人教版六年级数学(下册)期末复习要点
六年级下册数学复习宝典——人教版
六年级下册数学复习宝典——人教版第一章:整数的运算- 整数的加减法- 整数的乘法- 整数的除法- 整数的运算性质第二章:分数的运算- 分数的加减法- 分数的乘法- 分数的除法- 分数的约分与化简第三章:小数的运算- 小数的加减法- 小数的乘法- 小数的除法- 小数与分数的相互转化第四章:面积和体积- 长方形的面积计算- 三角形的面积计算- 平行四边形的面积计算- 立方体的体积计算第五章:几何图形的性质- 正方形的性质- 长方形的性质- 三角形的性质- 平行四边形的性质第六章:数据统计- 数据的收集和整理- 数据的图表表示- 数据的分析和解读- 数据的比较和排序第七章:方程与方程式- 方程的基本概念- 一元一次方程的解- 一元一次方程的应用- 二元一次方程的解第八章:图形的坐标- 平面直角坐标系- 点的坐标表示- 图形的平移和旋转- 图形的对称性第九章:时间和时钟- 时间的读写和计算- 时钟的读写和计算- 时间的换算- 时钟的运动和指示第十章:数与代数- 数的分类和性质- 数的大小比较- 数的运算规则- 数的应用问题第十一章:数与图- 数与图的关系- 图的分析和解读- 图的绘制和表示- 图形的拼接和变换第十二章:数与量- 数与量的关系- 量的换算和计算- 量的应用问题- 量的估算和判断以上是六年级下册数学复宝典的大纲,涵盖了各个章节的主要内容。
通过复宝典,可以帮助同学们巩固知识,提高数学水平。
祝同学们取得好成绩!。
(完整版)人教版小学数学六年级下册知识点整理和复习(最新整理)
8、改写整数与省略尾数的区别
改写整数
省略尾数
在万位或亿位数字的右下角点上小数 用四舍五入法省略指定
方法
点,去掉小数末尾的 0,并写上受益人 数位后面的尾数,再在后
计数单位“万”或“亿”
面加上相应的计数单位
“万”或“亿”
结果 得到准确数
得到近似数
与原数关 与原数相等用“=”
与原数近似,用“≈”
系
二、小数
5、约分和通分 (1)约分:把一个分数化成同它相等,但分子、分母都比较小的分数叫约分,通常用分子、分母的公因数(1 除外)去除分子和分母,要除到得出最简分数为止。 分子、分母是互质数的分数叫作最简分数。 (2)通分:把异分母的分数分别化成与原来分数相等的同分母分数,先求出原来几个分母的最公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
2、分数单位 把单位“1”平均分成若干份,表示这样的一份的数,叫作这个分数的分数单位。
3、分数的分类 真分数:分子小于分母的分数,真分数小于 1。
分数 假分数:分子大于分母的分数,假分数大于或等于 1。假分数可以改写成带分数或整数。
4、分数的基本性质 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0 除外),分数的大小不变。
小 成
写
百分数
先
一个最简分数能不能化成有限小数,关键看它的分母:如果分母只含质因数 2 和 5,就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,它就不能化成有限小数。
4、成数与折扣 工农业生产中经常用“成数”来表示生产的增长情况,几成就是十分之几,也就是百分之几十。(六成五= 6.5 =65%)
6、分解质因数 把一个合数用几个质因数相乘的形式表示出来,叫作分解质因数。通常用短除法分解质因数。
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)
这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
人教版六年级数学总复习(常见的量)
立方厘米 立方分米 ( cm³) ( dm³)
毫升
升
( mL )
(L)
米 (m)
平方米 ( m²)
立方米 ( m³)
(2)说一说:什么是长度?什么是面积?什么是体积?
长度: 两点之间的距离。
面积: 物体表面(图形)的大小。
体积: 物体所占空间的大小。
(3)用手比划或举例说明:
(1)1厘米有多长?1分米有多长?1米呢?
小数点向左移动三位
320米
二、巩固练习
1、完成“做一做”。
1、2050m=( 2 )km( 50 )m 4.6吨=(460)0 千克 2、( 7.5 )m²=750dm²=( 75000)cm²
2、完成练习十六第1题:填上合适的计量单位。
千米
平方米
天
千克
升
秒
小结:
在进行单位之间的改写时 一要注意:什么单位之间的改写。 二要注意:它们之间的进率是多少。 三要注意:单位之间换算的方法。
1角=( 10)分
3、单位换算
说一说。
(1)如何把高级单位的名数改写成低级单位的名数?
把高级单位的名数改写成低级单位的名 数要乘进率。
(2)如何把低级单位的名数改写成高级单位的名数?
把低级单位的名数改写成高级单位的名 数要除以进率。
练一练
(1)3时20分=(200 )分 (2)2.6吨=( 6 )吨(600 )千克
把高级单位化成低级单位要乘进率。 把低级单位聚成高级单位要除以进率 。
(3)3080克=( 3 )千克( 80 )克
(4)7立方分米8立方厘米=(7.008)立方分米 =(7.008)升
(3) 运用小数点移动的方法进行改写的方法。
(完整)人教版小学六年级下册数学总复习资料
小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
人教版六年级下册数学复习资料(2)
人教版六年级下册数学复习资料 (2)常用的数量关系式1每份数x 份数=总数 总数 旳份数=份数 总数4份数=每份数 2、 1倍数X 咅数=几倍数 几倍数4倍数=倍数 几倍数4倍数=1倍数 3、 速度刘寸间=路程 路程4速度=时间 路程4寸间=速度 4、 单价X 数量=总价 总价4单价=数量 总价4数量=单价 5、 工作效率X 工作时间=工作总量工作总量4工作效率=工作时间 工作总量4工作时间=工作效率小学数学图形计算公式2、正方体 (V:体积 a:棱长表面积=棱长X 棱长X 6 S 表=a X a X 6体积=棱长X 棱长X 棱长 V=aXa X a 3、 长方形(C :周长 S :面积 a :边长)周长=(长+宽)X C=2(a+b ) 面积=长>宽 S=ab 4、 长方体 (V:体积 s:面积 a:长 b:宽h:高)表面积=(长X 宽+长X 高+宽X 高)X S=2(ab+ah+bh ) 体积=yX 宽X 高 V=abh 5、 三角形 (s :面积 a :底 h :高) 面积=底X 高吃s=ah 4三角形高=面积X 24底三角形底=面积X 24高6、 平行四边形 (s :面积 a :底 h :高) 面积=底XW s=ah7、 梯形 (s :面积 a :上底 b :下底 h :高) 面积=(上底+下底)X 高吃 s=(a+b ) Xi 4 8圆形 (S :面积 C :周长 JI d=直径 r=半径) 周长=直径X J =2X 半径 C=J d=2jr 9、 圆柱体 (v:体积 h:高s :底面积 (1)侧面积=底面周长X 高=ch (2 J 或J d )(3)体积二底面积X 高 10、 圆锥体 (v:体积 h:高s :底面积6、加数+加数=和 和—一个加数=另一个加数7、被减数—减数=差 被减数-差=减数差+减数=被减数8因数X 因数二积 积4一个因数二另一个因数9、被除数4除数=商被除数4商=除数 商X 除数=被除数1、正方形 (C :周长S :面积 a :边长) 周长=边长X 4C=4a面积=边长X 边长 S=aXa面积=半径X 半径X Jr:底面半径 c:底面周长) (2)表面积=侧面积+底面积X 2(4)体积=侧面积吃X 半径体积=底面积X高4311、总数速份数二平均数溶液的重量X 浓度=溶质的重量 溶质的重量 今浓度=溶液的重量17、利润与折扣问题 利润=售出价一成本利润率=利润 城本X 1OO%=(售出价三成本一1) X 00% 涨跌金额=本金X 张跌百分比利息=本金X 利率X 寸间税后利息=本金X 利率X 寸间X 1 - 20%)常用单位换算 长度单位换算1 千米=1000米 1 米=10分米 1 分米=10厘米 1 米=100厘米 1 厘米=10毫米面积单位换算1 平方千米 =100 公顷 1 平方米=100平方分米 体(容)积单位换算1 立方米 =1000 立方分米1 立方分米 =1 升 重量单位换算1 吨 =1000 千克人民币单位换算1 公顷=10000平方米 1 平方分米 =100 平方厘米1 立方分米 =1000 立方厘米 1 立方厘米 =1 毫升1 千克=1000克1 元=10 角 1 角=10 分1 元=100分 时间单位换算1 世纪=100年 1 年=12月大月(31 天)有:1\3\5\7\8\10\12月 平年 2月 28天, 闰年 2月 29天平年全年 365 天, 闰年全年 366 天1 日=24小时 1 时=60分1 分=60 秒 1 时=3600秒12、和差问题的公式: (和+差)~2=大数 (和一差)毘=小数13、 和倍问题:14、 差倍问题:和说倍数一1)=小数差说倍数一1)=小数 小数須咅数=大数(和-小数=大数)小数河咅数=大数(或 小数+差=大数)相遇路程=速度和X 相遇时间相遇时间=相遇路程速度和 速度和=相遇路程 诗目遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量 溶质的重量畔溶液的重量X 100% =浓度 1 平方厘米 =100 平方毫米1 立方米 =1000 升1 千克 =1 公斤小月(30天)的有:4\6\9\ 1 1 月。
人教版六年级(下册)数学总复习资料全
第一章数和数的运算自然数和0都是整数。
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
个位上是0、2、4、6、8的数,都能被2整除。
个位上是0或5的数,都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-4.比例
人教版六年级下册数学期末复习专题讲义-4.比例【知识点归纳】1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
判断两个比能不能组成比例,关键要看它们的比值是不是相等,若比值相等,则能组成比例;若比值不相等,则不能组成比例。
温馨提示:1)比例中等号的两侧必须都是一个比。
2) 把等式改写成比例式后,a和x必须同时为外项,或同时为内项。
判断两个比能否组成比例,也可以根据比的基本性质把这两个比化成最简比,如果所化成的最简比相同,那么这两个比就能组成比例,否则不能。
判断四个数是否能组成比例,先把最大数与最小数相乘,再把其余两数相乘,如果这两个积相等,那么这四个数就能组成比例。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
如果c2=a ×d,那么与c能组成比例。
六年级下册数学(人教版)知识点归纳总结复习资料
人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。
人教版数学六年级下册总复习资料
⼈教版数学六年级下册总复习资料 六年级作为⼩学的最后⼀年,⾯临着毕业考试,怎么能缺少⼀份好的复习资料呢?下⾯是店铺分享给⼤家的数学六年级下册总复习资料的资料,希望⼤家喜欢! 数学六年级下册总复习资料 ⼀、数与代数复习的内容和重点 1、数的认识 (1)复习数的意义:整数、⼩数、分数、百分数、负数等等 要求:①结合具体情境说出各种数的含义; ②进⼀步理解整数包括哪些数(P77页); ③⼩数包括有限⼩数、⽆限循环⼩数和⽆限不循环⼩数; ④分数单位 难点是分数意义的真正理解 (2)数的读、写: ①识记数位顺序表; ②识记什么是数位?数位与位数的区别,什么是计数单位?什么是⼗进制计数法?相邻的计数单位之间的进率是多少? ③多位数、⼩数的读法和写法。
归纳出整数、⼩数的读法和写法; ④数的改写: A、把⼤数改写成以“万”或“亿”作单位的数; B、把⼤数改写成以“万”或“亿”作单位的近似数(归纳出改写⽅法)。
(3)数的⼤、⼩⽐较; (4)分数、⼩数百分数的互化; (5)分数的基本性质与⼩数的基本性质 ①分数的基本性质是什么?(利⽤分数的基本性质,把⼀个分数改写成与它⼤⼩相等的分数,分数的单位改变了; ②⼩数的基本性质是什么?(利⽤⼩数的基本性质把⼀个⼩数改写成与它⼤⼩相等的其它⼩数,⼩数的计数单位改变了; ③⼩数点移动位置,⼩数的⼤⼩会发⽣怎样的变化? (6)倍数与因数 ①什么是倍数?什么是因数?(⼀个数的因数个数,最⼩的因数,最⼤的因数;⼀个数的倍数的个数,有没有最⼤的倍数,最⼩的倍数是哪个); ②2、3、5倍数的特征; A、2的倍数特征是什么?什么是偶数?什么是奇数? B、5的倍数特征是什么? C、3的倍数特征是什么?同时能被2、5整除的倍数特征是什么?同时能被2、3、5整除的倍数特征是什么? ③什么是质数?什么是合数?最⼩的质数是什么?最⼩的合数是什么?1是什么数? ④公因数和公倍数:怎样求两个数的公因数及最⼤公因数?怎样求两个数的公倍数及最⼩的公倍数? 难点是:数的改写(包括求近似数、中间、末尾有零的数的读写、⼤⼩⽐较)。
六年级下期末复习知识点
六年级下学期的期末复习知识点主要包括数学、语文、英语和科学等多个学科的知识点。
以下是以每个学科为单位,介绍六年级下学期期末复习的重点知识点。
一、数学:
1.小数
a.四则运算:小数加减乘除;
b.小数与分数之间换算;
c.小数的应用:比大小、计算长、宽、高等;
d.小数的混合运算。
2.几何
a.平面图形:圆的性质、圆心角与圆周角、多边形的内角和、平行线与垂直线等;
b.空间立体:长方体、正方体、三棱柱、三棱锥、四棱锥等的计算。
3.比例与均值
a.比例的概念:比的意义、比的性质、比的应用等;
b.类型题:比例的计算、找出未知量等;
c.均值的概念:算术、几何均值的计算。
4.分数
a.分数的概念:分数的大小比较、分数的化简,分数的四则运算;
b.分数的应用:分数的加减乘除、分数的综合运用。
5.数据统计
a.统计图表的读取和绘制:表格、折线图、柱形图等;
b.数据的分析与解释:数据之间的比较、总结等。
2023年新人教版六年级数学下册总复习知识点
六年级数学下册总复习1、整数和自然数 像…,-3,-2,-1,0,1,2,3,…这样旳数统称为(整数)。
整数旳个数是(无限)旳。
数物体旳时候,用来表达物体个数旳0,1,2,3…叫做(自然数)。
自然数整数旳(一部分)。
(“1”)是自然数旳单位。
最小旳自然数是( 0 )。
2、小数 小数表达旳就是十分之几,百分之几,千分之几……旳数,一位小数可表达为十分之几旳数,两位小数可表达为百分之几旳数,三位小数可表达为千分之几旳数 ……熟记: 51=0.2 52= 0.4 53= 0.6 54=0.8 41 =0.2543= 0.75 81= 0.125 83=0.375 85=0.625 87=0.875小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)…… 小数部分有几种数位,就叫做几位小数。
如3.305是( 三 )位小数3、整数、小数旳读法和写法:(四位分级法)读整数时注意先分级再读数 2830000 读作:读小数时注意小数部分顺次读出每个数位上旳数。
27.036 读作: 写数时注意写好后,一定要读一读仔细校对。
五亿零8千 写作: 三百八十点零三六 写作:为了读写以便,常常把较大旳数改写成用“万”或“亿”作单位旳数。
如只规定“改写”,成果应是精确数。
(先分级,在分级线处点上小数点) =( )亿如规定“省略”万(亿)背面旳尾数,成果应是近似数。
(退后看一位) ≈( )亿4、小数旳性质:小数旳末尾添上0或者去掉0,小数旳大小不变.判断:在小数点旳背面添上0或去掉0,小数大小不变。
( )5、小数点向右移动一位、两位、三位……本来旳数就扩大10倍、100倍、1000倍…… 小数点向左移动一位、两位、三位……本来旳数就缩小到本来旳101、1001、10001 6、正数、负数0既不是正数也不是负数,0是正数和负数旳分界点。
负数<0<正数 两个负数比较,负号背面旳数越大这个数反而越小。
六年级下册数学期末应用题部分复习资料
人教版六年级下册数学期末应用题部分复习资料一、一般应用题[复习目标]1、熟练地解答简单应用题,能根据题目意思说出数量关系式。
明确算理。
2、能用分步列式和综合算式两种解法解答一般应用题,理解每一步算式所表示的实际意义,会用综合法和分析法来分析应用题的解题思路。
[知识回顾]1、简单应用题简单应用题只含有一种数量关系,只用一步运算解答的应用题。
但它是解答所有应用题的基础。
(1)求两数的和加法是把两个数合并成一个数的运算。
有两种情况:一种是知道两个部分数,求总数;另一种是已知一个数是多少,还知道另一个数比它多多少,求另一个数。
(2)求两个数的差减法是已知两个数的和与其中一个加数,求另一个加数的运算,它是加法的逆运算。
有三种情况:一是已知两个数的总数和其中一个数是多少,求另一个数;二是已知两数分别是多少,求其中一数比另一数多(或少)多少;三是已知一个数和另一个数比它少多少,求另一个数(较小数),都是用减法计算。
(3)求两数的积乘法是求几个相同加数的和的简便运算。
一种是已知每份数和份数是多少,求总数;另一种是求一个数的几倍是多少。
(4)求两个数的商除法是已知两个因数的积和其中一个因数,求另一个因数的运算。
一种是把一个数平均分成几份,求一份是多少;另一种是求一个数里包含有几个另一个数。
前者称为“等分除法”,后者称为“包含除法”。
乘、除法应用题的数量关系可以概括为:每份数×份数=总数总数÷份数=每分数总数÷每份数=份数2、一般复合应用题复合应用题是含有两个或两个以上的基本数量关系,就是用两步或两步以上的运算进行解答的应用题。
其实,复合应用题是由几个简单应用题组合成的,所以解答复合应用题是以简单应用题为基础的。
解答这类应用题的关键是在分析数量关系的基础上,把复合应用题分解成几个简单应用题。
解题步骤如下:(1) 弄清题意,找已知条件和要求的问题;(2) 分析题里的数量关系找出中间问题,据此确定先算什么,再算什么,最后算什么;(3) 列出算式进行计算;(4) 检验并写出答案。
人教版六年级下册数学期末总复习知识要点.docx
第一元数1、数的由来:了表示相反意的两个量(如盈利、收入支出⋯⋯),光有学的01 3.42/5 ⋯⋯是不的. 所以出了数,以盈利正、;以收入正、支出2、数:小于0 的数叫数(不包括0),数上0 左的数叫做数.若一个数小于0 ,称它是一个数.数有无数个,其中有(整数,分数和小数)数的写法:数字前面加号“-”号,不可以省略例如: -2 , -5.33 , -45 , -2/5正数:大于 0 的数叫正数(不包括0 ),数上0 右的数叫做正数若一个数大于0 ,称它是一个正数. 正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写.例如: +2, 5.33 , +45 , 2/54、0既不是正数,也不是数,它是正、数的分界限数都小于0,正数都大于0 ,数都比正数小,正数都比数大5、数:6、比两数的大小:①利用数:数< 0<正数或左<右②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小. 负数之间比较大小,数字大的反而小,数字小的反而大1/3 > 1/6-1/3 < -1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣几折就是十分之几,也就是百分之几十. 例如:八折. 通称“打折”=8/10=80 ﹪,.六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答.商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十. 例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答.这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10 ﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1 )纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家 .( 2)纳税的意义:税收是国家财政收入的主要来源之一. 国家用收来的税款发展经济、科技、教育、文化和国防安全等事业.( 3)应纳税额:缴纳的税款叫做应纳税额.( 4)税率:应纳税额与各种收入的比率叫做税率.( 5)应纳税额的计算方法:应纳税额=总收入×税率收入额 =应纳税额÷税率2、利率( 1 )存款分为活期、整存整取和零存整取等方法.( 2 )储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入.( 3)本金:存入银行的钱叫做本金.( 4)利息:取款时银行多支付的钱叫做利息.( 5)利率:利息与本金的比值叫做利率.( 6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%( 7 )注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息 -利息的应纳税额=利息 -利息×利息税率=利息× (1- 利息税率)税后利息=本金×利率×时间×(1- 利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算.购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的.圆柱也可以由长方形卷曲而得到.两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高.其中,第一种方式得到的圆柱体体积较大.2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:( 1)底面的特征:圆柱的底面是完全相等的两个圆.( 2)侧面的特征:圆柱的侧面是一个曲面.( 3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加 2 倍底面积,即S 增 =2π r2②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增 =4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2 π r,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积: S 底 =π r2底面周长: C 底 =π d=2π r侧面积: S 侧 =2π rh表面积: S 表 =2S 底 +S 侧 =2 π r2+2π rh体积: V 柱 =π r2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积 +一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积 +两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的.圆锥也可以由扇形卷曲而得到.2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:( 1 )底面的特征:圆锥的底面一个圆.( 2 )侧面的特征:圆锥的侧面是一个曲面.( 3 )高的特征:圆锥有一条高.4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即 S 增 =2rh5、圆锥的相关计算公式:底面积:S 底 =πr2底面周长: C 底 =πd=2πr体积: V 锥 =1/3 π r2h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的 3 倍 .2、圆柱与圆锥等底等体积,圆锥的高是圆柱的 3 倍 .3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径) 是圆柱的3 倍 .4、圆柱与圆锥等底等高,体积相差2/3 Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间 )③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度 )容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比( 2 )“:”是比号,读作“比”.比号前面的数叫做比的前项,比号后面的数叫做比的后项 . 比的前项除以后项所得的商,叫做比值.( 3 )同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商.( 4 )比值通常用分数表示,也可以用小数表示,有时也可能是整数.( 5)比的后项不能是零.(6 )根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值 .2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0 除外),比值不变,这叫做比的基本性质.3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.根据比的基本性质可以把比化成最简单的整数比. 它的结果必须是一个最简比,即前、后项是互质的数.4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配. 这种分配的方法通常叫做按比例分配.方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少.5、比例的意义:表示两个比相等的式子叫做比例.组成比例的四个数,叫做比例的项.两端的两项叫做外项,中间的两项叫做内项.6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积. 这叫做比例的基本性质.7、比和比例的区别( 1 )比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项).( 2 )比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据.8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系.用字母表示x/y =k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系.用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.11 、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺.12、比例尺的分类( 1 )数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/ 实际距离 =比例尺实际距离×比例尺=图上距离图上距离÷ 比例尺=实际距离14、应用比例尺画图的步骤:( 1 )写出图的名称、( 2 )确定比例尺;(3 )根据比例尺求出图上距离;( 4 )画图(画出单位长度)( 5 )标出实际距离,写清地点名称( 6 )标出比例尺15、图形的放大与缩小:形状相同,大小不同.16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解.17、常见的数量关系式:(成正比例或成反比例)单价×数量 =总价单产量×数量 =总产量速度×时间 =路程工效×工作时间=工作总量18、已知图上距离和实际距离可以求比例尺.已知比例尺和图上距离可以求实际距离.已知比例尺和实际距离可以求图上距离.计算时图距和实距单位必须统一.19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数×天数 =播种的总公顷数已知播种的公数一定,就是每天播种的公数和要用的天数的是一定的,所以每天播种的公数和要用的天数成反比例.第五元数学广角-巢1、巣原理是一个重要而又基本的合原理, 在解决数学有非常重要的作用①什么是巣原理, 先从一个的例子入手, 把 3 个苹果放在 2 个盒子里 , 共有四种不同的放法, 如下表放法盒子 1盒子 2130221312403无哪一种放法, 都可以“必有一个盒子放了两个或两个以上的苹果”.个是在“任意放法”的情况下, 得出的一个“必然果”.似的, 如果有 5 只子四个里, 那么一定有一个了 2 只或2只以上的子如果有 6 封信, 任意投入 5 个信箱里, 那么一定有一个信箱至少有 2 封信我把些例子中的“苹果”、“ 子”、“信”看作一种物体,把“盒子”、“ ”、“信箱”看作巣, 可以得到巣原理最的表达形式②利用公式行解:物体个数÷ 巣个数=商⋯⋯余数至少个数=商 +12、摸 2 个同色球算方法.①要保摸出两个同色的球,摸出的球的数量至少要比色数多 1 .物体数=色数×(至少数-1)+ 1②极端思想:用最不利的摸法先摸出两个不同色的球,再无摸出一个什么色的球,都能保一定有两个球是同色的.③公式:两种色:2 + 1= 3(个)三种色:3 + 1= 4(个)四种色:4 + 1= 5(个)。
人教版六年级数学下册总复习资料
人教版六年级数学下册总复习资料在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学起着非常重要的作用。
为了让同学考个好的数学成绩,下面是店铺分享给大家的六年级数学下册总复习资料的资料,希望大家喜欢!六年级数学下册总复习资料一1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
六年级下核心考点清单
六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。
2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。
3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。
4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。
5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。
6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。
7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。
8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。
这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。
六年级下册知识点归纳总结数学
六年级下册知识点归纳总结数学
以下是六年级下册数学的一些重要知识点:
1. 负数:理解负数的概念,掌握比较负数大小的方法,能正确地读写负数。
2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。
3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱表面积、体积的计算方法,掌握圆锥体积的计算方法。
4. 正比例和反比例:理解正比例和反比例的概念,能正确判断成正比例的量和成反比例的量。
5. 统计:理解统计表和折线统计图的特点,掌握制作简单的统计表和折线统计图的方法,能根据统计图表进行简单的数据分析。
6. 解决问题的策略:能综合运用所学的数学知识、技能和方法解决一些简单的实际问题,增强应用意识,提高实践能力。
以上仅为基础知识点的大致概括,如需更详细的内容,建议查阅六年级下册数学教材或教辅书。
人教版数学六年级下册总复习资料
人教版数学六年级下册总复习资料一、数与代数复习的内容和重点1、数的认识(1)复习数的意义:整数、小数、分数、百分数、负数等等要求:①结合具体情境说出各种数的含义;②进一步理解整数包括哪些数(P77页);③小数包括有限小数、无限循环小数和无限不循环小数;④分数单位难点是分数意义的真正理解(2)数的读、写:①识记数位顺序表;②识记什么是数位?数位与位数的区别,什么是计数单位?什么是十进制计数法?相邻的计数单位之间的进率是多少?③多位数、小数的读法和写法。
归纳出整数、小数的读法和写法;④数的改写:A、把大数改写成以“万”或“亿”作单位的数;B、把大数改写成以“万”或“亿”作单位的近似数(归纳出改写方法)。
(3)数的大、小比较;(4)分数、小数百分数的互化;(5)分数的基本性质与小数的基本性质①分数的基本性质是什么?(利用分数的基本性质,把一个分数改写成与它大小相等的分数,分数的单位改变了;②小数的基本性质是什么?(利用小数的基本性质把一个小数改写成与它大小相等的其它小数,小数的计数单位改变了;③小数点移动位置,小数的大小会发生怎样的变化?(6)倍数与因数①什么是倍数?什么是因数?(一个数的因数个数,最小的因数,最大的因数;一个数的倍数的个数,有没有最大的倍数,最小的倍数是哪个);②2、3、5倍数的特征;A、2的倍数特征是什么?什么是偶数?什么是奇数?B、5的倍数特征是什么?C、3的倍数特征是什么?同时能被2、5整除的倍数特征是什么?同时能被2、3、5整除的倍数特征是什么?③什么是质数?什么是合数?最小的质数是什么?最小的合数是什么?1是什么数?④公因数和公倍数:怎样求两个数的公因数及最大公因数?怎样求两个数的公倍数及最小的公倍数?难点是:数的改写(包括求近似数、中间、末尾有零的数的读写、大小比较)。
2、数的运算(1)四则运算的意义①创设情境,让学生结合情境提出用加、减、乘、除法解决的问题;②结合版式说明每一种运算的含义A、什么叫加法?小数加法、分数加法的意义相同吗?B、什么叫做减法?小数减法、分数减法的意义相同吗?C、整数乘法的意义是什么?小数、分数乘法的意义与整数乘法的意义相同吗?D、什么叫做除法?小数除法、分数除法的意义相同吗?(2)四则运算的方法(80页)①整数、小数加法、减法的计算方法各是什么?②分数加法、减法的计算方法是什么?③它们有什么相同点?④整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?⑤整数、小数除法的计算方法是什么?⑥分数乘法和除法的计算方法是什么?⑦怎样进行口算?怎样进行估算?(3)四则运算中的一些特殊情况。
人教版小学数学六年级下册总复习知识点(整理版)
人教版小学数学六年级总复习知识点目录【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高;S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题.(和+差)÷2=大数;(和-差)÷2=小数13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题.和÷(倍数-1)= 小数;小数×倍数=大数(或者:和-小数=大数)14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.差÷(倍数-1)= 小数;小数×倍数=大数(或者:小数+差=大数)15、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量;溶液的重量×浓度=溶质的重量;溶质的重量÷溶液的重量×100%=浓度;溶质的重量÷浓度=溶液的重量17、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)【常用单位换算】(一)长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算:1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升(四)重量单位换算:1吨=1000千克;1千克=1000克;1千克=1公斤(五)人民币单位换算:1元=10角;1角=10分;1元=100分(六)时间单位换算:1世纪=100年;1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时;1时=60分=3600秒;1分=60秒;【基本概念】第一章数和数的运算一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示.0也是自然数.1是自然数的基本单位,任何一个自然数都是由若干个1组成.0是最小的自然数,没有最大的自然数.(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号.正整数(1、2、3、4、……)(3)整数零(0既不是正数,也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位.读写数时,某个单位上一个单位也没有,就用0表示.(2)占位作用.(3)作为界限.如“零上温度与零下温度的界限”.3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.5、数的整除:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a .(1)如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的. 如:因为35能被7整除,所以35是7的倍数,7是35的约数. (2)一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身.如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除.. (5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除..(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.(7)一个数各位数上的和能被9整除,这个数就能被9整除.(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.(9)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.(10)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.(11)能被2整除的数叫做偶数.不能被2整除的数叫做奇数.0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.(12)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.(13)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.例如4、6、8、9、12都是合数.(14)1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.(15)每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:把28分解质因数(17)几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质. ②相邻的两个自然数互质. ③两个不同的质数互质.④当合数不是质数的倍数时,这个合数和这个质数互质.⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.⑦如果两个数是互质数,它们的最大公约数就是1.(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数..①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示.(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.(4)在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数.例如:0.25 、0.368 都是纯小数.(2)带小数:整数部分不是零的小数,叫做带小数. 例如:3.25 、5.26 都是带小数. (3)有限小数:小数部分的数位是有限的小数,叫做有限小数.例如:41.7 、25.3 、0.23 都是有限小数.(4)无限小数:小数部分的数位是无限的小数,叫做无限小数.例如:4.33 …… 3.1415926 ……(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数. 例如:π(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如:3.555 ……0.0333 ……12.109109 ……(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节.例如:3.99 ……的循环节是“9 ”, 0.5454 ……的循环节是“54 ”.(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数.例如:3.111 ……0.5656 ……(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数.例如:3.1222 ……0.03333 ……(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字,就只在它的上面点一个点.例如:3.777 ……简写作:3.7(•) ;0.5302302 ……简写作:0.53(•)02(•) . (三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.2、分数的分类真分数:分子比分母小的分数叫做真分数.真分数小于1.假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分.分子分母是互质数的分数,叫做最简分数.把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.二、方法(一)数的读法和写法1、整数的读法:从高位到低位,一级一级地读.读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字.4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读.6、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写.7、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读.8、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示.(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数. 例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿.2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示. 例如:1302490015 省略亿后面的尾数是13 亿.3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1.例如:省略345900 万后面的尾数约是35 万.省略4725097420 亿后面的尾数约是47 亿.4、大小比较(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大. (2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大.分数的分母和分子都不相同的,先通分,再比较两个数的大小.(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分.2、分数化成小数:用分母去除分子.能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数.3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数.4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号.5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数.(四)数的整除1、把一个合数分解质因数,通常用短除法.先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式.2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数.3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数.4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质.(五)约分和通分(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.三、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变.(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变.(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位.(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变. (五)分数与除法的关系1、被除数÷除数=2、因为零不能作除数,所以分数的分母不能为零.3、被除数相当于分子,除数相当于分母.四、运算的意义(一)整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法.在加法里,相加的数叫做加数,加得的数叫做和.加数是部分数,和是总数.加数+加数=和一个加数=和-另一个加数2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法.在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差.被减数是总数,减数和差分别是部分数.加法和减法互为逆运算.3、整数乘法:求几个相同加数的和的简便运算叫做乘法.在乘法里,相同的加数和相同加数的个数都叫做因数.相同加数的和叫做积.在乘法里,0和任何数相乘都得0;1和任何数相乘都的任何数.一个因数×一个因数=积;一个因数=积÷另一个因数4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法.在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商.乘法和除法互为逆运算.在除法里,0不能做除数.(因为0和任何数相乘都得0,所以任何一个数除以0,均得不一个确定的商. )被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1、小数加法:小数加法的意义与整数加法的意义相同.是把两个数合并成一个数的运算.2、小数减法:小数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.4、小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.5、乘方: 求几个相同因数的积的运算叫做乘方.例如3 ×3 =32(三)分数四则运算1、分数加法:分数加法的意义与整数加法的意义相同. 是把两个数合并成一个数的运算.2、分数减法:分数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数,求另一个加数的运算.3、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.4、乘积是1的两个数叫做互为倒数.5、分数除法:分数除法的意义与整数除法的意义相同.就是已知两个因数的积与其中一个因数,求另一个因数的运算.(四)运算定律1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .6、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .(五)运算法则1、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一.2、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减.3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来.4、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数.5、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足.6、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除.7、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算.8、同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变.9、异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算.10、带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来.11、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.12、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数.(六)运算顺序1、小数四则运算的运算顺序和整数四则运算顺序相同.2、分数四则运算的运算顺序和整数四则运算顺序相同.3、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法.4、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的.5、第一级运算:加法和减法叫做第一级运算.6、第二级运算:乘法和除法叫做第二级运算.五、应用(一)整数和小数的应用1、简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题.(2)解题步骤:A、审题理解题意:了解应用题的内容,知道应用题的条件和问题.读题时,不丢字不添字边读边思考,弄明白题中每句话的意思.也可以复述条件和问题,帮助理解题意.B、选择算法和列式计算:这是解答应用题的中心工作.从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称.C、检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意.如果发现错误,马上改正.2 复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题.(2)含有三个已知条件的两步计算的应用题.求比两个数的和多(少)几个数的应用题.比较两数差与倍数关系的应用题.(3)含有两个已知条件的两步计算的应用题.已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差).已知两数之和与其中一个数,求两个数相差多少(或倍数关系).(4)解答连乘连除应用题.(5)解答三步计算的应用题.(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数.(7) 解答加法应用题:a.求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少.b.求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少.(8)解答减法应用题:a.求剩余的应用题:从已知数中去掉一部分,求剩下的部分.b.求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少.c.求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少.(9)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数.b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少.(10)解答除法应用题:a.把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少.b.求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份.c.求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几。
人教版小学数学六年级下册期末阶段专项复习 《图形计算》(含答案)
人教版小学数学六年级下册期末阶段专项复习——《图形计算》班级:_________ 姓名:__________1.下图中空白三角形的面积是10dm2,求阴影部分的面积。
2.求阴影部分的周长。
(单位:cm)3.求下列图形的表面积和体积。
单位:厘米。
4.求圆锥的体积。
5.求下图阴影部分的面积。
(单位cm,π取3.14)6.计算环形面积。
7.计算下图的周长和面积(单位:m)8.计算下图的面积(单位:dm)。
9.下图长方形的周长是30厘米,求阴影部分的面积。
10.求下面图形中阴影部分的面积。
(单位:厘米)11.求下图阴影部分的面积。
12.求直角梯形中阴影部分的面积。
13.求如图图形的体积。
14.如图,求下面图形中阴影部分的面积。
15.求表面积。
(单位:厘米)16.计算阴影部分的面积。
(单位:dm)17.求出图中阴影部分的面积。
18.求阴影部分的面积及周长各是多少。
参考答案:1.3.125dm22.49.68cm3.527.52平方厘米;769.3立方厘米4.47.1cm35.343cm26.251.2cm27.162.8m;1314m28.33.12dm29.11.61平方厘米10.3.44平方厘米11.28.5cm212.20.75cm213.26280cm314.78.5平方米15.526平方厘米16.15.25dm217.7.065平方厘米18.面积6.88cm2;周长20.56cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级数学(下册)期末复习要点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量18、已知图上距离和实际距离可以求比例尺。