解一元一次不等式专项训练 (227)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
解一元一次不等式计算专题训练
解一元一次不等式计算专题训练概述本文档旨在提供一元一次不等式计算的专题训练,帮助学生加强解决这类问题的能力。
一元一次不等式是一种常见的数学问题,理解和掌握解决方法对于学生的数学研究至关重要。
训练内容本专题训练包括以下几个方面的内容:1. 一元一次不等式的基本概念和表示方法2. 如何求解一元一次不等式3. 解决一元一次不等式中常见的问题和技巧4. 利用一元一次不等式解决实际问题的应用训练方法学生可以通过以下几种方法进行训练:1. 理论研究:学生可以通过课本、教辅书籍或在线研究资源研究一元一次不等式的相关知识和解决方法。
2. 练题:学生可以参考教材或者其他练题集,完成一元一次不等式的练题,提高自己的解题能力。
3. 讨论和交流:学生可以与同学或老师进行讨论和交流,分享解题思路和解决方法,相互研究和提高。
训练建议以下是一些建议,帮助学生更好地进行一元一次不等式计算的专题训练:1. 扎实基础:掌握一元一次方程的基本概念和求解方法,为解决一元一次不等式问题打下坚实的基础。
2. 注重练:多做练题,熟悉不同类型的一元一次不等式,增加解题的经验和熟练度。
3. 分析问题:仔细分析每个问题中的条件和要求,确定正确的解题方法。
4. 多样化应用:尝试将一元一次不等式的解决方法应用到实际问题中,提高解决实际问题的能力。
5. 及时总结:在解题过程中,及时总结经验和方法,形成自己的解题思路和策略。
总结通过系统的一元一次不等式计算专题训练,学生可以加深对一元一次不等式的理解,提高解决这类问题的能力。
建议学生结合理论研究和实践练,不断提升自己的数学能力。
请注意:本文档的内容仅供参考,具体训练建议可根据实际情况进行调整和完善。
一元一次不等式求解练习题
一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。
2. 第二题:解方程 2x - 5 ≤ 7。
首先,我们需要将方程中的x系数与常数项分开。
将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。
3. 第三题:解不等式 3 - x < 9。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。
4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。
首先,我们分别求解两个方程。
第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。
第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。
由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。
以上就是题目中的四道一元一次不等式求解练习题的解答。
一元一次不等式练习题(精华版)
一. 解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5. 31222+≥+x x6. 223125+<-+x x7. 5223-<+x x8. 234->-x9. )1(281)2(3--≥-+y y10. 1213<--m m11. )2(3)]2(2[3-->--x x x x12. 215329323+≤---x x x13.41328)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x15. 22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x19.1215312≤+--x x 20. 31222-≥+x x二. 应用题1.爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m之外的安全地域,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,此刻要比原打算至少提早两天完成,则以后平均天天至少要比原打算多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
4.某工人打算在15天里加工408个零件,最初三天中天天加工24个,问以后天天至少要加工多少个零件,才能在规定的时刻内逾额完成任务?5.王凯家到学校千米,此刻需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某工程队打算在10天内修路6km,施工前2天修完后,打算发生转变,预备提早2天完成修路任务,以后几天内平均天天至少要修路多少千米?。
初中数学一元一次不等式训练题(含答案解析)
一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。
专题 解一元一次不等式(计算题50题)(原卷版)
七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式(计算题50题)1.(2023春•南岗区校级月考)解不等式.(1)2(2x+3)≤5(x+1);(2)2x−13−5x12≥1.2.(2023•漳平市一模)解不等式:3x2−1<4x36.3.解不等式2x−13−5x12<5.4.(2022春•霍林郭勒市校级期末)解不等式x16≥2x−54+1.5.解不等式:(1)3x﹣2>4+2(x﹣2)(2)x12≥3(x﹣1)﹣46.解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)x−12−4x−36>137.(2023春•雁塔区校级月考)解不等式.(1)4x+5≤2(x+1);(2)2x−13−9x26≤1.8.解下列不等式:(1)3(x+2)﹣1≤11﹣2(x﹣2);(2)x2−1≤7−x3.9.(2023春•碑林区校级月考)解下列不等式:(1)2(﹣x+2)>﹣3x+5;(2)7−x3≤x22+1.10.(2021春•金水区校级月考)解下列不等式:(1)5x﹣12≤2(4x﹣3);(2)x43−3x−12>1.11.(2022秋•工业园区校级月考)解不等式:(1)3(x+2)﹣1≥8﹣2(x﹣1);(2)x22<1−2−3x5.12.(2022春•南关区校级期中)解下列不等式:(1)3(x +1)<x ﹣1;(2)1−x 3<3−x 24.13.解不等式:(1)2[x ﹣3(x ﹣1)]≥4x(2)x−12−23x <114.解下列不等式.(1)2(x ﹣1)+2<5﹣3(x +1)(2)1−x−13≤2x 33+x .15.(2023春•菏泽月考)解下列不等式.(1)3x +1≥﹣5.(2)5x ﹣1≤3(x +1). (3)1−8x 3≥x 2. (4)x 58−1<3x 22.2.(2022•利辛县校级二模)解不等式11﹣4(x ﹣1)≤3(x ﹣2),并把它的解集在数轴上表示出来.3.(2021•榆阳区模拟)解不等式:2x−13−5x 12≥1,并把它的解集在数轴上表示出来.4.(2023春•禅城区月考)解不等式,要求写出详细步骤:x−22≤7−x 3,并把解集在数轴上表示出来.5.(2021春•龙岗区校级月考)解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)2x−12−5x−14<0.6.(2021春•虎林市期末)解下列不等式,并把解集在数轴上表示出来:(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x−32−1>x−53.7.(2023春•南岗区校级月考)解下列不等式并把它们的解集在数轴上表示出来:(1)5(x+2)≥1﹣2(x﹣1);(2)x−23−x2≤1.8.(2023春•灞桥区校级月考)解不等式:2x−14≤3x22−1.并把它的解集在数轴上表示出来.9.(2023春•雁塔区校级月考)解不等式,并把它的解集在数轴上表示出来.(1)2(﹣3+x)>3(x+2);(2)x−12+1≥x.10.(2023•绥德县一模)解不等式:4x−13≥3x−16−1,并把它的解集在数轴上表示出来.11.(2023•灞桥区校级三模)解不等式:3x−25>2x13−1,并在数轴上表示出该不等式的解集.12.(2023春•牡丹区校级月考)解不等式,并把不等式的解集表示在数轴上.(1)2(x+1)﹣1≥3x+2;(2)2x−13−9x26≤1.13.(2023春•越秀区校级月考)解不等式x−33≤7−53x,并把它的解集在数轴上表示出来.14.(2022春•明溪县月考)解不等式x−22<7−x3并把解集在数轴上表示出来.15.(2022春•舒城县校级月考)解不等式;x12≥3(x﹣1)﹣6.5,并把解集在数轴上表示出来.16.(2021秋•驿城区校级期末)解不等式:x6>1−4−x2,并把它的解集在数轴上表示出来.17.(2022春•平潭县期末)解不等式3(x﹣1)<4(x−12)﹣3,并把它的解集在数轴上表示出来.18.(2022•丰顺县校级开学)解下列不等式,并将解集表示在数轴上.(1)7x+10≥4(x+1).(2)x16>2x−54+1.19.(2021春•西城区校级期末)解不等式2x−13+52≥3x12,并把它的解集在数轴上表示出来.20.解不等式3x12−3>2x﹣1,并把解集在数轴上表示出来.1.(2023•雁塔区校级四模)解不等式:3x−65>2x−4,并写出该不等式的正整数解.2.(2023•贵池区二模)解不等式2x−13−9x26≤1,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.3.(2022春•德保县期中)解不等式2x3+52≥2x32,并写出它的所有正整数解.4.(2022•王益区一模)解不等式:x52≥3(x−2),并写出它的正整数解.5.(2021春•绥中县期末)解不等式43x6≤12x3+1,并在数轴上表示解集,并写出它的非正整数解.6.求不等式2x13≤3x−25+1的非负整数解.7.求不等式5(x2)4>2x﹣2的正整数解.8.求不等式x3≤1+x−12的负整数解9.解不等式x12>2x23−1,并写出它的非负整数解.10.解不等式1x2≤12x3+1,并写出它的所有负整数解.11.求不等式(3x+4)(3x﹣5)>9(x﹣2)(x+3)的正整数解.12.解不等式1+x12≥2−x73,并求出其最小整数解.13.解不等式x12>2x23−1,并写出它的正整数解.14.求不等式4x35≤7−x2+1的自然数解.15.(2023•秦都区校级二模)解不等式:x−42≤1−7−x3,并写出不等式的最大整数解.。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
解一元一次不等式的练习题
解一元一次不等式的练习题1. 练习题一:求解不等式2x - 3 < 5根据不等式,我们可以按照以下步骤求解:2x - 3 < 5首先,我们将方程中的常数项3移动到另一侧:2x < 5 + 3简化后得到:2x < 8接下来,将方程两边都除以2,得到:x < 4综上所述,不等式2x - 3 < 5的解集为x < 4。
2. 练习题二:求解不等式3(x + 2) > 2(2x - 1)按照以下步骤求解不等式3(x + 2) > 2(2x - 1):3(x + 2) > 2(2x - 1)首先,我们进行分配律展开式:3x + 6 > 4x - 2接着,将常数项6移动到另一侧,将项4x移动到另一侧: 3x - 4x > -2 - 6化简得到:-x > -8最后,为了求解x的值,我们需要将不等式两边的符号反转,并且将-1乘以两边的不等式,这样可以保证x系数为正数: x < 8因此,不等式3(x + 2) > 2(2x - 1)的解集为x < 8。
3. 练习题三:求解复合不等式2x + 3 > 5并且x - 1 < 3为了求解复合不等式2x + 3 > 5并且x - 1 < 3,我们可以按照以下步骤进行:首先,我们解第一个不等式2x + 3 > 5:2x + 3 > 5将常数项3移到另一侧,并进行简化:2x > 5 - 32x > 2接下来,将方程两边都除以2,并得到:x > 1然后,我们解第二个不等式x - 1 < 3:x - 1 < 3将常数项1移到另一侧,并进行简化:x < 3 + 1x < 4最后,我们汇总两个不等式的解集:x > 1 且 x < 4所以,复合不等式2x + 3 > 5并且x - 1 < 3的解集为1 < x < 4。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
一元一次不等式(组)的应用题专项练习(含详细答案)
一元一次不等式(组)的应用题专项练习一元一次不等式(组)的应用题专项练习一.选择题(共10小题)1.(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A . 6折B . 7折C . 8折D . 9折2.(2010•安顺)不等式组的解集在数轴上表示为( ) A .B .C .D .3.(2009•柳州)若a <b ,则下列各式中一定成立的是( )A . a ﹣1<b ﹣1B . >C . ﹣a <﹣bD . a c <bc4.(2009•荆门)若不等式组有解,则a 的取值范围是( ) A . a >﹣1 B . a ≥﹣1 C . a ≤1 D . a < 15.(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .B .C .D .6.(2008•恩施州)如果a <b <0,下列不等式中错误的是( )A . a b >0B . a +b <0C . <1D . a ﹣b <07.(2007•枣庄)不等式2x ﹣7<5﹣2x 正整数解有( )A . 1个B . 2个C . 3个D . 4个8.(2007•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( )A . x <yB . x >yC . x ≤yD . x ≥y9.(2006•镇江)如果a <0,b >0,a+b <0,那么下列关系式中正确的是( )A . a >b >﹣b >﹣aB . a >﹣a >b >﹣bC . b >a >﹣b >﹣aD .﹣a >b >﹣b > a10.(2005•绵阳)如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( )A . a >0B . a <0C . a >﹣1D . a <﹣1二.解答题(共20小题)11.(2012•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?12.(2012•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.13.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?14.(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.15.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.16.(2012•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?17.(2012•铁岭)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?18.(2012•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:生活用水单价污水处理单价每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?19.(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.20.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?21.(2012•牡丹江)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?22.(2012•泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23.(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?24.(2012•哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?25.(2012•广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?26.(2012•朝阳)为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?27.(2012•常德)某工厂生产A、B两种产品共50件,其生产成本与利润如下表:A种产品B种产品成本(万元/件)0.6 0.9利润(万元/件)0.2 0.4若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?28.(2012•北海)某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?29.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.30.(2010•黔南州)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?一元一次不等式(组)的应用题专项练习参考答案与试题解析一.选择题(共10小题)1.(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折考点:一元一次不等式的应用.分析:本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200x×0.1≥800(1+0.05),解出x的值即可得出打的折数.解答:解:设可打x折,则有1200x×0.1≥800(1+0.05)120x≥840x≥7故选B点评:本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时要注意要乘以0.1.2.(2010•安顺)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:由(1)得,x>1,由(2)得,x≥2,故原不等式的解集为:x≥2,在数轴上可表示为:故选A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.3.(2009•柳州)若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.C.﹣a<﹣b D.a c<bc>考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1;是正确的;B、C、D不正确.故选A.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.5.(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;故选B.点评:考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.6.(2008•恩施州)如果a<b<0,下列不等式中错误的是()D.a﹣b<0A.a b>0 B.a+b<0 C.<1考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a,b同是负数,因而ab>0,正确;B、a+b<0一定正确;C、a<b<0则|a|>|b|则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C不对;D、正确;故选C.点评:利用特殊值法验证一些式子错误是有效的方法.7.(2007•枣庄)不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2007•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y考点:一元一次不等式的应用.专题:应用题.分析:题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解答:解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选B.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.(2006•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣a B.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.10.(2005•绵阳)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1考点:解一元一次不等式.分析:本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.解答:解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选D.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.二.解答题(共20小题)11.(2012•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?考点:一元一次不等式组的应用;一元一次方程的应用.专题:应用题.分析:(1)设弟弟每天编x个中国结,根据弟弟单独工作一周(7天)不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7(x+2)>28,列不等式组进行求解;(2)设哥哥工作m天,两人所编中国结数量相同,结合(1)中求得的结果,列方程求解.解答:解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.依题意得:,解得:2<x<4.∵x取正整数,∴x=3;(2)设哥哥工作m天,两人所编中国结数量相同,依题意得:3(m+2)=5m,解得:m=3.答:弟弟每天编3个中国结;若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同.点评:本题考查一元一次不等式组和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.12.(2012•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可;(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出16000≤80000﹣120×20m﹣200×m≤24000求出即可.解答:解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,…(2分)解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元…(3分);(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000…(5分)解得:…(6分),∵m为整数,∴m=22、23、24,有三种购买方案:…(7分)方案一方案二方案三课桌凳(套)440 460 480办公桌椅(套)22 23 24…(8分)点评:此题主要考查了二元一次方程组的应用和不等式组的应用,根据已知得出不等式关系是解题关键.13.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?考点:一元一次不等式组的应用.分析:由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外三种购票方式所花的费用分别大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.解答:解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x≥10,解②得:x≥25,∴不等数组的解集是:x≥25.答:某游客一年进入该公园超过25次时,购买A类年票合算.点评:此题主要考查了不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>,购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,则费用最省需x取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.点评:此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.15.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案;(2)首先计算出2012年共有的存款数,再由题意可得从2013年1月份开始,每月存款为(15+t)元;从2013年1月到2015年6月共有30个月,共存款30(15+t),再加上2012年共有的存款数存款总数超过1000元,由此可得不等式230+30(15+t)>1000,解出不等式,取符合条件的最小的整数值即可.解答:解:(1)设李明每月存款x元,储蓄盒内原有存款y元,依题意得,,解得,答:储蓄盒内原有存款50元,即在李明2012年1月份存款前,储蓄盒内已有存款50元;(2)由(1)得,李明2012年共有存款12×15+50=230元,2013年1月份后每月存入(15+t)元,2013年1月到2015年6月共有30个月,依題意得,230+30(15+t)>1000,解得t>10,所以t的最小值为11.答:t的最小值为11.点评:此题主要考查了二元一次方程组以及一元一次不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,再设出未知数列出方程组与不等式.16.(2012•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B 种纪念品6件需要钱数=800;(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可;(3)计算出各种方案的利润,比较即可.解答:解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,…6分解得:50≤x≤53,…7分∵x 为正整数,∴共有4种进货方案…8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…10分总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分点评:此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解.。
解一元一次不等式专项练习50题(有答案)ok(最新整理)
29. (2)在不等式的左右两边同乘以 12 得, 6(2x﹣1)﹣4(2x+5)<3(6x﹣7), 解得:x
30.解:不等式两边都乘以 8 得,32﹣2(3x﹣1)≤5(x+3)+8,
去括号得,32﹣6x+2≤5x+15+8, 移项得,11≤6x+5x, ∴x≥1
36. 去分母,得 5(3x+1)﹣3(7x﹣3)≤30+2(x﹣2), 去括号,得 15x+5﹣21x+9≤30+2x﹣4, 移项,得 15x﹣21x﹣2x≤30﹣4﹣5﹣9, 合并同类项,得﹣8x≤12, 系数化为 1,得 x≥﹣1.5 37.解:原不等式的两边同时乘以 4,并整理得
系数化为 1 得,x<﹣8
23.解:
≥1﹣
,
去分母得:2(2x﹣1)≥6﹣3(5﹣x), 去括号得:4x﹣2≥6﹣15+3x, 移项合并得:x≥﹣7 24.解:原不等式可变为: 2(x+4)﹣3(3x﹣1)>6, 2x+8﹣9x+3>6, ﹣7x>﹣5,
x<
25.解:原不等式可化为,6(2x﹣1)≥10x+1, 去分母得,12x﹣6≥10x+1, 合并同类项得,2x≥7, 把系数化为 1 得,x≥ 26.解:去分母得,2(2x﹣1)﹣6≤3(5x﹣1), 去括号得,4x﹣2﹣6≤15x﹣3, 移项得,4x﹣15x≤﹣3+2+6, 合并同类项得,﹣11x≤5, 化系数为 1 得,x≥﹣ 27.解:去分母,得 32﹣2(3x﹣1)≥5(x+3)+8; 去括号,得 32﹣6x+2≥5x+15+8; 移项,得﹣6x﹣5x≥15+8﹣32﹣2; 合并同类项,得﹣11x≥﹣11; 系数化为 1,得 x≤1 28.解:(1)在不等式的左右两边同乘以 2 得, (3﹣x)﹣6≥0, 解得:x≤﹣3,
解一元一次不等式组专项训练(20题)(学生版)
解一元一次不等式组专项训练(20题)一.选择题(共4小题)
1.一元一次不等式组的解集在数轴上表示正确的是()A.B.
C.D.
2.把不等式组的解集表示在数轴上,下列符合题意的是()A.B.
C.D.
3.下列不等式组,无解的是()
A.B.
C.D.
4.在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是()
A.B.
C.D.
二.填空题(共1小题)
5.不等式组的解集是.
三.解答题(共15小题)
6.解不等式组,并把解集在数轴上表示出来.
7.解不等式组,将解集在数轴上表示出来,并求出所有非负整数解.8.解不等式组:,并把解集在数轴上表示出来.
9.解不等式组,并把解集在数轴上标示出来.
10.解不等式组,并把不等式组的解集表示在数轴上.
11.解不等式组:
.
12.解不等式组:,并把解集在数轴上表示出来.13.解下列不等式组:.
14.解不等式组并把解表示在数轴上.
15.解不等式组,并把它的解集在数轴上表示出来.16.解不等式组,并把不等式组的解集在数轴上表示出来.
17.解不等式组,并在数轴上表示它的解集.
18.解不等式组.
19.解不等式组:.
20.解下列不等式组,并把解集表示在数轴上.
.。
一元一次不等式计算题及答案
一元一次不等式计算题及答案在数学中,一元一次不等式是一种常见的数学表达式,常用于解决实际问题中的不等关系。
本文将为您介绍一些常见的一元一次不等式计算题及其详细解答。
以下是五个例子。
例题一:解不等式 2x - 1 < 7解答:首先,将不等式转化为等价的形式,得到 2x < 8。
接下来,将两边都除以2,得到 x < 4。
所以,该不等式的解集为x ∈ (-∞, 4)。
例题二:解不等式5x + 3 ≥ 8解答:首先,将不等式转化为等价的形式,得到5x ≥ 5。
接下来,将两边都除以5,得到x ≥ 1。
所以,该不等式的解集为x ∈ [1, +∞)。
例题三:解不等式 -3x + 2 > -4解答:首先,将不等式转化为等价的形式,得到 -3x > -6。
接下来,将两边都除以-3,并注意方向的改变,得到 x < 2。
所以,该不等式的解集为x ∈ (-∞, 2)。
例题四:解不等式 2x - 5 ≤ 1解答:首先,将不等式转化为等价的形式,得到2x ≤ 6。
接下来,将两边都除以2,得到x ≤ 3。
所以,该不等式的解集为x ∈ (-∞, 3]。
例题五:解不等式 -4x + 2 ≥ 10解答:首先,将不等式转化为等价的形式,得到 -4x ≥ 8。
接下来,将两边都除以-4,并注意方向的改变,得到x ≤ -2。
所以,该不等式的解集为x ∈ (-∞, -2]。
通过以上五个例题和详细解答,我们可以看到解一元一次不等式的基本思路:通过运算将不等式转化为等价的形式,然后解得不等式的解集。
这种思路适用于一元一次不等式的大多数情况。
在实际应用中,一元一次不等式经常可以用来解决线性规划问题,如找出能满足一定条件下的最佳解。
同时,一元一次不等式也是其他高阶不等式的基础。
因此,掌握解一元一次不等式的方法对于学习高阶不等式的解法非常重要。
在解一元一次不等式时,需要注意以下几点:1. 当不等式中出现乘法或除法时,需要考虑方向的改变。
解一元一次不等式专项练习50题有答案ok
解一元一次不等式专项练习50题〔有答案〕1.,2.﹣〔*﹣1〕≤1,3.﹣1>.4.*+2<,5..6.,7.≥,8.9.10.>,11.,12..13.,14. 3*﹣,15.3〔*﹣1〕+2≥2〔*﹣3〕.16.,17.10﹣4〔*﹣4〕≤2〔*﹣1〕,18.﹣1<.19..20.≤.21.,22.,23.≥.24.>1.25..26.,27.≥,28.;29..30.≤31.,32.〔*+1〕≤2﹣*33.2〔5*+3〕≤*﹣3〔1﹣2*〕34.≤+1.35.;36..37..38.4*+3≥3*+5.39.2〔*+2〕≥4〔*﹣1〕+7.40.>*﹣141.2〔3﹣*〕<*﹣3.42.3〔*+2〕≤5〔*﹣1〕+7,43.1﹣≥44.2〔*+3〕﹣4*>3﹣*.45.2〔1﹣2*〕+5≤3〔2﹣*〕46.,47..48.2﹣>3+.49.4〔*+3〕﹣<2〔2﹣*〕﹣〔*﹣〕50..解不等式50题参考答案:1.解:去分母得:3〔*+1〕>2*+6,去括号得:3*+3>2*+6,移项、合并同类项得:*>3,∴不等式的解集为*>32.解:去分母得:*+1﹣2〔*﹣1〕≤2,∴*+1﹣2*+2≤2,移项、合并同类项得:﹣*≤﹣1,不等式的两边都除以﹣1得:*≥13.解:去分母得2〔*+4〕﹣6>3〔3*﹣1〕,去括号得2*+8﹣6>9*﹣3,移项得2*﹣9*>﹣3﹣8+6,合并同类项得﹣7*>﹣5,化系数为1得*<4.解;*+2<,去分母得:3*+6<4*+7,移项、合并同类项得:﹣*<1,不等式的两边都除以﹣1得:*>﹣1,∴不等式的解集是*>﹣15.解:去分母,得6*+2〔*+1〕≤6﹣〔*﹣14〕去括号,得6*+2*+2≤6﹣*+14…〔3分〕移项,合并同类项,得9*≤18 …〔5分〕两边都除以9,得*≤26.解:去分母得:2〔2*﹣3〕>3〔3*﹣2〕去括号得:4*﹣6>9*﹣6移项合并同类项得:﹣5*>0∴*<07.解:去分母得,3〔3*﹣4〕+30≥2〔*+2〕,去括号得,9*﹣12+30≥2*+4,移项,合并同类项得,7*≥﹣14,系数化为1得,*>﹣28.解:*﹣3<24﹣2〔3﹣4*〕,*﹣3<24﹣6+8*,*﹣8*<24﹣6+3,﹣7*<21,*>﹣39.解:化简原不等式可得:6〔3*﹣1〕≤〔10*+5〕﹣6,即8*≥﹣16,可求得*≥﹣210.解:去分母,得3〔*+1〕﹣8>4〔*﹣5〕﹣8*,去括号,得3*+3﹣8>4*﹣20﹣8*,移项、合并同类项,得7*>﹣15,系数化为1,得*>﹣11.解:去分母,得*+5﹣2<3*+2,移项,得*﹣3*<2+2﹣5,合并同类项,得﹣2*<﹣1,化系数为1,得*>12.解:去分母,得3〔*+1〕≥2〔2*+1〕+6,去括号,得3*+3≥4*+2+6,移项、合并同类项,得﹣*≥5,系数化为1,得*≤﹣513.解:去分母,得2〔2*﹣1〕﹣24>﹣3〔*+4〕,去括号,得4*﹣2﹣24>﹣3*﹣12,移项、合并同类项,得7*>14,两边都除以7,得*>214.解:去分母得,6*﹣1<2*+7,移项得,6*﹣2*<7+1,合并同类项得,4*<8,化系数为1得,*<215.解:3〔*﹣1〕+2≥2〔*﹣3〕,去括号得:3*﹣3+2≥2*﹣6,移项得:3*﹣2*≥﹣6+3﹣2,解得:*≥﹣516.解:去分母得:2〔*﹣1〕﹣3〔*+4〕>﹣12,去括号得:2*﹣2﹣3*﹣12>﹣12,移项得:2*﹣3*>﹣12+2+12,合并得:﹣*>2,解得:*<﹣217.解:去括号得:10﹣4*+16≤2*﹣2,移项合并得:﹣6*≤﹣28,解得:*≥18.解:去分母得,3〔*+5〕﹣6<2〔3*+2〕,去括号得,3*+15﹣6<6*+4,移项、合并同类项得,5<3*,把*的系数化为1得*>.19.解:∵∴3〔*+5〕﹣6<2〔3*+2〕∴3*+15﹣6<6*+4∴3*﹣6*<4﹣15+6∴﹣3*<﹣5∴*20.解:去分母得30﹣2〔2﹣3*〕≤5〔1+*〕,去括号得30﹣4+6*≤5+5*,移项得6*﹣5*≤5+4﹣30,合并得*≤﹣2121.解:去分母得,2〔2*﹣1〕﹣6*<3*+3,去括号得,4*﹣2﹣6*<3*+3,移项得,4*﹣6*﹣3*<3+2,合并同类项得,﹣5*<5,-系数化为1得,*>﹣1.故此不等式的解集为:*>﹣122.解:去分母得,2〔2*﹣5〕>3〔3*+4〕+18,去括号得,4*﹣10>9*+12+18,移项得,4*﹣9*>12+18+10,合并同类项得,﹣5*>40,系数化为1得,*<﹣823.解:≥1﹣,去分母得:2〔2*﹣1〕≥6﹣3〔5﹣*〕,去括号得:4*﹣2≥6﹣15+3*,移项合并得:*≥﹣724.解:原不等式可变为:2〔*+4〕﹣3〔3*﹣1〕>6,2*+8﹣9*+3>6,﹣7*>﹣5,*<25.解:原不等式可化为,6〔2*﹣1〕≥10*+1,去分母得,12*﹣6≥10*+1,合并同类项得,2*≥7,把系数化为1得,*≥26.解:去分母得,2〔2*﹣1〕﹣6≤3〔5*﹣1〕,去括号得,4*﹣2﹣6≤15*﹣3,移项得,4*﹣15*≤﹣3+2+6,合并同类项得,﹣11*≤5,化系数为1得,*≥﹣27.解:去分母,得32﹣2〔3*﹣1〕≥5〔*+3〕+8;去括号,得32﹣6*+2≥5*+15+8;移项,得﹣6*﹣5*≥15+8﹣32﹣2;合并同类项,得﹣11*≥﹣11;系数化为1,得*≤128.解:〔1〕在不等式的左右两边同乘以2得,〔3﹣*〕﹣6≥0,解得:*≤﹣3,29. 〔2〕在不等式的左右两边同乘以12得,6〔2*﹣1〕﹣4〔2*+5〕<3〔6*﹣7〕,解得:*30.解:不等式两边都乘以8得,32﹣2〔3*﹣1〕≤5〔*+3〕+8,去括号得,32﹣6*+2≤5*+15+8,移项得,11≤6*+5*,∴*≥131.解:∵,∴12*﹣6﹣8*﹣20<18*﹣21﹣12,∴14*>7,∴32.解:不等式两边同时乘以2,得:*+1≤4﹣2*,移项,得:*+2*≤4﹣1,合并同类项,得:3*≤3,解得:*≤133.解:去括号得,10*+6≤*﹣3+6*,移项合并同类项得,3*≤﹣9,解得*≤﹣334.解:去分母,得3〔*+2〕≤4﹣*+6〔2分〕去括号,得3*+6≤4﹣*+6移项,得3*+*≤4+6﹣6〔4分〕合并同类项,得4*≤4两边同除以4,得*≤135.解:〔1〕去分母,得5〔*﹣1〕>2〔3*+1〕,去括号,得5*﹣5>6*+2,移项,得5*﹣6*>2+5,合并同类项,得﹣*>7,系数化为1,得*<﹣7.36. 去分母,得5〔3*+1〕﹣3〔7*﹣3〕≤30+2〔*﹣2〕,去括号,得15*+5﹣21*+9≤30+2*﹣4,移项,得15*﹣21*﹣2*≤30﹣4﹣5﹣9,合并同类项,得﹣8*≤12,系数化为1,得*≥﹣1.537.解:原不等式的两边同时乘以4,并整理得*﹣7<3*﹣2,移项,得﹣2*<5,不等式的两边同时除以﹣2〔不等式的符号的方向发生改变〕,得*>,故原不等式的解集是*>38.4*+3≥3*+5.解:移项、合并得*≥2.39.解:2〔*+2〕≥4〔*﹣1〕+7,2*+4≥4*﹣4+7,2*﹣4*≥﹣4+7﹣4,﹣2*≥﹣1,40.解:去分母得1+2*>3*﹣3,移项得2*﹣3*>﹣3﹣1,合并同类项得﹣*>﹣4,解得*<441.解:去括号,得6﹣2*<*﹣3,移项、合并同类项,得﹣3*<﹣9,-化系数为1,得*>342.解:去括号得,3*+6≤5*﹣5+7,移项得,3*﹣5*≤2﹣6,合并同类项得,﹣2*≤﹣4系数化为1,得*≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3*+1≥2*+2,移项、合并同类项,得5*≤5,不等式的两边同时除以5,得*≤144.解:去括号,得:2*+6﹣4*>3﹣*,移项,得:2*﹣4*+*>﹣6,合并同类项,得:﹣*>﹣6,则*<645.解:去括号,得:2﹣4*+5≤6﹣3*,移项,得:﹣4*+3*≤6﹣2﹣5,合并同类项,得﹣*≤1,解得*≥﹣146.解;去分母得:*+1﹣6≤6*移项得:*﹣6*≤6﹣1合并同类项得:﹣5*≤5系数化1得:*≥﹣147.解:去分母得:7*+4﹣12>12〔*+1〕,去括号得:7*+4﹣12>12*+12,移项得:7*﹣12*>12+12﹣4,合并同类项得:﹣5*>20,系数化为1得:*<﹣448.解:去分母得:16﹣〔3*﹣2〕>24+2〔*﹣1〕16﹣3*+2>24+2*﹣2﹣3*﹣2*>24﹣2﹣16﹣2﹣5*>4*<﹣49.解;去括号得,4*+12﹣<4﹣2*﹣*+,移项合并同类项得,7*<﹣1,把*的系数化为1得,*<﹣,50.解:不等式的两边同时乘以12,得3〔*+1〕﹣2〔2*﹣3〕≤12,即﹣*+9≤12,不等式的两边同时减去9,得﹣*≤3,不等式的两边同时除以﹣1,得*≥﹣3,∴原不等式的解集是*≥﹣3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+9 6x+1 5x+1 6x-9 ———> ——————> ———-2 3 7 6 77x-28>10x+9 2(3x-8)<5(4x-30)x+1 6x+1 x-4 x+8 ———< ——————< ———-3 6 5 5 89x+9<10x+4 6(7x+9)<9(4x-30)8x+4 9x-5 6x-5 x+2 ———< ——————> ———+2 7 8 7 39x-30<4x+1 8(9x-9)>3(10x+14)4x+8 x-1 x+7 6x+1 ———> ——————< ———+3 3 3 3 73x+5<10x+30 8(5x-2)>3(6x-10)9x+4 x+8 9x-8 4x+9 ———< ——————< ———+4 8 3 8 57x+8<2x-7 4( x-2)<3(10x-5)2x+2 7x+4 7x-7 x-1 ———< ——————> ———+5 3 8 6 87x-16>4x-30 4(7x-7)<5(10x+28)5x+4 4x+8 x-1 5x-9 ———> ——————> ———-2 4 3 8 69x-28<6x+17 8( x+6)>7(6x+30)4x+7 x-7 2x+8 x+4 ———> ——————< ———-1 5 5 3 55x-29>8x+23 8( x-4)<7(2x-29)5x+8 8x+2 8x+9 2x+8 ———> ——————> ———+3 6 7 7 37x+11>6x+15 6( x+4)<9(8x+12)3x-4 x+9 6x-6 7x-6 ———> ——————> ———-6 4 6 5 83x+29<2x+18 4( x-6)<7(8x-20)x-7 5x-9 x-5 x-6 ———< ——————< ———+6 7 4 8 77x-25>6x-28 6(9x+7)>7(4x+4)7x-8 4x-4 x-2 4x+7 ———< ——————> ———+3 8 5 8 33x+8>2x+10 6(5x-9)>7(6x-28)9x+2 3x+9 x+1 4x+6 ———< ——————< ———+4 8 4 8 3x+8>10x+3 2( x+7)<9(4x+29)x+4 5x+5 3x+4 5x+8 ———> ——————> ———-24 4 4 49x-27>10x+17 6(9x-4)<9(2x+14)x+4 x+6 2x-7 5x+9 ———> ——————> ———+66 6 3 6x-9<4x-2 2(5x-10)<3(6x-13)8x+4 6x+8 5x+1 8x-9 ———< ——————> ———+1 7 5 6 73x-14<2x-22 4( x+8)>5(4x-8)8x-4 x+8 x+5 4x-2 ———> ——————> ———+4 7 4 4 59x-30>6x-19 8(7x-1)>5(2x+24)x-1 6x+1 x+8 8x+2 ———< ——————> ———+3 5 7 7 75x-18<8x-21 2(3x-2)<7(10x+24)x+5 x-2 8x+5 6x-7 ———< ——————< ———-5 7 5 7 73x+12>8x+2 4( x+10)<3(10x-17)5x-8 2x+3 4x-3 4x-3 ———< ——————< ———+3 4 3 3 39x-24<6x-7 4( x+2)<7(10x+18)7x+4 x-7 x+1 4x-6 ———< ——————> ———-2 8 3 8 59x+3>4x+18 6(3x+5)<7(4x-11)4x+2 x+1 x-3 x-2 ———> ——————< ———+6 5 8 6 73x+18<2x-8 8(5x-4)>5(2x-16)7x+8 4x+6 7x-1 9x-4 ———> ——————< ———+2 6 3 8 83x-13<10x+16 2(9x-2)>7(6x+9)x-5 3x-1 7x-1 6x+8 ———< ——————> ———+1 3 4 8 57x+14<4x+24 6(7x-1)>3(10x+5)x+7 5x+5 5x+7 x-8 ———< ——————> ———-6 5 4 6 47x-15>2x-9 4(3x+10)<7(8x+1)x-7 7x-2 7x-2 x-9 ———> ——————< ———+2 3 6 8 55x-23>2x-11 6(3x-1)>5(10x+29)6x-4 6x+4 4x+8 x+3 ———< ——————< ———-5 5 7 3 53x+16<4x+10 2(7x+1)<5(10x+4)8x+2 9x-7 5x+8 3x-7 ———< ——————> ———-2 7 8 6 45x-26>6x-21 8(5x-9)<7(4x+6)4x-2 6x-3 3x+2 7x+4 ———> ——————> ———-1 3 7 4 6x+14>6x+18 2(3x-9)>5(6x-7)x+9 4x-9 x-4 4x-9 ———> ——————> ———+5 6 3 6 33x-3>4x+30 2( x-2)>9(10x+23)x+2 8x-6 x-2 5x+8 ———< ——————< ———+6 3 7 5 45x-8>2x+8 2(5x+4)>7(10x+16)x+8 5x+5 x+7 x-1 ———> ——————> ———+3 5 4 4 6x-6<6x+19 6(3x+2)<7(2x-19)4x-7 4x+6 8x-5 2x-5 ———< ——————< ———+2 3 3 7 37x-28>10x-3 4(5x-7)<5(6x-5)5x+3 7x+6 4x-1 4x+2 ———< ——————> ———-5 6 8 5 39x+10>4x-29 6(9x+9)<5(4x+22)9x-8 x+2 8x+2 5x-8 ———< ——————> ———+2 8 5 7 67x+30>4x-10 2(9x-3)>7(8x-28)6x-6 6x+3 x-6 7x-5 ———< ——————< ———-4 7 5 6 63x-4>8x+8 6(7x-6)>7(10x-25)7x-1 3x+8 9x-3 3x-2 ———> ——————> ———-2 8 4 8 45x+21<10x+6 8(3x-6)<3(10x+24)3x+3 x+9 3x-6 6x-8 ———> ——————< ———-4 4 6 4 53x+16<2x-22 4( x+4)<5(8x-3)x+7 3x+4 x+8 4x-9 ———< ——————> ———-53 4 3 37x+4>2x+30 2(5x+3)>9(8x+1)6x+3 x+9 2x-2 x-6 ———> ——————< ———-55 5 3 5x-17<10x-20 6(9x+7)>3(4x-12)9x+3 5x+3 4x+4 9x-4 ———< ——————< ———+5 8 4 5 89x-25<4x-29 8(5x-5)>7(2x-21)7x+2 4x+3 x-1 9x-6 ———> ——————< ———-5 6 3 4 87x+1<2x-10 8(7x-1)<5(6x+1)8x-1 4x+1 x+8 x+1 ———< ——————< ———+6 7 5 4 39x-18>10x-24 2(9x+5)>5(8x+5)8x-6 x-7 7x-5 x+9 ———< ——————> ———-2 7 7 8 89x-7>6x+8 2( x+5)<3(2x+17)6x+5 5x+2 2x-2 5x+7 ———< ——————> ———-5 5 6 3 47x+28<4x+25 8(7x+4)>7(10x-13)x-5 9x-6 x+3 6x+2 ———< ——————< ———-3 5 8 3 73x+23<4x-23 6( x+2)<3(8x+10)3x+2 8x-9 x-1 5x-3 ———> ——————> ———-6 4 7 4 69x+7<8x+1 4(5x+4)<5(4x-6)9x+3 2x-7 4x+7 9x-1 ———< ——————< ———+1 8 3 5 8。