§1.4.3等比数列(第1课时)

合集下载

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

4.3.1等比数列的概念(第1课时等比数列的概念及通项公式)课件高二上学期数学人教A版选择性

4.3.1等比数列的概念(第1课时等比数列的概念及通项公式)课件高二上学期数学人教A版选择性
(3)若a2+a5=18,a3+a6=9,求a7.
1 = 3,
1 = 6,
解(1)设{an}的公比为 q,则
3 解得
1 所以{an}的通项公式为
4
1 = 8 ,
= 2,
an=6×
1 -1
.
2
(2)由a2=4,q=2,得a1=2,所以2×2n-1=128,解得n=7.
(3)设{an}的公比为 q.
的 公比
,公比通常用字母q表示(显然q≠0).
名师点睛
对等比数列定义的理解
(1)定义中强调“从第2项起”,因为第1项没有前一项.
(2)每一项与它的前一项的比必须是同一个常数(因为同一个常数体现了等
比数列的基本特征).
(3)公比q是每一项(从第2项起)与它的前一项的比,不要把分子与分母弄颠
倒.
(4)等比数列中的任何一项均不能为零.
a1qn-1
.
名师点睛
已知等比数列的首项和公比,可以求得任意一项.已知a1,n,q,an四个量中的
三个,可以求得第四个量.
思考辨析
已知等比数列{an}的通项公式an=2×3n,那么这个数列的首项和公比分别
为多少?
提示 首项a1=6,公比q=3.
自主诊断
[人教B版教材习题]已知{an}为等比数列,填写下表.
1 + 1 4 = 18,
(方法 1)由已知,得
1 2 + 1 5 = 9,
1 = 32,
1
6
解得
故 a7=a1q =32×
1
2
= ,
6
2
(方法 2)因为 a3+a6=q(a2+a5),所以

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。

等比数列的概念及通项公式第一课时

等比数列的概念及通项公式第一课时

A.± 4 1 C.± 4
解析: 项为± 4.
答案: A
第一章 数列
9 1 2 3.若等比数列的首项为 ,末项为 ,公比为 ,则这 8 3 3 个数列的项数为________.
解析: ∴n=4. 9 2n-1 1 an=8×3 =3
答案: 4
第一章 数列
4.下面各数列是等比数列的是________. ①0,0,0,0,②1,-1,1,-1,1,-1,③- 2 2,4, ④a 1,a 2,a 3,a 4.
2 2 n-1 当 q=3 时,a1=9,∴an=9· =2×3n-3 3
第一章 数列
方法二:设等比数列{an}的公比为 q,则 q≠0, a3 2 a2= q =q,a4=a3q=2q, 2 20 1 ∴q+2q= 3 .解得 q1=3,q2=3. 1 当 q= 时,a1=18. 3
1 - 18 n 1= n-1=2×33-n. ∴an=18× 3 3
第一章 数列
2.对等比数列通项公式的理解 若等比数列{an}的首项为a1,公比为q,则其通项公式 为an=a1qn-1.要注意: (1)公式成立的条件是n∈N+,q≠0; an+1 (2)此公式是按定义: =q(q是非零常数)推导出来 an 的,即an+1=anq,这是等比数列通项公式的一种递推关系 的表现形式;
第一章 数列
等比数列{an}的前三项的和为168,a2-a5=42,求a5,a7
的等比中项. [策略点睛]
第一章 数列
[规范作答]
设该等比数列的公比为 q,首项为 a1,因
a1+a1q+a1q2=168 q≠1, 由已知, 得 a1q-a1q4=42
为 a2-a5=42, 所以

等比数列的概念课件(第一课时)-高二下学期数学人教A版(2019)选择性必修第二册

等比数列的概念课件(第一课时)-高二下学期数学人教A版(2019)选择性必修第二册
4.3.1等比数列的概念
(第一课时)
教学目标
1.通过生活中的实例,理解等比数列的概念和通项公式的意义;2.能在具体问题的情境中,发现数列的等比关系,并解决相应问题;3.体会等比数列与指数函数的关系。
1.等差数列的定义是什么?
3.它的通项公式是什么?
2.递推公式是什么?
探究:将一张很大的薄纸对折,对折30次后有多厚?不妨假设这张纸的厚度为0.01毫米。
解:(1)由题意得,2与8的等比中项为 .(2) 和 的等比中项为 .
不存在
4
练习2:如果-1,a,b,c,-9成等比数列,那么 ( )A.b=3,ac=9 B.b=-3,ac=9C.b=3,ac=-9 D.b=-3,ac=-9
解:因为b2=(-1)×(-9)=9,且b与首项-1同号,所以b=-3,且a,c必同号.所以ac=b2=9.
题型三:等比数列的判定方法
课堂小结
等差数列
等比数列
通项公式推导方法
累加法
不完全归纳法
定义式
公差公比
公差d可正、可负、可为零
公比q可正、可负、不可为零
通项公式
等差/比中项
累乘法
新知探究
例1.若等比数列{an}的第4项和第6项分别为48和12,求{an}的第5项.


②的两边分别除以①的两边,得
两个,需对和第6项分别为48和12,求{an}的第5项.
解法2:
因为是和的等比中项,所以
因此,的第5项是24或-24
例3.数列{an}共有5项,前三项成等比数列,后三项成等差数列,第3项等于80, 第2项与第4项的和等于136,第1项与第5项的和等于132. 求这个数列.
定义
a,A,b成等差数列

4.3.1 第一课时 等比数列的概念及通项公式(课件(人教版))

4.3.1 第一课时 等比数列的概念及通项公式(课件(人教版))
不存在等比中项.
[做一做]
1.如果-1,a,b,c,-9 成等比数列,那么
()
A.b=3,ac=9
B.b=-3,ac=9
C.b=3,ac=-9
D.b=-3,ac=-9
解析:因为 b2=(-1)×(-9)=9,且 b 与首项-1 同号,
所以 b=-3,且 a,c 必同号.
所以 ac=b2=9. 答案:B
a2,a3,a4 成等比数列,a3,a4,a5 的倒数成等差数列, 证明:a1,a3,a5 成等比数列.
证明:由已知,有 2a2=a1+a3,

a23=a2·a4,

a24=a13+a15.

由③得a24=aa3+ 3·aa55,所以 a4=a23a+3·aa55.

a1+a3
由①得 a2= 2 .
4.3 等比数列
4.3.1 等比数列的概念
新课程标准解读
核心素养
1.通过生活中的实例,理解等比数列 的概念和通项公式的意义.
数学抽象
2.能在具体的问题情境中,发现数列 逻辑推理、数学运
的等比关系,并解决相应的问题.

3.体会等比数列与指数函数的关系.
数学抽象
第一课时 等比数列的概念及通项公式
[问题导入] 预习课本第 27~30 页,思考并完成以下问题 1.等比数列的定义是什么?如何判断一个数列是否为等比数列?
2.等比数列的通项公式是什么?
3.等比中项的定义是什么?
[新知初探]
知识点一 等比数列的定义 如果一个数列从第 2 项起,每一项与它的前一项的比都 等于同一个常数,那么这个数列叫做等比数列,这个常 数叫做等比数列的公比,通常用字母_q__表示(q≠0).

课时作业1:4.3.1 第1课时 等比数列的概念及通项公式

课时作业1:4.3.1 第1课时 等比数列的概念及通项公式

§4.3 等比数列4.3.1 等比数列的概念第1课时 等比数列的概念及通项公式1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( )A .108B .54C .36D .18答案 B解析 因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54.2.(多选)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .-4 B .4 C .-14 D.14答案 AB解析 由题意得a 26=a 4a 8,因为a 1=18,q =2, 所以a 4与a 8的等比中项为±a 6=±4.3.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.4.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2. 5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式a n 等于( )A .22n -1B .2nC .22n +1D .22n -3答案 A解析 由a 2n +1-3a n +1a n -4a 2n =0, 得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4. 由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.6.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q =________.答案 1或-2解析 根据题意,⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2, 解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧a 1=-1,q =-2. 7.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,且a 1=________,d =________.答案 23-1 解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.①又∵2a 1+a 2=1,∴3a 1+d =1.②由①②解得a 1=23,d =-1. 8.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4×⎝⎛⎭⎫32n -1解析 由已知可得(a +1)2=(a -1)(a +4),解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32, 所以a n =4×⎝⎛⎭⎫32n -1.9.在等比数列{a n }中,a 3=32,a 5=8.(1)求数列{a n }的通项公式a n ;(2)若a n =12,求n . 解 (1)因为a 5=a 3q 2,所以q 2=a 5a 3=14. 所以q =±12. 当q =12时,a n =a 3q n -3=32×⎝⎛⎭⎫12n -3=28-n ; 当q =-12时,a n =a 3q n -3=32×⎝⎛⎭⎫-12n -3. 所以a n =28-n 或a n =32×⎝⎛⎭⎫-12n -3. (2)当a n =12时, 即28-n =12或32×⎝⎛⎭⎫-12n -3=12, 解得n =9.10.在等比数列{a n }中:(1)已知a 3=2,a 5=8,求a 7;(2)已知a 3+a 1=5,a 5-a 1=15,求通项公式a n .解 (1)因为a 5a 3=q 2=82, 所以q 2=4,所以a 7=a 5q 2=8×4=32.(2)a 3+a 1=a 1(q 2+1)=5,a 5-a 1=a 1(q 4-1)=15,所以q 2-1=3,所以q 2=4,所以a 1=1,q =±2,所以a n =a 1q n -1=(±2)n -1.11.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2 C .1 D .-2答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 方法一 ∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12.方法二 ∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于() A .-2 B .2 C .-8 D. 8答案 BD解析 由已知得⎩⎪⎨⎪⎧ a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧ a =2,b =4,c =6或⎩⎪⎨⎪⎧ a =8,b =4,c =0.故a =2或a =8.14.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 答案 a n =3·(-1)n -1解析 由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2),∴a n =-a n -1(n ≥2),又a 1=3,故{a n }是首项为3,公比为-1的等比数列,∴a n =3·(-1)n -1.15.已知在等差数列{a n }中,a 2+a 4=16,a 1+1,a 2+1,a 4+1成等比数列,把各项按如图所示排列.则从上到下第10行,从左到右的第11个数值为________.答案 275或8解析 设公差为d ,由a 2+a 4=16,得a 1+2d =8,①由a 1+1,a 2+1,a 4+1成等比数列,得(a 2+1)2=(a 1+1)(a 4+1),化简得a 1-d =-1或d =0,②当d =3时,a n =3n -1.由题图可得第10行第11个数为数列{a n }中的第92项,a 92=3×92-1=275.当d =0时,a n =8,a 92=8.16.设数列{a n }是公比小于1的正项等比数列,已知a 1=8,且a 1+13,4a 2,a 3+9成等差数列.(1)求数列{a n }的通项公式;(2)若b n =a n (n +2-λ),且数列{b n }是单调递减数列,求实数λ的取值范围. 解 (1)设数列{a n }的公比为q .由题意,可得a n =8q n -1,且0<q <1.由a 1+13,4a 2,a 3+9成等差数列,知8a 2=30+a 3,所以64q =30+8q 2,解得q =12或152(舍去), 所以a n =8×⎝⎛⎭⎫12n -1=24-n ,n ∈N *.(2)b n=a n(n+2-λ)=(n+2-λ)·24-n,由b n>b n+1,得(n+2-λ)·24-n>(n+3-λ)·23-n,即λ<n+1,所以λ<(n+1)min=2,故实数λ的取值范围为(-∞,2).。

等比数列的概念(第一课时)课件-高二上学期数学人教A版(2019)选择性必修第二册

等比数列的概念(第一课时)课件-高二上学期数学人教A版(2019)选择性必修第二册
an 2
a2
a3
以上各式相乘得:
a 2 a 3 a4
a1 a2 a3
an 1 an
q q q
a n 2 a n 1
an
q n1,an a1q n1
a1
q q n 1
n-1个
又a1=a1q0=a1q1-1,即当n=1时上式也成立.
an=a1qn-1 (n∈ ∗ )
所以 5 =± 576=±24
因此, 的第5项是24或-24
典例分析
例2 已知等比数列{an}的公比为q,试用{an}的第m项am表示an.
n 1

a

a
q

n
1
解:由题意,得

m 1

am a1q ②
①的两边分别除以②的两边,得
an
q n m ,即an am q n m .
常数列一定是等差数列,公差为0;
非零常数列是等比数列,公比为1.
追问3:是否存在既是等差数列又是等比数列的数列?
非零常数列既是等差数列又是等比数列,公差为0,公比为1.
新知探究二:等比中项
问题3 类比等差中项的概念,你能抽象出等比中项的概念吗?
等比中项
等差中项




如果三个数a,A,b组成等
如果三个数a,G,b组成等
q 3
解 2 :由题意,得a22 a1a3 36,∴a2 6.
a4
2
当a2 6时,a4 54,∴q
第2项与第4项的和等于136,第1项与第5项的和等于132. 求这个数列.
解:设前三项的公比为q,后三项的公差为d ,则数列的各项的各项依次为

等比数列的概念(教案)

等比数列的概念(教案)

§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。

等比数列第一课时教学设计

等比数列第一课时教学设计

等比数列第一课时教学设计教学设计:等比数列第一课时一、教学目标1. 了解等比数列的概念和特点;2. 理解等比数列的通项公式和前n项和公式;3. 能够应用等比数列的知识解决实际问题;4. 培养学生的逻辑思维和数学推理能力。

二、教学重点与难点1. 等比数列的特点与通项公式;2. 运用等比数列解决实际问题的能力。

三、教学准备1. 教材:数学教材、教学课件;2. 教具:黑板、白板笔、多媒体设备、计算器;3. 学具:学生练习册、习题册。

四、教学过程导入引入(5分钟)1. 开场导入:通过展示一组数字,让学生观察并思考规律。

例:2,4,8,16,32,...2. 提问导入:引导学生回忆等差数列的概念和特点,并引出等比数列的概念。

提问:你们还记得等差数列吗?它有什么特点?那么,我们来思考一下等比数列有什么特点?新课讲解(20分钟)1. 定义等比数列:引导学生对等比数列进行定义。

等比数列是指一个数列,从第二项开始,每一项与前一项的比都相等。

2. 等比数列的特点:通过例题与学生进行互动,让学生观察等比数列的特点,并总结出规律。

例题:观察数列2,4,8,16,...,这个数列是等比数列吗?他的比是多少?学生回答:是等比数列,比为2。

教师引导:我们可以发现,在这个数列中,每一项与前一项的比都是2。

这就是等比数列的一个特点,比值相等。

3. 等比数列的通项公式:结合实例,讲解等比数列的通项公式的推导过程。

例:观察数列2,4,8,16,...,求第n项的值。

教师引导:我们可以发现,每一项与前一项的比都是2,那么我们可以通过一个公式来计算第n项的值。

a1 a2 a3 a4————————2 4 8 16可以观察到,第n项与第1项的比是a^(n-1)。

因此,第n项的值可以通过通项公式计算:an = a1 * r^(n-1),其中a1是首项,r是公比。

4. 等比数列的前n项和公式:引导学生思考等比数列的前n项和公式。

例:观察数列2,4,8,16,...,求这个数列的前n项和。

4-3-1-1等比数列的概念与通项公式课件(人教版)

4-3-1-1等比数列的概念与通项公式课件(人教版)

3.已知数列{an}的前 n 项和 Sn=2-an,求证:数列{an}是等比数列.
证明:∵Sn=2-an,∴Sn+1=2-an+1. ∴an+1=Sn+1-Sn=(2-an+1)-(2-an)=an-an+1. ∴an+1=12an.又∵S1=a1=2-a1,∴a1=1≠0. 又由 an+1=12an 知 an≠0,∴aan+n 1=12. ∴{an}是等比数列.
[解] (1)证明:因为 an+1=2an+1, 所以 an+1+1=2(an+1),即 bn+1=2bn,
因为 b1=a1+1=2≠0,所以 bn≠0,所以bbn+n1=2, 所以{bn}是等比数列. (2)由(1)知{bn}是首项 b1=2,公比为 2 的等比数列, 所以 bn=2×2n-1=2n,即 an+1=2n, 所以 an=2n-1.
第四章 数列
4.3 等比数列
4.3.1 等比数列的概念
第1课时 等比数列的概念与通项公式
[课标解读]1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.掌 握等比数列的通项公式,等比中项的概念.3.会证明一个数列是等比数列.
[素养目标] 水平一:1.会推导等比数列的通项公式,并能应用该公式解决简 单的等比数列问题(数学运算).2.掌握等比中项的定义,能够应用等比中项的定义解 决问题(数学运算).
列{an}的前 10 项之和是( B )
A.90
B.100
C.145
D.190
解析:设公差为 d,由题意得 a22=a1·a5,∵a1=1,∴(1+d)2=1+4d,∴d2-2d= 0,∵d≠0,解得 d=2.∴S10=10×1+10× 2 9×2=100,故选 B.
2.若 1,a,3 成等差数列,1,b,4 成等比数列,则ab的值为 ±1 . 解析:由题知 2a=1+3,∴a=2.由 b2=4 得 b=±2,∴ab=±1.

等比数列的概念(第一课时)课件高二上学期数学人教A版(2019)选择性必修第二册

等比数列的概念(第一课时)课件高二上学期数学人教A版(2019)选择性必修第二册
80
160
,80,136- ,132- 2 .
2,
q
q
q
q
80
160
由题意 :2(136- )=80+132- 2
q
q
化简得 3q2-8q+8=0
2
解得 q=2或q=
3
跟踪练习
已知四个数,前三个数成等差数列,后三个数成等比
数列,中间两个之积为16,前后两个数之积为-128.
求这四个数.
分析 设后三个数的公比为q,第二个数b,则这4个数

观察数列①~⑥:共同特点:
从第二项起,每一项与前一项的比都等于同一个
类比等差数列的概念,等比数列的定义:
如果一个数列从第二项起,每一项与它的前一项的
比都等于同一个常数,那么这个数列就叫做等比数列.
常数叫做等比数列的公比公比,通常用字母q表示
(q≠0)
跟踪练习 1.观察并判断下列数列是否是等比数列,
是:2b-bq,b,bq,bq2
由题意
b2q=16
bq2(2b-bq)=-128
化简得 q2-2q-8=0
q=4,或q=-2
当q=4,b=±2,
即四个数为:-4,2,8,32;或 4,-2,-8,-32
当q=-2时,与已知矛盾。
综上 所求数个数为-4,2,8,32;或 4,-2,-8,-32
四 课堂小结
求 的第5项
• 分析 由4 = 48,6 = 12,
3
• 1 = 48

• 1 5 = 12

• ②的两边分别除以①的两边,得
• 即 =
1

2
=
1

2

4.3.1 等比数列的概念(第一课时)(同步练习)(附答案)

4.3.1   等比数列的概念(第一课时)(同步练习)(附答案)

4.3.1 等比数列的概念(第一课时)(同步练习)一、选择题1.等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =( )A .12B .-12C .2D .-22.(2021年保定期末)设递增等比数列{a n }的公比为q ,且a 1=3,3a 1,2a 2,a 3成等差数列,则q =( )A .3B .1或3C .2D .2或33.已知数列a ,a(1-a),a(1-a)2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0或a ≠1C .a ≠0D .a ≠0且a ≠14.(2021年成都期末)已知等比数列{a n }的公比为正数,且a 2·a 6=9a 4,a 2=1,则a 1的值为( )A .3B .-3C .-13D .135.(2022年哈尔滨四模)在等比数列{a n }中,a 1=1,a 3-a 2=2,则a 5=( )A .16B .-1C .-16或-1D .16或16.(多选)设{a n }是等比数列,则下列结论中正确的是( )A.若a 1=1,a 5=4,则a 3=2B.若a 1+a 3>0,则a 2+a 4>0C.若a 2>a 1,则a 3>a 2D.若a 2>a 1>0,则a 1+a 3>2a 27.(2022年白山期末)等比数列{a n }的公比q 为整数,且a 1+a 4=9,a 2·a 3=8,则a 2+a 4+a 10a 1+a 3+a 9=( )A .2B .3C .-2D .-38.(多选)(2021年常州期末)已知等比数列{a n }的公比q =-12,等差数列{b n }的首项b 1=18,若a 8>b 8且a 9>b 9,则以下结论正确的有( )A .a 8>a 9B .a 8·a 9<0C .b 9>b 8D .b 10<09.各项都是正数的等比数列{a n }的公比q ≠1且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A .1-52B .5+12C .5-12D .5+12或5-12二、填空题10.等比数列{a n }为单调递增数列,设其前n 项和为S n ,若a 2=2,a 1+a 3=5,则a 5的值为________11.在等比数列{a n }中,a 2=2,a 3=33,则a 1a 7=________12.(2022年凉山模拟)已知公差大于零的等差数列{a n }中,a 2,a 8,a 12依次成等比数列,则a 12a 2的值是________13.若x 1,x 2是函数f(x)=x 3-mx 2+nx(m>0,n>0)的两个不同的零点,且x 1,x 2,-3这三个数适当排列后可以成等差数列,也可以适当排列后成等比数列,则m =________,n =________三、解答题14.已知等比数列{a n }中,a 3+a 6=36,a 4+a 7=18,a n =12,求n.15.(2021年上海期末)已知数列{a n }满足a 1=56,a n +1=13a n +13(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12是等比数列;(2)求数列{a n }的通项公式.参考答案及解析:一、选择题1.C 解析:∵等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40,解得q =2. 2.A 解析:由数列{a n }为等比数列,且a 1=3,3a 1,2a 2,a 3成等差数列,得4a 2=3a 1+a 3,即12q =9+3q 2,∴q 2-4q +3=0,解得q =1或q =3.又∵数列{a n }是递增等比数列,∴q =3. 3.D 解析:∵等比数列的每一项都不能为零,∴依题意得a ≠0且a ≠1.4.D 解析:因为等比数列{a n }中,a 2·a 6=9a 4,a 2=1,所以⎩⎪⎨⎪⎧a 1q 5=9a 1q 3,a 1q =1,由于q>0,所以解方程组得⎩⎪⎨⎪⎧q =3,a 1=13. 5.D 解析:根据题意,设等比数列{a n }的公比为q ,若a 1=1,a 3-a 2=2,则有q 2-q =2,解得q =2或-1.若q =2,则a 5=a 1q 4=16;若q =-1,则a 5=a 1q 4=1.故a 5=16或1.6.AD 解析:由等比数列的性质,可得a 23=a 1·a 5=4,由于奇数项的符号相同,可得a 3=2,因此A 正确;若a 1+a 3>0,则a 2+a 4=q(a 1+a 3),其正负由q 确定,因此B 不正确;若a 2>a 1,则a 1(q -1)>0,于是a 3-a 2=a 1q(q -1),其正负由q 确定,因此C 不正确;若a 2>a 1>0,则a 1q>a 1>0,可得a 1>0,q>1,所以1+q 2>2q ,则a 1(1+q 2)>2a 1q ,即a 1+a 3>2a 2,因此D 正确.故选AD .7.A 解析:因为等比数列{a n }的公比q 为整数,且a 1+a 4=9,a 2·a 3=a 1·a 4=8,所以a 1=1,a 4=8, 所以q =2,则a 2+a 4+a 10a 1+a 3+a 9=q(a 1+a 3+a 9)a 1+a 3+a 9=q =2.故选A .8.BD 解析:因为等比数列{a n }的公比q =-12,所以a 8·a 9<0,B 正确;设等差数列{b n }的公差为d ,所以a 1·⎝⎛⎭⎫-127>18+7d ,a 1·⎝⎛⎭⎫-128>18+8d ,显然a 1≠0,若a 1>0,则18+7d <0,即d <0,所以b 9-b 8=d <0,b 10=18+9d =18+7d +2d <0,a 8<a 9.若a 1<0,则18+8d <0,即d <0,所以b 9-b 8=d <0,b 10=18+9d =18+8d +d <0,a 8>a 9,所以A 无法确定,C 错误,D 正确.故选BD .9.C 解析:∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1.∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1,∴q 2-q -1=0.∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=a 1q 2+a 1q 3a 1q 3+a 1q 4=a 1q 2(1+q)a 1q 3(1+q)=1q =5-12.二、填空题10.答案:16 解析:设等比数列{}a n 的公比为q ,由题意可得a 1+a 3=2q +2q =5,整理得2q 2-5q +2=0,解得q =2或q =12.因为等比数列{a n }为单调递增数列,则q>1,∴q =2,因此a 5=a 2q 3=2×23=16.11.答案:89 解析:数列{a n }的公比为q =a 3a 2=332,故a 1a 7=a 1a 1q 6=1q 6=89.12.答案:49 解析:设数列{a n }的公差为d ,则有d>0.因为a 2,a 8,a 12依次成等比数列,所以a 28=a 2·a 12⇒(a 1+7d)2=(a 1+d)(a 1+11d)⇒19d 2=-a 1d.因为d>0,所以a 1=-19d ,因此a 12a 2=a 1+11d a 1+d =-8d -18d =49.13.答案:152,9 解析:由题意,x 1,x 2为方程x 2-mx +n =0的两根,x 1+x 2=m ,x 1x 2=n ,由m>0,n>0得x 1>0,x 2>0,不妨设x 1<x 2,x 1,x 2,-3这三个数适当排列后可以成等差数列,则x 1必是中间项,所以2x 1=x 2-3.又x 1,x 2,-3这三个数适当排列后成等比数列,则-3必是中间项,所以x 1·x 2=9,解得x 1=32,x 2=6,所以m =x 1+x 2=152,n =x 1x 2=9. 三、解答题14.解:设等比数列{a n }的公比为q ,因为a 3+a 6=36,a 4+a 7=18,所以a 4+a 7a 3+a 6=a 1q 3+a 1q 6a 1q 2+a 1q 5=a 1q 3(1+q 3)a 1q 2(1+q 3)=q =12,故a 3+a 6=a 1q 2+a 1q 5=14a 1+132a 1=36,解得a 1=27,故a n =27×⎝⎛⎭⎫12n -1=28-n .令28-n =12=2-1,解得n =9.15.(1)证明:∵a n +1=13a n +13(n ∈N *),∴a n +1-12a n -12=13a n +13-12a n -12=13a n -16a n -12=13⎝⎛⎭⎫a n -12a n -12=13,因此数列⎩⎨⎧⎭⎬⎫a n -12是等比数列.(2)解:由于a 1-12=56-12=13,∴数列⎩⎨⎧⎭⎬⎫a n -12是以13为首项、13为公比的等比数列,∴a n -12=13×⎝⎛⎭⎫13n -1=13n ,因此a n =12+13n .。

高中数学第四章数列4.3等比数列4.3.2等比数列的前N项和公式第一课时等比数列的前n项和课件新人教

高中数学第四章数列4.3等比数列4.3.2等比数列的前N项和公式第一课时等比数列的前n项和课件新人教

=299-1.
答案:C
知识点二 等比数列前 n 项和的性质 (一)教材梳理填空
(1)等比数列{an}中,若项数为 2n,则SS偶奇= q ;若项数为 2n+1,则S奇S-偶 a1= q . (2)若等比数列{an}的前 n 项和为 Sn,则 Sn,S2n-Sn,S3n-S2n,…成等比数 列(其中 Sn,S2n-Sn,S3n-S2n,…均不为 0). (3)若一个非常数列{an}的前n项和Sn=Aqn-A(A≠0,q≠0,n∈N*),则数列 {an}为等比数列,即Sn=Aqn-A(A≠0,q≠0,q≠1,n∈N*)⇔数列{an}为 _等__比__数__列___.
题型二 等比数列前n项和的性质 [学透用活]
[典例2] 已知在等比数列{an}中,S10=10,S20=30,则S30=________. [解析] 设等比数列{an}的公比为 q,由于 S20≠2S10,则 q≠1. 法一:由等比数列的前 n 项和公式,
a111--qq10=10,

得a111--qq20=30. ②
()
A.12
B.10
C.8
D.6
解析:设该数列为 a1,a2,…,a2n,公比为 q,由题意可知SS偶 奇=q=2,an+an +1=24.又 a1=1,∴qn-1+qn=24,即 2n-1+2n=24,解得 n=4,故项数为 8.
答案:C
题型一 等比数列的前n项和公式的基本运算 [学透用活]
(1)等比数列前n项和公式分q=1与q≠1两种情况,因此,当公比未知时, 要对公比进行分类讨论.
题型四 等差数列、等比数列的综合 [学透用活]
[典例 4] (1)设 Sn 为等比数列{an}的前 n 项和.若 a1=1,且 3S1,2S2,S3 成 等差数列,则 an=________.

等比数列第一零版

等比数列第一零版

§3 等比数列(4课时)§3.1 等比数列(第一课时)●教学目标1.知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;2.过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。

3.情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

●教学重点等比数列的定义及通项公式●教学难点灵活应用定义式及通项公式解决相关问题●教学过程Ⅰ.课题导入复习:等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。

课本P41页的4个例子:①1,2,4,8,16,…②1,12,14,18,116,… ③1,20,220,320,420,…④10000 1.0198⨯,210000 1.0198⨯,310000 1.0198⨯,410000 1.0198⨯,510000 1.0198⨯,……观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。

Ⅱ.讲授新课1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n n a a =q (q ≠0) 1︒“从第二项起”与“前一项”之比为常数(q) {n a }成等比数列⇔n n a a 1+=q (+∈N n ,q ≠0)2︒ 隐含:任一项00≠≠q a n 且 “n a ≠0”是数列{n a }成等比数列的必要非充分条件.3︒ q= 1时,{a n }为常数。

等比数列的概念及其通项公式

等比数列的概念及其通项公式
*
试一试 2:(1)若{an}为等比数列,且 3a4=a6-2a5, 则公比是( B ) (A)0 (B)-1 或 3 (C)1 或-3 (D)-1 或-3 (2)在等比数列{an}中,若公比 q=4,且前三项之 和等于 21,则该数列的通项公式是 .
解析:(1)设公比为 q,则 3a1q3=a1q5-2a1q4. 3 ∵a1q ≠0, ∴q2-2q-3=0, 解得 q=-1 或 q=3.故选 B. (2)依题意 a1+4a1+42a1=21, ∴a1=1, ∴an=a1q =4 . n-1 答案:(1)B (2)an=4
n
n-1
-1),
an 得 an 1 a2 又∵ a1
1 =2 1 =2
,
,
1 ∴{a }是以2
n
1 为首项,以2
n
为公比的等比
n
1 数列,其通项公式为 a = 2
.
点击进入课后作业
n-1 n-1
等比数列的判定与证明
【例 1】 观察下面几个数列,其中一定是等比数列 的有哪些?
1 (1)数列{a }的通项公式为 a = 2
n n
·3 ;
n
(2)数列 a,a,a,„,a; (3)数列 1,2,6,18,54,„;
(4)数列{an}中,
a2 a1
=2,
a3 a2
=2;
(5)数列{an}中,
.
9 (D) 5
2
(2)若数列 x,x(x-1),x(x-1) ,„是等比数列,则 x 的取值范围是
3 5 9 解析:(1)依定义,有 = ,∴a= .故选 D. a 3 5
(2)由于等比数列的任何一项都不为 0,因此 x≠0 且 x(x-1)≠0,所以 x≠0 且 x≠1. 答案:(1)D (2)(-∞,0)∪(0,1)∪(1,+∞)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

±4 2 -4,____,-8
± 3; 2.在等比数列 n}中,a13a19=3,则a16=___; 在等比数列{a 中 在等比数列 ,
3.在等比数列 n}中,a3a5=m,则 在等比数列{a 中 在等比数列 , 2 a1a2a6a7=____; m ; 4.在等比数列 n}中,a1=3,q=2,试问:第几 在等比数列{a 中 在等比数列 , ,试问: 项是48? 项是 ? 4 在等比数列{ 中 5: 在等比数列 an}中,a 6 = 6 , a 9 = 9 , 则 a 3 = 4
在等比数列{ 中 6: 在等比数列 an}中,q = 2, S 4 = 1, 则 S 8 = 17
7: 在等比数列 an}中, m = 16, S2m = 24, 则S3m = 28 在等比数列{ 中 S
例题讲解 例1 设{an}是由正数组成的等比数列,且 a5a6=81,求log 3 a1 + log 3 a2 + log 3 a3 + L + log 3 a10 的值。 20
G = ± a b G = a b
2
五、前n项和公式 项和公式
(1) q ≠ 1 ( 2) q = 1
a1 anq a1(1 q ) = Sn = 1 q 1 q
n
Sn = na1
小练习: 在空格处填入恰当的数 在空格处填入恰当的数, 小练习:1.在空格处填入恰当的数,使以下三个成 等比数列
±9 3,____,27
第一课时
知识要点
一、等比数列的定义
如果一个数列从第2项起, 如果一个数列从第 项起,每一项与它的前一 项起 项的比等于同一个常数,那么这个数列就叫做等 同一个常数 项的比等于同一个常数,那么这个数列就叫做等 比数列。 比数列。 公比 (公比通常用字 母
q
表示) 表示)
an = q (q ≠ 0的常数,n ≥ 2且n∈N+ ) an1
知识要点
二、等比数列的通项公式
a n = a1 q
n 1
(n ∈ N * )
三、等比数列的性质
am = q mn an
若m+n=p+q,则aman=apaq
S m , S 2 m S m , S3m S 2 m 也成等比数列
四、等比中项
知识要点
若a,G,b成等比数列,则G称a与b的等比 成等比数列, 成等比数列 称 与 的等比 中项。 中项。
练习 1;已知数列{an}的前n项和为Sn=3n-1,试判 断此数列是不是等比数列,如果是,说明原 因. 2:已知等比数列{an}中, a1+ a2+a3=7, , a1a2a3=8,求通项 n. 求通项a
等比数列的通项公式: 等比数列的通项公式:
a n = a1 q
n 1
(n ∈ N * )
等比数列的性质: 等比数列的性质:
am mn =q an
若m+n=p+q,则aman=apaq Sm,S2m-Sm,S3m –S2m ,…也成等比数列 也成等比数列
等比中项: 等比中项:
G = ± a b G2 = a b
项和公式: 前n项和公式: 项和公式
(1) q ≠ 1 ( 2) q = 1
a1 anq a1(1 q ) = Sn = 1 q 1 q
n
Sn = na1
选择题周三检查 1、等比数列{an}中,a1+ a2=30,a3+a4=90, 、等比数列 中 求 a5+ a6 3 243 2、已知 a, , b, , c 五个数成等比数列, 、 五个数成等比数列,
2 32
试求a,b,c,的值。 的值。 试求 的值 3、在等比数列{an}中,a1=3,an=96, Sn=189, 、在等比数列 中 求q,n. 4、已知等比数列的前10项和为 ,前20 、已知等比数列的前 项和为 项和为10, 项和为30,求前30项和 项和。 项和为 ,求前 项和。 P:87-89一:5, 9,11,18,二2, 8,11,13
例2 {an}是等比数列,且an>0, a2a4+2a3a5+a4a6=25,求a3 + a5的值。5
已知: 例3:(1)已知 已知
5 a1 + a3 = 10, a4 + a6 = .求an , 与S n . 4
(2)已知 已知: 已知
a1 a 9 = 64 , a 3 + a 7 = 20 , 求 a11 .
相关文档
最新文档