高中数学——基本不等式及其应用
高一数学上册《基本不等式及其应用》优秀教学案例
本案例强调学习过程中的反思与评价,教师及时对学生的学习情况进行反馈,帮助学生总结经验、改进学习方法。同时,学生通过自我反思,能够更加清晰地认识到自己的优点和不足,从而在今后的学习中更有针对性地进行提高。
5. 注重学生个体差异,实施差异化教学
在教学过程中,教师关注学生的个体差异,针对不同学生的特点,给予个性化的指导。这种差异化教学策略有助于提高每个学生的潜能,使他们在原有基础上得到最大程度的发展。同时,教师鼓励学生提问、发表见解,充分调动他们的学习积极性,提高教学质量。
2. 运用问题驱动的教学方法,引导学生从实际问题中抽象出数学模型,学会用数学语言表达和解决问题。
3. 设计多样化的练习题,帮助学生巩固基本不等式的知识,提高解题技能。
4. 引导学生总结解题思路,培养他们举一反三、触类旁通的能力。
(三)情感态度与价值观
1. 激发学生学习数学的兴趣,培养他们勇于探索、克服困难的品质。
2. 培养学生运用数学知识解决实际问题的意识,使他们认识到数学在生活中的重要性。
3. 通过基本不等式的学习,让学生体会到数学的简洁、优美,增强他们对数学美的鉴赏能力。
4. 培养学生的批判性思维,使他们敢于对问题提出自己的见解,形成独立思考的习惯。
5. 引导学生树立正确的价值观,认识到数学学习不仅仅是为了考试,更是为了培养自己的逻辑思维和解决问题的能力,为未来的发展奠定基础。
3. 各小组汇报讨论成果,教师点评并总结。
(四)总结归纳
1. 教师引导学生回顾本节课所学的基本不等式的定义、性质和应用。
2. 总结基本不等式的解题思路和方法,强调关键步骤。
3. 提醒学生注意基本不等式的使用条件,避免滥用。
(五)作业小结
-基本不等式及其应用
例2.求函数
y
4x
2
1 4x
5
(x
5 4
)
的最大
值.
解:y
4x
2
1 4x
5
4x
5
1 4x
5
3.
x
5 4
,
4
x
5
0.
y
[(4
x
5)
4
1 x
] 5
3
≤
2
3
1.
当且仅当
5
4x
1 5 4x
,即x时取1 “=”号.
即当x=1时, 函数的最大值为1.
二不定,要变形
第25页,共27页。
例3.求函数 y x2 5 的最小值. x2 4
第26页,共27页。
例4.已知正数x, y满足2x+y=1, 求
1 x
的1y 最小值.
解:
1 x
1 y
2x x
y
2x y
y
3
y x
2yx≥
3
2
2.
“1”代换 法
当且仅当 y 2x xy
而
y
2x,
2 x y 1,
, 即 y 2x
x
1 2
2
y 2
时取“=”号.
2 2
当x 1 , y 2 时, 2 2 2 2
第4页,共27页。
利用基本不等式证明简单
不等式
例 1 已知 x>0,y>0,z>0. 求证:xy+xz xy+yz xz +yz ≥8.
由题意,先局部运用基本不等式,再利用不等式的性质即可得证. 证明 ∵x>0,y>0,z>0,
【高中数学】高中数学知识点:基本不等式及其应用
【高中数学】高中数学知识点:基本不等式及其应用基本不等式:
(当且仅当a=B时,取“=”号);
变式:①
,
(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
②
;③
;④
;
对基本不平等的理解:
(1)基本不等式的证明是利用重要不等式推导的,即
,即
(2)基本不等式又称为均值定理、均值不等式等,其中
的算术平均值,
的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.(3)在平均不平等中:① 当a=B时,取等号,即
对于两个正数x,y,若已知xy,x+y,
如果其中一个为固定值,则可获得其余值的最大值:
如:(1)当xy=p(定值),那么当x=y时,和x+y有最小值2
,
;
(2) X+y=s(常量值),那么当X=y时,乘积XY具有最大值
,
;
(3)已知x
二
+y
二
=p,则x+y有最大值为
,。
解决基本不等式问题时:
注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。
使用基本不等式比较实数的大小:
(1)注意均值不等式的前提条件.
(2)通过加减项,得到了中值定理的形式
(3)注意“1”的代换.
(4)灵活改变基本不等式的形式,注意其变形形式的应用。
重要的不平等
的形式可以是
或
,还可以是
我们不仅要掌握其原始形式,还要掌握其几种变形形式,以及应用公式的逆运算
(5)合理配组,反复应用均值不等式。
基本不等式的几个变形公式:。
2023年高三一轮复习专题一基本不等式及其应用-教师版
高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
高考数学一轮复习第一章第五讲基本不等式及其应用课件
(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,
当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤
一元二次不等式、线性规划、基本不等式及其应用
contents
目录
• 一元二次不等式 • 线性规划 • 基本不等式 • 一元二次不等式、线性规划、基本不等
式的综合应用
01 一元二次不等式
一元二次不等式的定义与性质
定义
形如ax^2+bx+c>0或 ax^2+bx+c<0的不等式,其中 a≠0。
性质
与一元二次方程具有相同的根的判 别式Δ=b^2-4ac,并且不等式的 解集与方程的根有密切关系。
一元二次不等式的解法
判别式法
根据Δ的大小,判断不等式的解集。 当Δ>0时,不等式有两个实根;当 Δ=0时,不等式有一个重根;当Δ<0 时,不等式无实根。
因式分解法
配方法
将不等式左边进行配方处理,然后根 据配方的结果判断不等式的解集。
基本不等式的定义与性质
定义
基本不等式是数学中一个重要的不等式,它反映了两个正数的平方和与它们的 平均数的平方之间的关系。
性质
基本不等式具有传递性、加法性质、乘法性质等。
基本不等式的证明
证明方法
利用数学归纳法、反证法、放缩法等证明方法来证明基本不 等式。
证明过程
通过对不等式的变形、化简等操作,逐步推导出基本不等式 的证明过程。
将不等式左边进行因式分解,然后根 据因式的正负判断不等式的解集。
一元二次不等式的应用
解决实际问题
一元二次不等式在解决实际问题中有 着广泛的应用,如经济问题、工程问 题等。
在数学领域中的应用
一元二次不等式是数学中的基础知识 点,对于后续学习其他数学分支有着 重要的铺垫作用。
02 线性规划
线性规划的基本概念
2024年新高考版数学专题1_2.2 基本不等式及不等式的应用
x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.
2023年高考数学(文科)一轮复习——基本不等式及其应用
第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
高考数学复习第七章不等式推理与证明7.2基本不等式及其应用市赛课公开课一等奖省名师优质课获奖PPT课
x=3 时,等号成立.
所以当 f(x)取得最小值时,x=3,即 a=3.
18/37
-19考点1
考点2
考点3
考向二 求含有等式条件函数最值
例3(1)(河南中原学术联盟仿真)若直线ax+by-1=0(a>0,b>0)过曲线
1 2
+
y=1+sin πx(0<x<2)对称中心,则
最小值为
.
(2)已知x>0,y>0,x+3y+xy=9,则x+3y最小值为
· =3+2 2,
2
1
2
,即
a=
2-1,b=22时等号成立,此时
+
的最
+
当且仅当 =
小值为 3+2 2.
9-3
.
1+
(2)(方法一)由已知得 x=
9-3
12
∵x>0,y>0,∴y<3,∴x+3y= 1+ +3y=1++(3y+3)-6
≥2
12
·
(3
1+
+ 3)-6=6,
A.(-∞,-1)
B.(-∞,2 2-1)
2
2
x
∵3 +32-1)
≥2 D.(-2
2 当且仅当3
= 3 ,即 =
C.(-1,2
2-1,2 2-1)
log 3 2时,等号成立 ,
关闭
2
∴3x+3 的最小值为 2 2.
2025高考数学一轮复习-1.4-基本不等式及其应用【课件】
4 3.(角度 3)已知 5x2y2+y4=1(x,y∈R),则 x2+y2 的最小值是__5______.
【解析】 解法一:由 5x2y2+y4=1,可得 x2=1- 5y2y4,由 x2≥0,可得 y2∈(0,1],则
x2+y2=1- 5y2y4+y2=1+5y42y4=15
4y2+y12
≥1·2 5
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
2.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( C )
A.80
B.77
C.81
D.82
【解析】 ∵x>0,y>0,∴x+2 y≥ xy, 即 xy≤x+2 y2=81, 当且仅当 x=y=9 时,(xy)max=81.故选 C.
3.若 x>0,则 2x+3x的最小值为__2___6___. 【解析】 ∵x>0,∴2x+3x≥2 2x·3x=2 6.当且仅当2x=3x,即x= 32时等号成立
第一章 集合与常用逻辑用语、不等式
第四节 基本不等式及其应用
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当 a=b 时取等号. 2.算术平均数与几何平均数 设 a>0,b>0,则 a,b 的算术平均数为a+2 b,几何平均数为 ab,基本不等式可叙述 为两个正数的几何平均数不大于它们的算术平均数,当两个正数相等时两者相等.
高考数学-第4节-基本不等式及其应用
错解二:z=2+x2xyy2-2xy=(x2y+xy)-2≥2 x2y·xy-2=2( 2-1),所以 z 的最小值是
2( 2-1). 错解分析:错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式
一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的.
正解:z=(x+1x)(y+1y)=xy+x1y+yx+xy=xy+x1y+x+yx2y-2xy=x2y+xy-2,
(1)利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意, 明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后用基本不等式求解.
(2)在求所列函数的最值时,若用基本不等式时,等号取不到,可利用函数单调性求解.
返回目录
备考指南
基础梳理
典例研习
考点演练
变式探究 31:经观测,某公路段在某时段内的车流量 y(千辆/小时)与汽车的平均速度 v(千米/小时)之间有函数关系 y=v2+39v2+0v1600(v>0).在该时段内,当汽车的平均速度 v 为 多少时流量 y 最大?最大车流量为多少?
常用的几个重要不等式:
(1)a2+b2≥2ab(a,b∈R).
(2)ab≤(a+2 b)2(a,b∈R).
(3)(a+2 b)2≤a2+2 b2(a,b∈R).
(4)ba+ab≥2(a·b>0).
(5)a1+2 b1≤ ab≤a+2 b≤
a2+2 b2(a>0,b>0).
返回目录
备考指南
基础梳理
典例研习
1 (A)8 (B)4 (C)1 (D)4 思路点拨:先由已知写出 a 与 b 的关系式,然后用基本不等式求解. 解析: 3是 3a 与 3b 的等比中项⇒3a·3b=3⇒3a+b=3⇒a+b=1,∵a>0,b>0, ∴ ab≤a+2 b=12⇒ab≤14. ∴1a+1b=aa+bb=a1b≥11=4.当且仅当 a=b=12时,等号成立.故选 B.
基本不等式及其应用
基本不等式及其应用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值. 2.函数y =x +1x的最小值是2吗?提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x 无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( × ) (2)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(3)(a +b )2≥4ab (a ,b ∈R ).( √ )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二 教材改编2.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A.80 B.77 C.81 D.82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝⎛⎭⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81.3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2, 则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤⎣⎡⎦⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 易错自纠4.“x >0”是“x +1x ≥2成立”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 C解析 当x >0时,x +1x≥2x ·1x=2. 因为x ,1x 同号,所以若x +1x ≥2,则x >0,1x >0,所以“x >0”是“x +1x ≥2成立”的充要条件,故选C.5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A.1+ 2B.1+ 3C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( ) A.2 B.3 C.4 D.5 答案 D解析 由3x +y =5xy ,得3x +y xy =3y +1x =5,所以4x +3y =(4x +3y )·15⎝⎛⎭⎫3y +1x =15⎝⎛⎭⎫4+9+3y x +12x y ≥15(4+9+236)=5, 当且仅当3y x =12xy ,即y =2x 时,“=”成立,故4x +3y 的最小值为5.故选D.题型一 利用基本不等式求最值命题点1 配凑法例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立. 命题点2 常数代换法例2 (2019·郑州模拟)已知首项与公比相等的等比数列{a n }中,满足a m a 2n =a 24(m ,n ∈N +),则2m +1n 的最小值为( ) A.1 B.32 C.2 D.92答案 A解析 由题意可得,a 1=q ,∵a m a 2n =a 24,∴a 1·q m -1·(a 1·q n -1)2=(a 1·q 3)2,即q m ·q 2n =q 8, 即m +2n =8.∴2m +1n =(m +2n )⎝⎛⎭⎫2m +1n ×18 =⎝⎛⎭⎫2+m n +4n m +2×18 ≥()4+24×18=1.当且仅当m =2n 时,即m =4,n =2时,等号成立. 命题点3 消元法例3 已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3ba +b ( )A.有最大值145B.有最小值145C.有最小值3D.有最大值3答案 B解析 ∵a 2-b +4≤0,∴b ≥a 2+4, ∴a +b ≥a 2+a +4.又∵a ,b >0,∴a a +b ≤aa 2+a +4,∴-a a +b ≥-a a 2+a +4,∴u =2a +3b a +b =3-a a +b≥3-a a 2+a +4=3-1a +4a +1≥3-12a ·4a +1=145, 当且仅当a =2,b =8时取等号.故选B.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (3)条件最值的求解通常有三种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法;三是配凑法.跟踪训练1 (1)设x >0,y >0,若x lg 2,lg 2,y lg 2成等差数列,则1x +9y 的最小值为( )A.8B.9C.12D.16 答案 D解析 ∵x lg 2,lg 2,y lg 2成等差数列, ∴2lg 2=(x +y )lg 2, ∴x +y =1.∴1x +9y=(x +y )⎝⎛⎭⎫1x +9y≥10+2y x ·9xy=10+6=16, 当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.故选D. (2)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是( )A.2B.3C.4D.6 答案 B解析 ∵a ,b ,c 都是正数,且a +b +c =2, ∴a +b +c +1=3, 且a +1>0,b +c >0. ∴4a +1+1b +c =13·(a +1+b +c )·⎝⎛⎭⎫4a +1+1b +c =13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3.当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.故选B.题型二 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 (2018·洛阳统考)在△ABC 中,点P 满足BP →=2PC →,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=mAB →,AN →=nAC →(m >0,n >0),则m +2n 的最小值为( ) A.3 B.4 C.83 D.103答案 A解析 ∵AP →=AB →+BP →=AB →+23()AC →-AB → =13AB →+23AC →=13m AM →+23n AN →, ∵M ,P ,N 三点共线,∴13m +23n=1,∴m +2n =(m +2n )⎝⎛⎭⎫13m +23n =13+43+2n 3m +2m 3n ≥53+22n 3m ×2m 3n =53+43=3, 当且仅当m =n =1时等号成立. 命题点2 求参数值或取值范围例5 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8 答案 B解析 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +ay 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.思维升华 求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练2 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( ) A.32B.334C.32D.53答案 C解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin Bsin C=2c c +2b +bc=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12≥284+b 2·b 2+48-12=2-12=32,当且仅当b =2,c =4时,等号成立,故选C.(2)已知函数f (x )=ax 2+bx (a >0,b >0)的图像在点(1,f (1))处的切线的斜率为2,则8a +bab的最小值是( )A.10B.9C.8D.3 2 答案 B解析 由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b , 由函数f (x )的图像在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2a +b =2,所以8a +b ab =1a +8b =12⎝⎛⎭⎫1a +8b (2a +b )=12⎝⎛⎭⎫10+b a +16a b ≥12⎝⎛⎭⎫10+2b a ·16a b =12(10+8)=9, 当且仅当b a =16ab,即a =13,b =43时等号成立,所以8a +b ab的最小值为9,故选B.利用基本不等式求解实际问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法构建模型解决问题.过程主要包括:在实际情景中从数学的视角发现问题、提出问题、分析问题、建立模型、确定参数、计算求解、检验结果、改进模型,最终解决实际问题.例 某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2, ∴x =3-2m +1,每万件产品的销售价格为1.5×8+16xx (万元),∴2019年的利润y =1.5x ×8+16xx -8-16x -m=4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0时,16m +1+(m +1)≥216=8,∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.素养提升 利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.1.函数f (x )=x 2+4|x |的最小值为( )A.3B.4C.6D.8 答案 B解析 f (x )=x 2+4|x |=|x |+4|x |≥24=4,当且仅当x =±2时,等号成立,故选B.2.若x >0,y >0,则“x +2y =22xy ”的一个充分不必要条件是( ) A.x =y B.x =2y C.x =2且y =1 D.x =y 或y =1答案 C解析 ∵x >0,y >0,∴x +2y ≥22xy ,当且仅当x =2y 时取等号.故“x =2且y =1 ”是“x +2y =22xy ”的充分不必要条件.故选C.3.(2018·南昌模拟)已知正数a ,b 满足a +b =1,则4a +1b 的最小值为( )A.53 B.3 C.5 D.9 答案 D解析 由题意知,正数a ,b 满足a +b =1, 则4a +1b =⎝⎛⎭⎫4a +1b (a +b ) =4+1+4b a +ab≥5+24b a ·ab=9, 当且仅当4b a =a b ,即a =23,b =13时等号成立,所以4a +1b的最小值为9,故选D.4.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2 答案 C解析 由lg a +lg b =lg(a +b ),得lg(ab )=lg(a +b ),即ab =a +b ,则有1a +1b =1,所以a +b=⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4,故选C.5.已知函数f (x )=e x 在点(0,f (0))处的切线为l ,动点(a ,b )在直线l 上,则2a +2-b 的最小值是( )A.4B.2C.2 2D. 2答案 D 解析 由题意得f ′(x )=e x ,f (0)=e 0=1,k =f ′(0)=e 0=1.所以切线方程为y -1=x -0,即x -y +1=0,∴a -b +1=0,∴a -b =-1,∴2a +2-b ≥22a ·2-b =22a -b =22-1= 2 ⎝⎛⎭⎫当且仅当a =-12,b =12时取等号,故选D. 6.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0) 答案 D解析 由AC =a ,BC =b ,可得圆O 的半径r =a +b 2, 又OC =OB -BC =a +b 2-b =a -b 2, 则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b 22, 再根据题图知FO ≤FC ,即a +b 2≤a 2+b 22,当且仅当a =b 时取等号.故选D. 7.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.答案 6解析 由xy +x -y -10=0,得x =y +10y +1=9y +1+1, ∴x +y =9y +1+1+y ≥29y +1·(1+y )=6,当且仅当9y +1=1+y ,即y =2时,等号成立. 8.(2019·重庆模拟)设正项等比数列{a n }的前n 项和为S n ,若S 7-S 5=3(a 4+a 5),则4a 3+9a 7的最小值为________.答案 4解析 设正项等比数列{a n }的公比为q (q >0),∵S 7-S 5=a 7+a 6=3(a 4+a 5),∴a 7+a 6a 5+a 4=q 2=3. ∴4a 3+9a 7=4a 3+9a 3q 4=4a 3+1a 3≥24a 3·1a 3=4, 当且仅当4a 3=1a 3,即a 3=12时等号成立. ∴4a 3+9a 7的最小值为4. 9.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,且△ABC 的面积为334,则a 的最小值为________.答案 3解析 由题意得b 2+c 2-a 2=bc ,∴2bc cos A =bc ,∴cos A =12,∴A =π3. ∵△ABC 的面积为334,∴12bc sin A =343,∴bc =3. ∵a 2=b 2+c 2-bc ,∴a 2≥2bc -bc =bc =3(当且仅当b =c 时,等号成立),∴a ≥ 3.10.已知a ,b 为正实数,且(a -b )2=4(ab )3,则1a +1b的最小值为________. 答案 2 2解析 由题意得(a -b )2=(a +b )2-4ab ,代入已知得(a +b )2=4(ab )3+4ab ,两边同除以(ab )2得⎝⎛⎭⎫a +b ab 2=4(ab )3a 2b 2+4ab a 2b 2 =4⎝⎛⎭⎫ab +1ab ≥4·2ab ·1ab=8, 当且仅当ab =1时取等号.所以1a +1b ≥22,即1a +1b的最小值为2 2. 11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2, 此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020,当且仅当5y x =2x y时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 12.某人准备在一块占地面积为1 800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 的值最大,则x ,y 的值各为多少?解 (1)由题意可得xy =1 800,b =2a ,则y =a +b +3=3a +3,所以S =(x -2)a +(x -3)b =(3x -8)a=(3x -8)y -33=1 808-3x -83y (x >3,y >3). (2)方法一 S =1 808-3x -83×1 800x=1 808-⎝⎛⎭⎫3x +4 800x ≤1 808-23x ×4 800x=1 808-240=1 568, 当且仅当3x =4 800x ,即x =40时等号成立,S 取得最大值,此时y =1 800x=45, 所以当x =40,y =45时,S 取得最大值.方法二 设S =f (x )=1 808-⎝⎛⎭⎫3x +4 800x (x >3), 则f ′(x )=4 800x 2-3=3(40-x )(40+x )x 2, 令f ′(x )=0,则x =40,当0<x <40时,f ′(x )>0;当x >40时,f ′(x )<0.所以当x =40时,S 取得最大值,此时y =45.13.(2018·郑州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B,b =4,则△ABC 面积的最大值为( ) A.4 3 B.2 3 C.3 3 D. 3答案 A解析 ∵2a -c b =cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C=sin(B +C )=sin A .又sin A ≠0,∴cos B =12. ∵0<B <π,∴B =π3.由余弦定理得b 2=16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时等号成立.∴S △ABC =12ac sin π3≤12×16×32=4 3. 故△ABC 面积的最大值为4 3.故选A.14.已知P 为椭圆x 24+y 23=1上一个动点,过点P 作圆(x +1)2+y 2=1的两条切线,切点分别是A ,B ,则P A →·PB →的取值范围为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎦⎤32,569C.⎣⎡⎦⎤22-3,569 D.[)22-3,+∞答案 C解析 如图,由题意设∠APB =2θ,则|P A |=|PB |=1tan θ, ∴P A →·PB →=|P A →||PB →|cos 2θ=1tan 2θ·cos 2θ =1+cos 2θ1-cos 2θ·cos 2θ, 设cos 2θ=t ,则P A →·PB →=t (1+t )1-t =(1-t )+21-t-3 ≥2(1-t )·21-t-3=22-3, 当且仅当1-t =21-t, 即t =1-2时等号成立,此时cos 2θ=1- 2.又当点P 在椭圆的右顶点时,sin θ=13,∴cos 2θ=1-2sin 2θ=79, 此时P A →·PB →最大,且最大值为1+791-79×79=569. ∴P A →·PB →的取值范围是⎣⎡⎦⎤22-3,569.故选C.15.已知曲线C :y 2=2x +a 在点P n (n ,2n +a )(a >0,n ∈N )处的切线l n 的斜率为k n ,直线l n 交x 轴、y 轴分别于点A n (x n ,0),B n (0,y n ),且|x 0|=|y 0|. 给出以下结论:①a =1;②当n ∈N +时,y n 的最小值为233; ③当n ∈N +时,k n >2sin 12n +1; ④当n ∈N +时,记数列{}k n 的前n 项和为S n ,则S n <2(n +1-1). 其中,正确的结论有______.(写出所有正确结论的序号) 答案 ①②④解析 令y =12(2),x a +所以y ′=11221(2)2(2),2x a x a --⨯=++ k n =12(2),n a -+所以l n :y -2n +a =12(2)(),n a x n -+- 所以x 0=-a ,y 0=a ,所以a =a ,所以a =1,①对;令t =2n +1≥3,所以y n =2n +1-n 2n +1=t -t 2-12t =12t +12t , 所以y n ≥123+123=233,②对; 令f (x )=x -2sin x ⎝⎛⎭⎫x ∈⎝⎛⎦⎤0,13, 所以f ′(x )=1-2cos x <0,所以f (x )<f (0)=0, 即12n +1<2sin 12n +1,③错; 因为k n =12n +1<2n +1+n =2(n +1-n ), 所以S n =k 1+k 2+…+k n <2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1),④对.16.已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为46,求该正三棱柱外接球表面积的最小值.解 设BC =a ,CC 1=b ,则ab =46,底面三角形外接圆的半径为r ,则a sin 60°=2r ,∴r =33a . 所以R 2=⎝⎛⎭⎫b 22+⎝⎛⎭⎫33a 2=b 24+a 23≥2b 24·a 23=29612=42, 当且仅当a =32b 时,等号成立. 所以该正三棱柱外接球表面积的最小值为4π×42=162π.。
基本不等式及其应用
基本不等式在几何问题中的应用
1
应用一
基本不等式在三角形中的几何推导和实
应用二
2
际问题解决。
基本不等式在多边形的面积和边长关系
中的应用。
3
应用三
基本不等式在圆的内切多边形中的应用 和优化。Leabharlann 基本不等式在优化问题中的应用
最大化问题
如何利用基本不等式找到函数 的最大值和最优解。
基本不等式在函数中的应用
函数类型 线性函数 二次函数 指数函数
基本不等式应用
基本不等式在线性函数图像和方程的解空间中的 应用。
基本不等式在二次函数的极值和图像形状中的应 用。
基本不等式在指数函数的收敛性和增长趋势中的 应用。
基本不等式示例与证明
示例一
通过具体示例演示基本不等式的 应用和证明过程。
证明方法
介绍基本不等式的证明方法和常 用技巧。
示例二
另一个基本不等式的示例及其严 密证明。
基本不等式的常见应用
应用一
基本不等式在金融领域的应用, 如投资和利率计算。
应用二
基本不等式在物理学中的应用, 如力学和电磁学等。
应用三
约束条件问题
基本不等式在满足约束条件的 最优化问题中的应用。
最小化问题
如何利用基本不等式找到函数 的最小值和最优解。
基本不等式在数列中的应用
1 数列的收敛性
基本不等式在数列的收敛性判断中的应用和证明。
2 数列的上下界
通过基本不等式确定数列的上下界。
3 数列递推关系
基于基本不等式推导数列递推关系和极限。
基本不等式及其应用
高中高一数学上册《基本不等式及其应用》优秀教学案例
在教学过程中,教师应以身作则,关心学生,关注他们的情感态度和价值观的培养,使学生在学习数学的过程中,形成正确的价值观和积极的态度。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握基本不等式及其应用,教师应精心创设教学情境,将抽象的数学概念具体化、生活化。可以通过以下方式实施:
3.小组合作学习,提高学生的团队协作能力
本案例注重小组合作学习,让学生在合作中共同解决问题。这种教学方式有助于培养学生的团队协作能力和沟通能力,使他们学会倾听、表达、交流、分享,提高解决问题的效率。
4.反思与评价相结合,提升学生的自我监控能力
在教学过程中,教师引导学生进行自我反思和同伴评价,培养他们的批判性思维和自我监控能力。通过反思与评价,学生能够更好地总结经验,发现不足,从而在今后的学习中取得更好的成绩。
2.能够运用基本不等式分析实际问题,建立不等式关系,从而解决具体问题。
3.学会运用基本不等式对数学表达式进行简化、变形,提高代数运算能力。
4.能够运用基本不等式分析函数的性质,解决函数相关的问题。
在教学过程中,教师应关注学生对基本不等式的理解和运用,通过典型例题、练习题和拓展题,帮助学生巩固知识,提高解题技能。
1.教师首先给出基本不等式的定义,如算术平均数大于等于几何平均数等。
2.接着,教师通过具体实例,讲解基本不等式的性质,如对称性、可加性等。
3.教师引导学生掌握基本不等式的证明方法,如比较法、综合法等。
4.教师通过典型例题,讲解基本不等式的应用,让学生感受基本不等式的价值。
(三)学生小组讨论
在学生小组讨论环节,教师将设计具有挑战性的问题,引导学生进行合作探究。
高考数学 《基本不等式及其应用》
基本不等式及其应用主标题:基本不等式及其应用副标题:为学生详细的分析基本不等式及其应用问题的高考考点、命题方向以及规律总结。
关键词:不等式,基本不等式及其应用,知识总结难度:3重要程度:5考点剖析:1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.命题方向:1.对基本不等式的考查,主要是利用不等式求最值,且常与函数、数列、解析几何等知识结合在一起进行考查;2.本考点主要以选择题或填空题的形式进行考查,有时也以简答题的形式考查利用基本不等式解决最值问题.规律总结:两种方法:(1)合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和为定值.(2)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法.两个误区:(1)在利用基本不等式求最值(值域)时,过多地关注形式上的满足,极容易忽视符号和等号成立条件的满足,这是造成解题失误的重要原因.如函数y =1+2x +3x(x<0)有最大值1-26而不是有最小值1+2 6.(2)当多次使用基本不等式时,一定要注意每次是否都能保证等号成立,并且要注意取等号条件的一致性,否则就会出错.知识点总结:一、基本不等式(1)a 2+b 2≥2ab(a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R) (3)a 2+b 22≥(a +b 2)2(a ,b ∈R) (4)b a +a b≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b.三、算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四个“平均数”的大小关系;a ,b ∈R+:当且仅当a =b 时取等号.四、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P.(2)如果和x +y 是定值S ,那么当x =y 时积xy 有最大值14S 2. 强调:在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等”.当条件不完全具备时,应创造条件.正:两项必须都是正数;定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。
高考数学第7章不等式推理与证明第四节基本不等式及其应用课件理
[方法归纳] 有关函数最值的实际问题的解题技巧 (1)根据实际问题抽象出函数的解析式,再利用基本不等式求 得函数的最值;(2)设变量时一般要把求最大值或最小值的变 量定义为函数;(3)解应用题时,一定要注意变量的实际意义 及其取值范围;(4)在应用基本不等式求函数最值时,若等号 取不到,可利用函数的单调性求解.
函数单调性求最值]函数 f(x)=x+1x在[2,+∞)上的最小值为 ________.
解析 若 x=1x,则 x=1∉[2,+∞),函数 f(x)在[2,+∞)上
单调递增,所以最小值为 f(2)=2+12=52.
答案
5 2
[当在分母中使用基本不等式或式子前有负号时,注意不等号
方向的改变]
(2)若 x>0,则 y=x2+xx+4有最______值为________.
1≥0恒成立,则实数a的取值范围是( )
A.(-∞,-2)
B.[-2,+∞)
C.[-2,2]
D.[0,+∞)
解析 (1)作出不等式组表示的可行域如图阴影部分所示, 由图可知,当目标函数 z=ax+by(a>0,b>0) 过点 A(1,1)时,z 取得最大值, ∴a+b=4, ∴ab≤a+2 b2=4.(当且仅当 a=b=2 时取等号), 又∵a>0,b>0, ∴ab∈(0,4],故选 B.
答案 大 -1
突破利用基本不等式求最值的方法
(1)利用基本不等式解决条件最值的关键是构造和为定值或乘 积为定值,主要有两种思路: ①对条件使用基本不等式,建立所求目标函数的不等式求解. ②条件变形,进行“1”的代换求目标函数最值. (2)有些题目虽然不具备直接用基本不等式求最值的条件,但 可以通过添项、分离常数、平方等手段使之能运用基本不等 式.常用的方法还有:拆项法、变系数法、凑因子法、分离常 数法、换元法、整体代换法等.
基本不等式及应用
基本不等式的推导和证明过程
Step 1
通过数学推导和运算,将不等式简化,并且保持其等价性。
Step 2
使用数学定律和性质,对不等式进行变形和化简,以达到所需的形式。
Step 3
通过合理的推理和论证,证明不等式的正确性和有效性。
基本不等式的应用举例
数学竞赛
基本不等式是解决数学竞赛问题中常用的工具,它 能够帮助我们证明数学论断,并找到最优解。
基本不等式及应用
在这个演示中,我们将探讨基本不等式的定义、性质、推导和证明过程。还 将展示它在数学竞赛和实际问题中的重要性,以及其发展和拓展。
基本不等式的定义和性质
1 定义
基本不等式是描述两个数或表达式之间相对大小关系的不等式。
2 性质
基本不等式满足数学运算的性质,如传递性、加减法的保持性和乘除法的保持性。
基本不等式在实际问题中的应用
资源分配
通过基本不等式,我们可以合 理分配资源,以满足不同需求。
最优决策
基本不等式可以帮助我们做出 最优决策,以最大化效益。
风险评估
利用基本不等式,我们可以评 估风险和潜在损失,从而做出 明智的决策。
基本不等式的发展和拓展
1
古希腊时期
欧几里得的《几何原本》中首次提出了基本的几何不等式。
实际问题
在实际生活中,我们可以运用基本不等式来解决各 种问题,如优化资源分配、最大化收益等。
基本不等式在数学竞赛中式帮助竞赛选手 在有限时间内快速解决问 题,获得高分。
2 拓展思维能力
通过应用基本不等式,选 手可以培养逻辑思考和问 题解决的能力。
3 提高竞争力
熟练掌握基本不等式的应 用,能够在竞争激烈的数 学竞赛中占据优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式及其应用
一.小题回顾
1.函数2
2
94y x x =+的最小值为 ,此时x = . 2.当1a >时,11a a +-的最小值为 3.若33log log 4m n +=,则m n +的最小值为 .
4.已知0x >,0y > ,且2520x y +=,那么lg lg x y +的最大值为 .
5.已知正数x ,y 满足21x y +=,则
11x y +的最小值为 .
二.知识梳理
1.当0a >,0b >时,称 为a ,b 的算术平均数;
称 为a ,b 的几何平均数.
2.如果a ,b 是正数,那么称 为基本不等式.(当且仅当时取“=”)
3.基本不等式常见变形: .
三.例题精析
例1.(1)已知0x <,求函数2()2f x x x =++
的最大值; (2)已知205
x <<,求函数()(25)f x x x =-的最大值; (3)若,(0,)x y ∈+∞,且
821x y +=,求x y +的最小值.
例2.(1)求函数(5)(2)()1
x x f x x ++=
+(1)x >-的值域; (2)求函数21()(1)1x f x x x x -=>++的值域.
例3.(1)若不等式220x kx k -->对任意1x >-的实数恒成立,求实数k 的取值范围;
(2)设0k >,若关于x 的不等式151
kx x +-≥对任意1+x ∈∞(,)恒成立,求实数k 的最小值.
四.反思小结
五.巩固训练
1.函数312(0)y x x x
=--
<的最小值为 . 2.当312x <<时,函数(3)(12)x x y x
--=的最大值为 .
3.若实数a ,b 满足12a b +=,则ab 的最小值为 .
4. 要制作一个容积为4 m 3、高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 元.
5.用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长为a ,宽为b ()a b >,墙角的两堵墙面和地面两两互相垂直,如何放置才能使这个空间最大?。