浙江省嘉兴市2019届高三数学普通高校招生选考科目试题(扫描版)

合集下载

2019年浙江高考数学真题及答案(Word版,精校版)

2019年浙江高考数学真题及答案(Word版,精校版)

2019年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是 A .158B .162C .182D .325.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y =log a (x +),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =,a 10>10B .当b =,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年浙江省高考数学试卷(原卷答案解析版)

2019年浙江省高考数学试卷(原卷答案解析版)
A.当 B.当
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )

【数学】2019年高考真题——浙江卷(精校版)

【数学】2019年高考真题——浙江卷(精校版)

2019年普通高等学校招生全国统一考试(浙江卷)一、选择题1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B等于() A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}答案 A解析由题意可得∁U A={-1,3},则(∁U A)∩B={-1}.2.渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.3.若实数x,y满足约束条件则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158 B.162 C.182 D.324答案 B解析由三视图可知,该几何体是一个直五棱柱,所以其体积V=×(4×3+2×3+6×6)×6=162.5.设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab≤4时,取a=8,b=,满足ab≤4,但a+b≥4,所以必要性不成立,所以“a+b≤4”是“ab≤4”的充分不必要条件.6.在同一直角坐标系中,函数y=,y=log a(a>0,且a≠1)的图象可能是() A. B.C. D.答案 D解析若0<a<1,则函数y=是增函数,y=log a是减函数且其图象过点,结合选项可知,选项D可能成立;若a>1,则y=是减函数,而y=log a是增函数且其图象过点,结合选项可知,没有符合的图象.7.设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B 的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β答案 B解析由题意,不妨设该三棱锥的侧棱长与底面边长相等,因为点P是棱VA上的点(不含端点),所以直线PB与平面ABC所成的角β小于直线VB与平面ABC所成的角,而直线VB 与平面ABC所成的角小于二面角P-AC-B的平面角γ,所以β<γ;因为AC⊂平面ABC,所以直线PB与直线AC所成的角α大于直线PB与平面ABC所成的角β,即α>β.9.设a,b∈R,函数f(x)=若函数y=f(x)-ax-b恰有3个零点,则()A.a<-1,b<0 B.a<-1,b>0C.a>-1,b<0 D.a>-1,b>0答案 C解析由题意可得,当x≥0时,f(x)-ax-b=x3-(a+1)x2-b,令f(x)-ax-b=0,则b =x3-(a+1)x2=x2[2x-3(a+1)].因为对任意的x∈R,f(x)-ax-b=0有3个不同的实数根,所以要使满足条件,则当x≥0时,b=x2[2x-3(a+1)]必须有2个零点,所以>0,解得a>-1.所以b<0.10.设a,b∈R,数列{a n}满足a1=a,a n+1=+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>10答案 A解析当b=时,因为a n+1=+,所以a2≥,又a n+1=+≥a n,故a9≥a2×()7≥×()7=4,a10>≥32>10.当b=时,a n+1-a n=2,故当a1=a=时,a10=,所以a10>10不成立.同理b=-2和b=-4时,均存在小于10的数x0,只需a1=a=x0,则a10=x0<10,故a10>10不成立.二、填空题11.复数z=(i为虚数单位),则|z|=________.答案解析z===-,所以|z|==.12.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2解析方法一设过点A(-2,-1)且与直线2x-y+3=0垂直的直线方程为l:x+2y+t=0,所以-2-2+t=0,所以t=4,所以l:x+2y+4=0,令x=0,得m=-2,则r==.方法二因为直线2x-y+3=0与以点(0,m)为圆心的圆相切,且切点为A(-2,-1),所以×2=-1,所以m=-2,r==.13.在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.14.在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD=________,cos∠ABD=________.答案解析在Rt△ABC中,易得AC=5,sin C==.在△BCD中,由正弦定理得BD=×sin∠BCD=×=,sin∠DBC=sin [π-(∠BCD+∠BDC)]=sin(∠BCD+∠BDC)=sin∠BCD·cos∠BDC+cos∠BCD·sin∠BDC=×+×=.又∠ABD+∠DBC=,所以cos∠ABD=sin∠DBC=.15.已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.答案解析依题意,设点P(m,n)(n>0),由题意知F(-2,0),|OF|=2,所以线段FP的中点M在圆x2+y2=4上,所以2+2=4,又点P(m,n)在椭圆+=1上,所以+=1,所以4m2-36m-63=0,所以m=-或m=(舍去),当m=-时,n=,所以k PF==.16.已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤,则实数a的最大值是________.答案解析f(t+2)-f(t)=[a(t+2)3-(t+2)]-(at3-t)=2a(3t2+6t+4)-2,因为存在t∈R,使得|f(t+2)-f(t)|≤,所以-≤2a(3t2+6t+4)-2≤有解.因为3t2+6t+4≥1,所以≤a≤有解,所以a≤max=,所以a的最大值为.17.已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是________,最大值是________.答案02解析以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,如图,则A(0,0),B(1,0),C(1,1),D(0,1),所以λ1+λ2+λ3+λ4+λ5+λ6=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1+λ2+λ3+λ4+λ5+λ6|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1+λ2+λ3+λ4+λ5+λ6|取得最大值=2.三、解答题18.设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=2+2的值域.解(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或.(2)y=2+2=sin2+sin2=+=1-=1-cos.因此,函数的值域是.19.如图,已知三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.方法一(1)证明如图,连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F,又A1E,A1F⊂平面A1EF,A1E∩A1F=A1,所以BC⊥平面A1EF.因此EF⊥BC.(2)解取BC的中点G,连接EG,GF,则EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.连接A1G交EF于O,由(1)得BC⊥平面EGF A1,则平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.由于O为A1G的中点,故EO=OG==,所以cos∠EOG==.因此,直线EF与平面A1BC所成角的余弦值是.方法二(1)证明连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC.如图,以E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E-xyz. 不妨设AC=4,则A1(0,0,2),B(,1,0),B1(,3,2),F,C(0,2,0).因此,=,=(-,1,0).由·=0得EF⊥BC.(2)解设直线EF与平面A1BC所成角为θ.由(1)可得=(-,1,0),=(0,2,-2).设平面A1BC的法向量为n=(x,y,z).由得取n=(1,,1),故sin θ=|cos〈,n〉|==.因此,直线EF与平面A1BC所成角的余弦值为.20.设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.(1)求数列{a n},{b n}的通项公式;(2)记c n=,n∈N*,证明:c1+c2+…+c n<2,n∈N*.(1)解设数列{a n}的公差为d,由题意得a1+2d=4,a1+3d=3a1+3d,解得a1=0,d=2.从而a n=2n-2,n∈N*.所以S n=n2-n,n∈N*.由S n+b n,S n+1+b n,S n+2+b n成等比数列得(S n+1+b n)2=(S n+b n)(S n+2+b n).解得b n=(-S n S n+2).所以b n=n2+n,n∈N*.(2)证明c n===,n∈N*.我们用数学归纳法证明.①当n=1时,c1=0<2,不等式成立;②假设n=k(k∈N*,k≥1)时不等式成立,即c1+c2+…+c k<2.那么,当n=k+1时,c1+c2+…+c k+c k+1<2+<2+<2+=2+2(-)=2.即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2对任意n∈N*成立.21.如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=y+1,代入y2=4x,得y2-y-4=0,故2ty B=-4,即y B=-,所以B.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0.即C,G.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).22.已知实数a≠0,设函数f(x)=a ln x+,x>0.(1)当a=-时,求函数f(x)的单调区间;(2)对任意x∈均有f(x)≤,求a的取值范围.注e=2.718 28…为自然对数的底数.解(1)当a=-时,f(x)=-ln x+,x>0.f′(x)=-+=,令f′(x)>0,得x>3,令f′(x)<0,得0<x<3,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤,得0<a≤.当0<a≤时,f(x)≤等价于--2ln x≥0.令t=,则t≥2.设g(t)=t2-2t-2ln x,t≥2,则g(t)=2--2ln x.(i)当x∈时,≤2,则g(t)≥g(2)=8-4-2ln x.记p(x)=4-2-ln x,x≥,则p′(x)=--==.故当x变化时,p′(x),p(x)的变化情况如下表:所以,p(x)≥p(1)=0.因此,g(t)≥g(2)=2p(x)≥0.(ii)当x∈时,g(t)≥g=.令q(x)=2ln x+(x+1),x∈,则q′(x)=+1>0,故q(x)在上单调递增,所以q(x)≤q.由(i)得,q=-p<-p(1)=0.所以,q(x)<0.因此,g(t)≥g=->0. 由(i)(ii)知对任意x∈,t∈[2,+∞)时,g(t)≥0,即对任意x∈,均有f(x)≤.综上所述,a的取值范围是.。

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(浙江卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4.复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5.函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6.已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8.已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如二、填空题11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2019高考浙江卷数学试卷及答案(word版)

2019高考浙江卷数学试卷及答案(word版)

2019年普通高等学校招生全国统一考试(浙江卷)参考公式:若事件A ,B 互斥,则()()()P AB P A P B 若事件A ,B 相互独立,则()()()P AB P A P B 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)kkn kn nP k p p k n 台体的体积公式11221()3VS S S S h其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13VSh其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R球的体积公式343VR其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集1,0,1,2,3U ,集合0,1,2A,1,0,1B,则U A B e =()A .1B .C .1,2,3D .1,0,1,32.渐近线方程为x ±y=0的双曲线的离心率是()A .22B .1C .2D .23.若实数x ,y 满足约束条件3403400x yx yxy,则z=3x+2y 的最大值是()A .1B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是()A.158 B.162C.182 D.325.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa,y=log a(x+12),(a>0且a≠0)的图像可能是()7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P-AC-B 的平面角为γ,则()A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a bR ,函数32,0()11(1),032x xf x x a x ax x,若函数()yf x axb 恰有三个零点,则()A .a<-1,b<0B .a<-1,b>0C .a >-1,b >0D .a >-1,b<010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b N,则()A .当b=12,a 10>10 B .当b=14,a 10>10C .当b=-2,a 10>10D .当b=-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

浙江省嘉兴市2019届高三教学测试(一)数学理试题

浙江省嘉兴市2019届高三教学测试(一)数学理试题

2019年高三教学测试(一)理科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么 )()()(B P A P B A P +=+.如果事件A ,B 相互独立,那么 )()()(B P A P B A P ⋅=⋅.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好 发生k 次的概率),,2,1,0()1()(n k p p C k P k n kk n n =-=- .球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径.棱柱的体积公式 Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高.第Ⅰ卷(共50分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}02|{2<-=x x x A ,1{-≤=x x B 或}1>x ,则( A ∨=)R BA .}10|{<<x xB .}21|{<≤x xC .}10|{≤<x xD .}21|{<<x x2.若复数z 满足i 2)i 1(-=+z ,则=+i zA .21B .22C .2D .23.为了得到函数x x x y 2cos 3cos sin 2-=的图象,可以将函数x y 2sin 2=的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度4.已知等比数列}{n a 的前n 项和为n S ,则下列一定成立的是A .若03>a ,则02013<aB .若04>a ,则02014<aC .若03>a ,则02013>SD .若04>a ,则02014>S5.某程序框图如图,则该程序运行后输出的值为A .6B .7C .8D .96.对任意实数x ,若][x 表示不超过x 的最大整数,则“1<-y x ”是“][][y x =”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是A .]1,21[B .]1,222[- C .]221,21[+D .]221,221[+- 8.如图1,在等腰△ABC 中, 90=∠A ,6=BC ,E D ,分别是AB AC ,上的点,2==BE CD ,O 为BC 的中点.将△ADE 沿DE 折起,得到如图2所示的四棱锥BCDE A -'.若⊥'O A 平面BCDE ,则D A '与平面BC A '所成角的正弦值等于A .32错误!未找到引用源。

2019年高考浙江卷数学(附参考答案和详解)

2019年高考浙江卷数学(附参考答案和详解)

绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð( ) A.{}1-B.{}0,1C.{}1,2,3-D.{}1,0,1,3-2.渐近线方程为0x y ±=的双曲线的离心率是( )B.1D.23.若实数x ,y 满足约束条件340,340,0,x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩则32z x y =+的最大值是( )A.1-B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( )A.158B.162C.182D.3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1log 2a y x ⎛⎫=+⎪⎝⎭(0a >,且1a ≠)的图象可能是( ) A. B.C. D.7.设01a <<,则随机变量X 的分布列是01111333X a P则当a 在()0,1内增大时( ) A.()D X 增大 B.()D X 减小C.()D X 先增大后减小D.()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A.βγ<,αγ<B.βα<,βγ<C.βα<,γα<D.αβ<,γβ<9.已知,a b ∈R ,函数()()32,0111,032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则( ) A.1a <-,0b < B.1a <-,0b >C.1a >-,0b <D.1a >-,0b >10.设,a b ∈R ,数列{}n a 满足1a a =,21n na ab +=+,*n ∈N ,则( ) A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当4b =-时,1010a >第Ⅱ卷(共110分)二、填空题:本题共7小题,多空题每题6分,单空题每题4分。

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,若,则()A.3______________B.4___________C.5______________D.62. 直线的倾斜角是()A. ______________B. _________C.D.3. 函数的定义域为()A. ______________B. ____________________C.______________ D.4. 若点在角的终边上,则()A. B. ________ C. D.5. 在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限6. 不等式组表示的平面区域(阴影部分)是()7. 在空间中,下列命题正确的是()A.经过三个点有且只有一个平面B.经过一个点和一条直线有且只有一个平面C.经过一个点且与一条直线平行的平面有且只有一个D.经过一个点且与一条直线垂直的平面有且只有一个8. 已知向量,,则“ ”是“ ”的()A.充分不必要条件B.必要不充分条件C.充要条件______________________________________D.既不充分也不必要条件9. 函数是()A.偶函数且最小正周期为B.奇函数且最小正周期为C.偶函数且最小正周期为___________________________________D.奇函数且最小正周期为10. 设等差数列的前项和为,若,,则()A.12___________B.14______________C.16___________________D.1811. 某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. ___________B. ________C. _________D.12. 设向量,,,,,若,则的最小值是()A. B. C. D.13. 如图,设为圆锥的底面直径,为母线,点在底面圆周上,若,,则二面角大小的正切值是()A. ______________B. ______________C.D.14. 设函数,,其中为自然对数的底数,则()A. 对于任意实数恒有______________B.存在正实数使得C.对于任意实数恒有______________D.存在正实数使得15. 设双曲线的左、右焦点分别为,,以为圆心,为半径的圆与双曲线在第一、二象限内依次交于,两点,若,则该双曲线的离心率是()A. ________B.C. _________D.216. 函数按照下述方法定义:当时,;当时,,方程的所有实数根之和是()A.8_________B.13_________C.18______________D.2517. 设实数,,满足:,,则下列不等式中不成立的是()A. ______________________________________B. ____________________C. ______________________________________D.18. 如图,在四面体中,,,,点,,,分别在棱,,,上,若直线,都平行于平面,则四边形面积的最大值是()A. B. C. ________ D.二、填空题19. 已知抛物线过点,则 ______,准线方程是______.20. 设数列的前项和为,若,,则_______.21. 在中,,,,若点满足,则 ______.22. 函数设,若其定义域内不存在实数,使得,则的取值范围是_____.三、解答题23. 在中,内角,,所对的边分别为,,,已知,其中为锐角.(1)求角的大小;(2),,求边的长.24. 设,为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于,两点.(3)求,的坐标;(4)若直线,,的斜率之和为0,求的所有整数值.25. 设函数的定义域为,其中 .(1)当时,写出函数的单调区间(不要求证明);(2)若对于任意的,均有成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

2019年普通高等学校招生全国统一考试数学(浙江卷)

2019年普通高等学校招生全国统一考试数学(浙江卷)

绝密 ★ 启用前2019年普通高等学校招生全国统一考试数学(浙江卷)选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019浙江,1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A )∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}U A={-1,3},则(∁U A )∩B={-1}.2.(2019浙江,2)渐近线方程为x ±y=0的双曲线的离心率是( )A.√22B.1C.√2D.2x ±y=0,所以a=b=1.所以c=√a 2+b 2=√2,双曲线的率心率e=ca =√2.3.(2019浙江,3)若实数x ,y 满足约束条件{x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z=3x+2y 的最大值是( )A.-1B.1C.10D.12(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当直线z=3x+2y 经过平面区域内的点(2,2)时,z=3x+2y 取得最大值z max =3×2+2×2=10.4.(2019浙江,4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324解析由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.5.(2019浙江,5)设a>0,b>0,则“a+b ≤4”是“ab ≤4”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件a>0,b>0时,a+b ≥2√ab ,若a+b ≤4,则2√ab ≤a+b ≤4,所以ab ≤4,充分性成立;当a=1,b=4时,满足ab ≤4,但此时a+b=5>4,必要性不成立.综上所述,“a+b ≤4”是“ab ≤4”的充分不必要条件.6.(2019浙江,6)在同一直角坐标系中,函数y=1a x ,y=log a x+12(a>0,且a≠1)的图象可能是()解析当0<a<1时,函数y=a x的图象过定点(0,1)且单调递减,则函数y=1a x的图象过定点(0,1)且单调递增,函数y=log a x+12的图象过定点12,0且单调递减,D选项符合;当a>1时,函数y=a x的图象过定点(0,1)且单调递增,则函数y=1a x 的图象过定点(0,1)且单调递减,函数y=log a x+12的图象过定点12,0且单调递增,各选项均不符合.故选D.7.(2019浙江,7)设0<a<1.随机变量X的分布列是则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大解析由分布列得E(X)=1+a3,则D(X)=1+a3-02×13+1+a3-a2×13+1+a3-12×13=29a-122+16,所以当a在(0,1)内增大时,D(X)先减小后增大.8.(2019浙江,8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<βG 为AC 中点,点V 在底面ABC 上的投影为点O ,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE ,易得PE ∥VG ,过点P 作PF ∥AC 交VG 于点F ,过点D 作DH ∥AC ,交BG 于点H ,则α=∠BPF ,β=∠PBD ,γ=∠PED ,所以cos α=PFPB =EGPB =DHPB <BDPB =cos β,所以α>β,因为tan γ=PDED >PDBD=tan β,所以γ>β.故选B .9.(2019浙江,9)设a ,b ∈R ,函数f (x )={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f (x )-ax-b 恰有3个零点,则( ) A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0D.a>-1,b>0解析当x<0时,由x=ax+b ,得x=b1-a,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x ≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g (x ).画出三次函数g (x )的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x ≥0时g (x )单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g (x )与y=b 可以有两个交点,且此时要求x=b1-a <0,故-1<a<1,b<0,选C .10.(2019浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n+1=a n 2+b ,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10解析当b=12时,a 2=a 12+12≥12,a 3=a 22+12≥34,a 4=a 32+12≥1716≥1,当n ≥4时,a n+1=a n 2+12≥a n 2≥1,则lo g 1716a n+1>2lo g 1716a n ⇒lo g 1716a n+1>2n-1,则a n+1≥1716 2n -1(n ≥4),则a 10≥1716 26=1+11664=1+6416+64×632×1162+…>1+4+7>10,故选A .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2019浙江,11)复数z=11+i (i 为虚数单位),则|z|= .|z|=1|1+i |=√2=√22.12.(2019浙江,12)已知圆C 的圆心坐标是(0,m ),半径长是r.若直线2x-y+3=0与圆C 相切于点A (-2,-1),则m= ,r= .k AC =-12⇒AC :y+1=-12(x+2),把(0,m )代入得m=-2,此时r=|AC|=√4+1=√5.2 √513.(2019浙江,13)在二项式(√2+x )9的展开式中,常数项是 ,系数为有理数的项的个数是 .√2+x )9的通项为T r+1=C 9r(√2)9-r x r (r=0,1,2,…,9),可得常数项为T 1=C 90(√2)9=16√2.因为系数为有理数,所以r=1,3,5,7,9,即T 2,T 4,T 6,T 8,T 10的系数为有理数,共5个.√2 514.(2019浙江,14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则BD= ,cos ∠ABD= .,设CD=x ,∠DBC=α,则AD=5-x ,∠ABD=π2-α,在△BDC 中,由正弦定理得3sin π4=x sinα=3√2⇒sin α=3√2.在△ABD 中,由正弦定理得5-x sin(π2-α)=4sin3π4=4√2⇒cos α=4√2.由sin 2α+cos 2α=x218+(5-x )232=1,解得x 1=-35(舍去),x 2=215⇒BD=12√25.在△ABD 中,由正弦定理得0.8sin∠ABD =4sin(π-π4)⇒sin ∠ABD=√210⇒cos ∠ABD=7√210.7√21015.(2019浙江,15)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是 .,设PF 的中点为M ,椭圆的右焦点为F 1.由题意可知|OF|=|OM|=c=2,由中位线定理可得|PF 1|=2|OM|=4,设P (x ,y )可得(x-2)2+y 2=16,与椭圆方程x 29+y 25=1联立,解得x=-32,x=212(舍),因为点P在椭圆上且在x 轴的上方,所以P-32,√152,所以k PF =√15212=√15.√1516.(2019浙江,16)已知a ∈R ,函数f (x )=ax 3-x.若存在t ∈R ,使得|f (t+2)-f (t )|≤23,则实数a 的最大值是 .解析由题意知,|f (t+2)-f (t )|=|a (6t 2+12t+8)-2|≤23有解,即-23≤a (6t 2+12t+8)-2≤23有解,所以43(6t 2+12t+8)≤a ≤83(6t 2+12t+8)有解,因为6t 2+12t+8∈[2,+∞),所以43(6t 2+12t+8)∈0,23,83(6t 2+12t+8)∈0,43,所以只需要0<a ≤43,即a max =43.17.(2019浙江,17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 .基向量处理)λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |min =0,由于λ5AC⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |max =2√5.2√5三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)(2019浙江,18)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x+θ)是偶函数,求θ的值;(2)求函数y=f x+π122+f x+π42的值域.因为f (x+θ)=sin(x+θ)是偶函数,所以,对任意实数x 都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0, 所以cos θ=0.又θ∈[0,2π),因此θ=π2或3π2. (2)y=f x+π122+f x+π42=sin 2x+π12+sin 2x+π4=1-cos(2x+π6)2+1-cos(2x+π2)2=1-12√32cos 2x-32sin 2x =1-√32cos 2x+π3.因此,函数的值域是1-√32,1+√32.,同时考查运算求解能力. 19.(本题满分15分)(2019浙江,19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点, 所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2√3,EG=√3.由于O为A1G的中点,故EO=OG=A1G2=√152,所以cos∠EOG=EO 2+OG2-EG22EO·OG=35.因此,直线EF与平面A1BC所成角的余弦值是35.方法二:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F √32,32,2√3,C (0,2,0).因此,EF ⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3).设平面A 1BC 的法向量为n =(x ,y ,z ).由{BC ⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0. 取n =(1,√3,1),故sin θ=|cos <EF ⃗⃗⃗⃗⃗ ·n >|=|EF ⃗⃗⃗⃗⃗⃗·n ||EF ⃗⃗⃗⃗⃗⃗ |·|n |=45. 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.20.(本题满分15分)(2019浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n ,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d ,解得a 1=0,d=2.从而a n =2n-2,n ∈N *.所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ).解得b n =1d(S n+12-S n S n+2). 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n =√2n -22n (n+1)=√n -1n (n+1),n ∈N *. 我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k (k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k =2√k +2(√k +1−√k )=2√k +1,即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.,同时考查运算求解能力和综合应用能力.21.(本题满分15分)(2019浙江,21)如图,已知点F (1,0)为抛物线y 2=2px (p>0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求S1S 2的最小值及此时点G 的坐标.由题意得p 2=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 方程为x=t 2-12t y+1,代入y 2=4x ,得y 2-2(t 2-1)t y-4=0, 故2ty B =-4,即y B =-2t ,所以B 1t 2,-2t . 又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t-2t +y C =0,得C 1t -t 2,21t -t ,G 2t 4-2t 2+23t 2,0.所以,直线AC 方程为y-2t=2t (x-t 2),得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C | =|2t 4-2t 2+23t 2-1|·|2t ||t 2-1-2t 4-2t 2+23t 2|·|2t -2t | =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m=t 2-2,则m>0,S 1S 2=2-m m 2+4m+3=2-1m+3m+4≥2-2√m ·3m +4=1+√32. 当m=√3时,S 1S 2取得最小值1+√32,此时G (2,0).,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.22.(本题满分15分)(2019浙江,22)已知实数a ≠0,设函数f (x )=a ln x+√1+x ,x>0.(1)当a=-34时,求函数f (x )的单调区间;(2)对任意x ∈1e 2,+∞均有f (x )≤√x2a ,求a 的取值范围. 注:e =2.718 28…为自然对数的底数.当a=-34时,f (x )=-34ln x+√1+x ,x>0.f'(x )=-34x +2√1+x=√1+x -√1+x+14x √1+x, 所以,函数f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f (1)≤12a ,得0<a ≤√24. 当0<a ≤√24时,f (x )≤√x 2a 等价于√x a 2−2√1+x a -2ln x ≥0. 令t=1a ,则t ≥2√2.设g (t )=t 2√x -2t √1+x -2ln x ,t ≥2√2,则g (t )=√x t-√1+1x2-1+x √x -2ln x.①当x ∈17,+∞时,√1+1x ≤2√2,则 g (t )≥g (2√2)=8√x -4√2√1+x -2ln x.记p (x )=4√x -2√2√1+x -ln x ,x ≥17,则 p'(x )=√x √2√x+1−1x =√x √x+1-√2x √x+1x √x+1 =(x -1)[1+√x (√2x+2-1)]x √x+1(√x+1)(√x+1+√2x ). 故17,1 1- 0) p 17 单调递减所以,p (x )≥(1)=0.因此,g (t )≥g (2√2)=2p (x )≥0.②当x ∈1e 2,17时,g (t )≥g √1+1x =-2√xlnx -(x+1)2√x. 令q (x )=2√x ln x+(x+1),x ∈1e 2,17,则q'(x )=√x +1>0,故q(x)在1e2,17上单调递增,所以q(x)≤q17.由①得,q17=-2√77p17<-2√77p(1)=0.所以,q(x)<0.因此,g(t)≥g√1+1x =-q(x)2√x>0.由①②知对任意x∈1e2,+∞,t∈[2√2,+∞),g(t)≥0,即对任意x∈1e2,+∞,均有f(x)≤√x2a.综上所述,所求a的取值范围是0,√24.,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.。

2019 年浙江高考数学(含官方答案)

2019 年浙江高考数学(含官方答案)

2019 年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。

1.已知全集{}U 1,0,1,2,3=-,集合{}A 0,1,2=,{}B =1,0,1-,则()U A B =ð( )A .{}1-B .{}0,1C .{}1,2,3-D . {}1,0,1,3- 2.渐进线方程为0x y ±=的双曲线的离心率是( )A .22B .1C .2D . 2 3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1-B .1C .10D .12 4.组恒是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原 理,利用该原理可以得到柱体的体积公式V sh =柱体,其中s 是柱体的底面积,h 是柱体的 高。

若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .3245.若 0, 0a b >>,则“ 4a b +≤”是“4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.在同一直角坐标系中,函数1xy a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,(0a >且0a ≠)的图像可能是( )7.设01a <<,随机变量X 的分布列,则当a 在()0,1内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点)。

记直线 PB 与直线AC 所成角为α,直线PB 与平面 ABC 所成角为β,二面角 P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<<C .,βαγα<<D .,αβγβ<<9.已知函数()()32,0111,032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,函数()()F x f x ax b =--恰有3个零点,则( ) A .1,0a b <-> B .1,0a b <-< C .1,0a b >-> D .1,0a b >-<10.设,a b ∈R , 数列{}n a 中1a a =,21n n a a b +=+,*n ∈N ,则( )A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。

2019年普通高等学校招生全国统一考试数学试题卷浙江卷(附带答案及详细解析)

2019年普通高等学校招生全国统一考试数学试题卷浙江卷(附带答案及详细解析)

绝密★启用前2019年普通高等学校招生全国统一考试浙江卷数学 试题卷本试卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120 分钟。

★祝考试顺利★注意事项:1.答题前, 先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在 答题卡上的指定位置。

2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写 在试卷、草稿纸和答题卡上的非答题区域均无效。

3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。

写在试卷、草稿纸 和答题卡,上的非答题区域均无效。

4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答 题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。

.5.考试结束后, 请将本试卷和答题卡-并上交。

一、选择题:本大题共10小题,每小题4分,共40分。

(共10题;共40分) 1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则 ∁U A ∩B =( )A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3} 2.渐近线方程为x±y=0的双曲线的离心率是( ) A. √22B. 1C. √2D. 2 3.若实数x ,y 满足约束条件 {x −3y +4≥03x −y −4≤0x +y ≥0,则z=3x+2y 的最大值是( ) A. -1 B. 1 C. 10 D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 325.若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数y= 1a ,y=log a(x+ 12),(a>0且a≠1)的图像可能是()A. B.C. D.7.设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。

高中-数学-高考-2019年普通高等学校招生全国统一考试(浙江卷)数学

高中-数学-高考-2019年普通高等学校招生全国统一考试(浙江卷)数学

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U A B =( ) A. {}1- B. {}0,1 C. {}1,2,3-D. {}1,0,1,3- 2、渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1 C.D. 2 3、若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 124、祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 325、若0,0ab >>,则“4a b +≤”是“4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 6、在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.7、设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( )A. ()D X 增大B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大8、设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<< 9、已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A. 1,0a b <-<B. 1,0a b <->C. 1,0a b >-<D. 1,0a b >->10、设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈,则( )A. 当101,102b a =>B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分 11、复数11z i=+(i 为虚数单位),则||z =______. 12、已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =______,r =______.13、在二项式9)x 的展开式中,常数项是______;系数为有理数的项的个数是______.14、在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =______;cos ABD ∠=______.15、已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是______.16、已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是______.17、已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是______;最大值是______. 三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤. 18、设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 19、如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.20、设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,,2n n n a C n b *=∈N 证明:12+2,.n C C C n n *++<∈N21、如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标. 22、已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++> (1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()x f x ≤ 求a 的取值范围. 注:e 2.71828...=为自然对数的底数.答案第1页,共14页参考答案1、【答案】A【分析】本题考查了集合的运算,根据集合交集和补集解答即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档