上海市2018-2019年高考数学押题试题
【高考押题】2019年高考数学仿真押题试卷(十九)(Word版,含答案解析)
专题19 高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合[1A =-,1],,则(AB = )A .(0,1)B .(0,1]C .(1,1)-D .[1-,1]【解析】解:(0,1)B =;.【答案】A .2.已知z 的共轭复数是z ,且为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】解:设,,∴,∴,解得:322x y ⎧=⎪⎨⎪=-⎩,复数z 在复平面内对应的点为3(,2)2-,此点位于第四象限.【答案】D .3.已知向量(1,3)a =,||3b =,且a 与b 的夹角为3π,则|2|(a b += )A .5B C .7D .37【解析】解:由题可得:向量(1,3)a =,||2a =,所以,所以,.【答案】B .4.已知函数,若,则实数a 的取值范围是( )A .[2-,1]B .[1-,2]C .(-∞,2][1-,)+∞D .(-∞,1][2-,)+∞【解析】解:函数,在各段内都是减函数,并且01e -=,,所以()f x 在R 上递减,又,所以,解得:21a -剟, 【答案】A .5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的(n )A .50B .53C .59D .62【解析】解:【方法一】正整数n 被3除余2,得32n k =+,k N ∈; 被8除余5,得85n l =+,l N ∈; 被7除余4,得74n m =+,m N ∈; 求得n 的最小值是53.【方法二】按此歌诀得算法如图, 则输出n 的结果为按程序框图知n 的初值为1229,代入循环结构得,即输出n 值为53. 【答案】B .6.已知函数,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 【解析】解:,将函数()f x 的图象向左平移m 个单位长度后,得到函数的图象,又所得到的图象关于y 轴对称,所以,即6m k ππ=+,k Z ∈,又0m >,所以当0k =时,m 最小为6π. 【答案】A .7.已知命题p :函数21()21x x f x -=+是定义在实数集上的奇函数;命题q :直线0x =是13()g x x =的切线,则下列命题是真命题的是( ) A .p q ∧B .q ⌝C .()p q ⌝∧D .p ⌝【解析】解:,即()f x 是奇函数,故命题p 是真命题,函数的导数,当0x =时,()g x '不存在,此时切线为y 轴,即0x =,故命题q 是真命题,则p q ∧是真命题,其余为假命题, 【答案】A .8.已知双曲线的渐近线与相切,则双曲线的离心率为(= )A .2B C D 【解析】解:取双曲线的渐近线by x a=,即0bx ay -=. 双曲线22221(x y a b-= 0a >,0)b >的渐近线与相切,∴圆心(2,0)到渐近线的距离d r =, ∴1=,化为2b c =,两边平方得,化为2234c a =.∴c e a =【答案】D .9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比1122.故从g 起,每一个单音的频率与它右边的一个单音的比为1122q -=由,解得7n =,频率为的音名是(#d ), 【答案】D . 10.函数的大致图象是( )A .B .C .D .【解析】解:当0x <时,,0x e >,所以()0f x >,故可排除B ,C ;当2x =时,f (2)230e =-<,故可排除D . 【答案】A .11.利用Excel 产生两组[0,1]之间的均匀随机数:(a rand = ),(b rand = ):若产生了2019个样本点(,)a b ,则落在曲线1y =、y =和0x =所围成的封闭图形内的样本点个数估计为( ) A .673B .505C .1346D .1515【解析】解:由曲线1y =、y =和0x =所围成的封闭图形的面积为,所以,则落在曲线1y =、y 0x =所围成的封闭图形内的样本点个数估计为,【答案】A .12.已知点P 为直线:2l x =-上任意一点,过点P 作抛物线的两条切线,切点分别为1(A x ,1)y 、2(B x ,2)y ,则12(x x = )A .2B .24pC .2pD .4【解析】解:不妨设(2,0)P -,过P 的切线方程设为(2)y k x =+, 代入抛物线方程得,又0k ≠,故124x x =.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若整数x 、y 满足不等式组,则y z x =的最小值为 12. 【解析】解:整数x 、y 满足不等式组的可行域如图:三角形区域内的点(2,1)A 、(2,2)B 、(2,3)C 、(1,2)D ,AO 连线的斜率是最小值.则y z x =的最小值为:12. 故答案为:12.14.已知椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C 内切于点P ,则12PF F S= .【解析】解:椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C内切于点P , 可得1b c ==, 所以.故答案为:1.15.定义在R 上的函数()f x 满足,若,且(2)2gl n =-,则1()2g ln = . 【解析】解:根据题意,,则,变形可得,,又由122ln ln =-,且,则,则;故答案为:4.16.已知O 是锐角ABC ∆的外接圆圆心,A 是最大角,若,则m 的取值范围为.【解析】解:由O 是锐角ABC ∆的外接圆圆心, 则点O 为三角形三边中垂线的交点, 由向量投影的几何意义有:,则, 所以则,由正弦定理得:,所以,所以2sin m A =, 又[3A π∈,)2π,所以m ∈2),故答案为:,2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若AC ABC ∆的面积;(2)若,4AD =,求CD 的长.【解析】解:(1)在ABC ∆中,,,解得BC ,∴.(2),∴,∴在ABC∆中,,∴,,∴CD=18.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:参考数据:【解析】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取(人),从非示范性高中抽取(人);(2)由频率分布直方图估算样本平均数为:,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.已知点(0,2)P,点A,B分别为椭圆的左右顶点,直线BP交C于点Q,ABP∆是等腰直角三角形,且35PQ PB=.(1)求C的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当MON ∠为直角时,求直线l 的斜率. 【解析】解:(1)由题意ABP ∆是等腰直角三角形,则2a =,(2,0)B , 设点0(Q x ,0)y ,由35PQ PB =,则065x =,045y =,代入椭圆方程解得21b =,∴椭圆方程为2214x y +=.(2)由题意可知,直线l 的斜率存在,令l 的方程为2y kx =+, 则1(M x ,1)y ,2(N x ,2)y , 则22214y kx x y =+⎧⎪⎨+=⎪⎩,整理可得, ∴△,解得234k >, ,,当MON ∠为直角时,1OM ON k k =-,,则,解得24k =,即2k =±,故存在直线l 的斜率为2±,使得MON ∠为直角. 20.如图,在直三棱柱中,ABC ∆是等腰直角三角形,1AC BC ==,12AA =,点D 是侧棱1AA 的上一点.(1)证明:当点D 是1AA 的中点时,1DC ⊥平面BCD ; (2)若二面角1D BC C --,求AD 的长.【解析】解:(1)证明:由题意:BC AC ⊥且1BC CC ⊥,,BC ∴⊥平面11ACC A ,则1BC DC ⊥. 又D 是1AA 的中点,AC AD =,且90CDA ∠=︒,,同理.,则1DC DC ⊥,1DC ∴⊥平面BCD ;(2)以C 为坐标原点,分别以CA ,CB ,1CC 为x 轴,y 轴,z 轴建立空间直角坐标系. 设AD h =,则(1D ,0,)h ,(0B ,1,0),1(0C ,0,2).由条件易知CA ⊥平面1BC C ,故取(1m =,0,0)为平面1BC C 的法向量. 设平面1DBC 的法向量为(n x =,y ,)z , 则n BD ⊥且1n BC ⊥,,,∴,取1z =,得.由,解得12h =,即12AD =.21.已知函数在0x x =处取得极小值1-.(1)求实数a 的值; (2)设,讨论函数()g x 的零点个数.【解析】解:(1)函数()f x 的定义域为(0,)+∞,,函数在0}x x =处取得极小值1-,∴,得01,1a x =-⎧⎨=⎩当1a =-时,()f x lnx '=,则(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '> ()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,1x ∴=时,函数()f x 取得极小值1-, 1a ∴=-(2)由(1)知,函数,定义域为(0,)+∞,,令()0g x '<,得0x <令()0g x '>,得x >()g x在上单调递减,在)+∞上单调递增,当x ()g x 取得最小值2eb -, 当02e b ->,即2eb >时,函数()g x 没有零点; 当02e b -=,即2eb =时,函数()g x 有一个零点;当02eb -<,即02e b <<时,g (e )0b =>,g g ∴(e )0<存在1x ∈)e ,使1()0g x =,()g x ∴在)e 上有一个零点1x设,则,当(0,1)x ∈时,()0h x '<,则()h x 在(0,1)上单调递减,()h x h ∴>(1)0=,即当(0,1)x ∈时,11lnx x>-, 当(0,1)x ∈时,,取{m x min b =,1},则()0m g x >,,∴存在2(m x x ∈,,使得2()0g x =,()g x ∴在(m x 上有一个零点2x ,()g x ∴在(0,)+∞上有两个零点1x ,2x ,综上可得,当2eb >时,函数()g x 没有零点; 当2eb =时,函数()g x 有一个零点; 当02eb <<时时,函数()g x 有两个零点. 请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足,点B 的轨迹为2C .(1)求1C ,2C 的极坐标方程;(2)设点C 的极坐标为(2,)2π,求ABC ∆面积的最小值.【解析】解:(1)曲线1C 的参数方程为为参数),∴曲线1C 的普通方程为,∴曲线1C 的极坐标方程为2cos ρθ=.设B 的极坐标为(,)ρθ,点A 的极坐标为0(ρ,0)θ, 则||OB ρ=,0||OA ρ=,002cos ρθ=,0θθ=,,08ρρ∴=,∴82cos θρ=,cos 4ρθ=,2C ∴的极坐标方程为cos 4ρθ=(2)由题意知||2OC =,,当0θ=时,S ABC 取得最小值为2. [选修4-5:不等式选讲]. 23.已知函数的最小值为t .(1)求实数t 的值; (2)若,设0m >,0n >且满足,求证:.【解析】解:(1),显然,()f x 在(-∞,1]上单调递减,在(1,)+∞上单调递增,(1)2=-,2t ∴=-, 证明(2),,由于0m >,0n >,且1122m n+=,,当且仅当22n mm n=,即当12n =,1m =时取“=”, 故。
2018年上海市高考数学试卷(含详细答案解析)
2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为.2.(4分)双曲线﹣y2=1的渐近线方程为.3.(4分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.第21页(共21页)。
泄露天机2018高考押题卷理科数学(一)
泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。
3.考试结束后将试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。
2+iB。
2-iC。
1+iD。
i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。
2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。
解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。
3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。
解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。
因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。
2018年上海市高考数学试卷及答案
2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为.2.(4分)双曲线﹣y2=1的渐近线方程为.3.(4分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为18.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.2.(4分)双曲线﹣y2=1的渐近线方程为±.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±3.(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:612.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.14.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.16.(5分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).。
(完整版)2018年上海高考数学试卷(参考答案)
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r,则AE BF ⋅u u u r u u u r的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D) 14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
高考数学高三模拟试卷试题压轴押题排列组合典型题大全
高考数学高三模拟试卷试题压轴押题排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
2019年高考数学仿真押题试卷(十三)(含解析)
欢迎下载!1专题13 高考数学仿真押题试卷(十三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则(AB = )A .{|2}x x -B .{|12}x x <<C .{|12}x x <D .{|2}x x【解析】解:{|1}A x x =>,;.【答案】C .2.若复数z 满足(1)1z i i +=+,则||(z = ) A .i -B .1i -C .2D.1【解析】解:由(1)1z i i +=+,得,z i ∴=-,则||1z =.【答案】D .3.经统计,某市高三学生期末数学成绩,且,则从该市任选一名高三学生,其成绩不低于90分的概率是( )欢迎下载!2A .0.35B .0.65C .0.7D .0.85【解析】解:学生成绩X 服从正态分布2(85,)N σ,且,,∴从该市任选一名高三学生,其成绩不低于90分的概率是0.35.【答案】A .4.若x ,y 满足约束条件101010x y x y y -+⎧⎪+-⎨⎪+⎩,则2z x y =+的最小值是( )A .5-B .4-C .0D .2【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由2z x y =+得平移直线,由图象可知当直线经过点(2,1)A --时,直线2y x z =-+的截距最小, 此时z 最小.将(2,1)A --的坐标代入目标函数2z x y =+, 得4z =-.即2z x y =+的最小值为4-; 【答案】B .5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O的球面上,则球O的体积是( )A.82πB.43πC .12πD.323π【解析】解:由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱锥补形为正方体,则正方体对角线长为.∴该三棱柱外接球的半径为3.体积.【答案】B.6.将函数的图象向右平移6π个单位长度后,所得图象的一个对称中心为()A.(12π,0)B.(4π,0)C.(3π,0)D.(2π,0)【解析】解:将函数的图象向右平移6π个单位长度后,所得图象对应的函数解析式为,令26x kππ-=,求得212kxππ=+,k Z∈,故函数的对称中心为(212kππ+,0),k Z∈,【答案】A.欢迎下载! 37.函数的图象在点(1,f(1))处的切线在y轴上的截距为() A.e B.1 C.1-D.0【解析】解:由,得1 ()f xax'=+,则f'(1)1a=+,又f(1)a=,∴函数的图象在点(1,f(1))处的切线方程为,取0x=,可得1y=-.∴函数的图象在点(1,f(1))处的切线在y轴上的截距为1-.【答案】C.8.刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为()A.3πB.3πC.3πD.4π【解析】解:由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球;由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,欢迎下载! 4欢迎下载!5∴长方体的对角线为3, ∴外接球的半径为3, ∴外接球的体积为.【答案】B . 9.已知函数,若将函数()f x 的图象向右平移6π个单位后关于y 轴对称,则下列结论中不正确的是( ) A .56πϕ=B .(,0)12π是()f x 图象的一个对称中心C .()2f ϕ=-D .6x π=-是()f x 图象的一条对称轴【解析】解:由题意可知56πϕ=, 故,.【答案】C .10.已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有( ) A .1880B .1440C .720D .256【解析】解:由题意可知,白颜色汽车按3,2分为2组,先从5辆白色汽车选3辆全排列共有35A 种,欢迎下载!6再将剩余的2辆白色汽车全排列共有22A 种,再将这两个整体全排列,共有22A 种,排完后有3个空, 3辆不同的红颜色汽车抽空共有33A 种, 由分步计数原理得共有有种,【答案】B .11.已知数列:依它的前10项的规律,这个数列的第2019项2019a 满足( )A .2019110aB .201910a >C .20191010a <<D .20191110a < 【解析】解:将此数列分组为12()(11,13)(21,22,14)(31,32,23,1)4⋯第n 组有n 个数,设数列的第2019项2019a 在第n 组中,由等差数列前n 项和公式可得:,解得:64n =,则前63组共,即2019a 在第64组的第3项,即,【答案】B . 12.已知抛物线的焦点为F ,点0(M x ,22)是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px =截得的弦长为3||MA ,若||2||MA AF =,则||(AF = ) A .32B .1C .2D .3【解析】解:如图,圆心M 到直线2p x =的距离0||2pd x =-,⋯① 圆M 的半径||r MA =,,⇒221||4d MA =,⋯② ||2||MA AF =,③由①②③可得0x p =,或04p x =,欢迎下载!7,2p ∴=或4.∴022p x =⎧⎨=⎩或041p x =⎧⎨=⎩,.【答案】B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在平行四边形ABCD 中,点E 是AD 的中点,点F 是CD 的中点,记BE a =,AC b =,用a ,b 表示AB ,则AB = 2133a b -+ .【解析】解:由图可知:,①,②联立①②解得:,【答案】2133a b -+.14.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫、白外五观的标记物;从道袍、卦摊、中医、气功、武术到南韩国旗、新加坡空军机徽⋯⋯,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分的区域可用小等式组来表示,设(,)x y是阴影中任意一点,则2z x y=+的最大值为15+.【解析】解:由题意可知:2z x y=+与相切时,切点在上方时取得最大值,如图:可得:22121+,解得,2z x y=+的最大值为:15+.【答案】15+.15.已知,1C与2C相切,并且两圆的一条外公切线的斜率为7,则12r r为7225.【解析】解:设两圆的公切线为7y x t=+,即70x y t-+=,已知圆心1(2,2)C,2(1,1)C--,设1C,2C到公切线的距离为1d,2d,欢迎下载!8可得,,由于公切线在两圆的同侧,,即|3|15t+=,可得12t=或18-,当12t=时,;当18t=-时,1272 25r r=.综上可得127225r r=.【答案】7225.16.在各项均为正数的等比数列{}na中,318a a-=,当4a取最小值时,则数列{}2n na的前n项和为.【解析】解:各项均为正数的等比数列{}na中,首项为1a,公比设为(0)q q>,由318a a-=,即2118a q a-=,(0q>且1)q≠,整理得1281aq=-,所以,令,可得,当03q<<时,()0f q'>,()f q递增;当3q>时,()0f q'<,()f q递减,可得3q=时,()f q取得极大值,且为最大值,则,数列{}2n na的前n项和为,欢迎下载!9欢迎下载!10,两式相减可得,化简可得. 【答案】.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,且满足2n n S a n =-. (1)求证{1}n a +为等比数列;(2)数列{}n b 满足,求{}n b 的前n 项和n T .【解析】(1)证明:由2n n S a n =-.2n 时,,化为:,1n =时,1121a a =-,解得11a =. 112a ∴+=.{1}n a ∴+为等比数列,首项为2,公比为2.(2)解:由(1)可得:12n n a +=.,{}n b ∴的前n 项和, ,相减可得:,整理为:.18.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价x(元)7 89 1112 13销量()y kg120 118 112 110 108 104(1)已知销量与单价之间存在线性相关关系求y关于x的线性回归方程;(2)若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间[110,118]内的单价种数ξ的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:,ˆˆa y bx=-.【解析】解:(1),.,.y∴关于x的线性回归方程为;(2)6种单价中销售量在[110,118]内的单价种数有3种.∴销量恰在区间[110,118]内的单价种数ξ的取值为0,1,2,3,,,,.ξ∴的分布列为:ξ 0 1 2 3欢迎下载!11P120920920120期望为.19.如图四棱锥P ABCD-中,平面PAD⊥平面ABCD,PA BC⊥,BC CD⊥,4AB=,2BC CD==,AD BD=.(1)求证:平面PBD⊥平面PAD;(2)若AB与平面PBD所成的角的正弦值为22,求二面角C PB D--的余弦值.【解析】证明:(1)BC CD⊥,4AB=,2BC CD==,AD BD=.,,AD BD∴⊥,四棱锥P ABCD-中,平面PAD⊥平面ABCD,PA BC⊥,BC CD⊥,BC∴⊥平面PAB,BC⊂平面ABCD,∴平面PAB⊥平面ABCD,平面PAD⋂平面PAB PA=,PA∴⊥平面ABCD,PA BD∴⊥,,BD∴⊥平面PAD,BD⊂平面PAD,∴平面PBD⊥平面PAD.解:(2)以B为原点,BC为x轴,BA为y轴,过B作平面ABCD的垂线为z轴,建立空间直角坐标系,设AP a=,则(0A,4,0),(0B,0,0),(0P,4,)a,(1D,1,0),(0BA=,4,0),(0BP=,4,)a,(1BD=,1,0),设平面PBD的法向量(n x=,y,)z,欢迎下载!12欢迎下载!13则,取1x =,得(1n =,1-,4)a,AB与平面PBD所成的角的正弦值为22, ,解得82a =,∴(1n =,1-,32), (1BC =,0,0),(0BP =,4,82), 设平面PBC 的法向量(m x =,y ,)z ,则,取3z =,得(0m =,22-,3),设二面角C PB D --的平面角为θ,则. ∴二面角C PB D --的余弦值为17.20.已知椭圆上的动点P 到其左焦点的距离的最小值为1,且离心率为12. (1)求椭圆的方程;欢迎下载!14(2)若直线l 与椭圆C 交于A ,B 两点,Q 是椭圆C 的左顶点,若,试证明直线l 经过不同于点Q 的定点.【解析】(1)解:由已知可得,222112a c c a a bc -=⎧⎪⎪=⎨⎪=+⎪⎩,解得2a =,3b =,∴椭圆的方程22143x y +=;(2)证明:由,得QA QB ⊥,设直线AB 方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 联立22143y kx mx y =+⎧⎪⎨+=⎪⎩,得.△.,.由题意,(2,0)Q -,则,,由QA QB ⊥,得,∴,即,,即72m k =-或2m k =-.当72m k =-时,满足△0>,此时直线方程为:,过定点2(,0)7;当2m k =-时,满足△0>,此时直线方程为:,过定点(2,0),不合题意.综上,直线l 经过不同于点Q 的定点2(,0)7.21.已知函数,a R∈.(1)当0a=时,求()f x在点(1,f(1))处的切线方程;(2)当0x>时,()f x是否存在两个极值点,若存在,求实数a的最小整数值;若不存在,请说明理由.【解析】解:(1)函数导数,当0a=时,,f(1)1 2=,,f'(1)1e=+,即在点1(1,)2处的切线斜率1k e=+,则对应的切线方程为即.(2)当0x>时,若()f x存在两个极值点,则()0f x'=有两个不同的解,即,有两个根,即1xe ax+=有两个不同的根,设()1xh x e=+,()xh x e'=,设切点(,1)mm e+,则()mh m e'=,即过原点的切线方程为,即当0x=,0y=时,,设,则,即()g m在(0,)+∞上为减函数,g(1)10=>,g(2),∴当(1,2)m∈时,()0g m=,即当ma e>时,1xy e=+和y ax=有两个交点,欢迎下载!15欢迎下载!16(1,2)m ∈,2(,)m e e e ∴∈,∴当3a =时,3y x =与()h x 没有交点,当4a =时,3y x =与()h x 有两个交点,即当0x >时,()f x 是存在两个极值点,此时最小的a 的整数值为4(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,已知曲线1C 的参数方程为为参数),曲线2C 的极坐标方程为.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若点P 、Q 分别为曲线1C 及曲线2C 上任意一点,求||PQ 的最小值及此时P 的坐标.【解析】解:(1)因为,∴,①2+②2得2213xy +=,即1C 的普通方程为2213x y +=,曲线2C 的极坐标方程为,,由cos x ρθ=,sin y ρθ=,可得2C 的直角坐标方程为:150x y +-=.(2)设直线l 与2C 平行,且与曲线1C 相切,设l 方程为0x y C ++=,联立l 与1C 的方程消去欢迎下载!17y 得:,③因为l 与曲线1C 相切,故△,解得:2C =,或2c =.2C 的方程为:150x y +-=∴当2C =-时,设切点为P ,过P 作2C 的垂线,垂足为Q ,则此时||PQ 最小,且此时,||PQ 值等于l 与2C 的距离,.将2C =-代入③得,32x =,.即P点坐标为3(2,1)2.综上,点P 、Q 分别为曲线1C 及曲线2C 上任意一点,则||PQ 的最小值为132,此时P 点坐标为3(2,1)2. [选修4-5:不等式选讲] 23.已知函数.(1)当1a =时,求不等式()f x x -的解集; (2)若2()1f x a +恒成立,求a 的取值范围. 【解析】解:(Ⅰ)1a =时,,即,不等式()f x x -即为23x x -⎧⎨-⎩或或13x x ⎧⎨--⎩,即有3x -或11x -<或13x , 则为3x -或13x -,所以不等式的解集为{|3x x -或13}x -; (Ⅱ)由(Ⅰ)知,函数()f x 的值域为[3-,3],欢迎下载!18若2()1f x a +恒成立,则,即231a +,解得2a或2a -.∴实数a 的取值范围是(-∞,2][2-,)+∞.。
2018年上海高考数学真题及答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
【真题】2018年上海市高考数学试题含答案解析
2018年高考数学真题试卷(上海卷) 一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在轴上,渐近线直线方程为22221x y ba -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+)7的二项展开式中,²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+)7中有T r+1=7r rC x ,故当r=2时,27C =762⨯=21【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C ab-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数满足117i z i +=-()(i 是虚数单位),则∣∣= 。
上海市(新版)2024高考数学人教版真题(押题卷)完整试卷
上海市(新版)2024高考数学人教版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题两位跳水运动员甲和乙,某次比赛中的得分如下表所示,则正确的选项为()第一跳第二跳第三跳第四跳第五跳甲85.59686.475.994.4乙79.58095.794.0586.4A.甲和乙的中位数相等,甲的平均分小于乙B.甲的平均分大于乙,甲的方差大于乙C.甲的平均分大于乙,甲的方差等于乙D.甲的平均分大于乙,甲的方差小于乙第(2)题设,,,则()A.B.C.D.第(3)题已知圆截直线所得弦的长度为4,则实数的值为()A.B.C.D.第(4)题《九章算术》是我国古代最著名的数学著作,成书于公元一世纪,分为方田、粟米、方程勾股等九章.卷一《方田》中记载了圆形、扇形、弓形等八种几何图形面积计算方法:如圆的面积计算“径自相乘,三之,四而”.意思是圆的面积为“直径平方,乘以三,再取四分之一”,则这里的圆周率为()A.3B.3.1C.3.14D.3.1416第(5)题已知正方体的棱长为是正方形(含边界)内的动点,点到平面的距离等于,则两点间距离的最大值为()A.B.3C.D.第(6)题已知椭圆:的左右焦点到直线:的距离之差为2,则的焦距是()A.B.2C.D.4第(7)题沙漏也叫做沙钟,是一种测量时间的装置.沙漏由两个完全一样的圆锥和一个狭窄的连接管道组成,通过充满了沙子的玻璃圆锥从上面穿过狭窄的管道流入底部玻璃圆锥所需要的时间来对时间进行测量西方发现最早的沙漏大约在公元1100年,比我国的沙漏出现要晚.时钟问世之后,沙漏完成了它的历史使命.现代沙漏可以用来助眠.经科学认证,人类的健康入睡时间是15分钟,沙漏式伴睡灯便是一个15分钟的计时器.它将古老的计时沙漏与现代夜灯巧妙结合,随着沙粒从缝隙中滑下,下部的灯光逐渐被沙子掩埋,直到15分钟后沙粒全部流光,柔和的灯光完全覆盖.就这样,宁静的夜晚,听着沙粒窸窸窣窣的声音,仿佛一首缓缓流动的安眠曲如图,一件沙漏工艺品,上下两部分可近似看成完全一样的圆锥,测得圆锥底面圆的直径为,沙漏的高(下底面圆心的距离)为,通过圆锥的顶点作沙漏截面,则截面面积最大为()A.B.C.D.第(8)题命题“,”的否定是()A.,B.,C.,D.,二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,在底面为等边三角形的直三棱柱中,,,,分别为棱,的中点,则()A.平面B.C.异面直线与所成角的余弦值为D.平面与平面的夹角的正切值为第(2)题如图,在边长为1的正方体中,点为线段上的动点,则()A.不存在点,使得B.的最小值为C .当时,D .若平面上的动点满足,则点的轨迹是直线的一部分第(3)题已知正方体边长为2,则()A.直线与直线所成角为B.与12条棱夹角相同的最大截面面积为C.面切球与外接球半径之比为D .若Q为空间内一点,且满足与所成角为,则Q的轨迹为椭圆三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,则________;______.第(2)题已知函数有唯一的零点,则实数的最大值为__________.第(3)题已知O为的外接圆的圆心,若且,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某校在课外活动期间设置了文化艺术类活动和体育锻炼类活动,为了解学生对这两类活动的参与情况,统计了如下数据:文化艺术类体育锻炼类合计男女合计(1)通过计算判断,有没有的把握认为该校学生所选择课外活动的类别与性别有关系?(2)为收集学生对课外活动建议,在参加文化艺术类活动的学生中按性别用分层抽样的方法抽取了名同学.若在这名同学中随机抽取名,求所抽取的名同学中至少有名女生的概率.附表及公式:其中,.第(2)题如图所示,抛物线关于x 轴对称,它的顶点为坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)求抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值.第(3)题已知函数,曲线在点处的切线与直线垂直.(Ⅰ)求的值;(Ⅱ)当时,恒成立,求实数的最大值.第(4)题已知函数.(1)讨论函数的单调性;(2)函数有两个零点,求证:.第(5)题“阳马”是我国古代数学名著《九章算术》中《商功》章节研究的一种几何体,即其底面为矩形,一条侧棱垂直于底面的四棱锥.如图,四边形是边长为3的正方形,,.(1)证明:四棱锥是一个“阳马”;(2)已知点在线段上,且,若二面角的余弦值为,求的值.。
2018年上海市高考数学试题有答案
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析
高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
2018上海高考数学真题及答案解析
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018•上海)行列式的值为18 .【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为=•x r,Tr+1令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.(x+a).若f(x)的4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.(x+a)的图象经过点(1,3),由【分析】由反函数的性质得函数f(x)=1og2此能求出a.(x+a).【解答】解:∵常数a∈R,函数f(x)=1og2f(x)的反函数的图象经过点(3,1),(x+a)的图象经过点(1,3),∴函数f(x)=1og2(1+a)=3,∴log2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018•上海)记等差数列{an }的前n项和为Sn,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{an }的前n项和为Sn,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{an }的通项公式为an=q n﹣1(n∈N*),前n项和为Sn.若=,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{an }的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,=q n.,an+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P (p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x 1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E 1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B. C. D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线kPF •kFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),kQF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则kPF ==,kFQ=,直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018•上海)给定无穷数列{an },若无穷数列{bn}满足:对任意n∈N*,都有|bn ﹣an|≤1,则称{bn}与{an}“接近”.(1)设{an }是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;(2)设数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;(3)已知{an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得an ﹣1≤bn≤an+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得an,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{bn }与{an}接近.理由:{an}是首项为1,公比为的等比数列,可得an =,bn=an+1+1=+1,则|bn ﹣an|=|+1﹣|=1﹣<1,n∈N*,可得数列{bn }与{an}接近;(2){bn }是一个与{an}接近的数列,可得an ﹣1≤bn≤an+1,数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=bi,i=1,2,3,4},M中元素的个数m=3或4;(3){an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,可得an =a1+(n﹣1)d,①若d>0,取bn =an,可得bn+1﹣bn=an+1﹣an=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取bn =a1﹣,则|bn﹣an|=|a1﹣﹣a1|=<1,n∈N*,可得bn+1﹣bn=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n ﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{bn }满足:{bn}与{an}接近,即为an ﹣1≤bn≤an+1,an+1﹣1≤bn+1≤an+1+1,可得bn+1﹣bn≤an+1+1﹣(an﹣1)=2+d≤0,b 2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
上海市(新版)2024高考数学苏教版考试(押题卷)完整试卷
上海市(新版)2024高考数学苏教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题小王从甲地到乙地再返回甲地,其往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A .a<v<B.v=C.<v<D.v=第(2)题下列不等式一定成立的是A.B.C.D.第(3)题复数z的虚部为1,且,则z=()A.B.C.D.第(4)题已知抛物线C:的顶点为O,经过点,且F为抛物线C的焦点,若,则p=()A.B.1C.D.2第(5)题已知全集,集合,,则()A.B.C.D.第(6)题在梯形中,,,且,若与交于点,则()A.B.C.D.第(7)题若,,,则事件A与事件B的关系是()A.事件A与事件B互斥B.事件A与事件B互为对立C.事件A与事件B相互独立D.事件A与事件B互斥又独立第(8)题设,是的共轭复数,则复数()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知方程,下面四个命题是真命题的是()A.当时,(*)表示一个圆B.当时,(*)的曲线关于直线对称C.当时,(*)的曲线具有中心对称性D.当时,的最大值为1第(2)题已知,都是定义在上且不恒为0的函数,则()A.为偶函数B.为奇函数C.若为奇函数,为偶函数,则为奇函数D.若为奇函数,为偶函数,则为非奇非偶函数第(3)题已知,,且,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题复数在复平面内所对应的点的坐标为__________.第(2)题已知m,n是两条不重合的直线,是一个平面,,则“”是“”的__________条件.第(3)题若,则的最小值为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知.(1)试讨论的单调性;(2)当时,恒成立,求实数的取值范围.第(2)题椭圆的方程为,、为椭圆的左右顶点,、为左右焦点,为椭圆上的动点.(1)求椭圆的离心率;(2)若为直角三角形,求的面积;(3)若、为椭圆上异于的点,直线、均与圆相切,记直线、的斜率分别为、,是否存在位于第一象限的点,使得?若存在,求出点的坐标,若不存在,请说明理由.第(3)题2022年10月12日,“天宫课堂”第三课在中国空间站开讲,新晋“太空教师”刘洋用2米长的吸管成功喝到了芒果汁.这是中国航天员首次在问天实验舱内进行授课,并通过网络向全国进行直播,这场直播极大地激发了广大中学生对航天知识的兴趣,为领悟航天精神,感受中国梦想,某校高一年级组织了一次“寻梦天宫”航天知识竞赛活动,为了解男生和女生对航天知识的掌握情况,该校随机抽取了100名男生和100名女生的竞赛成绩(满分100分)作为样本数据,并将数据分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],整理得到如下频率分布直方图.(1)估计该校男生和女生竞赛成绩的平均数;(同一组中的数据用该组区间的中点值作代表)(2)若竞赛成绩为70分或70分以上的学生称为“太空达人”,完善2×2列联表,并判断:是否有95%的把握认为是否获得“太空达人”称号与性别有关?非“太空达人”“太空达人”总计男生女生总计附:,其中.0.0500.0100.0013.841 6.63510.828第(4)题小明计划在8月11日至8月20日期间游览某主题公园,根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,以下为舒适,为一般,以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览天.(1)求小明连续两天都遇上拥挤的概率;(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)第(5)题如图,在直角梯形ABCD中,,,,于E,沿DE将折起,使得点A到点P位置,,N是棱BC上的动点(与点B,C不重合).(1)判断在棱PB上是否存在一点M,使平面平面,若存在,求;若不存在,说明理由;(2)当点F,N分别是PB,BC的中点时,求平面和平面的夹角的余弦值.。
上海市(新版)2024高考数学人教版考试(押题卷)完整试卷
上海市(新版)2024高考数学人教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量满足与的夹角为,则与的夹角为( )A.B .C .D .第(2)题已知函数,则函数在处的切线方程是( )A.B .C .D .第(3)题已知,且,则满足条件的的个数为( )A .3B .5C .7D .9第(4)题设,则z 的共轭复数为A .B .C .D .第(5)题函数y =cos 2x 在下列哪个区间上是减函数( )A.B .C .D .第(6)题在直四棱柱中中,,,P 为中点,点Q 满足,(,).下列结论不正确的是( )A .若,则四面体的体积为定值B .若平面,则的最小值为C .若的外心为M ,则为定值2D.若,则点Q 的轨迹长度为第(7)题是抛物线上异于坐标原点的一点,点在轴上,,为该抛物线的焦点,则( )A .12B .11C .10D .9第(8)题下列函数中,在区间上为增函数的是A .B.C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若是函数图象的一条对称轴,则下列说法正确的是( )A .B .是函数图象的一条对称轴C .点是函数图象的一个对称中心D.函数在上单调递减第(2)题企业的核心竞争力需要大量研发投入和研发活动作为支撑.研发营收比是指企业的研发投入与营业收入的比值,是一个企业研发投入情况的一项重要指标.下图是某公司2014年到2020年的研发投入和研发营收比的情况,则下列结论正确的是()A.该公司的研发投入逐年增加.B.该公司2020年的营业收入超过550亿元.C.2017年该公司的研发营收比最大.D.2017年该公司的营业收入达到最大值.第(3)题已知函数若函数有且只有两个不同的零点,则实数的取值可以是()A.-1B.0C.1D.2三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知点是双曲线右支上两个不同的动点,为坐标原点,则的取值范围是_________.第(2)题如图,已知正四面体的棱长为分别为棱的中点.若该正四面体有一内接圆锥,其中为圆锥的顶点,底面圆心在线段上,则该圆锥体积的最大值为__________.第(3)题在三棱锥中,,,则三棱锥外接球的体积与三棱锥的体积之比为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题双曲线的焦距为,点在C上,直线交y轴于点P,过P作直线交C于G,H两点,且的斜率存在,直线,交l分别于M,N两点.(1)求C的方程;(2)求与的斜率之积;(3)证明:A,O,M,N共圆.第(2)题已知函数.(1)求曲线在处的切线方程;(2)若函数,不等式恒成立,求的取值范围.第(3)题已知点M是抛物线的对称轴与准线的交点,过M作抛物线的一条切线,切点为P,且满足.(1)求抛物线C的方程;(2)过作斜率为2的直线与抛物线C相交于点B,点,直线AT与BT分别交抛物线C于点E,F,设直线EF的斜率为k,是否存在常数,使得?若存在,求出值;若不存在,请说明理由.第(4)题已知函数.(1)求函数的极值;(2)当时,若函数有两个零点.①证明:;②证明:.第(5)题设椭圆过点,两点,为坐标原点.(1)求椭圆的标准方程;(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围,若不存在,请说明理由.。
上海市市辖区2024高三冲刺(高考数学)统编版考试(押题卷)完整试卷
上海市市辖区2024高三冲刺(高考数学)统编版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如果等差数列中,++=12,那么++…+=A .14B .21C .28D .35第(2)题复数A .B .C .D .第(3)题函数的大致图像为( )A .B .C .D .第(4)题设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )A .B .C .D .第(5)题函数的图象如图所示,则的解析式可能为( )A.B .C.D .第(6)题已知,为单位向量,若,则( )A .B .C .D .第(7)题如图,在复平面内,复数,对应的向量分别是,,则对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(8)题“”是“”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知为数列的前n项和,,若数列既是等差数列,又是等比数列,则()A.常数数列B.是等比数列C.为递减数列D.是等差数列第(2)题已知复数,,下列结论正确的有()A.B.若,则C.若,则D.若,,则为纯虚数第(3)题斐波那契,公元13世纪意大利数学家.他在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,⋯,其中从第三个数起,每一个数都等于它前面两个数的和,这就是著名的斐波那契数列.斐波那契数列与代数和几何都有着不可分割的联系.现有一段长为a米的铁丝,需要截成n(n>2)段,每段的长度不小于1m,且其中任意三段都不能构成三角形,若n的最大值为10,则a的值可能是()A.100B.143C.200D.256三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题南宋的数学家杨辉“善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为离散量的垛积问题”,在他的专著《详解九章算法•商功》中,杨辉将堆垜与相应立体图形作类比,推导出了三角垛、方垛、刍童垛等的公式,例如三角垛指的是如图顶层放1个,第二层放3个,第三层放6个,第四层放10个第n层放个物体堆成的堆垛,则__________.第(2)题已知幂函数的图象过点,则复数(其中i为虚数单位)的模的大小=___________.第(3)题在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某学校有、两个餐厅,经统计发现,学生在第一天就餐时会随机地选择一个餐厅用餐.此后,如果某同学某天去餐厅,那么该同学下一天还去餐厅的概率为;如果某同学某天去餐厅,那么该同学下一天去餐厅的概率为.(1)记甲、乙、丙3位同学中第2天选择餐厅的人数为,求随机变量的分布列和期望;(2)甲同学第几天去餐厅就餐的可能性最大?并说明理由.第(2)题杭州是国家历史文化名城,为了给来杭州的客人提供最好的旅游服务,某景点推出了预订优惠活动,下表是该景点在某App平台10天预订票销售情况:日期12345678910销售量(万张) 1.93 1.95 1.97 1.98 2.01 2.02 2.02 2.05 2.070.5经计算可得:.(1)因为该景点今年预订票购买火爆程度远超预期,该App平台在第10天时系统异常,现剔除第10天数据,求关于的线性回归方程(结果中的数值用分数表示);(2)该景点推出团体票,每份团体票包含四张门票,其中张为有奖门票(可凭票兑换景点纪念品),的分布列如下:234今从某份团体票中随机抽取2张,恰有1张为有奖门票,求该份团体票中共有3张有奖门票的概率.附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:第(3)题一般地,n元有序实数对称为n维向量.对于两个n维向量,,定义两向量的数量积为,向量的模,且取最小值时,称为在上的投影向量.(1)求证:在上的投影向量;(2)某公司招聘时对应聘者的语言表达能力()、逻辑推理能力()、动手操作能力()进行测评,每门总分均为10分,测评结果记为一个三维向量.而不同岗位对于各个能力需求的比重各不相同,对于每个岗位均有一个事先确定的“能力需求向量”(,).将在上的投影向量的模称为该应聘者在该岗位的“适合度”.其中四个岗位的“能力需求向量”如下:岗位能力需求向量会计技工推销员售后维修员(ⅰ)应聘者小明的测评结果为,试分析小明最适合哪个岗位.(ⅱ)已知小红在会计,技工和某岗位A的适合度分别为,,(,,2,3).若能根据这三个适合度求出小红的测评结果,求证:会计、技工和岗位A的“能力需求向量”能作为空间中的一组基底.第(4)题如图①,在等腰三角形中,,,,满足,.将沿直线折起到的位置,连接,,得到如图②所示的四棱锥,点满足.(Ⅰ)证明:平面;(Ⅱ)当时,求三棱锥的体积.第(5)题已知函数.(1)若,①求曲线在点处的切线方程;②求证:函数恰有一个零点;(2)若对恒成立,求的取值范围.。
上海市(新版)2024高考数学部编版真题(押题卷)完整试卷
上海市(新版)2024高考数学部编版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,,则一定有( ).A .B .C .D .第(2)题设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,,∣∣=∣∣,则∣ •∣的值一定等于A.以,为邻边的平行四边形的面积B .以,为两边的三角形面积C.,为两边的三角形面积D .以,为邻边的平行四边形的面积第(3)题向量,,那么向量在上的投影向量为( )A.B .C.D .第(4)题将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( )A .B .C .D .第(5)题若函数有零点,则a 的取值范围是( )A .[,]B .C.(0,)D .(,+∞)第(6)题命题,的否定为( ).A .,B .,C .,D .,第(7)题若直线与直线是曲线的两条切线,也是曲线的两条切线,则的值为( )A.B .0C .-1D .第(8)题在平面直角坐标系中,设都是锐角,若的始边都与轴的非负半轴重合,终边分别与圆交于点,且,则当最大时,的值为( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知定义在上的函数在上单调递增,且为偶函数,则( )A .的对称中心为B .的对称轴为直线C .D.不等式的解集为第(2)题随着人民生活水平的提高以及高新电影制作技术的研发,人们利用周末和假期去电影院感受电影的魅力.我国2010年至2018年年底电影年度票房总收入与观影总人数统计如图所示,则下列说法正确的是( )A.这九年中,票价的增加导致年度总票房收入逐年攀升B.这九年中,票房收入与观影人数两个变量之间是正相关C.这九年中,观影人数的增长率是逐年上升的D.这九年中,年度总票房收入增速最快的是2015年第(3)题已知双曲线:的左、右焦点分别为,,过原点的直线与双曲线交于两点,若四边形为矩形且,则下列正确的是()A.B.的渐近线方程为C.矩形的面积为D.的斜率为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,满足约束条件,则的最小值为______.第(2)题百年风雨兼程,世纪沧桑巨变.今年是中国共产党成立100周年,为庆祝100周年,向党的百年华诞献礼,“步入辉煌:中国共产党成立100周年主题影展”活动将于2021年1月8日在沪正式启动,并一直持续到2021年12月30日.某部门计划在5部不同的优秀作品(包含甲、乙两部作品)中任选3部参加影展,则甲作品被选中且乙作品未被选中的概率为___________.第(3)题,,则的最小值是___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某乡镇在实施乡村振兴的进程中,大力推广科学种田,引导广大农户种植优良品种,进一步推动当地农业发展,不断促进农业增产农民增收.为了解某新品种水稻品种的产量情况,现从种植该新品种水稻的不同自然条件的田地中随机抽取400亩,统计其亩产量x(单位:吨(t)).并以此为样本绘制了如图所示的频率分布直方图.(1)求这400亩水稻平均亩产量的估计值(同一组中的数据用该组区间的中点值代表,精确到小数点后两位);(2)若这400亩水稻的灌溉水源为河水和井水,现统计了两种水源灌溉的水稻的亩产量,并得到下表:亩产量超过0.7t亩产量不超过0.7t合计河水灌溉18090270井水灌溉7060130合计250150400能否有95%的把握认为亩产量与所用灌溉水源相关?0.1000.0500.0100.001k0 2.706 3.841 6.63510.828附:.第(2)题设数列的前项的积为,满足,,记(1)证明:数列是等差数列;(2)记,证明:第(3)题如图,在圆台中,分别为上、下底面圆的直径,且,,为异于的一条母线,点在线段上,且.(1)求证:平面;(2)若,求二面角的正弦值.第(4)题已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,所有球的大小、形状完全相同.(1)从1号箱中不放回地依次取2个球,每次取一个,求第一次取得红球且第二次取得仍是红球的概率;(2)若从1号箱中任取2个球放入2号箱中,再从2号箱中任取1个球,求取出的这个球是红球的概率.第(5)题已知函数.(1)讨论函数的单调性;(2)若对任意的,使恒成立,则实数的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前|
普通高中学业水平考试
数学仿真模拟试题B
考生须知:
1.本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟。
2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净。
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
选择题部分
一、选择题(本大题共18小题,每小题3分,共54分,每小题列出的四个选项中只有一个是符合
题目要求的,不选、多选、错选均不得分)
1.设全集为实数集R ,已知集合{}{}
212,3M x x N x x =-<<=≤,则图中阴影部分所表示的集合为
A .{
}
33x x ≤≤
B .{}
32x x ≤≤
C .{}32x x ≤<
D .{}
13x x -<≤
2.函数1
ln x y x
-=
的定义域为 A .()0+∞, B .()1+∞,
C .()()11-∞+∞,
, D .()()011+∞,,
3.已知π
4
α+
的终边上有一点(2-,则sin cos αα+= A .
233 B .6
3
C .233-
D .6
4.已知向量a ,b 满足22-==a b a b ,则向量a ,b 的夹角为 A .30︒
B .45︒
C .60︒
D .90︒
5.同时满足下列三个条件的函数为 ①在π0,
2⎛⎫
⎪⎝
⎭
上是增函数;②为R 上的奇函数;③最小正周期为π. A .tan y x = B .cos y x =
C .tan
2
x
y = D .sin y x = 6.设()()()2,0,
2,0
x x f x f f x x ⎧≥⎪=⎨+<⎪⎩,则()2f -=
A .2
B .1
C .
1
4
D .
12
7.已知直线:10l x a y +
-=的横截距与纵截距相等,则直线l 的倾斜角为
A .45︒
B .60︒
C .135︒
D .45︒或135︒
8.如图所示,表示阴影区域的二元一次不等式组是
A .20,2
0,220x
y x
y x
y
B .20,2
0,220x y x y x
y C .
20,2
0,220
x y x y x
y
D .20,2
0,220
x
y x
y x
y
9.中国古代数学著作《九章算术》中把四个面都为直角三角形的三棱锥称之为“鳖臑”.已知某鳖臑的三视图如图所示,则该鳖臑的外接球的表面积为
A .18π
B .25π
C .32π
D .34π
10.已知三个实数,,a b c 满足3
1log 32,2,23
b a
c ==
=,则实数,,a b c 的大小关系为
A .b a c <<
B .c a b <<
C .b c a <<
D .c b a <<
11.()()()(),00,sin x
f x x x
=
∈-ππ大致的图象是
A .
B .
C .
D .
12.已知空间中一条直线l 和三个平面,,αβγ,要得到结论α//β,必须满足下列条件中的
A .l //α,l //β,且l //γ
B .l ⊄γ,且l //α,l //β
C .α//γ且β//γ
D .l 与α,β所成的角相等
13.在ABC △中,3
sin cos 4A B π⎛⎫+
== ⎪
⎝⎭2b =,则ABC △的面积为 A 31 B .23
C 31
D .31或23+
14.已知直线20x y ++=与圆2
2
2220x y x y a ++-+=相切,则实数a 的值为
A .0
B .1-
C .2-
D .3-
15.设原命题:若2a b +≤,则1a ≤且1b ≤,则原命题、逆命题、否命题、逆否命题四个命题中,真命题的个数为
A .0
B .1
C .2
D .4
16.过点(),0M m 的直线交椭圆22
184
x y +=于,P Q 两点,且PQ 的中点为()2,1R ,则m =
A .1-
B .1
C .2
D .3
17.在等差数列
{}n a 中,已知811132
a a =+,则{}n a 的前9项和9S =
A .24
B .27
C .32
D .33
18.如图,正四棱锥E ABCD -中,异面直线EA 与BC 所成的角为α,直线EA 与平面ABCD 所
成的角为β,二面角E AD B --的平面角为γ,则
A .βαγ<<
B .γαβ<<
C .βγα<<
D .αβγ<<
非选择题部分
二、填空题(本大题共4小题,每空3分,共15分)
19.双曲线()22
221023x y a a a
-=≠的离心率为 ;渐近线方程为 .
20.已知
{}n a 是各项为正数的等比数列,且34132a a a ⋅=,2a 与43a 的等差中项为
13,设
212n n n b a a +=-,*n ∈N ,则数列{}n b 的前2n 项和2n T 为 .
21.若关于x 的不等式
1x k x ++<在R 上有实数解,则实数k 的取值范围是 .
22.已知函数(](]32
,1,,()+1,,1x x f x x x x +⎧-
∈-0⎪=⎨⎪∈0⎩
,且()g x mx m =+,若()()g x f x =在(]11-
,内有且仅有两个不同的根,则实数m 的取值范围是 . 三、解答题(本大题共3小题,共31分) 23.(本题满分10分) 在ABC
△中,
,,a b c 分别是角,,A B C 所对的边,已知向量
)
()3,1cos ,,A B a b =
+=m n ,且m //n .
(I )求角B 的大小;
24.(本题满分10分)
在直角坐标系xOy 中,椭圆
2C 的焦点与椭圆1C 的上焦点重合. (I )求椭圆1C 及抛物线2C 的标准方程; (Ⅱ)过点()2,0A -的直线l 交椭圆1C 于,B C 两点,求BOC △(O 为原点)面积的
取值范围.
25.(本题满分11分)
对于定义域相同的三个函数
()(),u x v x 和()f x ,若存在非零实数,αβ使得
()()()f x u x v x αβ=+,则称函数()f x 为函数()u x 和()v x 的生成函数,称函数()u x 和()v x 为一组基函数.
(I )若()2321f x x x =--是“基函数()()2,1u x x x v x mx =-+=-”的生成函数,求
实数m 的值;
(II )已知()21g
x x =+,试利用“基函数()()
()3
3,3x
x x u x g v x -⋅==”生成一个函数
()h x ,同时满足以下条件:①()[]()1,1h x x ∈-是奇函数;②()[]()1,1h x x ∈-的最大值为
8.求()h
x 的解析式.。