0.3,所以5<P<5.5,故③正确.A答案:③考点三建立数学模型解决实际问题考什么:(1)阅读语言文字的能力,实际问题与数学问题之间的转化能力,命常见的初等函数,对勾函数,分段函数的性质等问题.题(2)考查数学运算、数学抽象、数学建模等核心素养.精怎么考:三种题型都有可能考查,考查学生的数学素养、数学建模思想、解转化与化归思想等.读新趋势:以现实问题为载体,函数与实际问题、数与形、函数性质与最值交汇考查.形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型,“对勾”函学数模型的单调区间及最值如下霸(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]好上单调递减.(2)当x>0时,x=当x<0时,x=-方法时取最小值2,时取最大值-2.命题角度1初等函数模型及其应用【典例】(2019·马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年C.2022年B.2021年D.2023年【解析】选C.若2019年是第1年,则第n年全年投入的科研经费为1 300×1.12n万元,由1 300×1.12n>2 000,可得lg 1.3+nlg 1.12>lg 2,所以n×0.05>0.19,得n>3.8,即n≥4,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C.【解后反思】每年投入的科研经费比上一年增长12%,说明每年经费是上一年的多少倍?提示:说明每年经费是上一年的1.12倍.命题角度2 对勾函数模型及其应用【典例】为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.【解析】(1)当x=0时,C=8,所以k=40,所以C(x)=(0≤x≤10),所以f(x)=6x+(0≤x≤10).(2)由(1)得f(x)=2(3x+5)+-10.令3x+5=t,t∈[5,35],则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),此时x=5,因此f(x)的最小值为70.所以隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.【解后反思】对勾函数求最值应注意什么?提示:对勾函数求最值一定要注意该函数的单调性,然后再求最值.命题角度3分段函数模型及其应用【典例】(2020·潍坊模拟)大气温度y(℃)随着距离地面的高度x(km)的增加而降低,当在高度不低于11 km的高空时气温几乎不变.设地面气温为22℃,大约每上升1 km大气温度降低6℃,则y关于x的函数关系式为________.世纪金榜导学号【解析】由题意知,y是关于x的分段函数,x=11为分界点,易得其解析式为y=答案:y=【解后反思】实际问题中分段函数的适用条件是什么?提示:实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.【题组通关】【变式巩固·练】1.要制作一个容积为16 m3,高为1 m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.【解析】设长方体容器底面矩形的长、宽分别为x m,y m,则y=,所以容器的总造价为z=2(x+y)×1×10+20xy=20+20×16,由基本不等式得, z=20+20×16≥40+320=480,当且仅当x=y=4,即底面是边长为4 m的正方形时,总造价最低.答案:4802.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.【解析】①价格为60+80=140元,达到120元,少付10元,所以需支付130元.②设促销前总价为a元,a≥120,李明得到金额l(x)=(a-x)×80%≥0.7a,0≤x≤120,即x≤恒成立,又最小值为=15,所以x最大值为15.答案:①130②15【综合创新·练】1.(2019·深圳模拟)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份()A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高【解析】选A.设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可得,m+8a=m×(1+x)8,则5月份甲食堂的营业额y=m+4a,乙食堂的营业额y=m×(1+x)4=,12因为=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故本年5月份甲食堂的营业额较高.2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y与x的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).。
高三 一轮复习 函数模型及其应用 教案
函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图像的变化随x值增大,图像与y轴接近平行随x值增大,图像与x轴接近平行随n值变化而不同1.易忽视实际问题的自变量的取值范围,合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[试一试]据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x 的函数关系是____________.解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[练一练]如图,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN 取最小值时,CN =________.考点一一次函数与二次函数模型1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差________元.2.将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.考点二分段函数模型[典例]提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式.(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).[类题通法]应用分段函数模型的关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).[针对训练]某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.考点三指数函数模型[典例] 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[类题通法]应用指数函数模型应注意的问题(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.[课堂练通考点]1.(2014·南昌质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,则他应付邮费________元.2.(2013·南通调研)甲地与乙地相距250 km.某天小袁从上午7:50由甲地开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有 1 h到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有________km.3.一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是关于经过年数x(0<x≤m)的函数,其关系式y=f(x)可写成_____________________.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2014·苏锡常镇一调)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.2.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是________层.3.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图像可能是图中的________.4.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.5.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.6.(2014·连云港模拟)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2ln x+a(a为常数)作为报销方案,请你确定整数a的值(参考数据:ln 2≈0.69,ln 10≈2.3).2.(2014·苏州一调)如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠P AQ始终为45°(其中点P,Q分别在边BC,CD上),设∠P AB=θ,tan θ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;(2)问探照灯照射在正方形ABCD内部区域的面积S至多为多少平方百米?3.(2013·徐州调研)徐州、苏州两地相距500 km,一辆货车从徐州匀速行驶到苏州,规定速度不得超过在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙油井的8倍.(1)设乙油井排出的废气浓度为a(a为常数),度假村P距离甲油井x km,度假村P受到甲、乙两油井的污染程度和记为f(x),求f(x)的解析式并求其定义域;(2)度假村P距离甲油井多少时,甲、乙两油井对度假村的废气污染程度和最小?。
高考数学一轮复习 第12讲 函数模型及其应用课件 理 北师大版
答案
返回目录
第12讲 函数模型及其应用
双
向
—— 链接教材 ——
固 基
1.[教材改编] 已知函数模型①y=0.25x;②y=log2x+1;
础 ③y=1.002x.随着 x 的增大,增长速度的大小关系是________.
[答案] ③>①>②
[解析] 根据指数函数、幂函数、对数函数的增长速度 关系可得.
时是增长的,但是增长的速度越来越缓慢,底数越大越
明显.( )
返回目录
第12讲 函数模型及其应用
双
向
固 基
[答案] (1)√ (2)√ (3)√
础
[解析] (1)根据二次函数性质知当 a>0 时,f(x)在[-2ba,
+∞)上是增长的,其导函数 f′(x)=2ax+b,因此增长速度 是变化的.
(2)根据指数函数性质得,在 a>0,b>1 的情况下是增 长的,其导函数是 f′(x)=(aln b)·bx,由于 aln b>0,故其增 长的速度很快,且底数越大增长越快.
且增长速度是变化的.( )
(2)指数型函数模型 f(x)=a·bx+c(a,b,c 为常数,
a≠0,b>0,且 b≠1),这个函数在 a>0,b>1 的情况下是
增长的,而且增长的速度很快,且底数越大增长速度越
快.( )
(3)对数型函数模型 f(x)=mlogax+n(m,n,a 为常数, m≠0,a>0,且 a≠1),这个函数模型在 m>0,底数 a>1
第12讲 函数模型及其应用
双
向 固
3.实际问题中的函数建模
高考数学一轮复习 专题12 函数模型及其应用教学案 文-人教版高三全册数学教学案
专题12 函数模型及其应用1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.1.几类函数模型及其增长差异(1)几类函数模型(2)2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:【疑点清源】1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质.(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题.(3)解模:用数学知识和方法解决转化出的数学问题.(4)还原:回到题目本身,检验结果的实际意义,给出结论.高频考点一、用函数图象刻画变化过程例1、(1)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )【答案】(1)D (2)B【感悟提升】判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【变式探究】已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )【答案】 D【解析】依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知,选D.高频考点二已知函数模型的实际问题例2、候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.【感悟提升】求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.【变式探究】某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为kg. 【答案】 19【解析】 由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19. 高频考点三 构造函数模型的实际问题例3、某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元 D .43.025万元【答案】 C【解析】 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16],且x ∈N ,所以当x =10或11时,总利润取得最大值43万元. 【变式探究】(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg2≈0.3010,100.0075≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A .略有盈利 B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况 【答案】 (1)C (2)B【举一反三】某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了km. 【答案】 9【解析】 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15x -3+1,3<x ≤8,8+2.15×5+2.85x -8+1,x >8,由y =22.6,解得x =9.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.【变式探究】 (1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过小时才能开车.(精确到1小时)(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( ) A .10B .11C .13D .21 【答案】 (1)5 (2)A 高频考点四、函数应用问题例4、已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7400x-40000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数【解析】式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,当x >40时,W =xR (x )-(16x +40) =-40000x-16x +7360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40000x -16x +7360,x >40.当x =32时,W 取得最大值6104万元。
2018届高考数学(理)一轮复习人教版课件:第12讲 函数模型及其应用
[答案] 108
[解析] 设进价为 a 元,由题意 知 132×(1-10%)-a=10%· a, 解得 a=108.
课前双基巩固
[答案] 25 m
2
[解析] 设长方形的长为 x m,则 20-4x 宽为 3 m,所以总面积 S= 20-4x 2 3x· 3 =-4x +20x=- 52 5 4x-2 +25,所以当 x=2时, 2 总面积最大为 25 m ,此时,长 10 方形的长为 2.5 m,宽为 m. 3
[解析] 由题意得, 解得 于是当 x=33 时,y=e = 13 11k 3 b (e ) ·e =2 ×192=24.
33k+b
课前双基巩固
3.[教材改编] 某家具的标价为 132 元,若 降价以九折出售(即优惠 10%),仍可获利 10%(相对进价), 则该家具的进价是________ 元.
随 x 的增大逐渐 随 x 的增大逐渐 随 n 值变化而不 表现为与 表现为与 同 y轴 x轴 ________ 平行 ________ 平行
课前双基巩固
对点演练
1.判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)在(0,+∞)上,函数 y=2 的函数值一定比 y=x 的 函数值大.( )
当 x=6 时,ymax=457 500. 因此,甲厂应以 6 千克/小时的速度生产该产品,此时利润最大,最大为 457 500 元.
课堂考点探究
[总结反思]
(1)构建一次函数模型,一般通过借助两个点的坐标来确定,常用待定系数法. (2)有些问题的两个变量之间是二次函数关系,如面积问题等,应先构建二次函数 模型,再利用二次函数的图像与单调性求解. (3)在解决二次函数的应用问题时,一定要注意其定义域.
2024届新高考一轮复习人教B版 主题二 第二章 第9节 函数模型及其应用 课件(42张)
逐渐表现为
与 x轴 平行
化而各
存在一个x0,当x>x0时,有logax<xn<ax
有不同
1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增
长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度
缓慢.
2.函数 f(x)=x+(a>0)的性质及最值:
(1)该函数在(-∞,- )和( ,+∞)上单调递增,在[- ,0)和(0, ]上单调递减.
(2)当 x>0 时,x= 时取最小值 2 ,
当 x<0 时,x=- 时取最大值-2 .
1.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表
测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据 L 和小数
山 A1,A2 两处测得的大气压强分别为 p1,p2, = .那么 A1,A2 两处的海拔高度的差约
为(参考数据:ln 2≈0.693)(
A.550 m
B.1 818 m
C.5 500 m
D.8 732 m
·-· -·
解析: =
=
·-· -·
幂函数型
f(x)=axn+b(a,b,n为常数,a≠0)
2.三种函数模型性质的比较
性质
在(0,+∞)
上的增减性
增长速度
图象的变化
值的比较
函数
y=ax(a>1)
y=logax(a>1)
y=xn(n>1)
单调 递增 .
单调 递增 .
单调递增
高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版
• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2
函数模型及其应用+课件-2025届高三数学一轮复习
a
b
c
A.① B.①② C.①③ D.①②③
[解析] 由题图a,得进水的速度为1,出水的速度为2.在题图c中, 时到3时直线的斜率为2,即蓄水量每小时增加2, 只进水不出水(即两个进水口都进水),故①一定正确;若不进水只出水1小时后,则蓄水量减少2,故②一定错误;若两个进水口和一个出水口同时打开,则蓄水量也可以保持不变,故③不一定正确.故选A.
[思路点拨](1)根据与 的关系图可得正确的选项.
(2) 水池有两个相同的进水口和一个出水口,其进水量和出水量随时间的变化如图a, 所示,某天0时到6时该水池的蓄水量如图c所示,给出以下3个说法:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则说法一定正确的是( )
,,为常数,且,
对数函数模型
,,为常数,且,
幂函数模型
,, 为常数,,
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 已知函数,,,则随着 的增大,增长速度的大小关系是_______________.(填关于,, 的关系式)
[解析] 根据指数函数、一次函数、对数函数的增长速度关系可得 .
2.[教材改编] 在如图所示的锐角三角形空地中,欲建一个面积不小于的矩形花园(阴影部分),则其中 的取值范围是_________.
[思路点拨](2)蓄水量增加,说明进水速度大于出水速度,蓄水量减少,说明出水速度大于进水速度,再结合具体数据进行分析即可.
[总结反思]判断函数图象与实际问题变化过程是否相吻合时:首先要关注横轴与纵轴所表达的变量的实际意义;其次根据实际问题中两变量的变化快慢等特点,结合图象变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际的答案.
高考数学一轮复习练习 数学建模——函数模型及其应用
数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=1t2米,那么,此人()2A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图像大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L 汽油的行驶路程可大于5 km,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80 km,消耗8 L 汽油,所以选项C 错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3 000+20x-0.1x 2)=0.1x 2+5x-3 000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N ),则y=(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204 800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n ≤0.1%,即23n ≤120, 所以n lg 23≤-1-lg 2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解 (1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a =4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m,则CD 的长为(16-x ) m,则矩形ABCD 的面积为x (16-x ) m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图像可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1 300×1.12n 万元,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6. 综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解 (1)当声强为10-6 W/m 2时,由公式Y=10lgI 10-12,得Y=10lg 10-610-12=10lg 106=60(分贝).(2)当Y=0时,由公式Y=10lg I 10-12,得10lgI 10-12=0.所以I10-12=1,即I=10-12 W/m 2,则最低声强为10-12 W/m 2.(3)当声强为5×10-7 W/m 2时,声强级为Y=10lg 5×10-710-12=10lg(5×105)=50+10lg 5(分贝),因为50+10lg 5>50,故这两位同学会影响其他同学休息.。
数学一轮复习第二章函数2.9函数模型及其应用学案理
2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。
2。
指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×"。
(1)幂函数增长比一次函数增长更快。
() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。
()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。
()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。
()2。
(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
高考数学一轮单元复习 第12讲 函数模型及其运用课件
h
30
第12讲 │ 要点探究
h
31
第12讲 │ 要点探究
h
32
第12讲 │ 要点探究
h
33
第12讲 │ 要点探究
h
34
第12讲 │ 规律总结 规律总结
h
35
第12讲 │ 规律总结
h
36
第12讲 │ 规律总结
h
37
h
20
第12讲 │ 要点探究
h
21
第12讲 │ 要点探究
h
22
第12讲 │ 要点探究
h
23
第12讲 │ 要点探究
h
24
第12讲 │ 要点探究
h
25
第12讲 │ 要点探究
h
26ห้องสมุดไป่ตู้
第12讲 │ 要点探究
h
27
第12讲 │ 要点探究
h
28
第12讲 │ 要点探究
h
29
第12讲 │ 要点探究
第12讲 │ 函数模型及其运用
h
1
第12讲 │ 知识梳理 知识梳理
h
2
第12讲 │ 知识梳理
h
3
第12讲 │ 知识梳理
h
4
第12讲 │ 知识梳理
h
5
第12讲 │ 知识梳理
h
6
第12讲 │ 知识梳理
h
7
第12讲 │ 知识梳理
h
8
第12讲 │ 知识梳理
h
9
第12讲 │ 要点探究 要点探究
h
10
第12讲 │ 要点探究
h
11
第12讲 │ 要点探究
h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(十二) [第12讲函数模型及其应用][时间:45分钟分值:100分]基础热身1.[2011·济南模拟] 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,t的函数,其图象可能是( )2.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A.100元 B.110元C.150元 D.190元3.[2011·淄博模拟] 某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中( ) A.不能确定哪种省钱 B.①②同样省钱C.②省钱 D.①省钱4.在一次数学试验中,采集到如下一组数据:则x,y)( )A.y=a+bx B.y=a+b xC.y=ax2+b D.y=a+b x能力提升5.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A.2800元 B.3000元C.3800元 D.3818元6.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别如图K12-2所示.那么对于图中给定的t0和t1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .t 1时刻后,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面7.[2011·汕头模拟] 某产品的总成本y (万元)与产量x (台)之间的函数关系式是y=3000+20x -0.1x 2,x ∈(0,240),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为( )A .100台B .120台C .150台D .180台8.图K12-3是统计图表,根据此图表得到以下说法,其中正确的有( ) ①这几年人民的生活水平逐年得到提高;②人民的生活收入增长最快的一年是1998年; ③生活价格指数上涨最快的一年是1999年;④虽然2000年生活收入增长量缓慢,但由于生活价格指数有较大下降,因而人民的生活仍有较大改善.A .1项B .2项C .3项D .4项9.[2011·郑州模拟] 将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水符合指数衰减曲线y =a e nt .若5 min 后甲桶和乙桶的水量相等,又过了m min 后甲桶中的水只有a8 L ,则m 的值为( )A .7B .8C .9D .1010.一种产品的成本原为a 元,在今后的m 年内,计划使成本平均每年比上一年降低p %,成本y 是经过年数x (0<x ≤m )的函数,其关系式y =f (x )可写成________.11.某出租车公司规定乘车收费标准如下:3 km 以内为起步价8元(即行程不超过3 km ,一律收费8元);若超过3 km ,除起步价外,超过的部分再按1.5元/km 计价;若司机再与某乘客约定按四舍五入以元计费不找零钱.已知该乘客下车时乘车里程数为7.4 km ,则该乘客应付的车费为________.12.[2011·焦作模拟] 计算机的价格大约每3年下降23,那么今年花8100元买的一台计算机,9年后的价格大约是________元.13.[2011·滨州模拟] 鲁能泰山足球俱乐部为救助失学儿童准备在山东省体育中心体育场举行一场足球义赛,预计卖出门票2.4万张,票价有3元、5元和8元三种,且票价3元和5元的张数的积为0.6.设x 是门票的总收入,经预算,扣除其他各项开支后,该俱乐部的纯收入为函数y =lg2x ,则这三种门票的张数分别为________万张时可以为失学儿童募捐的纯收入最大.14.(10分)电信局为了配合客户不同需要,设有A ,B 两种优惠方案.这两种方案应付话费y (元)与通话时间x (min)之间的关系如图K12-4所示,其中MN ∥CD .(1)若通话时间为2 h ,按方案A ,B 各应付话费多少元?(2)方案B 从500 min 以后,每分钟收费多少元? (3)通话时间在什么范围内,方案B 比方案A 优惠?15.(13分)[2011·潍坊模拟] 某企业拟在2011年度进行一系列促销活动,已知其产品年销量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例,当年促销费用t =0万元时,年销量是1万件.已知2011年产品的设备折旧、维修等固定费用为3万元,每生产1万件产品需再投入32万元的生产费用,若将每件产品售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的商品正好能销完.(1)将2011年的利润y (万元)表示为促销费t (万元)的函数; (2)该企业2011年的促销费投入多少万元时,企业年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)难点突破16.(12分)如图K12-5所示的是自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB =1 m ,高0.5 m ,CD =2a ⎝ ⎛⎭⎪⎫a >12 m .上部CmD 是个半圆,固定点E 为CD 的中点.△EMN 是一个由电脑控制形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和CD 平行的伸缩横杆.(1)设MN 与AB 之间的距离为x m ,试将三角通风窗EMN 的通风面积S (m 2)表示成关于x 的函数;(2)当MN 与AB 之间的距离为多少米时,三角通风窗EMN 的通风面积最大?并求出这个最大面积.-5课时作业(十二)【基础热身】1.A [解析] 从汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,可比较图象中所反映的速度,速度是由慢到快,再到匀速,最后到减速,所以A 选项正确.2.C [解析] 设售价在100元基础上提高x 元,则依题意y =(100+x )(1000-5x )-80×1000=-5x 2+500x +20000,故当x =50元时,y 取最大值32500元,此时售价为150元.3.D [解析] 方法①用款为4×20+26×5=80+130=210(元), 方法②用款为(4×20+30×5)×92%=211.6(元), ∵210<211.6,故方法①省钱.4.B [解析] 由表格数据逐个验证,知模拟函数为y =a +b x. 【能力提升】5.C [解析] 设扣税前应得稿费为x 元,则应纳税额y 为分段函数,由题意,得y =⎩⎨⎧0x ≤800,x -800×14%800<x ≤4000,11%·x x >4000,如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.6.A [解析] 由图象可知,曲线v 甲比v 乙在0~t 0、0~t 1与x 轴所围成图形面积大,则在t 0、t 1时刻,甲车均在乙车前面,选A.7.C [解析] 由y ≤25x ,得(x +200)(x -150)≥0,x ≥150,选C. 8.D [解析] 根据图象可以分析出各项指数的特征.9.D [解析] 令18a =a e nt ,即18=e nt ,因为12=e 5n ,故18=e 15n,比较知t =15,m =15-5=10.10.y =a (1-p %)x (0<x ≤m ) [解析] 依题意有y =a (1-p %)x (0<x ≤m ).11.15元 [解析] 依题意得,实际乘车费用为:8+1.5×(7.4-3)=14.6,应付车费15元.12.300 [解析] 设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-⎝ ⎛⎭⎪⎫1313,∴9年后的价格y =8100⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1313-19=8100×⎝ ⎛⎭⎪⎫133=300(元).13.0.6,1,0.8 [解析] 函数模型y =lg2x 已给定,因而只需要将条件信息提取出来,按实际情况代入,应用于函数即可解决问题.设3元、5元、8元门票的张数分别为a 、b 、c ,则⎩⎨⎧a +b +c =2.4,①ab =0.6,②x =3a +5b +8c ,③①代入③有x =19.2-(5a +3b )≤19.2-215ab =13.2,当且仅当⎩⎨⎧5a =3b ,ab =0.6时等号成立.解得a =0.6,b =1,所以c =0.8,由于y =lg2x 为增函数,即此时y 也恰有最大值. 14.[解答] (1)设这两种方案的应付话费与通话时间的函数关系为f A (x )和f B (x ),由图知M (60,98),N (500,230),C (500,168),MN ∥CD ,则f A (x )=⎩⎪⎨⎪⎧980≤x ≤60,310x +80x >60,f B (x )=⎩⎪⎨⎪⎧1680≤x ≤500,310x +18x >500,故通话2 h 的费用分别是116元、168元.(2)f B (n +1)-f B (n )=310(n +1)+18-⎝ ⎛⎭⎪⎫310n +18=0.3(n >500),∴方案B 从500 min 以后,每分钟收费0.3元. (3)由图知,当0≤x ≤60时,f A (x )<f B (x ); 当60<x ≤500时,由f A (x )>f B (x )得 310x +80>168,解得x >8803,∴8803<x ≤500. 当x >500时,f A (x )>f B (x ).综上,通话时间在⎝ ⎛⎭⎪⎫8803,+∞内,方案B 比方案A 优惠.15.[解答] (1)由题意:3-x =kt +1,将t =0,x =1代入得k =2,∴x =3-2t +1,当年生产x (万件)时,年生产成本=32x +3=323-2t +1+3, 当销售x (万件)时,年销售收入=150%⎣⎢⎡⎦⎥⎤32⎝⎛⎭⎪⎫3-2t +1+3+12t , 由题意,生产x 万件产品正好销完.∴年利润=年销售收入-年生产成本-促销费,即y =-t 2+98t +352t +1(t ≥0).(2)∵y =-t 2+98t +352t +1=50-⎝ ⎛⎭⎪⎫t +12+32t +1≤50-216=42,当且仅当t +12=32t +1,即t =7时,y max =42,∴当促销费投入7万元时,企业年利润最大. 【难点突破】16.[解答] (1)当0≤x <12时,由平面几何知识,得MN -12a -1=x12,∴MN =2(2a -1)x +1,S =12MN ·⎝ ⎛⎭⎪⎫12-x =-(2a -1)x 2+(a -1)x +14, 当12<x <a +12时,S =12·2a 2-⎝ ⎛⎭⎪⎫x -122·⎝ ⎛⎭⎪⎫x -12=a 2-⎝ ⎛⎭⎪⎫x -122·⎝ ⎛⎭⎪⎫x -12,∴S =f (x )=⎩⎪⎨⎪⎧-2a -1x 2+a -1x +14,x ∈⎣⎢⎡⎭⎪⎫0,12,a 2-⎝ ⎛⎭⎪⎫x -122·⎝ ⎛⎭⎪⎫x -12,x ∈⎝⎛⎭⎪⎫12,a +12.(2)①当0≤x <12时,S =f (x )=-(2a -1)x 2+(a -1)x +14,∵a >12,∴a -122a -1-12=-a 22a -1<0,∴a -122a -1<12.当a -122a -1≤0时,12<a ≤1,此时当x =0时,f (x )max =f (0)=14, 当0<a -122a -1<12时,a >1,此时当x =a -122a -1时,f (x )max =f ⎣⎢⎡⎦⎥⎤a -122a -1=a 242a -1,②当12<x <a +12时,S =f (x )=a 2-⎝ ⎛⎭⎪⎫x -122·⎝ ⎛⎭⎪⎫x -12=⎝ ⎛⎭⎪⎫x -122⎣⎢⎡⎦⎥⎤a 2-⎝ ⎛⎭⎪⎫x -122≤⎝ ⎛⎭⎪⎫x -122+⎣⎢⎡⎦⎥⎤a 2-⎝ ⎛⎭⎪⎫x -1222=12a 2,等号成立⇔⎝ ⎛⎭⎪⎫x -122=a 2-⎝ ⎛⎭⎪⎫x -122⇔x =12(2a +1)∈⎝ ⎛⎭⎪⎫12,a +12.∴当x =12(2a +1)时f (x )max =a 22.(i)12<a ≤1时,∵a 22-14=12⎝ ⎛⎭⎪⎫a +22⎝ ⎛⎭⎪⎫a -22, ∴12<a ≤22时,当x =0时,f (x )max =f (0)=14; 22<a ≤1时,当x =12(2a +1)时,f (x )max =a 22. (ii)a >1时,∵12a 2-a 242a -1=4a -342a -1a 2>0,∴当x =12(2a +1)时,f (x )max =a 22.综上,12<a ≤22时,当x =0时,f (x )max =f (0)=14,即MN 与AB 之间的距离为0 m 时,三角通风窗EMN 的通风面积最大,最大面积为14m 2.a >22时,当x =12(2a +1)时,f (x )max=a 22,即MN 与AB 之间的距离为12(2a +1) m 时,三角通风窗EMN 的通风面积最大,最大面积为a 22.。