《土力学》土坡稳定分析
土力学习题集答案__第十章1
第10章土坡和地基的稳定性1.简答题1.土坡稳定有何实际意义影响土坡稳定的因素有哪些2.何为无黏性土坡的自然休止角无黏性土坡的稳定性与哪些因素有关3.简述毕肖普条分法确定安全系数的试算过程4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数6.地基的稳定性包括哪些内容地基的整体滑动有哪些情况应如何考虑7.土坡稳定分析的条分法原理是什么如何确定最危险的圆弧滑动面8.简述杨布(Janbu)条分法确定安全系数的步骤。
2.填空题1.黏性土坡稳定安全系数的表达式为。
2.无黏性土坡在自然稳定状态下的极限坡角,称为自然休止角。
3.瑞典条分法稳定安全系数是指和之比。
4.黏性土坡的稳定性与土体的、、、和等5个参数有密切关系。
5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。
3.选择题1.无粘性土坡的稳定性,( B )。
A.与坡高无关,与坡脚无关B.与坡高无关,与坡脚有关C.与坡高有关,与坡脚有关D.与坡高有关,与坡脚无关2.无黏性土坡的稳定性( B )。
A.与密实度无关B.与坡高无关C.与土的内摩擦角无关D.与坡角无关3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( C )= B. K== D. K=4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪种方法测定( C )A.三轴固结不排水试验B.直剪试验慢剪C.现场十字板试验D.标准贯入试验5. 瑞典条分法在分析时忽略了( A )。
A.土条间的作用力B.土条间的法向作用力C.土条间的切向作用力6.简化毕肖普公式忽略了( C )。
A.土条间的作用力B.土条间的法向作用力C.土条间的切向作用力4.判断改错题1.黏性土坡的稳定性与坡高无关。
X2.用条分法分析黏性土的稳定性时,需假定几个可能的滑动面,这些滑动面均是最危险的滑动面。
第八章+土坡稳定性分析
土力学与地基基础
• 由于计算上述安全系数时,滑动面为任意 假定,并不是最危险的滑动面,因此所求 结果并非最小的安全系数。通常在计算时 需要假定一系列滑动面,进行多次试算, 计算工作量很大。 • W.费伦纽斯(Fellenius,1927)通过大量计 算分析,提出了以下所介绍的确定最危险 滑动面圆心的经验方法。
土力学与地基基础
瑞典条分法和毕肖普法的比较
• 瑞典条分法忽略各条间力对Ni的影响,i土 条上只有Gi,Ni,Ti三种力作用,低估安全系 数5~20%。 • 毕肖普法忽略土条竖向剪切力的作用,考 虑了土条两侧的作用力,比瑞典条分法更 合理,低估安全系数约为2~7%。
土力学与地基基础
li
K
1 m cb Gi ui b X i tan i
G sin
i
i
土力学与地基基础
• 毕肖普条分法考虑了土条两侧的作用力, 计算结果比较合理。 • 分析时先后利用每一土条竖向力的平衡及 整个滑动土体的力矩平衡条件,避开了Ei 及其作用点的位置,并假定所有的 X i 均等 于零,使分析过程得到了简化。 • 但该方法同样不能满足所有的平衡条件, 还不是一个严格的方法,由此产生的误差 约为2%~7%。另外,毕肖普条分法也可以 用于总应力分析,即在上述公式中采用总 应力强度指标c、φ计算即可。
土力学与地基基础
土坡形态及各部分名称
坡肩 坡顶
坡高 坡脚
坡面
坡角
土力学与地基基础
土力学与地基基础
土力学与地基基础
土力学与地基基础
4.土坡由于其表面倾斜,在自重或外部荷 载的作用下,存在着向下移动的趋势, 一旦潜在滑动面上的剪应力超过了该面 上的抗剪强度,稳定平衡遭到破坏, 就可 能造成土坡中一部分土体相对于另一部 分的向下滑动,该滑动现象称为滑坡。 5.天然的斜坡、填筑的堤坝以及基坑放坡 开挖等问题,都要演算土坡的稳定性。 亦即比较可能滑动面上的剪应力与抗剪 强度,这种工作称为稳定性分析。
土力学与地基基础——土压力及土坡稳定
1.填土表面有均布荷载(以无粘性土为例)
q
填土表面深度z处竖向应力为(q+z)
h
z
A
相应主动土压力强度
z+q
pa (z+q)Ka
A点土压力强度
B点土压力强度
paA qKa
paB (h+q)Ka
B
若填土为粘性土,c>0 临界深度z0
z0 2c /( Ka )-q /
z0 >0说明存在负侧压力区,计算中应不考 虑负压力区土压力 z0 ≤0说明不存在负侧压力区,按三角形或 梯形分布计算
静止土压力 E0:坚硬地基上,断面较大 主动土压力 Ea:一般挡土墙 被动土压力 Ep: 桥台
桥面
E
拱桥桥台
4.三种土压力之间的关系
-△ +△
E
挡土墙所受土压力的大小
并不是一个常数,而是随
位移量的变化而变化。
静止土压力 E0 主动土压力 Ea 被动土压力 Ep
Ep
Eo
Ea
o
-△ △a
△p
对学同性一质挡相土同墙的,条在件填下有土以的下物规理律力:1. Ea <Eo <<Ep
1.粘性土主动土压力强度存在负侧压力区(计 算中不考虑)
2.合力大小为分布图形的面积(不计负侧压力 部分)
3.合力作用点在三角形形心,即作用在离墙底 (h-z )/3处
h
z
三、被动土压力
z(σ3)
pp(σ1)
三 挡土墙在外力作用下,挤压墙背后土
体,产生位移,竖向应力保持不变,
、 水平应力逐渐增大,位移增大到△p,
K p tg2 (45 f / 2)
1 sin f 1 sin f
K0 1 sinf
边坡稳定分析软件slide在《土力学》教学中的应用
佳木斯职业学院学报2019年第11期总第204期No.11. 2019Sum 204土坡是具有倾斜坡面的土体。
地质作用形成天然土坡、人工开挖或回填形成人工土坡。
自然土坡与人造边坡的垮塌是经常发生的工程事故。
1999年,中国建筑工业出版社出版了曾宪明等撰写的专著《基坑与边坡事故警示录》,这本专著记录了243起基坑与人造边坡工程失事实例。
土坡稳定分析是《土力学》课程的重要内容,土坡稳定分析的条分法是土坡稳定分析的一种经典算法,目前仍被普遍应用,也是教学的重点和难点。
条分法是先假定可能的滑裂面,然后将滑动土体竖直划分成若干土条,把各土条当成刚体,分别求出各土条相对于滑动圆心的滑动力矩和抗滑力矩,然后求出土坡的稳定安全系数。
土坡的稳定问题是一个高次超静定问题,无法直接求解。
一般通过各种假设以减少未知量个数来实现土坡稳定性分析。
无论是瑞典条分法、Bishop 条分法还是简布法,都涉及最危险滑动圆弧的搜索。
只有找出最危险滑动面,并计算其安全系数才能判断土坡的稳定性。
值得注意的是,条分法是通过试算确定最危险滑动面,计算的滑动圆弧越多,搜索到真正的最危险滑动面的概率就越大。
在搜索最危险滑动面的过程中,每确定一个新的滑动圆弧,都需要重新分条,并计算滑动力矩和抗滑力矩之比,确定安全系数,工作量相当浩繁。
随着技术的进步,岩土工程计算分析软件在土木工程的设计、施工和教学过程中的作用日益突出。
将岩土工程分析软件运用到土力学的教学过程中,不仅可以提升教学效果,还可以培养学生应用软件的能力,实现课堂教学与工程实践的对接。
当前岩土工程软件在土力学教学中的应用并不多,本文尝试用SLIDE 边坡分析软件来优化土力学边坡稳定分析的教学过程,探讨岩土工程软件在教学中的应用,以求抛砖引玉,探索土力学教学改革方法。
一、条分法的基本步骤条分法是建立在刚体极限平衡的理论之上的土坡稳定性分析方法。
该方法通过试算来搜索土坡的最危险滑动面,利用最危险滑动面的安全系数来判断土坡的稳定性。
土力学之土压力和土坡稳定
a zKa 2c Ka
a zK a
主动土压力系数
式中: Ka tan 2 (45 / 2)
4、单位长度挡土墙的主动土压力的合力Ea
无粘性土:
大小 作用点
Ea
1 2
K a h2
粘性土: 大小 作用点
a zKa 2c Ka
Ea
1 2
K
a
h2
2ch
Ka
2c 2
方向
方向
2c z0 Ka
1.土体在水平方向伸展
单元体在水平截面上的法向应力z不变,而竖直截面上 的法向应力x却逐渐减小,直至满足极限平衡条件(称为 主动朗肯状态)。
f c tg
0
a K0 z
z
主动朗肯状态时的莫尔圆
2.土体在水平方向压缩
单元体在水平截面上的法向应力z不变而竖直截面上的 法向应力x却逐渐增大,直至满足极限平衡条件(称为被 动朗肯状态)。
某挡土墙高为5m,墙背垂直、光滑,墙后 为砂土且水平,φ=30°,γ=17KN/m3。 γω=10 KN/m3。试计算挡土墙后主动土压 力强度及总压力E。
四、几种情况下的土压力计算
1、填土表面有连续均布荷载
将γz代之以(γz+q)
就得到填土表面有超载时的 主动土压力强度计算公式:
粘性土:
a (z q)Ka 2c Ka
第二层:
' a1
1h1Ka2
2c2
Ka2
a2 ( 1h1 2h2 )Ka2 2c2 Ka2
4、有限填土
适用条件: (45 / 2)
砂性土 a zK a 粘性土 a zKa 2c Ka
Ka
sin( ' )sin( ' )sin( r ) sin2 ' sin( )sin( ' r
土力学 第7-9章 土压力、土坡的稳定性
一.填空题1.根据墙的位移情况和墙后土体所处的应力状态,土压力可分为、和被动土压力三种。
2.在相同条件下,产生主动土压力所需的墙身位移量△a与产生被动土压力所需的墙身位移量△p的大小关系是。
3.根据朗肯土压力理论,当墙后土体处于主动土压力状态时,表示墙后土体单元应力状态的应力圆与土体抗剪强度包线的几何关系是。
4. 挡土墙墙后土体处于朗肯主动土压力状态时,土体剪切破坏面与竖直面的夹角为;当墙后土体处于朗肯被动土压力状态时,土体剪切破坏面与水平面的夹角为。
5.当挡土墙墙后填土面有均布荷载q作用时,若填土的重度为γ,则将均布荷载换算成的当量土层厚度为。
6.当墙后填土有地下水时,作用在墙背上的侧压力有土压力和两部分。
7.当墙后无粘性填土中地下水位逐渐上升时,墙背上的侧压力产生的变化是。
8.当挡土墙承受静止土压力时,墙后土体处于应力状态。
9.挡土墙在满足的条件下,库仑土压力理论与朗肯土压力理论计算得到的土压力是一致的。
10.墙后填土面倾角增大时,挡土墙主动土压力产生的变化是。
11.库仑理论假定墙后土体中的滑裂面是通过的平面。
12.常用挡土墙型式包括挡土墙、挡土墙、挡土墙、锚杆式挡土墙、加筋土挡土墙等。
13.对于均质无粘性土坡,理论上土坡的稳定性只与坡角和内摩擦角有关,与坡高无关。
14.瑞典条分法稳定安全系数是指和之比。
15.无黏性土坡在自然稳定状态下的极限坡角,称为。
17.载荷试验的曲线形态上,从线性开始变成非线性关系时的界限荷载称为。
18.在变形容许和维系稳定的前提下,单位面积的地基所能承受荷载的能力称为。
19.地基中将要而未出现塑性变形时的地基压力称为,常用表示。
20.当地基土体中的塑性变形区充分发展并形成连续贯通的滑移面时,地基所能承受的最大荷载称为。
二.选择题1.按挡土墙结构特点,下列类型挡土墙属于重力式挡土墙的是( ) 。
A.石砌衡重式挡土墙B.钢筋混凝土悬臂式挡土墙C.柱板式挡土墙;D.锚定板式挡土墙2.在相同条件下,主动土压力E a与被动土压力E p的大小关系是( )。
土力学-第六章土压力、地基承载力和土坡稳定
土楔在三力作用下,静力平衡
E 1 2 h Ka 2
滑裂面是任意给定的,不同滑裂面得 到一系列土压力E,E是q的函数,E 的最大值Emax,即为墙背的主动土压 力Ea,所对应的滑动面即是最危险滑 动面
1 2 Ea h 2 cos 2 ( ) sin( )sin( ) 2 cos cos( ) 1 cos( ) cos( )
36.6kPa
paB下 1h1K a 2 2c2 K a 2= .2kPa - 4 paC ( 1h1 2 h2 ) K a 2 2c2 K a 2 36.6kPa
= 主动土压力合力 Ea 10.4 2 / 2 (4.2 36.6) 3 / 2 71.6kN / m
hKp +2c√Kp
1.粘性土被动土压力强度不存在负侧压力区 2.合力大小为分布图形的面积,即梯形分布图形面积 3.合力作用点在梯形形心
hp
四、例题分析 【例】有一挡土墙,高6米,墙背直立、光滑,墙后填土
面水平。填土为粘性土,其重度、内摩擦角、粘聚力如下 图所示 ,求主动土压力及其作用点,并绘出主动土压力 分布图
pa zKa 2c K a
pa zK a
h
hKa
1.无粘性土主动土压力强度与z成正比,沿墙高呈三角形分布 2.合力大小为分布图形的面积,即三角形面积 3.合力作用点在三角形形心,即作用在离墙底h/3处
h/3
Ea
(1/ 2)h2 Ka
当c>0, 粘性土
pa zKa 2c K a
z0 ≤0说明不存在负侧压力区,
2.成层填土情况(以无粘性土为例)
h1
h2 h3
A B
高等土力学教材 第六章 土工数值分析(一)土体稳定的极限平衡和极限分析
土工数值分析(一)土体稳定的极限平衡和极限分析目录1 前言 (2)2 理论基础-塑性力学的上、下限定理 (4)2.1 一般提法 (4)2.2 塑性力学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 土体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静力平衡方程及其解 (9)3.2 数值分析方法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动土压力领域中的应用 (19)4 土体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本方程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载力的上限解 (27)5 确定临界滑动模式的最优化方法 (30)5.1 确定土体的临界失稳模式的数值分析方法 (30)5.2 确定最小安全系数的最优化方法 (31)6 程序设计和应用 (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1土工数值分析(一):土体稳定的极限平衡和极限分析法1前言边坡稳定、土压力和地基承载力是土力学的三个经典问题。
很多学者认为这三个领域的分析方法属于同一理论体系,即极限平衡分析和极限分析方法,因此,应该建立一个统一的数值分析方法。
Janbu 曾在1957年提出过土坡通用分析方法。
Sokolovski(1954)应用偏微分方程的滑移线理论提出了地基承载力、土压力和边坡稳定的统一的求解方法。
W. F. Chen (1975) 在其专著中全面阐述了在塑性力学上限和下限定理基础上建立的土体稳定分析一般方法。
但是,上述这些方法只能对少数具有简单几何形状、介质均匀的问题提供解答,故没有在实践中获得广泛的应用。
下面分析这三个领域分析方法的现状以及建立一个统一的体系的可能性。
有关边坡稳定分析的理论的研究工作,从早期的瑞典法,到适用的园弧滑裂面的Bishop简化法,到适用于任意形状、全面满足静力平衡条件的Morgenstern - Price法(1965),其理论体系逐渐趋于严格。
土力学 边坡稳定分析
7-3 粘性土土坡整体圆弧滑动及条分法
二.最危险滑弧的寻找
7-3 粘性土土坡整体圆弧滑动及条分法
三.条分法及其受力分析
极限平衡分析的条分法:土体为不变形刚体
滑动体内土条n,第i土条上的力和未知数: 1、重力:Wi=ribihi;都为已知量; 2、底面反力:Ni和Ti; 3、比较所有安全系数,选最小值;
Ji wiiai
Jidi wiiaidi
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
F s
[c i li b i(ih 1 iih 2 iih 3 i)co itg s i] ih 1 iih 2 iih 3 ib isii n w h 2 ib isiin
F s
7-5 毕肖普法
二.总应力分析
Fs
1 mi
(cibi
Witgi
)
Wi s ini
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
F s
[cilib i(ih 1 iih 2i)coits gi] b i(ih 1 iih 2i)siin
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
[c iliih 1 iih 2 iih 3 ib ico itg s] ih 1 isa h 2 it i ih 3 ib isiin
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
7-6 工程中的土坡稳定计算
一.渗流对土坡稳定的影响
7-6 工程中的土坡稳定计算
7-4 瑞典条分法
2.坡顶有超载时
F s
[cili(W iqi)bco itsg i] (W iqi)bsin i
岩土力学教案第8章
第八章土坡稳定性分析§8.1 概述一、土坡原因在于土体内的剪应力在某时刻大于土的抗剪强度。
土中剪应力和土体的抗剪强度随时间是变化的。
1.促使剪应力增加的原因有:172(1)土坡变陡;(2)渗透水流的动水压力过大;(3)坡顶有超载作用;(4)打桩、爆破、地震、火车、汽车等动荷载作用均会增加剪应力。
2.造成土抗剪强度降低的原因有:(1)冻胀再融化;(2)振动液化;(3)浸水后土的结构崩解;(4)土中含水量增加等。
土坡失稳一般多发生在雨天,因为水渗入土中一方面使土中剪应力增加了;另一方面又使土的抗剪强度降低了,特别是坡顶出现竖向大裂缝时,水进入竖向裂缝对土坡产生侧向压力,从而导致土坡失稳。
因此,土坡产生竖向裂缝常常是土坡失稳的预兆之一。
四、影响土坡稳定性的主要因素(1)边坡坡角β。
坡角β越小愈安全,但是采用较小的坡角β,在工程中会增加挖填方量,不经济。
(2)坡高H。
H越大越不安全。
(3)土的性质。
γ、ϕ和c大的土坡比γ、ϕ和c小的土坡更安全。
(4)地下水的渗透力。
当边坡中有地下水渗透时,渗透力与滑动方向相反时,土坡则更安全;如两者方向相同时,土坡稳定性就会下降。
(5)震动作用的影响。
如地震、工程爆破、车辆震动等。
173174(6)人类活动和生态环境的影响。
§8.2 无粘性土坡稳定分析由粗颗粒土(c =0)所堆筑的土坡称为无粘性土坡。
无粘性土坡的稳定分析比较简单,下面分两种情况进行讨论。
一、无渗流作用时的无粘性土坡在分析无粘性土的土坡稳定时,根据实际观测结果,通常均假设滑动面为平面。
上图为一简单土坡,土坡高为H ,坡角为β,土的重度为γ,土的抗剪强度ϕστtan =f 。
若假定滑动面是通过坡角A 的平面AC ,AC 的倾角为α,并沿土坡长度方向截取单位长度进行分析,则其滑动土楔体ABC 的重力为:()ABC W ∆⨯=γ则沿滑动面向下的滑动力为:αsin W T =抗滑力为摩擦力,即:tan cos tan T N W ϕαϕ'==土坡滑动稳定安全系数为:αϕαϕαtan tan sin tan cos =='==W W T T F s 滑动力抗滑力175当βα=时,滑动稳定安全系数最小,即βϕtan tan min =S F 由上式可得如下结论:(1)当坡角ϕβ=,S 1F =,即土坡处于极限平衡状态,此时β称为天然休止角;(2)只要坡角ϕβ<(S 1F >),土坡就稳定,而且与坡高无关; (3)为了保证土坡有足够的安全储备,一般要求S 1.3~1.5F >。
《土力学》第十章习题及答案(可打印修改)
(C) 1.20
(D) 1.48
您的选项()
5.分析均质无粘性土坡稳定时,稳定安全系数K为:
(A)K=抗滑力/滑动力
(B)K=滑动力/抗滑力
(C)K=抗滑力距/滑动力距
(D)K=滑动力距/抗滑力距
您的选项()
6.分析粘性土坡稳定时,假定滑动面为:
(A)斜平面
(B)水平面
(C)圆弧面
(D)曲面
您的选项()
7. 由下列哪一种土构成的土坡进行稳定分析时需要采用条分法:
(A)细砂土
(B)粗砂土
(C)碎石土
(D)粘性土
您的选项()
8.影响无粘性土坡稳定性的主要因素为:
(A)土坡高度
(B)土坡坡角
(C)土的重度
(D)土的粘聚力
您的选项()
9.下列因素中,导致土坡失稳的因素是:
(A)坡脚挖方
(B)动水力减小
(C)土的含水量降低
(D)土体抗剪强度提高
您的选项()
10.地基的稳定性可采用圆弧滑动面法进行验算,规范GB50007规定:
(A)M R / M S≥1.5
(B)M R / M S≤1.5
(C)M R / M S≥1.2
(D)M R / M S≤1.2
您的选项()
第10章土坡和地基的稳定性
一、填空题
1.坡角、稳定
2.斜平、圆筒
3. 小、大
4.减小、减小
二、名词解释
1.自然休止角:砂土堆积的土坡,在自然稳定状态下的极限坡角。
土力学 第七章 边坡稳定分析
公式(7-3)计算土坡的稳定安全系数有一定误差。 上述计算中,滑动面AD是任意假定的,需要试算许多个可 能的滑动面,找出最危险的滑动面即相应于最小稳定安全 系数Kmin的滑动面。
编辑ppt
近均似确质定土最坡危险的滑整动体面圆稳定分析法(5)
M sW a,M rTfRtf L ~R
• 式中 a —— W对O点的力臂,m;
~
L ——法(3)
土坡滑动的稳定安全系数 可以用抗滑力矩Mr与滑动力 矩Ms的比值表示,即
~
Fs
Mr Ms
tf
LR (73)
Wa
编辑ppt
均质土坡的整体稳定分析法(4)
F sT T f W c W o s sa in ta an jtta a n n a j(7 1 )
安全系数 随倾角a而变化,当a=b时滑动稳定安全 系数最小。据此,砂性土土坡的滑动稳定安全系数可取为:
FKs tanj(72) 工程中一般要求Ftas≥n1b.25~ 1.30 。
编辑ppt
特别提示
很合理的,若要求c、j值具有相同的安全度,须采用试算
法.本例题的试算结果是取Fj=1. 18,这样:
tgj tg12 0.162
Fj 1.18
编辑ppt
试算法
它相当于j为10. 2°。
以j =10. 2 °查图,得: N 's 7.9
c'gH18.6614.13
N's 7.9
所以,对粘聚力c的安全系数为:
1:2.5
边坡坡度为多大即安全,又经济?
若土堤长1000m,坡度1:2.5
土力学_第8章(土坡稳定性分析)
单元受力分析
抗滑力
Ff=FNtan=Fwcostan
9
土坡稳定系数
定义:抗滑力(Ff)与下滑力(F)之比。
Fs
Ff F
Fw cos tan tan Fw sin tan
自然休止角或安息 角
讨论:
(2)当 时,即:Fs>l,土坡处于稳定状态;
N i'
T fi
fili
Fs
cili tani N i Fs Fs
c' l 1 (Wi X i ui li cos i i i sin i ) mi Fs
mi cos i (1 tani tan i ) Fs
20
然后就整个滑动土体对圆心O求力矩平衡,此时相邻土条之间侧壁作用力的 力矩将相互抵消,而各土条的Ni及uili的作用线均通过圆心,故有:
(2)对已有边坡的稳定性进行评价。(如:地质灾害评估)
在工程实践中,土坡稳定性分析方法主要有:
(1)极限平衡法;(2)数值分析方法;(3)概率分析方法
8
二、无粘性土土坡稳定分析
由粗粒土所堆筑的土坡称为无粘性土坡 (1) 无渗透力作用(全干或全部淹没的土坡)
海底边 坡
自重:Fw 下滑力: F=Fwsin
Wi cos i tan i ci ) (li 1.0) R R(Wi cos i tan i ci li ) li n (Wi cos i t ani li ci ) Mr 整个土坡相应于滑动面AD的稳定性系数为: Fs i 1 n Ms Wi sin i 17 M r i Si R (
切坡、地下水活动或地震等因素的影响,使部分土体或岩体在重力作用 下,沿一定的软弱面或带、整体、缓慢、间歇性、以水平位移为主的变
土坡稳定和土压力计算
被动土压力计算
被动土压力是指土体在挡墙向 外移动时所承受的压力,其大 小与土体的内摩擦角、挡墙的 位移量等因素有关。
被动土压力的计算公式为:Ep = γHpKp,其中Ep为被动土压 力强度,γ为土的容重,Hp为 挡墙高度,Kp为被动土压力系 数。
被动土压力的计算需要考虑土 体的应力状态和挡墙的位移量, 以确定被动土压力的大小和方 向。
地下水作用
地下水的水位、流速和压力等对土压力和边坡稳定性产生影响,特别 是对于含水量高、渗透性强的土质。
边坡稳定性对土压力的影响
1 2
边坡角度
边坡的角度决定了土压力的分布和大小。较陡的 边坡可能导致较大的土压力,从而增加失稳的风 险。
边坡高度
边坡的高度直接影响土压力的大小。较高的边坡 意味着更大的重力作用,进而增加土压力。变化
地下水位的动态变化可能引起土中水 压力的变化,从而影响土压力的大小。
施工方法与填挖方式
施工方法
不同的施工方法对土的扰动程度 不同,从而影响土压力的大小。 例如,采用预压法或夯实法等施 工方法可以减小土压力。
填挖方式
填挖方式的不同也会影响土压力 的大小。例如,采用分层填筑或 碾压的方式可以减小土压力。
有限元法
有限元法是一种数值分析方法,通过 将土坡划分为若干个小的单元,并分 析每个单元的应力应变关系,来计算 土坡的稳定性。
有限元法的精度取决于单元的大小和 形状,因此需要合理选择。
有限元法可以模拟复杂的土坡形状和 地质条件,适用于各种类型的土坡。
有限差分法
有限差分法也是一种数值分析方法,通过将土坡划分为若干个小的差分网格,并分 析每个网格点的位移和应力,来计算土坡的稳定性。
土坡稳定和土压力计算
土力学-土压力与土坡稳定
土力学
§5.1.2 土压力的种类 5 概述 §5.1土压力与土坡稳定
1、土压力实验 在实验室里通过挡土墙的模型试验, 在实验室里通过挡土墙的模型试验,可以量测挡土墙不同位移 方向,产生3种不同的土压力。 方向,产生3种不同的土压力。 2、土压力种类 ⑴静止土压力 如图5 (a)所示 所示。 如图5.3(a)所示。 ⑵主动土压力 当挡土墙在墙后土体的推力作用下,向前移动, 当挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之 向前移动。土体下方阻止移动的强度发挥, 向前移动。土体下方阻止移动的强度发挥,使作用在墙背上的土压 力减小。当墙向前位移达到- 值时,土体中产生AB滑裂面, AB滑裂面 力减小。当墙向前位移达到-Δ值时,土体中产生AB滑裂面,同时 在此滑裂面上产生抗剪强度全部发挥 抗剪强度全部发挥, 在此滑裂面上产生抗剪强度全部发挥,此时墙后土体达到主动极限 压力减至最小。 平衡状态,墙背上作用的土压力减至最小 因土体主动推墙, 平衡状态,墙背上作用的土压力减至最小。因土体主动推墙,称之 为主动土压力, 表示,如图5 (b)所示 所示。 为主动土压力,以Pa表示,如图5.3(b)所示。 由试验研究可知:产生P 墙体向前位移- 由试验研究可知:产生Pa墙体向前位移-Δ的大小 对于墙后填土为密砂 密砂时 对于墙后填土为密砂时,-Δ=0.5%H; 墙后填土为密实粘性土 密实粘性土时 墙后填土为密实粘性土时,-Δ=(1~2)%H,即产生主动土 土力学 压力。 压力。
§5.1.2 土压力的种类 5 概述 §5.1土压力与土坡稳定
2、土压力种类 ⑶被动土压力 若挡土墙在巨大的外力作用下,向后移动推向填土, 若挡土墙在巨大的外力作用下,向后移动推向填土,则填土受 墙的挤压,使作用在墙背上的土压力增大。 墙的挤压,使作用在墙背上的土压力增大。当挡土墙向填土方向的 位移量达到+ 墙后土体即将被挤出产生滑裂面AC AC, 位移量达到+Δ时,墙后土体即将被挤出产生滑裂面AC,在此滑裂 面上的抗剪强度全部发挥,墙后土体达到被动极限平衡状态, 面上的抗剪强度全部发挥,墙后土体达到被动极限平衡状态,墙背 上作用的土压力增至最大。因是土体被动地被墙推移, 上作用的土压力增至最大。因是土体被动地被墙推移,称之为被动 土压力, 表示,如图5 (c)所示 所示。 土压力,以Pp表示,如图5.3(c)所示。 由试验研究可知:产生P 墙体向前位移+Δ +Δ的大小 由试验研究可知:产生Pp墙体向前位移+Δ的大小 对于墙后填土为密砂 密砂时 +Δ= 对于墙后填土为密砂时,+Δ=5%H; 密实粘性土时 +Δ= 为挡土墙高度) 墙后填土为密实粘性土 墙后填土为密实粘性土时,+Δ=0.1H(H为挡土墙高度),才 会产生被动土压力。 会产生被动土压力。 通常此位移值很大,例如,挡土墙高H 10m 通常此位移值很大,例如,挡土墙高H=10m,填土为粉质粘土 则位移+Δ +Δ= 能产生被动土压力, , 则位移 +Δ = 1.0m 才 能产生被动土压力 , 这 1.0m 的位移时往往为 工程结构所不允许。因此,一般情况下, 工程结构所不允许。因此,一般情况下,只能利用被动土压力的一 土力学 部分。 部分。
无粘性土坡的稳定分析
无粘性土坡的稳定分析无粘性土坡的稳定分析是一个重要的工程问题,涉及到土力学、力学、地质工程等多学科领域。
无粘性土坡的稳定性受到许多因素的影响,如土体的物理性质、坡度、高度、荷载条件等。
在无粘性土坡的稳定分析中,常用的方法包括极限平衡法、有限元法、离散元法等。
本文将主要介绍极限平衡法在无粘性土坡稳定分析中的应用。
极限平衡法是一种简单而又实用的方法,广泛应用于岩土工程领域。
该方法的基本思路是将土体视为刚体,忽略其变形和位移,通过计算滑坡面上不同位置的下滑力和抗滑力,判断是否会发生滑坡。
在极限平衡法中,常用的计算模型包括Fellenius模型、Bishop模型等。
这些模型根据土体的物理性质、坡度、高度等因素,对滑坡面上的下滑力和抗滑力进行计算,并根据计算结果判断是否会发生滑坡。
除了极限平衡法外,有限元法和离散元法也是无粘性土坡稳定分析中常用的方法。
有限元法通过将土体离散成许多小的单元,对每个单元进行力学分析,然后进行整体平衡计算,得到土体的位移和应力分布。
离散元法则将土体视为由许多离散的块体组成,通过计算每个块体的运动和相互作用,得到土体的位移和应力分布。
这两种方法都可以考虑土体的变形和位移,比极限平衡法更加精确。
但是,由于其计算量和计算难度较大,一般只适用于较小的无粘性土坡或特定条件下的无粘性土坡。
在实际工程中,无粘性土坡的稳定分析还需要考虑其他因素的影响。
例如,降雨、地震等自然因素可能对无粘性土坡的稳定性产生不利影响;人类活动如开矿、挖沟等也可能改变无粘性土坡的稳定性。
因此,在进行无粘性土坡的稳定分析时,需要综合考虑各种因素,采用合适的方法进行计算和分析。
除了以上提到的几种常用方法外,还有一些新的技术手段也被应用于无粘性土坡的稳定分析中。
例如,数值模拟方法可以通过模拟土体的物理性质、力学行为和相互作用,得到更加准确和全面的结果;智能传感器和监测技术可以通过实时监测无粘性土坡的位移和应力情况,对无粘性土坡的稳定性进行及时预警。
(完整版)土坡稳定性分析
第七章土坡稳定性分析第一节概述土坡就是由土体构成、具有倾斜坡面的土体,它的简单外形如图7-1所示。
一般而言,土坡有两种类型。
由自然地质作用所形成的土坡称为天然土坡,如山坡、江河岸坡等;由人工开挖或回填而形成的土坡称为人工土(边)坡,如基坑、土坝、路堤等的边坡。
土坡在各种内力和外力的共同作用下,有可能产生剪图7-1 土坡各部位名称切破坏和土体的移动。
如果靠坡面处剪切破坏的面积很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。
土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。
除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因:1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。
或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态;2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加;3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。
因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。
在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。
因此,土坡稳定问题在工程设计和施工中应引起足够的重视。
天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。
这种工作称为稳定性分析。
土坡稳定性分析是土力学中重要的稳定分析问题。
土坡失稳的类型比较复杂,大多是土体的塑性破坏。
而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。
在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。
因此,目前工程实践中基本上都是采用极限平衡法。
极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。
土力学第七章土压力与土坡稳定
七、 挡土墙与土压力
(一)挡土墙的类型
1.重力式挡土墙(1)。
2.悬臂式挡土墙(2)。
3.扶壁式挡土墙(3)。
(1)
(2)
(3)
六、 挡土墙设计
立 柱 27m 锚杆
墙 面 板
扶 壁
锚定板
墙趾
墙踵 (a) (b) 3m 高强度砂浆锚固 (c)
(d)
挡土墙主要类型 (a)悬臂式挡土墙;(b)扶壁式挡土墙; (c)锚杆、锚定板式挡土墙;(d)板桩墙
三、朗肯土压力理论(Rankine,1857)
无粘性土:
粘性土:
2
K p tan 45 2
1 2 Ep H K p 2 1 2 Ep H K p 2c K p 2
三、朗肯土压力理论(Rankine,1857)
(四)几种常见情况下的土压 力计算
无粘性土 a
2
3 1 t an 45 2c t an 45 2 2
2
无粘性土: 1 3 t an 45 2
2
3 1 t an 45 2
2
三、朗肯土压力理论(Rankine,1857)
主动土压力作用点距墙底的距离为
(h z 0 ) 5 1.223 1.26m 3 3
四、 库仑土压力理论
(一)基本假设:根据墙后土体处于极限平衡状态并 形成一滑动楔体,从楔体的静力平衡条件得出的土压 力计算理论。(为平面问题) 基本假定:墙后填土是理想的散粒体(c=0);滑动 破坏面为通过墙踵的平面。 (二)主动土压力
二、 土压力的分类
(一)影响土压力的因素
1.填土性质:包括填土重度、含水 量、内摩擦角、内聚力的大小及填 土表面的形状(水平、向上倾斜、 向下倾斜)等。 2.挡土墙形状、墙背光滑程度、结 构形式。 3.挡土墙的位移方向和位移量。
土力学14.
《土力学》教案课次:第十四次主要内容:土坡的定义、种类、失稳的原因及影响因素;无粘性土坡稳定性分析;粘性土坡稳定性分析重点内容:土坡失稳的原因及影响因素;无粘性土坡稳定性分析;条分法教学方法:精讲启发式与逻辑推理式作业:P214:第1题;第2题;第3题第八章土坡稳定性分析§8.1 概述一、土坡二、边坡失稳(滑坡破坏)坡面局部土体下滑称为边坡失稳或叫滑坡破坏。
三、土坡失稳的原因由于坡面倾斜,在自重或其它外力作用下,近坡面的部分土体有向下滑动的趋势。
土坡失稳常常是在外界不利因素影响下一触即发的,其根本原因在于土体内的剪应力在某时刻大于土的抗剪强度。
土中剪应力和土体的抗剪强度随时间是变化的。
1.促使剪应力增加的原因有:(1)土坡变陡;(2)渗透水流的动水压力过大;(3)坡顶有超载作用;(4)打桩、爆破、地震、火车、汽车等动荷载作用均会增加剪应力。
2.造成土抗剪强度降低的原因有:(1)冻胀再融化;(2)振动液化;(3)浸水后土的结构崩解;(4)土中含水量增加等。
土坡失稳一般多发生在雨天,因为水渗入土中一方面使土中剪应力增加了;另一方面又使土的抗剪强度降低了,特别是坡顶出现竖向大裂缝时,水进入竖向裂缝对土坡产生侧向压力,从而导致土坡失稳。
因此,土坡产生竖向裂缝常常是土坡失稳的预兆之一。
173四、影响土坡稳定性的主要因素(1)边坡坡角β。
坡角β越小愈安全,但是采用较小的坡角β,在工程中会增加挖填方量,不经济。
(2)坡高H。
H越大越不安全。
(3)土的性质。
γ、ϕ和c大的土坡比γ、ϕ和c小的土坡更安全。
(4)地下水的渗透力。
当边坡中有地下水渗透时,渗透力与滑动方向相反时,土坡则更安全;如两者方向相同时,土坡稳定性就会下降。
(5)震动作用的影响。
如地震、工程爆破、车辆震动等。
(6)人类活动和生态环境的影响。
§8.2 无粘性土坡稳定分析由粗颗粒土(c=0)所堆筑的土坡称为无粘性土坡。
无粘性土坡的稳定分析比较简单,下面分两种情况进行讨论。
土力学电子教案之土坡稳定分析
教案表头:教学内容设计及安排第八章土坡稳定分析第一节无粘性土坡的稳定分析【基本内容】天然土坡:由于地质作用而自然形成的土坡。
人工土坡:人们在修建各种工程时,在天然土体中开挖或填筑而成的土坡。
滑坡:土坡丧失其原有稳定性,一部分土体相对另一部分土体滑动的现象。
分析土坡稳定性的目的:验算土坡的断面是否稳定合理,或根据土坡预定高度、土的性 质等已知条件,设计出合理的土坡断面。
简单土坡:土坡的坡顶和底面都是水平面,并伸至无穷远,土坡由均质土组成。
一、一般情况下的无粘性土土坡条件:均质的无粘性土土坡,干燥或完全浸水,土粒间无粘结力分析方法:只要位于坡面上的土单元体能够保持稳定,则整个坡面就是稳定的 滑动力: T =W sin β 垂直于坡面上的分力: N = W cos β最大静摩擦力: T '= N tan ϕ = W cos βtan ϕ 抗滑力与滑动力的比值称为稳定安全系数K ,2K =βϕβϕβtan tan sin tan cos =='W W T T当β=ϕ 时,K =1,土坡处于极限平衡状态。
砂土的内摩擦角也称为自然休止角。
当β<φ,即K >1,土坡就是稳定的。
可取K =1.1~1.5。
【讨论】无粘性土土坡的稳定性与坡高无关,仅取决于坡角β。
二、有渗流作用时的无粘性土土坡分析方法:若渗流为顺坡出流,则渗流方向与坡面平行,此时使土体下滑的剪切力为J W J T +=+βsin 稳定安全系数为JW W JT T F f s +=+=βϕβsin tan cos 对单位土体,土体自重W =γ ',渗透力J =γw i ,水力坡降i =sin β,于是βγϕγβγβγϕβγtan tan sin sin tan cos sat w s F '=+''==【讨论】当坡面有顺坡渗流作用时,无粘性土土坡的稳定安全系数将近乎降低一半。
【例题先自习后讲解】【例8-1】有一均质无粘性土土坡,其饱和重度 γsat =20.0kN/m 3, 内摩擦角ϕ =30°, 若要求该土坡的稳定安全系数为1.20,试问在干坡或完全浸水情况下以及坡面有顺坡渗流时其坡角应为多少度? 【讨论】有渗流作用的土坡稳定比无渗流作用的土坡稳定,坡角要小得多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3 瑞典条分法
条分法的假定
瑞典条分法
瑞典条分法的计算步骤
Li,Wi,
i
例题
7.4 稳定数法
7.5 圆弧滑动面的毕肖普法
毕肖普法求解条件
假设滑裂面为圆弧 不忽略条间作用力 在每条滑裂面上满足极限平衡条件 每条上作用力在y方向(竖直)上静力平衡 总体对圆心o力矩平衡
7.1土坡稳定及影响因素
坡肩
天然土坡
人工土坡—露天矿
人工土坡
影响土坡稳定的因素主要有:
(1)边坡坡角愈小愈安全,但不经济,坡角太大,则经济不安全。 (2)坡高H,其他条件相同,H越大越不安全。 (3)土的性质,如重度 ,和 , c 的值,如 , c 值大,则土坡安全。 (4) 地下水的渗透力,当边坡中有地下水渗透时,渗透力与滑动方向相反 则安全,两者方向相同则危险。 (5)震动作用的影响如地震、工程爆破、车辆震动等。 (6)人类活动和生态环境的影响。
《土力学》
第七章 土坡稳定分析
主要内容
7.1突破稳定及其影响因素 7.2平面滑动面的土坡稳定分析 7.3瑞典条分法 7.4稳定数法 7.5圆弧滑动面得毕肖普法 7.6非圆弧滑动面的分析法 7.7土坡稳定分析中的孔隙水压力 7.8深基坑于地质作用自然形成的土 坡,如山坡、江河的岸坡等称为天然土坡。本章讨论的土 坡是指经过人工开挖,填土工程建造物如基坑、渠道、土 坡、路堤等的边坡,通常称为人工土坡。
谢谢观看
7.2 平面滑动面的土坡稳定分析
7.2.1 一般情况下的无粘性土土坡
或用Ks表示
由此可见,对于均质无粘性土土坡,理论上只要坡角小于土的内摩擦角,主 体就是稳定的。Ks等于1时,主体处于极限平衡状态,此时的坡角就等于无粘 性土的内摩擦角。
7.2.2 有渗流作用时的无粘性土土坡
因此,当坡面有顺坡渗流作用时,无粘性土土坡的稳定安全因数将近乎降 低一半。