华电_计算机图形学实验报告

合集下载

计算机图形学实验报告4

计算机图形学实验报告4

计算机图形学实验报告4一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学中的一些关键概念和技术,通过实际操作和编程实现,提高对图形生成、变换、渲染等方面的理解和应用能力。

二、实验环境本次实验使用的软件环境为_____,编程语言为_____,硬件环境为_____。

三、实验内容1、二维图形的绘制使用基本的绘图函数,如直线、矩形、圆形等,绘制简单的二维图形。

通过设置线条颜色、填充颜色等属性,增强图形的表现力。

2、图形的几何变换实现图形的平移、旋转和缩放操作。

观察不同变换参数对图形的影响。

3、三维图形的生成构建简单的三维模型,如立方体、球体等。

应用光照和材质效果,使三维图形更加逼真。

四、实验步骤1、二维图形的绘制首先,在编程环境中导入所需的图形库和相关模块。

然后,定义绘图窗口的大小和坐标范围。

接下来,使用绘图函数按照指定的坐标和参数绘制直线、矩形和圆形。

最后,设置图形的颜色和填充属性,使图形更加美观。

2、图形的几何变换对于平移操作,通过修改图形顶点的坐标值来实现水平和垂直方向的移动。

对于旋转操作,根据旋转角度计算新的顶点坐标,实现图形的绕中心点旋转。

对于缩放操作,将图形的顶点坐标乘以缩放因子,达到放大或缩小图形的效果。

3、三维图形的生成首先,定义三维模型的顶点坐标和三角形面的连接关系。

然后,设置光照的位置、颜色和强度等参数。

接着,为模型添加材质属性,如颜色、反射率等。

最后,使用渲染函数将三维模型显示在屏幕上。

五、实验结果与分析1、二维图形的绘制成功绘制出了各种简单的二维图形,并且通过颜色和填充的设置,使图形具有了更好的视觉效果。

例如,绘制的矩形和圆形边缘清晰,颜色鲜艳,填充均匀。

2、图形的几何变换平移、旋转和缩放操作都能够准确地实现,并且变换效果符合预期。

在旋转操作中,发现旋转角度的正负会影响旋转的方向,而缩放因子的大小直接决定了图形的缩放程度。

3、三维图形的生成生成的三维模型具有一定的立体感和真实感。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。

通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。

在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。

首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。

这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。

然后,在实验中我们学习了图形的变换。

变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。

我们可以通过平移、旋转、缩放等变换来改变图形。

变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。

在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。

变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。

最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。

在实验中,我们学习了透视投影和正交
投影两种方式。

透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。

而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。

在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。

通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。

在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。

计算机图形学实验报告4

计算机图形学实验报告4

《计算机图形学》实验报告实验九 二维图形变换一、实验教学目标与基本要求1.掌握图形变换的基本算法原理;2.实现若干典型二维图形变换算法。

二.理论基础1.生成前几次实验中的基本图形;2.对生成的基本图形进行平移、旋转、放缩、对称等变换。

3. 对计算机绘图的原理有一定的认识。

三.算法设计与分析 1.二维变换1. 平移变换2.比例变换• Sx = Sy =1等比例变换• Sx = Sy >1 放大 • Sx = Sy <1 缩小[][][]100**1101011x yxyx y xyx T y T T T ⎡⎤⎢⎥=∙=++⎢⎥⎢⎥⎣⎦[][]100**1101011x y xyx y xyT T x T y T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤=++⎣⎦[][][]00**11000011xy x y S x y xyS S xS y∙∙⎡⎤⎢⎥=∙⎢⎥⎢⎥⎣⎦=• Sx ≠ Sy ≠13.对称变换当b=d =0, a =-1, e =1时关于Y 轴对称当b=d =0, a =1, e =-1时关于X 轴对称当b=d =0, a =-1, e =-1时关于原点对称当b=d =1, a =e =0时关于直线y=x 对称当b=d =-1, a =e =0时[][][]0**1100011a d x y xyb e a x b yd x ey⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦=++[][]''100110100011x yx yxy-⎡⎤⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦=-[][]''10011010011x y x y x y ⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=-[][]''100110100011x y xyx y-⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=--[][]''10111000011x yx yyx⎡⎤⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦=[][]''010*******11xyx yyx-⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=--关于直线y=-x 对称4.旋转变换绕原点逆时针旋转θ5.错切变换• 当d=0时,x*=x+by,y*=y ,沿x 方向错切位移• 当b=0时,x*=x,y*=dx+y, 沿y 方向错切位移 • 当b ≠0时,当d ≠0时,x*=x+by,y=dx+y6.复合变换----复合平移对同一图形做两次平移相当于将两次的平移两加起来:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅=1010001101000110100012121221121y y x x y x y x t t t T T T T T T T T T T T复合变换----复合缩放⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⋅=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅=1000000100000010000002121221121y y x x y x y x s s s s s s s s s s s T T T[][]''co s sin 011sin co s 001co s sin sin co s 1x yxyx y x y θθθθθθθθ⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=-+[][][]10**1110101d x y xybx b y d x y⎡⎤⎢⎥=∙=++⎢⎥⎢⎥⎣⎦复合变换----复合旋转⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅=1000)cos()sin(0)sin()cos(1000cos sin 0sin cos 1000cos sin 0sin cos 212121212222111121θθθθθθθθθθθθθθθθr r r T T T复合变换----关于F (xf,yf)点的缩放变换先把坐标系平移到(xf,yf),在新的坐标系下做比例变换,然后再将坐标原点平移回去。

计算机图形学第五次实验报告

计算机图形学第五次实验报告

《计算机图形学》实验报告实验十一真实感图形一、实验教学目标与基本要求初步实现真实感图形, 并实践图形的造型与变换等。

二、理论基础运用几何造型, 几何、投影及透视变换、真实感图形效果(消隐、纹理、光照等)有关知识实现。

1.用给定地形高程数据绘制出地形图;2.绘制一(套)房间,参数自定。

三. 算法设计与分析真实感图形绘制过程中, 由于投影变换失去了深度信息, 往往导致图形的二义性。

要消除这类二义性, 就必须在绘制时消除被遮挡的不可见的线或面, 习惯上称之为消除隐藏线和隐藏面, 或简称为消隐, 经过消隐得到的投影图称为物体的真实图形。

消隐处理是计算机绘图中一个引人注目的问题, 目前已提出多种算法, 基本上可以分为两大类:即物体空间方法和图象空间方法。

物体空间方法是通过比较物体和物体的相对关系来决定可见与不可见的;而图象空间方法则是根据在图象象素点上各投影点之间的关系来确定可见与否的。

用这两类方法就可以消除凸型模型、凹形模型和多个模型同时存在时的隐藏面。

1).消隐算法的实现1.物体空间的消隐算法物体空间法是在三维坐标系中, 通过分析物体模型间的几何关系, 如物体的几何位置、与观察点的相对位置等, 来进行隐藏面判断的消隐算法。

世界坐标系是描述物体的原始坐标系, 物体的世界坐标描述了物体的基本形状。

为了更好地观察和描述物体, 经常需要对其世界坐标进行平移和旋转, 而得到物体的观察坐标。

物体的观察坐标能得到描述物体的更好视角, 所以物体空间法通常都是在观察坐标系中进行的。

观察坐标系的原点一般即是观察点。

物体空间法消隐包括两个基本步骤, 即三维坐标变换和选取适当的隐藏面判断算法。

选择合适的观察坐标系不但可以更好地描述物体, 而且可以大大简化和降低消隐算法的运算。

因此, 利用物体空间法进行消隐的第一步往往是将物体所处的坐标系转换为适当的观察坐标系。

这需要对物体进行三维旋转和平移变换。

常用的物体空间消隐算法包括平面公式法、径向预排序法、径向排序法、隔离平面法、深度排序法、光线投射法和区域子分法。

计算机图形学实验报告_2

计算机图形学实验报告_2

计算机图形学实验报告学号:********姓名:班级:计算机 2班指导老师:***2010.6.19实验一、Windows 图形程序设计基础1、实验目的1)学习理解Win32 应用程序设计的基本知识(SDK 编程);2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。

4)学习MFC 类库的概念与结构;5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框);6)学习使用MFC 的图形编程。

2、实验内容1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。

(可选任务)2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,Thisis my first SDI Application"。

(必选任务)3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。

定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。

3、实验过程1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档;2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,Thisis my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制;3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。

4、实验结果正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。

华电_计算机图形学实验报告

华电_计算机图形学实验报告

课程设计(综合实验)报告=实验名称 OpenGL基本图元绘制实验课程名称计算机图形学||专业班级:计算机11K1学生姓名:王粲学号:111909010118成绩:指导教师:姜丽梅实验日期:2014.4.20实验一、OpenGL基本图元绘制实验一、实验目的及要求1.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

2.掌握基本的二维线画图元的绘制算法及属性,掌握OpenGL基本图元的绘制。

3.理解二维、三维图形的绘制流程,掌握二维图形和三维图形的图形变换。

4.了解形体的真实感表示的内容,包括消隐技术、简单光照明模型、多边形的明暗绘制技术以及纹理映射技术。

5.要求使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序实现基本图元绘制。

6.要求对绘制的简单场景综合利用几何变换或gluLookAt函数实现交互式三维观察程序。

二、实验内容在两个具有不同属性的窗口中分别显示一个旋转的三角形来演示单缓存和双缓存,在旋转过程中不断改变图形的颜色,利用鼠标或菜单可终止/启动图形旋转。

明确程序包括哪些函数,各个函数的功能以及整个流程,从而为进一步做综合性的图形绘制实验奠定基础。

三、所用仪器、设备Windows XP系统,Visual C++,OpenGL及GLUT库四、实验方法与步骤先配置环境,把相关文件放到相应的文件夹C:\Program Files\Microsoft Visual Studio\VC98\Include\GLC:\WINDOWS\system32C:\Program Files\Microsoft Visual Studio\VC98\Lib再通过VC++进行编译五、程序代码#include <gl/glut.h>#include <stdlib.h>#include < stdio.h >#include <math.h>#define DEG_TO_RAD 0.017453static GLfloat theta = 0.0;GLfloat r = 1.0; //设置正方形的初始颜色GLfloat g = 0.0;GLfloat b = 0.0;int singleb,doubleb;void display(void){ glClear(GL_COLOR_BUFFER_BIT); //正方形颜色渐变glColor3f(r, g,b);r = r - 0.002;g = g + 0.002;b = b + 0.001;if(r < 0.001){ r = 1.0;g = 0.0;b = 0.0; }glBegin(GL_POLYGON);glVertex2f(cos(DEG_TO_RAD*theta), sin(DEG_TO_RAD*theta));glVertex2f(cos(DEG_TO_RAD*(theta+90)),sin(DEG_TO_RAD*(theta+90)));glVertex2f(cos(DEG_TO_RAD*(theta+180)),sin(DEG_TO_RAD*(theta+180)));glVertex2f(cos(DEG_TO_RAD*(theta+270)), sin(DEG_TO_RAD*(theta+270)));glEnd();glutSwapBuffers();}void spinDisplay (void) //正方形转动弧度设置{theta = theta +0.1;if (theta > 360.0)theta = theta - 360.0;glutSetWindow(singleb);glutPostWindowRedisplay(singleb);glutSetWindow(doubleb);glutPostWindowRedisplay(doubleb);}void spinDisplay1(void){glutPostRedisplay();}void myReshape(int w, int h){glViewport(0, 0, w, h); //指定平面上一个矩形裁剪区域,glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)gluOrtho2D(-1.,1.,-1.*(GLfloat)h/(GLfloat)w,1.*(GLfloat)h/(GLfloat)w);elsegluOrtho2D(-1.*(GLfloat)w/(GLfloat)h, 1.*(GLfloat)w/(GLfloat)h, -1., 1.);}void mouse(int button,int state,int x,int y) //鼠标定义{ switch(button){case GLUT_LEFT_BUTTON:if(state == GLUT_DOWN ){ glutIdleFunc(spinDisplay1);}break;case GLUT_RIGHT_BUTTON:if(state == GLUT_DOWN)glutIdleFunc(spinDisplay);break;default:break;}}void main(int argc, char** argv) //主函数{glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(100, 100);glutInitWindowSize(500, 500);singleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(600, 100);glutInitWindowSize(500, 500);doubleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutMainLoop();}六、实验结果实验二、OpenGL三维观察综合实验一、目的与要求7.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
实验目的:通过本次实验,深入了解并掌握计算机图形学的基本原理和相关技术,培养对图形处理的理解和能力。

实验内容:
1. 图像的基本属性
- 图像的本质及表示方法
- 像素和分辨率的概念
- 灰度图像和彩色图像的区别
2. 图像的处理技术
- 图像的采集和处理
- 图像的变换和增强
- 图像的压缩和存储
3. 计算机图形学的应用
- 图像处理在生活中的应用
- 计算机辅助设计中的图形学应用
- 三维建模和渲染技术
实验步骤和结果:
1. 在计算机图形学实验平台上加载一张测试图像,分析其像素构成
和基本属性。

2. 运用图像处理技术,对测试图像进行模糊、锐化、色彩调整等操作,观察处理后的效果并记录。

3. 学习并掌握计算机图形学中常用的处理算法,如卷积、滤波等,
尝试应用到测试图像上并进行实验验证。

4. 探讨计算机图形学在数字媒体制作、虚拟现实、计算机辅助设计
等领域的应用案例,并总结其在实践中的重要性和价值。

结论:
通过本次实验,我对计算机图形学有了更深入的了解,掌握了图像
处理技术的基本原理和应用方法。

计算机图形学作为一门重要的学科,对多个领域有着广泛的应用前景,有助于提高数字媒体技术、虚拟现
实技术等领域的发展水平。

希望在未来的学习和工作中能进一步深化
对计算机图形学理论和实践的研究,不断提升自己在这一领域的专业
能力和创新意识。

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验及课程设计:内容简介:《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》是《计算机图形学基础教程(Visual C++版)》教材的配套实验教材,提供了18个综合性教学实验和5个课程设计项目,可以满足计算机图形学课堂上机实验和设计周课程设计任务。

实验项目编排上由浅入深,通过定义基础类、直线类、变换类、填充类、光照类,最终构造了三维动态光照场景。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》的全部内容都基于MFC框架完成,彩插中展示的所有图形均使用CDC类的SetPixel()成员函数绘制,未包含任何图形学库。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》的教学实验和课程设计项目的源代码和实验拓展项目的可执行文件全部提供在笔者的个人网站上,请读者下载后参照源代码学习。

通读本书,读者可以轻松掌握柏拉图正多面体(正四面体、正六面体、正八面体、正十二面体和正二十面体)、球体、圆环等三维物体的线框模型、表面模型的建模方法。

在三维动态光照场景中,可以调整物体表面模型的材质、添加纹理细节,改变视点和光源的位置,完成三维真实感图形的动态绘制。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》内容全面、案例丰富、注重理实一体化,适合作为本科计算机图形学的实验和课程设计教材。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》为源代码提供了详尽的注释,可供计算机图形学爱好者从编程的角度理解和掌握计算机图形学原理。

《计算机图形学》实验报告

《计算机图形学》实验报告

《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。

通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。

二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。

开发环境为 PyCharm。

三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。

它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。

Bresenham 算法则是一种基于误差的直线生成算法。

它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。

在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。

2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。

通过不断迭代计算中点的位置,逐步生成整个圆。

在实现过程中,需要注意边界条件的处理和误差的计算。

3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。

旋转变换是围绕一个中心点将图形旋转一定的角度。

缩放变换则是改变图形的大小。

通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。

4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。

扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。

在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。

四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。

根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。

计算机图形学实验报告

计算机图形学实验报告

实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。

《计算机图形学》课内实验报告(实验一)

《计算机图形学》课内实验报告(实验一)
PFNGLGETINFOLOGARBPROC glGetInfoLogARB;
PFNGLUNIFORM1FARBPROC glUniform1fARB;
PFNGLGETUNIFORMLOCATIONARBPROC glGetUniformLocationARB;
#ifndef __APPLE__
PFNGLSECONDARYCOLOR3FPROC glSecondaryColor3f;
{
GLbyte infoLog[MAX_INFO_LOG_SIZE];
glGetInfoLogARB(progObj, MAX_INFO_LOG_SIZE, NULL, infoLog);
fprintf(stderr, "Error in program linkage!\n");
fprintf(stderr, "Info log: %s\n", infoLog);
// Demonstrates high-level shaders
// Program by Benjamin Lipchak
#include "../../Common/OpenGLSB.h" // System and OpenGL Stuff
#include "../../Common/GLTools.h" // System and OpenGL Stuff
// Initially set the blink parameter to 1 (no flicker)
if (flickerLocation != -1)
glUniform1fARB(flickerLocation,1.0f);
// Program object has changed, so we should revalidate

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告引言计算机图形学是计算机科学中一个重要的研究领域,它涉及了计算机图像的生成、处理和显示等方面的技术。

本次实验旨在通过实际操作学习计算机图形学的相关知识,并利用图形学算法实现一些有趣的效果。

实验目的1. 了解计算机图形学的基本概念和发展历程;2. 掌握图形学中的基本几何变换,如平移、旋转和缩放等;3. 实现一些常见的图形学算法,如光照模型、三角形剪裁和绘制等。

实验准备在开始实验之前,我们需要准备一些实验所需的工具和环境。

首先,确保计算机上安装了图形学相关的软件,如OpenGL或DirectX等。

其次,为了编写和运行图形学程序,我们需要掌握基本的编程技巧,如C++或Python语言,并了解相关的图形库和API。

实验过程1. 实现平移、旋转和缩放首先,我们需要掌握图形学中的基本几何变换,如平移、旋转和缩放。

通过矩阵运算,我们可以很方便地实现这些变换。

例如,对于一个二维点P(x, y),我们可以通过以下公式实现平移:P' = T * P其中,P'是平移后的点,T是平移矩阵。

类似地,我们可以用旋转矩阵和缩放矩阵来实现旋转和缩放效果。

2. 实现光照模型光照模型是指在计算机图形学中模拟现实光照效果的一种方法。

它可以提供更真实的视觉效果,让计算机生成的图像更加逼真。

其中,常用的光照模型有环境光照、漫反射光照和镜面光照等。

通过计算每个像素的光照强度,我们可以实现阴影效果和光源反射等功能。

3. 实现三角形剪裁三角形剪裁是计算机图形学中一种常用的几何算法,用于确定哪些像素需要绘制,哪些像素需要剔除。

通过对三角形的边界和视口进行比较,我们可以快速计算出剪裁后的三角形顶点,以提高图形渲染的效率。

4. 实现图形绘制图形绘制是计算机图形学中的核心内容,它包括了点、线和面的绘制等。

通过设定顶点坐标和属性(如颜色、纹理等),我们可以使用算法绘制出各种形状的图像。

其中,常用的绘制算法有Bresenham算法和扫描线算法等。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。

本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。

一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。

本次实验主要涉及三维图形的建模、渲染和动画。

二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。

通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。

这些基本操作为后续的图形处理和渲染打下了基础。

2. 光照和着色光照和着色是图形学中重要的概念。

我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。

通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。

3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。

通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。

在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。

4. 动画和交互动画和交互是计算机图形学的重要应用领域。

在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。

通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。

三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。

然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。

在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。

四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。

我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。

计算机图形学实验报告 直线的画法(DDA Bresenham算法)

计算机图形学实验报告  直线的画法(DDA Bresenham算法)

华北水利水电学院计算机图形学实验报告题目:直线的生成算法姓名:***学号:*********专业:计算机科学与技术院系:信息工程学院一、实验目的学会用DDA 法,中点法,Bresenham 法这三种思想画直线,同时,对画直线的操作有一定的了解。

二、实验原理及内容1. DDA 法的基本思想如下:已知过端点P0(x0,y0) , P1(x1,y1)的直线段L :y=kx+b ,直线斜率为k=(y1-y0)/x1-x0 ,从x 的左端点x0开始,向x 右端点步进。

步长=1(个象素),计算相应的y 坐标y=kx+b ; 取象素点(x, round(y))作为当前点的坐标。

3. Bresenham 法的基本思想如下:过各行各列象素中心构造一组虚拟网格线。

按直线从起点到终点的顺序计算直线与 各垂直网格线的交点,然后根据误差项的符号确定该列象素中与此交点最近的象素。

设直线方程为:其中k=dy/dx 。

因为直线的起始点在象素中心,所以误差项d 的初值d0=0。

X 下标每增加1,d 的值相应递增直线的斜率值k ,即d =d +k 。

一旦d ≥1,就把它减去1,这样保证d 在0、1之间。

当d ≥0.5时,最接近于当前象素的右上方象素( )而当d<0.5时,更接近于右方象素( )。

为方便计算,令e =d-0.5,e 的初值为-0.5,增量为k 。

当e ≥0时,取当前象素(xi ,yi )的右上方象素( );而当e<0时,更接近于右方象素( )。

可以改用整数以避免除法。

4.两方法的程序编写及运行结果截图如下:void CHTView::OnDda()d dd d k y x x k y y i i i i i +=-+=++)(1111,++i i y x i i y x ,1+11,++i i y x i i y x ,1+CClientDC dc(this);int x0,y0,x1,y1;float x,y;double k;x0=10;y0=5;x1=100;y1=200;k=(y1-y0)*1.0/(x1-x0);y=y0;for(x=x0;x<x1;x++){dc.SetPixel(int(x),int(y+0.5),RGB(255,0,0));y+=k;}}void CHTView::OnBhl(){CClientDC dc(this);int x0=10,y0=5,x1=300,y1=200,x=x0,y=y0;double e=-0.5;int dx=x1-x0;int dy=y1-y0;double k=dy*1.0/dx;for(int i=0;i<=dx;i++){dc.SetPixel(int(x),int(y),RGB(0,0,255));x=x+1;e=e+k;if(e>=0){y++;e=e-1;}}}}void CMyView::OnAddline(){CDC* pDC=GetDC();//获得设备指针int x0=100,y0=100,x1=300,y1=300;int c=RGB(255,0,0);DDA_line(x0,y0,x1,y1,c);int xa=200,ya=100,xb=350,yb=250;Bresenham_line(xa,ya,xb,yb,c);int xc=100,yc=200,xd=300,yd=400;pDC->MoveTo(xc,yc);pDC->LineTo(xd,yd);ReleaseDC(pDC);}实验总结1.工程文件的建立过程具体为:新建-MFC AppWizard[exe]-输入工程名-确定工程所放位置-确定-选择单文档(也可选用其它文档)-完成-确定即可,接下来对工程文件相关属性进行设置,点击ResourceView-.resource-Menu-双击其下选项打开程序编辑页面-对属性进行设置(主要是标明,ID等选项)-建立类向导-AddFunction,这样过程大致完成。

计算机图形实验报告

计算机图形实验报告

计算机图形实验报告计算机图形实验报告引言:计算机图形学是一门研究如何使用计算机生成、处理和显示图像的学科。

在现代科技的发展中,计算机图形学的应用越来越广泛,涉及到许多领域,如电影制作、游戏开发、虚拟现实等。

本实验报告将介绍我在计算机图形实验中的学习和实践经验。

一、实验目的本次实验的主要目的是通过学习和实践,掌握计算机图形学的基本概念和技术。

具体来说,我们将学习如何使用计算机编程语言实现简单的图形绘制、变换和渲染等功能。

二、实验过程1. 学习基本概念在开始实验之前,我们首先学习了计算机图形学的基本概念,包括点、线、多边形等基本图元的表示方法,以及坐标系统和颜色模型等相关知识。

这些基础概念为后续的实验操作打下了坚实的基础。

2. 图形绘制在实验中,我们使用了一种编程语言来实现图形的绘制。

通过编写代码,我们可以在计算机屏幕上绘制出各种形状的图形,如直线、矩形、圆等。

这些图形的绘制是通过计算机的像素点来实现的,我们可以通过改变像素点的颜色和位置来绘制出不同的图形。

3. 图形变换除了图形的绘制,我们还学习了图形的变换技术。

通过对图形进行平移、旋转、缩放等操作,我们可以改变图形的位置、大小和形状。

这些变换操作可以通过矩阵运算来实现,通过改变矩阵的数值,我们可以对图形进行不同的变换操作。

4. 图形渲染图形渲染是计算机图形学中的一个重要环节。

通过对图形进行光照、阴影和纹理等处理,我们可以使图形看起来更加真实和逼真。

在实验中,我们学习了一些基本的渲染算法,如平均法线法、Phong光照模型等,通过应用这些算法,我们可以实现不同材质和光照条件下的图形渲染效果。

三、实验结果通过实验,我们成功地实现了一些基本的图形绘制、变换和渲染功能。

我们可以在计算机屏幕上绘制出各种形状的图形,并对其进行平移、旋转、缩放等操作。

同时,我们还实现了简单的光照和阴影效果,使图形看起来更加真实和立体。

四、实验总结通过本次实验,我对计算机图形学有了更深入的了解。

《计算机图形学》实验3实验报告

《计算机图形学》实验3实验报告

实验3实验报告格式《计算机图形学》实验3实验报告实验题目:直线(光栅化)实数型Bresenham 算法在用户坐标系和Java AWT 坐标系下显示图像实验内容:1 直线(光栅化)实数型Bresenham 算法原理及程序。

2 直线(光栅化)DDA 算法原理及程序。

3 在用户坐标系和Java AWT 坐标系下显示图像的算法原理及实现。

写程序调用验证之。

参考资料:1 课件:光栅图形生成算法.PP T2 Bresenham 算法演示程序已经在MyCanvas 包里,DDA 算法applet 演示程序DDA.java3 有一个示范程序imageDrawApplet.java基本概念:(详细叙述自己对实验内容的理解) 直线(光栅化):画一条从(x1, y1)到(x2, y2)的直线,实质上是一个发现最佳逼近直线的像素序列、并填入色彩数据的过程。

这过程称为直线光栅化。

Bresenham 算法:Bresenham 直线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。

这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。

DDA 算法:DDA 算法(Digital Differential Analyzer ),又称数值微分法,是计算机图形学中一种基于直线的微分方程来生成直线的方法。

算法设计:(详细叙述自己设计的Bresenham 算法以及程序的功能、不同坐标系下图像显示的算法)程序功能:用DDA 算法画出直线,在不同的坐标系下显示图像。

Bresenham 算法:用坐标为(xi ,yi,r)的象素来表示直线上的点,则第i+1个点只能在C 和D 中选取。

令d1=BC ,d2=DBd1-d2=(yi+1–yi,r)-( yi,r+1-yi+1)=2yi+1–yi,r –(yi,r+1)= 2yi+1–2yi,r –1x i x i+1令ε(xi+1)= yi+1–yi,r–0.5=BC-AC=BA=B-A= yi+1–(yi,r+ yi,r+1)/2当ε(xi+1)≥0时,yi+1,r= yi,r+1,即选D点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r+1 )当ε(xi+1)<0时,yi+1,r= yi,r,即选C点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r )ε(xi+1)= yi+1–yi,r–0.5ε(xi+1)≥0时,yi+1,r= yi,r+1ε(xi+1)<0时,yi+1,r= yi,r用户坐标系下图像显示算法:定义自己的坐标系,将用户坐标系转换为Java awt坐标,调用Graphics类的drawImage方法即可。

《计算机图形学》实验2实验报告

《计算机图形学》实验2实验报告

《计算机图形学》实验2实验报告《计算机图形学》实验2实验报告实验题目:多视图绘图程序实验内容:掌握多视图绘图的概念,掌握二维统计图的绘制方法。

调用实验1中自己编写的基本包,绘制自己所设计的统计图形(饼图、直方图以及折线)。

编写程序调用验证之。

基本概念:(详细叙述自己对实验内容的理解)多视图:就是将多个绘制好的图形按照一定的规则组成一个具有特定意义的图形,在同一个视图中显示出来,如下面绘制的几种统计图形(饼图、直方图以及折线)。

饼图:可以清楚的表示出各个部分所占的比例;直方图:可以清楚地的显示各部分的数量的多少;折线:可以清楚地反应各个部分的变化趋势。

算法设计:(详细叙述自己设计的多视图统计图以及程序的功能、算法及实现)public abstract void drawLine(int x1, int y1, int x2, int y2)使用当前颜色,在点(x1, y1) 和(x2, y2) 之间画线。

public abstract void drawOval(int x, int y, int width, int height) 画椭圆。

public abstract void fillOval(int x, int y, int width, int height)画实心椭圆。

public abstract void drawPolygon(int[] xPoints, int[] yPoints, int nPoints)画x和y坐标定义的多边形。

public void drawRect(int x, int y, int width, int height)画矩形。

public void drawRect(int x, int y, int width, int height)画实心矩形。

public abstract void drawRoundRect(int x, int y, int width, intheight, int arcWidth, int arcHeight) 使用当前颜色画圆角矩形。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。

二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。

开发环境为 PyCharm 或 Jupyter Notebook。

三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。

通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。

比较两种算法的效率和准确性,分析其优缺点。

2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。

给定圆心坐标和半径,生成圆的图形。

研究不同半径大小对绘制效果和计算复杂度的影响。

(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。

处理多边形的顶点排序、交点计算和填充颜色的设置。

测试不同形状和复杂度的多边形填充效果。

2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。

探索如何通过改变填充图案的参数来实现不同的视觉效果。

(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。

通过矩阵运算实现这些变换。

观察变换前后图形的位置、形状和方向的变化。

2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。

分析组合变换的顺序对最终图形效果的影响。

(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。

理解如何将三维坐标映射到二维屏幕上显示。

2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。

探讨不同的绘制方法和视角对三维图形显示的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计(综合实验)报告=实验名称 OpenGL基本图元绘制实验课程名称计算机图形学||专业班级:计算机11K1学生姓名:王粲学号:111909010118成绩:指导教师:姜丽梅实验日期:2014.4.20实验一、OpenGL基本图元绘制实验一、实验目的及要求1.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

2.掌握基本的二维线画图元的绘制算法及属性,掌握OpenGL基本图元的绘制。

3.理解二维、三维图形的绘制流程,掌握二维图形和三维图形的图形变换。

4.了解形体的真实感表示的内容,包括消隐技术、简单光照明模型、多边形的明暗绘制技术以及纹理映射技术。

5.要求使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序实现基本图元绘制。

6.要求对绘制的简单场景综合利用几何变换或gluLookAt函数实现交互式三维观察程序。

二、实验内容在两个具有不同属性的窗口中分别显示一个旋转的三角形来演示单缓存和双缓存,在旋转过程中不断改变图形的颜色,利用鼠标或菜单可终止/启动图形旋转。

明确程序包括哪些函数,各个函数的功能以及整个流程,从而为进一步做综合性的图形绘制实验奠定基础。

三、所用仪器、设备Windows XP系统,Visual C++,OpenGL及GLUT库四、实验方法与步骤先配置环境,把相关文件放到相应的文件夹C:\Program Files\Microsoft Visual Studio\VC98\Include\GLC:\WINDOWS\system32C:\Program Files\Microsoft Visual Studio\VC98\Lib再通过VC++进行编译五、程序代码#include <gl/glut.h>#include <stdlib.h>#include < stdio.h >#include <math.h>#define DEG_TO_RAD 0.017453static GLfloat theta = 0.0;GLfloat r = 1.0; //设置正方形的初始颜色GLfloat g = 0.0;GLfloat b = 0.0;int singleb,doubleb;void display(void){ glClear(GL_COLOR_BUFFER_BIT); //正方形颜色渐变glColor3f(r, g,b);r = r - 0.002;g = g + 0.002;b = b + 0.001;if(r < 0.001){ r = 1.0;g = 0.0;b = 0.0; }glBegin(GL_POLYGON);glVertex2f(cos(DEG_TO_RAD*theta), sin(DEG_TO_RAD*theta));glVertex2f(cos(DEG_TO_RAD*(theta+90)),sin(DEG_TO_RAD*(theta+90)));glVertex2f(cos(DEG_TO_RAD*(theta+180)),sin(DEG_TO_RAD*(theta+180)));glVertex2f(cos(DEG_TO_RAD*(theta+270)), sin(DEG_TO_RAD*(theta+270)));glEnd();glutSwapBuffers();}void spinDisplay (void) //正方形转动弧度设置{theta = theta +0.1;if (theta > 360.0)theta = theta - 360.0;glutSetWindow(singleb);glutPostWindowRedisplay(singleb);glutSetWindow(doubleb);glutPostWindowRedisplay(doubleb);}void spinDisplay1(void){glutPostRedisplay();}void myReshape(int w, int h){glViewport(0, 0, w, h); //指定平面上一个矩形裁剪区域,glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)gluOrtho2D(-1.,1.,-1.*(GLfloat)h/(GLfloat)w,1.*(GLfloat)h/(GLfloat)w);elsegluOrtho2D(-1.*(GLfloat)w/(GLfloat)h, 1.*(GLfloat)w/(GLfloat)h, -1., 1.);}void mouse(int button,int state,int x,int y) //鼠标定义{ switch(button){case GLUT_LEFT_BUTTON:if(state == GLUT_DOWN ){ glutIdleFunc(spinDisplay1);}break;case GLUT_RIGHT_BUTTON:if(state == GLUT_DOWN)glutIdleFunc(spinDisplay);break;default:break;}}void main(int argc, char** argv) //主函数{glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(100, 100);glutInitWindowSize(500, 500);singleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(600, 100);glutInitWindowSize(500, 500);doubleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutMainLoop();}六、实验结果实验二、OpenGL三维观察综合实验一、目的与要求7.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

8.掌握基本的二维线画图元的绘制算法及属性,掌握OpenGL基本图元的绘制。

9.理解二维、三维图形的绘制流程,掌握二维图形和三维图形的图形变换。

10.了解形体的真实感表示的内容,包括消隐技术、简单光照明模型、多边形的明暗绘制技术以及纹理映射技术。

11.要求使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序实现基本图元绘制。

12.要求对绘制的简单场景综合利用几何变换或gluLookAt函数实现交互式三维观察程序。

二、实验内容对于绘制的立方体(也可以自己拟定)通过键盘移动视点,利用鼠标或键盘控制立方体的旋转方向,从不同角度观察各面颜色不同的立方体,通过本实验加深理解计算机图形学中的三维图形绘制流程的工作原理和OpenGL三维观察流程及相应的函数实现。

三、所用仪器、设备Windows XP系统,Visual C++,OpenGL及GLUT库四、实验方法与步骤先配置环境,把相关文件放到相应的文件夹C:\Program Files\Microsoft Visual Studio\VC98\Include\GLC:\WINDOWS\system32C:\Program Files\Microsoft Visual Studio\VC98\Lib再通过VC++进行编译五、实验代码#include <stdlib.h>#include <GL/glut.h>float theta=0.0;void drawPyramid() //该金字塔在以原点为中心,边长为2的立方体范围内{glBegin(GL_TRIANGLES);glColor3f(1.0f,0.0f,0.0f); //前面为红色glVertex3f( 0.0f, 1.0f, 0.0f); //前面三角形上顶点glVertex3f(-1.0f,-1.0f, 1.0f); //前面三角形左顶点glVertex3f( 1.0f,-1.0f, 1.0f); //前面三角形右顶点glColor3f(0.0f,1.0f,0.0f); //右面为绿色glVertex3f( 0.0f, 1.0f, 0.0f); //右面三角形上顶点glVertex3f( 1.0f,-1.0f, 1.0f); //右面三角形左顶点glVertex3f( 1.0f,-1.0f, -1.0f); //右面三角形右顶点glColor3f(0.0f,0.0f,1.0f); //背面为蓝色glVertex3f( 0.0f, 1.0f, 0.0f); //背面三角形上顶点glVertex3f( 1.0f,-1.0f, -1.0f); //背面三角形左顶点glVertex3f(-1.0f,-1.0f, -1.0f); //背面三角形右顶点glColor3f(1.0f,1.0f,0.0f); //左面为黄色glVertex3f( 0.0f, 1.0f, 0.0f); //左面三角形上顶点glVertex3f(-1.0f,-1.0f,-1.0f); //左面三角形左顶点glVertex3f(-1.0f,-1.0f, 1.0f); //左面三角形右顶点glEnd();glBegin(GL_POLYGON); //金字塔底面正方形glColor3f(0.5f,0.5f,0.5f); //底面为灰色glVertex3f(-1.0f,-1.0f, 1.0f);glVertex3f(1.0f,-1.0f, 1.0f);glVertex3f(1.0f,-1.0f, -1.0f);glVertex3f(-1.0f,-1.0f, -1.0f);glEnd();}void display(){glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); //清空颜色和深度缓存glMatrixMode(GL_MODELVIEW);glLoadIdentity();glTranslatef(0.0f,0.0f,-5.0f);glRotatef(theta,0.0f,1.0f,0.0f);drawPyramid();glutSwapBuffers();}void reshape(int w, int h){glViewport(0, 0, w, h);glMatrixMode(GL_PROJECTION);glLoadIdentity();glOrtho(-2.0, 2.0, -2.0, 2.0, 2.0, 10.0);}void init(){glClearColor (1.0, 1.0, 1.0, 1.0);glEnable(GL_DEPTH_TEST); //启动深度测试模式}void myKeyboard(unsigned char key, int x, int y){if(key == 'a' || key == 'A')theta += 5.0;if(key == 's' || key == 'S')theta -= 5.0;if(key == 'c' || key == 'C')exit(0);if (theta>360) theta -=360;if (theta<0) theta +=360;glutPostRedisplay(); //重新调用绘制函数}int main(int argc, char** argv){glutInit(&argc,argv);glutInitDisplayMode (GLUT_DEPTH |GLUT_DOUBLE | GLUT_RGB);glutInitWindowSize(500,500);glutInitWindowPosition(0,0);glutCreateWindow("金字塔---A键:顺时针旋转,S键:逆时针旋转,C键:退出");glutReshapeFunc(reshape); //指定重绘回调函数glutDisplayFunc(display);glutKeyboardFunc( myKeyboard); //指定键盘回调函数init();glutMainLoop();}六、实验结果。

相关文档
最新文档