初中数学知识点总结_2

合集下载

2024年八年级数学重点知识点总结(2篇)

2024年八年级数学重点知识点总结(2篇)

2024年八年级数学重点知识点总结(____字)一、整数与小数1. 整数的定义与性质:自然数、整数、相反数、绝对值、数轴、整数的比较和运算性质。

2. 小数的定义和性质:有限小数、无限小数、循环小数、小数与分数的关系。

3. 整数的加减运算:同号相加、异号相减、减法的运算法则等。

4. 小数与整数的加减运算:小数与整数相加减、小数加减法与整数的结合。

5. 有理数的加减运算:有理数的加法性质、有理数的加法运算、有理数的减法性质、有理数的减法运算。

二、代数式与方程式1. 代数式的定义和性质:代数式的定义、代数式的运算。

2. 等式的性质:等式的基本性质、等式两边相等的性质。

3. 一元一次方程式:方程的解、方程的变形、方程解的判定、一元一次方程的解法、方程的应用。

4. 解一元一次方程:等式的两边加(减)上同一个数、等式的两边乘(除)以同一个数。

三、几何图形的认识1. 点、线、面:点的概念、线的概念、面的概念。

2. 角:角的概念、角的大小、平角、直角、锐角、钝角、对顶角、邻补角、互补角。

3. 三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的内角和、三角形的外角和。

4. 平行线与垂直线:平行线的判定、平行线的性质、平行线与横线的关系、平行线与竖线的关系、垂直线的判定、垂直线的性质。

四、比例和相似1. 比与比例:比的定义和性质、比例的定义和性质。

2. 比例运算:比例的四则运算、比例的平方与倒数运算。

3. 相似与全等:相似的概念与性质、相似判定的方法。

4. 三角形的相似:全等三角形、相似三角形、比例定理、相似三角形的性质。

五、数据的分析与统计1. 平均数:算术平均数、加权平均数。

2. 数据的搜集与整理:搜集数据的方法、整理数据的方法。

3. 数据的图表表示:表格、条形图、折线图、饼图。

4. 概率:试验与事件、概率的定义和性质、概率的大小。

六、函数与图像1. 一元一次函数:函数概念、函数自变量与因变量、一元一次函数的图像、函数的线性关系。

初中数学知识点精讲精析 绝对值 (2)

初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。

相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。

(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。

一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。

2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。

(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。

(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。

用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。

初三数学知识点(6篇)

初三数学知识点(6篇)

初三数学知识点整理(6篇)初三数学学问点整理11.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点学问:初中数学第一课,熟悉正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.肯定值1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。

①互为相反数的两个数肯定值相等;②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.③有理数的肯定值都是非负数.2.假如用字母a表示有理数,则数a 肯定值要由字母a本身的取值来确定:①当a是正有理数时,a的肯定值是它本身a;②当a是负有理数时,a的肯定值是它的相反数﹣a;③当a是零时,a的肯定值是零.即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;②当k0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。

轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。

轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。

以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。

2. 轴线:轴线是指对称图形相对出现的那根线。

3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。

- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。

- 对称轴的两侧的点与对称轴上的一点对称关系。

二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。

如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。

2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。

3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。

三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。

2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。

3. 三阶图形:五角星、六边形等。

四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。

2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。

有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。

五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。

八年级数学第二章知识点总结(优选6篇)

八年级数学第二章知识点总结(优选6篇)

八年级数学第二章知识点总结第1篇1.无理数⑴无理数:无限不循环小数⑵两个无理数的和还是无理数2.平方根⑴算术平方根、平方根一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。

⑵开平方:求一个数的平方根的运算叫开平方被开方数3.立方根⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.⑶开立方、被开方数4.公园有多宽求根式、估算根式、根据面积求边长5.实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。

我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。

7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。

对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。

对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。

至于倒数法和平方法不是很常见,所以只需简单了解即可。

10.计算是数学的基础,也是我们解决问题的必要手段。

提高实数的运算能力,先要审题,理解有关概念。

要注意零指数、负整指数、乘法、特殊角三角函数值、二次根式化简和绝对值等知识点。

在计算时需要先确定符号,再确定结果,把好符号关。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。

2.整数:正整数、负整数和0的集合。

3.分数:约分、通分、四则运算、化为整数、化为带分数。

4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。

5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。

6.乘方与开方:幂的概念与运算,方根的概念与运算。

7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。

二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。

2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。

3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。

4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。

5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。

三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。

2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。

3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。

4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。

5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。

四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。

2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。

3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。

4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

初二数学基础知识点归纳总结(2篇)

初二数学基础知识点归纳总结(2篇)

初二数学基础知识点归纳总结一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。

一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

[初一数学知识点归纳]初一数学知识点

[初一数学知识点归纳]初一数学知识点

[初一数学知识点归纳]初一数学知识点初一数学知识点篇(1):初一数学基本知识点总结初一数学基本知识点总结(一)第一章有理数1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减:①正+正②大-小③小-大=-(大-小) ④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用a某10n 表示一个数。

(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

初一数学知识点归纳总结大全

初一数学知识点归纳总结大全

初一数学知识点归纳总结大全完成了小学数学阶段的学习,进入了紧张的初中数学阶段,经过数学阶段的学习,我们要总结的数学知识!一起来看看初一数学知识点归纳总结,欢迎查阅!初中七年级数学知识点总结一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a 的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则减去一个数,等于加上这个数的相反数。

14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

初中数学知识点归纳总结2篇

初中数学知识点归纳总结2篇

初中数学知识点归纳总结2篇文章一:初中数学知识点归纳总结1.整数与有理数(1)整数和有理数的概念:整数包括正整数、负整数和0;有理数包括整数和分数。

(2)整数的运算规则:加法的运算法则为:两个整数相加,同号为正,异号为负;减法的运算法则为:两个整数相减,改为加上相反数;乘法的运算法则为:两个整数相乘,同号为正,异号为负;除法的运算法则为:两个整数相除,根据被除数与除数的正负确定商的正负。

(3)有理数的加减乘除运算:有理数的加减法运算法则与整数的运算法则相同;有理数的乘法运算法则为:两个有理数相乘,同号为正,异号为负;有理数的除法运算法则为:两个有理数相除,根据被除数与除数的正负确定商的正负。

2.代数基础(1)代数式的定义:代数式是用字母和数值结合表示的式子,可以包含运算符和括号。

(2)代数式的合并与展开:合并代数式就是将同类项合并在一起,如将3x和4x合并成7x;展开代数式就是将括号内的式子进行乘法分配律的运算,如将2(x+3)展开为2x+6。

(3)平方根、立方根和指数:平方根是指一个数的平方为被开方数,如2的平方根是±√2;立方根是指一个数的立方为被开方数,如2的立方根是±∛2;指数是表示一个数被乘多少次的方式,如2的3次方表示为2³。

(4)代数式的应用:代数式可以用来解决实际问题,如利用代数式计算公式求解物理问题、几何问题等。

3.平面图形(1)二维的基本概念:点、线、线段、射线、角、三角形、四边形、多边形等。

(2)平行和垂直线的性质和判定:平行线是指在同一平面内永不相交的两条线;垂直线是指两条线相交时,交角为90度的两条线。

(3)三角形的分类:根据边长和角度的关系,三角形可以分为等边三角形、等腰三角形和一般三角形。

(4)圆的基本性质:圆是由平面内到一定距离的所有点组成的集合,圆上的点到圆心的距离都相等。

4.几何变换(1)平移、旋转和翻折:平移是指保持形状和大小不变,只改变位置的变换;旋转是指围绕一个中心进行旋转的变换;翻折是指以一条线为对称轴将图形对折的变换。

八年级上册数学-第二章-知识点复习总结

八年级上册数学-第二章-知识点复习总结

第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

数学初中知识点总结归纳4篇

数学初中知识点总结归纳4篇

数学初中知识点总结归纳4篇数学初中知识点总结归纳4篇学会有效的时间管理,保证学习与其他生活需求的平衡和协调。

学习需要勇于挑战、勇于创新,才能发掘出自己的成长潜力。

下面就让小编给大家带来数学初中知识点总结归纳,希望大家喜欢!数学初中知识点总结归纳1相关的角:1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。

3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。

注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。

角的性质1、对顶角相等。

2、同角或等角的余角相等。

3、同角或等角的补角相等。

数学初中知识点总结归纳2平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。

反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结新人教版初中数学知识点总结(完整版)总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们来为自己写一份总结吧。

如何把总结做到重点突出呢?下面是店铺整理的新人教版初中数学知识点总结(完整版),仅供参考,大家一起来看看吧。

新人教版初中数学知识点总结(完整版) 篇1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot新人教版初中数学知识点总结(完整版) 篇21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

初中一年级数学知识点总结第二章 有理数及其运算

初中一年级数学知识点总结第二章 有理数及其运算

初中一年级数学知识点总结第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

解题时要真正掌握数形结合的思想,并能灵活运用。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:(1)五种运算:加、减、乘、除、乘方(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律第三章字母表示数1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

4、去括号法则(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。

5、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。

第四章平面图形及其位置关系1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。

线段有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。

射线有一个端点。

初中数学知识点总结2

初中数学知识点总结2

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。

下面是由编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

初中数学知识点总结归纳1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结•相关推荐初中数学知识点总结(精选5篇)在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。

掌握知识点是我们提高成绩的关键!以下是小编整理的初中数学知识点总结(精选5篇),希望对大家有所帮助。

初中数学知识点总结1棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的的性质:(1)侧棱交于一点。

侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

初中数学知识点总结2幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a 就不能是负数。

初中的数学知识点总结归纳

初中的数学知识点总结归纳

初中的数学知识点总结归纳一、知识框架二.知识概念1.有理数:1凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数;2有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:1正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2 绝对值可表示为:或 ;绝对值的问题经常分类讨论;5.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0大,负数永远比0小;3正数大于一切负数;4两个负数比大小,绝对值大的反而小;5数轴上的两个数,右边的数总比左边的数大;6大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号为正,异号为负,并把绝对值相乘;2任何数同零相乘都得零;3几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: -an=-an或a -bn=-b-an , 当n为正偶数时: -an =an 或 a-bn=b-an .14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A 的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X 的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y 的值随X值的增大而减少。

二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

相关文档
最新文档