平行四边形的性质(1)教案

合集下载

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案一、教学目标1. 知识目标:了解平行四边形的定义、判定方法和性质。

2. 技能目标:能够熟练运用平行四边形的性质解决相关问题。

3. 情感目标:培养学生对数学知识的兴趣,提高其学习成绩。

二、教学内容平行四边形的性质三、教学重点和难点1. 教学重点:平行四边形的概念、判定方法和性质。

2. 教学难点:平行四边形的性质运用。

四、教学方法板书讲解法、演示法、讨论法、练习法等。

五、教学过程1. 掌握平行四边形的定义和判定方法向学生介绍平行四边形的图像,即四边形的对边是平行的,并要求学生观察和辨认课桌、书架、地板等日常生活中出现的平行四边形。

讲解平行四边形的判定方法:(1) 两对对边分别相等;(2) 一组对边既相等又平行;(3) 对角线互相平分。

2. 确定平行四边形的性质接着,将平行四边形的每个性质都列举出来,并逐一讲解、证明和举例,包括:(1) 对边相等;(2) 对角线相交于中点;(3) 相邻角互补,对角线上的角互补;(4) 同底角相等;(5) 高相等。

3. 如何运用平行四边形的性质解决问题让学生通过练习来掌握平行四边形的应用方法。

设计一些实际问题,如:(1) 已知平行四边形的底边长和高,求其面积;(2) 在平行四边形中连接一对对角线,若交点到底边的距离为3,求对角线的长度;(3) 在平行四边形中,两条对角线的长度分别为6和12,求平行四边形的周长。

六、教学总结通过本节课的学习,学生掌握了平行四边形的定义、判定方法和性质,并能够熟练运用其性质解决相关问题。

这不仅提高了学生的数学水平,而且激发了他们对数学知识的兴趣。

七、教学反思本节课采用了多种教学方法,如板书、演示、讨论和练习,充分调动了学生的积极性和主动性,使他们更好地理解和掌握了平行四边形的性质。

课堂互动也很活跃,体现了学生的主体性和学习能力。

但仍需注意语言表述、演示效果和练习难度的合理性,保证教学的具体效果。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。

教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。

教学重点掌握平行四边形和梯形的特征。

教学难点理解平行四边形、长方形、正方形的关系。

教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。

教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。

2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。

3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。

比赛开始!(学生活动:画四边形)4、学生展示画图的结果。

师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。

本节课我们一起来研究平行四边形和梯形。

【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。

二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。

[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。

学生操作学具探究,同时教师巡视指导。

【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

平行四边形的性质教案

平行四边形的性质教案

平行四边形性质(1)教学目标:1、理解平行四边形的定义及相关概念;2、能在方格纸上画出平行四边形;3、探究平行四边形的性质;4、运用平行四边形的性质进行简单的计算和证明,培养学生推理能力。

教学重点:平行四边形的性质的探究、平行四边形的性质的应用。

教学难点:平行四边形的性质的探究教学方法: 操作实验法、合作探究、启发式教具: 课件、全等三角形纸片、全等平行四边形纸片等 教学过程 活动一:1、展示生活中的图片,学生观察并找出熟悉的图形;2、教师介绍四边形与我们生活的密切联系,指出长方形、正方形、平行四边形、梯形都是特殊的四边形,明确本章的学习任务。

活动二:明确本节课的学习目标一.什么叫做平行四边形及相关概念? 二.怎样在方格纸上画出平行四边形?三.平行四边形有哪些主要性质?你是怎么探究的出来的?这些性质用符号语四、运用平行四边形的性质进行简单的计算和证明。

活动三:指出平行四边形定义及相关概念,指导学生在方格纸上画平行四边形;根据定义可知:平行四边形的对边平行,对角互补。

除此之外还有什么性质呢? 这就是本节课要探讨的课题…… 活动四:探究平行四边形的性质1、用量角器,刻度尺量出平行四边形对角度数,对边长度,线段AO,CO;BO,DO的长度。

对比这些数据你能猜想到平行四边形有哪些性质?平行四边形的对边相等.平行四边形的性质A BCD 平行四边形对角线互相平分o几何中要判断一个命题是真命题通常用什么方法?你能用逻辑推理的方法证明这些结论吗?试试看?2、将准备好的两个全等的平行四边形纸片,让它们互相重合,用笔尖固定对角线交点不动,将一个平行四边形绕对角线交点旋转,仔细观察然后同桌互相交流讨论,你能发现什么 ?3、由此你能得到平行四边形的对边之间,对角之间,对角线之间有哪些性质?平行四边形是中心对称图形,对称中心是对角线交点。

平行四边形的对边相等;平行四边形的对角相等;平行四边形对角线互相平分 4、数学中判断一个命题是真命题通常用什么方法?你能用逻辑推理的方法证明这些结论吗?试试看?学生分组探究,教师适时指导 汇报探究结果总结平行四边性质:平行四边形对边相等,对角相等,对角线互相平分 5、这些性质用符号语言怎么表示? 活动五: 随堂练习:1.在平行四边形ABCD 中,AD=40,CD=30,∠B=60°,则BC=____ ;AB=____ ; ∠A=_____ ,∠C=____, ∠D=____,2.在平行四边形ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= ∠CAB=3.平行四边形ABCD 中,已知∠A=32°,求其余三个角的度数。

平行四边形的性质(1)教案

平行四边形的性质(1)教案

平行四边形的性质教学目标:1.掌握平行四边形的定义、性质,能根据性质解决简单问题,培养合情推理能力;2.经历观察、猜想、实践、验证的数学活动,逐步建立类比、转化的数学思想,获得证明线段相等和角相等的新的数学方法;3.在探索平行四边形性质的过程中培养学生的合作探究意识和独立思考的习惯,使学生在数学学习活动中获得成功的体验,感受数学美. 教学重点:平行四边形性质的探究,平行四边形性质的应用.教学难点:平行四边形性质的探究教学过程:一、创设情境发现性质----做生活的有心人前面我们已经系统的探究和学习了三角形的知识,今天开始我们再对另一种几何图形进行探究和学习,请大家看看这几幅图片。

善于观察PPT中出示图片,提出问题:你能在这些图片中找出我们熟悉的几何图形吗?2. 大家观察图形看它的两组对边有什么样的位置关系?我们定义:有两组对边分别平行的四边形叫做平行四边形.我们把平行四边形ABCD 记作:ABCD注意:1、①两组对边分别平行②四边形 2、顶点字母要按照顺时针或逆时针的方向标注。

3、由定义得到的性质:AD//BCAB//CDABCD 是平行四边形四边形那么你还能说说平行四边形还有什么性质呢? 二、合作探究 证明性质----做思维严谨的人 猜想1 平行四边形的对角相等 猜想2 平行四边形的对边相等 1.写出已知、求证.2.先独立思考,然后在小组内交流你的方法。

值得一提的是,学生在证明时想到了多种证法: 用同旁内角来证。

利用同位角和内错角来证。

分割成两个平行四边形来证。

(4)分割成两个全等三角形来证。

练习:1. 若四边形ABCD 为平行四边形 (1)则∠A:∠B:∠C:∠D=2:1:__:___(2)∠B=600,则∠A=____ ,∠C=____,∠D=____ (3)∠B+∠D=1100,则∠A=____,∠C=____,∠D=___ (4)∠C-∠B=400,则∠A=___,C=____,∠D=___ 2.若四边形ABCD 为平行四边形,(1)若AB=10,BC=15,则AD= ,CD= ,周长为 . (2)若周长为40,AB=12,则BC= ,AD= ,CD= . (3)若周长为40,BC 比AB 长4,则AB= ,BC= . 三、典型例题 应用性质——做善于应用的人 例题:如图小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三边长分别为多少?例题:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形。

平行四边形的性质(1、2)教学案

平行四边形的性质(1、2)教学案
课后反思:
平行四边形的面积:等于它的和的积,即 =.(其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高)
2、例2(教材P44的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及 ABCD的面积.
四、畅谈收获!
五、拓展提高
已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.
(6)在平行四边形ABCD中,如果∠A=35°,那么∠C=145°.( )
五、作业(必做)课本49页第1题
(选做)课本49页第2题
课后反思:
18.1.1平行四边形的性质(二)教学案
主备人:张伟审核:八年级数学组年级签字使用人
学习目标:
1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
证明:
六、反馈检测
1.判断对错
(1)在 ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
2.在ABCD中,AC=6、BD=4,则AB的范围是________.
难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;
学习过程
课前预习:预习课本41-43页,完成问题:
1、叫平行四边形。
2、根据平行四边形的定义及相关知识探究平行四边形元素之间的关系,得平行四边形性质定理1、2:
性质1:平行四边形邻角,对角。
性质2:平行四边形两组对边分别且。

人教版平行四边形的性质教案

人教版平行四边形的性质教案

人教版平行四边形的性质教案《平行四边形的性质》选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十九章第一节.本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,下面是为大家整理的人教版平行四边形的性质教案5篇,希望大家能有所收获!人教版平行四边形的性质教案1教学内容:义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。

教学目标:1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。

2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。

3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

教学重、难点:让学生在观察、操作、交流等教学活动中认识平行四边形。

教具准备:一个长方形方框,多媒体课件。

学具准备:每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。

教学过程:一、谈话引入教师:同学们,在以前的学习中我们已经初步认识了平行四边形。

实际上,在我们生活中也经常见到平行四边形。

请看大屏幕。

(课件出示主题图)请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。

)教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢今天这节课老师就和同学们一起来进一步认识平行四边形。

板书课题:平行四边形二、探究新知1、认识平行四边形的特征(1)教师:同学们喜欢看魔术表演吗(喜欢)现在,老师就给同学们表演一个小魔术。

(教师出示一个长方形方框)这个图形大家认识吗(它是长方形)教师:对!这是一个长方形。

老师握着这个长方形方框的两个对角,轻轻地拉一拉。

平行四边形的性质教案

平行四边形的性质教案
平行四边形的性质教学设计
学科
数学
课时名称
5.1平行四边形的性质(第一课时)
学习目标
1.经历探索、猜想、证明平行四边形性质定理的过程,进一步发展推理论证能力
2.掌握平行四边形对边相等,对角相等、是中心对称图形
3.能利用平行四边形的性质定理进行简单的几何证明
重点难点
平行四边形的性质及其应用
学情分析
学生在小学阶段已经初步认识了平行四边形,在初中阶段已经学习了平行线、三角形的全等、命题的证明等相关知识。
记作:ABCD读作:平行四边形ABCD
线段AC、BD就是平行四边形ABCD的对角线
问题2:平行四边形还有哪性质?
1.平行四边形是中心对称图形吗?如果是你能找出它的对称中心吗?
2.你发现平行四边形还有其他性质吗?(线段、角之间存在什么关系)
PPT展示动画验证平行四边形是中心对称图形,对称中心是对角线的交点
五.课堂小结
平行四边形是中心对称图形,对称中心为对角线的交点
平行四边形的对边平行且相等,对角相等。
平行四边形的对角相等。转化思想。
六.巩固训练
教材随堂练习题
七.作业布置
必做:同步练习基础自测
选做:探索平行四边形是否还有其他性质并尝试证明。
八.板书设计
平行四边形的性质
中心对称命题证明例题
对边:相等、平行
对角相等
学生回答问题。
列举生活中常见的平行四边形的实物
回顾平行线的性质,三角形全等的知识为接下来的学习做准备。
学生制作平行四边形纸片,探索其相关性质。
命题的证明交给学生完成
转化的思想
学生剖析解题思路,个人独立完成。
同桌之间交流学习收获
巩固训练学生独立完成,教师做好批改

平行四边形性质(对边相等、对角相等)

平行四边形性质(对边相等、对角相等)
结合图形介绍平行四边形对边、对角、对角线等元素及平行四边形的记法、读法。
二:开放探究平行四边形的性质
1、教师提问观察这个四边形,除了“两组对边分别平行”外,它的边、角之间有什么关系。
2、学生利用准备好的两个全等的三角形拼成平行四边形,从而探究平行四边形对边、对角的关系。
教师深入到各小组中,了解学生的探究过程并适当予以指导。
3、汇报:学生相互补充探究出的结论。
教师引导学生分别得出平行四边形对边和对角的关系。
4、利用所学的知识,引导学生证明这两个结论。
5、总结:平行四边形的性质
平行四边形对边相等;
平行四边形对角相等。
学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化。
通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性。
通过分析学生习以为常的平行光线在室内的投影片,让学生感受到平行四边形与生活实际紧密联系;同时,把思维兴奋点集中到要研究的平行四边形上来,为下面学习新知识创造了良好开端。
活动二:
实践探究
交流新知
一:拼图游戏.
问题1:提出要求,拿出一张纸,把它对折,你能剪下两个重合的三角形吗?并把它们相等的一组边重合,拼一拼,你能得到什么图形?
渗透类比思想。在比较中学习,能够加深学生对平行四边形概念本质的理解。
通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为下面介绍平行四边形的对边、对角以及从这些基本元素入手探究图形性质打下坚实基础。
小组合作探究结果的展示,从多个方面完善了学生对平行四边形性质的认识,大大提高了学习效率;更为重要的是在这一过程中,让学生体悟到学习方式的转变。不但完成了学习任务,而且还学会了与人交流沟通的本领。真正体现了新课程理念中“以人为本,促进学生终身发展”的教学理念。

北师大版数学八年级下册6.1《平行四边形的性质》教案1

北师大版数学八年级下册6.1《平行四边形的性质》教案1

北师大版数学八年级下册6.1《平行四边形的性质》教案1一. 教材分析《平行四边形的性质》是北师大版数学八年级下册第6章第1节的内容。

本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,以及对边和对角线的关系。

这些性质是后续学习矩形、菱形、梯形等特殊平行四边形的基础,对于学生理解和掌握初中数学知识体系具有重要意义。

二. 学情分析学生在八年级上册已经学习了平行四边形的定义和一些基本性质,对于本节课的内容有一定的认知基础。

但学生对于证明平行四边形性质的过程和证明方法的运用还需加强。

此外,学生对于实际问题中平行四边形的性质应用也需进一步提高。

三. 教学目标1.知识与技能:掌握平行四边形的性质,并能运用性质解决简单问题。

2.过程与方法:通过小组合作、探究活动,培养学生的动手操作能力和团队协作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的观察能力、思考能力和创新精神。

四. 教学重难点1.重点:平行四边形的性质及证明。

2.难点:平行四边形性质在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究平行四边形的性质。

2.运用小组合作学习,培养学生的团队协作能力和沟通能力。

3.利用多媒体辅助教学,直观展示平行四边形的性质及其应用。

4.采用归纳总结法,引导学生概括平行四边形的性质。

六. 教学准备1.多媒体课件:制作平行四边形性质的课件,包括图片、动画、例题等。

2.学习材料:准备相关的学习资料,如教材、练习题等。

3.教学工具:准备黑板、粉笔、直尺、剪刀、彩笔等。

七. 教学过程1.导入(5分钟)利用多媒体展示平行四边形的图片,引导学生回顾平行四边形的定义及基本性质。

提问:你们已经掌握了平行四边形的哪些性质?今天我们将进一步学习平行四边形的性质。

2.呈现(10分钟)呈现平行四边形的性质,引导学生观察、思考并证明。

性质1:平行四边形的对边平行且相等。

性质2:平行四边形的对角相等。

平行四边形的性质教案

平行四边形的性质教案

1、平行四边形的性质(1)教学目标1.理解平行四边形是中心对称图形。

2.理解平行四边形其边、角之间的位置关系和数量关系。

3.理解并掌握平行四边形的特征。

4.能灵活使用平行四边形的特征并实行简单的推理证明。

教学重点与难点重点:平行四边形的特征与性质的探索过程。

难点:发展学生的合情推理水平。

教学准备图钉、方格纸、剪刀、直尺、三角板等。

教学过程一、提问。

1.平行四边形是同学们常见的平面图形,你见过那些物体具有平行四边形的形状?2.你能从如图所示的图形中找出平行四边形吗?二、新授。

1.按课本第86页的“探索”画图。

2.剪下平行四边形,沿平行四边形的各边再在一张纸上画一个平行四边形,各顶点记为A、B、C、D。

通过连结对角线得交点O,用一枚图钉穿过点O,把其中一个平行四边形绕点。

旋转,观察旋转180°后的图形与原来的图形是否重合。

重复旋转几次,看看是否得到同样的结果。

问题1:平行四边形是否是中心对称图形?问题2:请说出平行四边形边、角之间的位置关系和数量关系。

(出题的目的在于激发学生的积极性,培养学生的数学思维水平。

)3.小组讨论,探索结果。

平行四边形的对边相等,对角相等。

(整个过程注意引导学生观察、思考、发现问题。

有的学生可能发现对角线互相平分,要即时鼓励和肯定,表扬学习积极性较强的学生。

)三、应用举例。

1.例1 如图,在平行四边形ABCD中,已知∠A=40°,求其他各个内角的度数。

(该题能够将∠A=40°改为∠B=140°,培养学生的发散思维水平。

)2.拓展延伸。

如图,在平行四边形ABCD中,已知∠BAC=20°,求各内角的度数。

3.例2 如图,在平行四边形ABCD中,已知AB=8,周长等于24,求其余三条边的长。

四、巩固练习。

课本第89页习题16.1的第1、2题。

五、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?六、布置作业。

课本习题16.1的第1、2题。

[初中数学]平行四边形的性质教案7(第1课时) 人教版

[初中数学]平行四边形的性质教案7(第1课时) 人教版

《平行四边形的性质》教案(第1课时)长春外国语学校王方方平行四边形的性质第一课时教案讲授课题:人教版八年级数学下册19.1.1平行四边形的性质(一)教学目标:1、知识目标:理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题.2、能力目标:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.3、情感目标:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.教学重点:平行四边形的性质教学难点:理解并应用平行四边形的性质教学方法:探究、启发式教学过程:一、创设情境,引入新课引入:在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?做一做将两张全等的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,此时:(1)两张纸片拼成了怎样的图形?(2)这个图形中有哪些相等的角?有没有互相平行的线段?(3)用简洁的语言刻画这个图形的特征,并与同伴交流.通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。

从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习平行四边形.二、感悟图形,明确概念1、观察质疑:平行四边形如何区别于一般的四边形.让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:2、引入平行四边形对边、邻边、对角、邻角、对角线等概念.3、平行四边形的表示:通过演示使学生学会用文字语言、图形语言、符号语言来描述. 如图,平行四边形ABCD根据定义画出平行四边形,得到图形语言 还可以用符号语言来描述平行四边形的定义AB//CD AD//BC 三、引导实验,探索新知1、探索平行四边形的性质由定义可知平行四边形的对边平行2、质疑:平行四边形除以上性质外还有其他性质吗?鼓励学生大胆猜想(提示:请学生仿照三角形的学习方法从边和角去探索)第一步:猜想边和角之间的数量关系(对边相等,对角相等) 第二步:小组合作学习探索:让各组学生画平行四边形,用测量、旋转、平移、推理等方法验证上面的猜想.3、 小组汇报发现:平行四边形的对边相等平行四边形的对角相等4、推理:(如何证明上述结论?)已知:如图ABCD , AB CD A 1234求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD分析:解决四边形问题的常用方法:转化为三角形的问题。

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案1一. 教材分析《平行四边形》是浙教版数学八年级下册第4章的内容,本节课主要介绍了平行四边形的定义、性质及其判定。

教材通过生活中的实例引入平行四边形的概念,接着引导学生探究平行四边形的性质,最后通过练习巩固所学知识。

本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质,具备了一定的观察、操作和推理能力。

但部分学生对平行四边形的概念和性质理解不深,容易与其它四边形混淆。

因此,在教学过程中,教师需要关注学生的认知基础,通过实例和操作活动,帮助学生建立清晰的概念,加深对平行四边形性质的理解。

三. 教学目标1.知识与技能:让学生掌握平行四边形的定义、性质及其判定方法。

2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:平行四边形的定义、性质及其判定。

2.难点:平行四边形性质的推理和应用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识平行四边形,激发学生的学习兴趣。

2.动手操作法:让学生通过实际操作,观察和总结平行四边形的性质。

3.小组讨论法:引导学生分组讨论,培养学生的团队合作意识和沟通能力。

4.启发式教学法:教师提问,学生思考,引导学生主动探究平行四边形的性质。

六. 教学准备1.教学课件:制作课件,展示平行四边形的图片和实例。

2.学生活动材料:准备一些平行四边形的图形,供学生观察和操作。

3.教学视频:准备一些关于平行四边形的视频资料,帮助学生更好地理解平行四边形的概念和性质。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图片,如电梯、窗户等,引导学生关注平行四边形。

提问:你们知道这些图形是什么吗?它们有什么特点?从而引出平行四边形的概念。

《平行四边形的性质》教案

《平行四边形的性质》教案

§4.1平行四边形的性质(1)教案教学目标:知识与技能目标:1、掌握平行四边形有关概念和性质。

2、探索并掌握平行四边形的对边相等,对角相等的性质。

过程与方法目标:1、动手操作实践的过程中,探索发现平行四边形的性质。

2、知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想。

3、通过探索平行四边形的性质,培养学生简单的推理谁能力和逻辑思维能力。

情感与态度目标:1、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。

2、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。

教学重点:探索平行四边形的性质。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法教材分析:本节内容是在图形的的旋转,把一个图形绕一个定点旋转一定度数后得到的图形与原图形例行;以及全等三角形对应边相等,对应角相等的知识基础上引入平行四边形及平行四边形的性质,教材加强了学生在教学过程中的实践活动,通过学生用纸片拼剪、测量、旋转等方法来探索平行四边形的定义及平行四边形的性质。

教材给学生自主探索留有很大空间,学生可以充分发挥想像,进一步加深对平行四边形的理解。

学情分析:学生在学习本节内容前具备三角形全等以及图形旋转的知识。

所以在本节知识的教学中要利用学生已的知识,将所学知识转化为三角形知识来解决,这样易于学生对新知识的接受。

教具准备:三角形纸片两张,多媒体课件、实物投影。

教学过程设计:一、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?(设计这个活动,一方面可让学生认识到平行四边形在生活、生产中的应用,另一方面让学生在复杂的图形中认识平行四边形。

)二、开启智慧(“行家”看门道)1、操作活动:让学生进行如下操作后,思考以下问题:(幻灯片展示)将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,得到一个图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§19.1平行四边形的性质(1)
一、教学目标:
1.理解平行四边形的定义及有关概念。

2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。

在探索过程中提高自己与他人合作的意识。

3.能应用性质进行简单的计算和证明。

二、教学重、难点:
重点:平行四边形的性质的探究、平行四边形的性质的应用。

难点:平行四边形的性质的探究。

三、教学过程:
1.情景引入:
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链、无轨电车的击电杆、小区的伸缩门、活动衣架……都是平行四边形的形象,(屏幕展现优美图片)你能再举出一些生活中平行四边形的例子吗?
利用你对平行四边形已有的认识,说说什么是平行四边形?
活动一:
1.认真自习课本83页1-5行,完成下列各题
(1)什么是平行四边形?平行四边形与四边形有怎样的从属关系。

(2)任意画一个平行四边形,写出它的对边、对角、对角线。

注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“”表示,如图1就是平行四边形,记作“

如图1
活动二:探索交流
平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),猜想平行四边形除了“两组对边分别平行”以外,它的边、角之间还有什么关系?(学生通过观察、度量、小组交流、归纳猜想关系)
如图
猜想:1.平行四边形的对边相等.
2.平行四边形的对角相等. 活动三:(1)你能证明发现的结论吗? 已知: 求证: 证明:
(2)说说你是怎样想到用这种方法的?本题用到什么数学思想方法? (3)证明对角相等,你有没有其它方法?邻角有什么关系? (4)平行四边形性质的符号语言:
∵四边形是平行四边形
∴ 试一试:1.在
中(1)若
,则


;(先由组长分工,然后交流方法)(2)若
,则,

(3)若
,则


2.在
中AB=5cm ,BC= 4cm 则
的周长为 .
活动四:认真自习课本84页例1(注意推理过程和书写格式)
变式训练:(1)若将题目中“AB 边长为8cm ”改为两邻边的比为4:5,则四条边长分别是多少?
(2)若将题目中“AB 边长为8cm ”改为AB 比AC 长4cm ,那么这个四边形的各边长
为多少?
(你能编出其它题目来吗?小组内互相交流、展示)
例2:已知
中 AE ⊥B D,CF ⊥BD ,垂足E 、F ,求证:EB =D F (补充)
1. 说说你的思路。

2. 本题用到了哪些知识?
3. 你有其它方法吗?今后遇到此类问题应该如何思考? 例3.如图,DE ∥AC ,EF ∥AB ,DF ∥BC , (1)请指出图中共有几个平行四边形? (2
)求证:∠C = ∠EDF ;
(3)求证:△DEF 的顶点分别是△ABC 各边的中点.
A
E
F
D
C
B
1.说说你的思路。

2.本题用到了哪些知识?找出图中的相等线段?你能发现△DEF 的周长与△ABC 的周长有什么关系? 练一练:课本84页练习。

活动五:小结巩固
谈一谈:1.你这一节课学到了哪些知识?
2.在对平行四边形性质的探究过程中,你有哪些认识?
3.在应用平行四边形性质解题时,应注意哪些问题?
课后作业:习题19.1第1,2,6
拓展:快到植树节了,学校买了四棵树,准备全栽在花园里,已经栽了三棵,现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?(学有余力的同学做)
目标检测(每空5分,第6题10分,满分45分)(准备在课件上)
1.在中,若,则,.
2.平行四边形的周长等于56cm,两邻边的长的比为3:1那么这个平行四边形较长的边长为_________.
3.在中,∠A的余角与∠B的和是120°,则∠A=_____,∠B=______.
4.在中,已知∠B+∠D=140°,则∠C= 。

5. 中,的平分线分为长是和的两线段,则的周长是___________cm.
6.已知如图:平分,,求证:.
(以老师评价和组内成员互评两种形式)
四、板书设计:
一、创设情境,导入新课
二、实践探究,交流新知
1.平行四边形的定义
2.平行四边形的性质
1.平行四边形的对边平行。

2.平行四边形的对边相等。

3.平行四边形的对角相等。

4.平行四边形的邻角互补。

三、开放训练,思维拓展
四、反思小结,提炼方法和技巧
五、作业布置
五、教学反思:。

相关文档
最新文档