2.9 函数模型及其应用

合集下载

高三数学一轮复习 2.9函数模型及其应用课件

高三数学一轮复习 2.9函数模型及其应用课件

f1 x , x D 1,
(6)分段函数模型:
y
f
2
x
,
x
D 2,
图象特点是每一段自变量
f
n
x

x
D
n
,
变化所遵循的规律不同.可以先将其当作几个问题,将各段的变
化规律分别找出来,再将其合到一起,要注意各段自变量的取值
范围,特别是端点.
3.建立函数模型解决实际应用问题的步骤(四步八字) (1)审题:阅读理解、弄清题意,分清条件和结论,理顺数量关系, 弄清数据的单位等. (2)建模:正确选择自变量,将自然语言转化为数学语言,将文字 语言转化为符号语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学问题还原为实际问题.
5.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期
是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数
关系式是
.
【解析】已知本金为a元,利率为r,则 1期后本利和为y=a+ar=a(1+r), 2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2, 3期后本利和为y=a(1+r)3, … x期后本利和为y=a(1+r)x,x∈N. 答案:y=a(1+r)x,x∈N
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是( )A.①③Fra bibliotekB.①④
C.②③
D.②④
【解析】选C.对于图(2),当x=0时,函数值比图(1)中的大,表示 成本降低,两直线平行,表明票价不变,故②正确;对于图(3),当 x=0时,函数值不变表示成本不变,当x>0时,函数值增大表明票 价提高,故③正确.

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用五年高考考点 函数的实际应用1.(2013天津,8,5分)已知函数|).|1()(x a x x f +=设关于x 的不等式)()(x f a x f <+的解集为A .若,]21,21[A ⊆-则实数a 的取值范围是( ) )0,251.(-A )0,231.(-B )231,0()0,251.(+- C )251,.(--∞D2.(2012北京,8,5分)某棵果树前n 年的总产量S 。

与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )5.A 7.B 9.C 11.D3.(2013湖南.16,5分)设函数,)(xx x c b a x f -+=其中.0,0>>>>b c a c(1)记集合c b a c b a M ,,1),,{(=不能构成一个三角形的三条边长,且a=b},则M c b a ∈),,(所对应的)(x f 的零点的取值集合为(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号);0)(),1,(>-∞∈∀x f x ①,R x ∈∃②使c b a xx x ,,不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则),2,1(∈∃x 使.0)(=x f4.(2013课标全国I .21,12分)设函数)(,)(2x g b ax x x f ++=).(d cx e x +=若曲线)(x f y =⋅和曲线)(x g y =都过点P(O ,2),且在点P 处有相同的切线.24+=x y (1)求a ,b ,c ,d 的值;(2)若2-≥x 时,),()(x kg x f ≤求k 的取值范围.5.(2012江苏,17,14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程k x k kx y <+-=22)1(201)0>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.6.(2012上海.21,14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线;49122x y =②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t . (1)当t=0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?智力背景上帝之数—— 神秘的完美数 所谓的上帝之数就是这样的一些完美数,它的所有的真因予(包括1, 但是不包括本身)之和正好等于这个数本身.例如:;3216;3216++=⨯⨯=142174128⨯⨯=⨯⨯= 且,28147421=++++6和28是最小的两个完美数,这在古希腊就已经被发现了,由于6是古时传说中上帝创造世界所用的天数,而28是月亮绕地球一周所需的天数,这使得完美数充满了神秘的色彩,现在以我们人类的认知水平还无法揭开这些数的神秘面纱, 7.(2011湖北.17,12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度”(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为O ;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度w 是车流密度x 的一次函数. (1)当2000≤≤x 时,求函数v(x)的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)8.(2011江苏,17,14分)请你设计一个包装盒,如图所示,AB-CD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两 个端点,设⋅==)(cm x FB AE(1)某广告商要求包装盒的侧面积)(2cm s 最大,试问x 应取何值?(2)某厂商要求包装盒的容积)(3cm V 最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解读探究知识清单2.三种增长型函数之间增长速度的比较(1)指数函数)1(>=a a y x 与幂函数)0(>=ααx y在区间),0(+∞上,无论α比a 大多少,尽管在x 的一定范围内xa 会小于,αx 但由于xa y =的增长度⑧ αx y =的增长速度,因而总存在一个,0x 当0x x >时有⑨(2)对数函数)1(log >=a x y a 与幂函数)0(>=ααx y 不论a 与α值的大小如何,对数函数)1(log >=a x y a 的增长速度总会⑩ αx y =的增长速度,因而在定义域内总存在一个实数,0x 使0x x >时有由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在),0(+∞上,总会存在一个,0x 使0x x >时有智力背景不可能的三接棍 许多图案和实例,一旦熟悉起来便觉得想当然.在1958年英国的《心理学杂志》 上.R .朋罗斯发表了他的不可能的三接棍,他称之为立体的矩形构造:三个直角显示出垂直,但它是不可 能存在于空间的.这里三个直角似乎形成一个三角形,但三角形是一个平面而非立体的图形,它的三个角的和为,180o而非.2700【知识拓展】1.函数的应用是数学应用问题的主要类型之一,教材中介绍了函数知识在增长率、物理等方面的应用,首先要深刻理解、准确把握题目中的概念和公式,把以上类型摘清搞懂,由此初步掌握解决函数应用问题的基本方法,为逐步提高解答应用问题的能力打下良好的基础.2.解函数应用题关键是建立数学模型,要顺利地建立数学模型,重点要过好三关:(1)事理关:通过阅读、理解,明白问题讲的是什么,熟悉实际背景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,对已有数学知识进行检验,从而认定或构建相应的数学模型,完成由实际问题向数学问题的转化.3.学习过程中要注意从数学的角度理解、分析、研究、把握问题,先独立尝试,后对比验证,特别要强调开展自主的、独立的探讨活动,这样才有利于培养阅读理解、分析和解决实际问题的能力,有助于提高对数学思想方法的认识,有利于培养数学意识,·知识清单答案突破方法方法 函数模型的应用函数应用的基本过程:例(2012河南安阳二模.18,12分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C(x)万元,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不少于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解题思路解析 (1)当*,800N x x ∈<<时,2501031100001000500)(2---⨯=x x x x L;2504032-+-=x x f 当*,80N x x ∈≥时, (2分)2501450001051100001000500)(0-+--⨯=xx xx L),10000(1200xx +-= (4分) ⎪⎩⎪⎨⎧⋅∈≥+-⋅∈<<-+-=∴*),80()10000(1200),,800(2504031)(2N x x x x N x x x x x L (2)当*,800N x x ∈<<时, (6分),950)60(31)(2+--=x x L.‘.当x= 60时,)(x L 取得最大值.950)60(=L (8分) 当*,80N x x ∈≥时,xx x x x L 10000.21200)10000(1200)(-≤+-= ,10002001200=-=∴ 当,10000xx =即100=x 时, )(x L 取得最大值.9501000)100(>=L (11分)综上所述,当100=x 时,)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. (12分)【方法点拨】 求解函数应用题的一般方法:“数学建模”是解决数学应用题的重要方法,解应用题的一般程序:智力背景懂得数学,一辈子受用不尽 人们用最美的词句赞荑数学:“自然科学的皇后”、“皇冠”、“明珠”、 “稀世珍宝”、“巍峨的阶梯”、“金碧辉煌的宫殿”、“人造宇宙”等,这些一点儿也不夸张.数学原本就是培养思考力最好的方法,即使讨厌数学的人,也能透过“头脑体操”让自己拥有数学式的逻辑思考;数学能让人排除不必要的杂物,看透事物本质,并得到解决问题的启示.会数学,不仅等于拥有万种知识的钥匙,也能透过数学来探索人生的其他可能性,三年模拟A 组 2011-2013年模拟探究专项基础测试时间:45分钟 分值.40分 一、选择题(共5分) 1.(2013山西临汾一模.11)某家具的标价为132元,若降价以九折出售(即优惠10% ),仍可获利10%(相对进货价),则该家具的进货价是 ( ) A .118元 B.105元 C.106元 D.108元 二、解答题(共35分) 2.(2013山东德州一模,18)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0.125万元和0.5万元. (1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?3.(2012山东聊城5月模拟.19)某村计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留Im 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形温室的左后两侧边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 4.(2012河南鹤壁二模.17)某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如下表:而这20天相应的销售量Q (百件/天)与时间x 对应的点(x ,Q)在如图所示的半圆上. (1)写出每天销售收入y (元)与时间x (天)的函数;(2)在这20天中哪一天销售收入最高?此时单价P 定为多少元为好?(结果精确到1元)智力背景隐藏予大自然中的“对称” 对称的事物是荧的,它广泛存在于大自然中: 1.斑马的条纹以它的身体为基准形成左右对称. 2.仿蛱蝶的翅膀上的图案是对反射变换对称. 3.雪的结晶,为对60度倍数角旋转变换对称. 4.星龟甲壳上的六角形图案,为对旋转变换对称,B 组 2011-2013年模拟探究专项提升测试时间:30分钟 分值:35分一、填空题(每题5分,共10分) 1.(2013河南焦作4月,14)某商人购货,进价已按原价a 扣去25%.他希望对货物定一新价,以便按新价让利20% 销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为 . 2.(2013浙江余杭一模,13)某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数*)(N x x 为二次函数关系,如图所示,则每辆客车营运 年,其营运的年平均利润最大,二、解答题(共25分)3.(2013福建宁德5月.18)有一种新型的洗衣液,去污速度特别快.已知每投放),41(R k k k ∈≤≤且 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为),(x f k y ⋅=其中=)(x f ⎪⎩⎪⎨⎧≤<-≤≤--).144(217),40(1824x x x x 若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k 的值; (2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟? 4.(2011天津十校联考5月,18)某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x 、3x(吨). (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.智力背景网球选手的动作暗含数学原理 科学家发现, 世界顶级网球选手的动作和判断力与托马斯·贝叶斯1763年发现的贝叶斯定理非常相近.这项定理的概率运算规则表明,根据事件先前发生的次数可以计算它以后发生的概率.一种称作“贝叶斯方法”的统计学方法以已知事件发生的频率为基础,测算某些事情发生的概率.这正是一位有经验选手的大脑如何在几乎看不到网球的情况下对快速运行的球做出判断的过程.。

高三理科数学第一轮复习§2.9:函数模型及其应用

高三理科数学第一轮复习§2.9:函数模型及其应用

第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用

高三数学复习课件 2.9 函数模型及其应用

高三数学复习课件 2.9 函数模型及其应用

综上,当 t=12 时,S(t)取最大值2 5300;当 t=100 时,S(t)取最小值 8.
答案
专题突破
-13-
考点1
考点2
考点3
考点4
解题心得在现实生活中,很多问题涉及的两个变量之间是二次函 数关系,如面积问题、利润问题、产量问题等.构建二次函数模型, 利用二次函数的图象与单调性解决.
专题突破
品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得
最大利润?其最大利润约为多少万元?
专题突破
-15-
考点1
考点2
考点3
考点4
解: (1)设 A,B 两种产品都投资 x 万元(x≥0),所获利润分别 为 f(x)万元、g(x)万元,由题意可设 f(x)=k1x,g(x)=k2√������,
专题突破
-16-
考点1
考点2
考点3
考点4
令√������=t,t∈[0,3√2], 则 y=14(-t2+8t+18) =-14(t-4)2+127. 故当 t=4 时,ymax=127=8.5, 此时 x=16,18-x=2.
所以当 A,B 两种产品分别投入 2 万元、16 万元时,可使该企
业获得最大利润 8.5 万元.
根据图象可解得 f(x)=0.25x(x≥0),g(x)=2√������(x≥0).
(2)①由(1)得 f(9)=2.25,g(9)=2√9=6,
故总利润 y=8.25(万元).
②设 B 产品投入 x 万元,A 产品投入(18-x)万元,该企业可获
总利润为 y 万元, 则 y=14(18-x)+2√������,0≤x≤18.

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2.9函数模型及其应用[知识梳理]1.七类常见函数模型2.指数、对数、幂函数模型的性质3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:特别提醒:(1)“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.(2)充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.(3)易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.[诊断自测]1.概念思辨(1)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.()(2)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()(3)当a>1时,不存在实数x0,使a x0<x a0<log a x0.()(4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.()答案(1)√(2)√(3)√(4)√2.教材衍化(1)(必修A1P59T6)如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.3010,lg 3=0.4771,lg 109=2.0374,lg 0.09=-2.9543)()A.2015年B.2011年C.2010年D.2008年答案 B解析设1995年总值为a,经过x年翻两番,则a·(1+9%)x=4a.∴x=2lg 2lg 1.09≈16.故选B.(2)(必修A1P107T1)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A .y =2x -2B .y =12(x 2-1) C .y =log 2x D .y =log 12x答案 B解析 由题意得,表中数据y 随x 的变化趋势,函数在(0,+∞)上是增函数,且y 的变化随x 的增大越来越快.∵A 中函数是线性增加的函数,C 中函数是比线性增加还缓慢的函数,D中函数是减函数,∴排除A ,C ,D ,∴B 中函数y =12(x 2-1)符合题意.故选B. 3.小题热身(1) (2018·湖北八校联考)某人根据经验绘制了2016年春节前后,从1月25日至2月11日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月30日大约卖出了西红柿 ________千克.答案 1909解析 前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式,得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909. (2)(2017·朝阳区模拟)某商场2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.答案 ③ x 2-8x +17解析 (ⅰ)因为f (x )=p ·q x ,f (x )=log q x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-p2,f (x )出现一个递增区间和一个递减区间,所以模拟函数应选f (x )=x 2+px +q .(ⅱ)∵f (1)=10,f (3)=2,∴⎩⎪⎨⎪⎧1+p +q =10,9+3p +q =2,解得p =-8,q =17, ∴f (x )=x 2-8x +17 故答案为③;x 2-8x +17.题型1 二次函数及分段函数模型典例 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5040x ,x ∈[120,144),12x 2-200x +80000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果亏损,则国家每月补偿数额的范围是多少?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?本题用函数法,再由均值定理解之.解 (1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+400x -80000=-12(x-400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5000,当x =200时,S 取得最小值-20000,故国家每月补偿数额的范围是[5000,20000].(2)由题意,可知二氧化碳的每吨处理成本为 yx =⎩⎪⎨⎪⎧13x 2-80x +5040,x ∈[120,144),12x +80000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240. ②当x ∈[144,500]时, y x =12x +80000x -200≥212x ×80000x -200=200,当且仅当12x =80000x ,即x =400时,yx 取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.方法技巧一次函数、二次函数及分段函数模型的选取与应用策略 1.在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.2.实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.见典例.3.实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解,但应关注以下两点:(1)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;(2)分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. 提醒:(1)构建函数模型时不要忘记考虑函数的定义域. (2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.冲关针对训练(2017·广州模拟)某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?解 (1)f (x )=0.25x (x ≥0),g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6,所以总利润y =8.25万元.②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元.则y =14(18-x )+2x ,0≤x ≤18. 令x =t ,t ∈[0,3 2 ],则y =14(-t 2+8t +18)=-14(t -4)2+172. 所以当t =4时,y max =172=8.5,此时x =16,18-x =2,所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.题型2 指数函数模型典例 (2017·西安模拟)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值; (2)若市场需求量为Q ,它近似满足Q (x )=211-x2.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.本题用函数思想,采用换元法.解 (1)由图象知函数图象过(5,1),(7,2).所以⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-k 8(5-b )2=0,⎝ ⎛⎭⎪⎫1-k 8(7-b )2=1,解得⎩⎪⎨⎪⎧k =6,b =5.(2)当P =Q 时,2(1-6t )(x -5) 2=211-x 2 ,即(1-6t )(x -5)2=11-x 2,化简得1-6t =11-x 2(x -5)2=12·22-x(x -5)2=12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5. 令m =1x -5(x ≥9),所以m ∈⎝ ⎛⎦⎥⎤0,14.设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14,对称轴为m =134,所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316,所以,当m =14,即x =9时,1-6t 取得最大值为12×1316,即1-6t ≤12×1316,解得t ≥19192,即税率的最小值为19192. 方法技巧构建指数函数模型的关注点1.指数函数模型常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.2.应用指数函数模型时关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.3.y =a (1+x )n 通常利用指数运算与对数函数的性质求解. 冲关针对训练某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y (单位:万人)与年份x (单位:年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). (1.01210≈1.127,1.01215≈1.196,1.01216≈1.210,log 1.0121.2≈15.3) 解 (1)1年后该城市人口总数为y =100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2,3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3,……x 年后该城市人口总数为y =100×(1+1.2%)x .所以该城市人口总数y (万人)与年份x (年)的函数关系式是y =100×(1+1.2%)x (x ∈N ).(2)10年后该城市人口总数为100×(1+1.2%)10≈112.7(万人). 所以10年后该城市人口总数约为112.7万人.(3)设x 年后该城市人口将达到120万人,即100(1+1.2%)x ≥120,于是1.012x ≥120100,所以x ≥log 1.012120100=log 1.0121.2≈15.3≈15(年),即大约15年后该城市人口总数将达到120万人.题型3 对数函数模型典例 某企业根据分析和预测,能获得10万~1000万元的投资收益,企业拟制定方案对科研进行奖励,方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y =f (x )模拟此方案.(1)写出模拟函数y =f (x )所满足的条件;(2)试分析函数模型y =4lg x -3是否符合此方案要求,并说明理由.用函数思想,采用导数法.解 (1)由题意,y =f (x )所满足的条件是:①f (x )在[10,1000]上为增函数,②f (x )≤9,③f (x )≤15x .(2)对于y =4lg x -3,显然在[10,1000]上是增函数,满足条件①.当10≤x ≤1000时,4lg 10-3≤y ≤4lg 1000-3,即1≤y ≤9,满足条件②.证明如下:f (x )≤15x ,即4lg x -3≤15x ,对于x ∈[10,1000]恒成立.令g (x )=4lg x -3-15x ,x ∈[10,1000],g ′(x )=20 lg e -x 5x,∵e<10,∴lg e<lg 10=12, ∴20lg e<10,又∵x ≥10,∴20lg e -x <0,∴g ′(x )<0对于x ∈[10,1000]恒成立,∴g (x )在[10,1000]上是减函数.∴g (x )≤g (10)=4lg 10-3-15×10=-1<0,即4lg x -3-15x ≤0,即4lg x -3≤15x ,对x ∈[10,1000]恒成立,从而满足条件③.方法技巧本例属奖金分配问题,奖金的收益属对数增长,随着投资收益的增加,奖金的增加会趋向于“饱和”状态,实际中很多经济现象都是这种规律,并注意掌握直接法、列式比较法、描点观察法.冲关针对训练候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.1.(2015·北京高考)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升答案 B 解析 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35600-35000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.2.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B .(p +1)(q +1)-12 C.pqD .(p +1)(q +1)-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1.故选D.3.(2015·四川高考)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 依题意有192=e b,48=e 22k +b =e 22k ·e b ,所以e 22k=48e b =48192=14,所以e 11k =12或-12(舍去),于是该食品在33 ℃的保鲜时间是e 33k +b =(e 11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时). 4.(2017·江西九江七校联考)某店销售进价为2元/件的产品A ,该店产品A 每日的销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =10x -2+4(x -6)2,其中2<x <6.(1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 的销售价格x 的值,其使该店每日销售产品A 所获得的利润最大.(保留1位小数)解 (1)当x =4时,y =102+4×(4-6)2=21千件,此时该店每日销售产品A 所获得的利润为(4-2)×21=42千元.(2)该店每日销售产品A 所获得的利润f (x )=(x -2)·⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,易知在⎝ ⎛⎭⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝ ⎛⎭⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减.所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/件时,利润最大.[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x答案 B 解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升.故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x =104·x (9-2x )≥9×104. ∴2x 2-9x +9≤0⇒32≤x ≤3.故选B.4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x ,y 2=k 2x ,∴⎩⎨⎧ 2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x 5≥220x ·4x5=8. 当且仅当20x =4x 5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e n t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为( )A .7B .8C .9D .10答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题有280×p %+(x -280)×(p +2)%x=(p +0.25)%,解得x =320.故选D.8.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22, 当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润.故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2. ∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e-8b =12a , ∴e-8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a .e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2, ∴p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎨⎧ 10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝ ⎛⎦⎥⎤116,2时,函数f (x )单调递增. ∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1;又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x +b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式;(2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4,所以f (x )=4x 2-4x +6.由⎩⎪⎨⎪⎧ g (1)=6,g (2)=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8, 解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当x=2,3,4时,有f(x)>g(x);当x=6,7,8,9,10时,有f(x)<g(x).海阔天空专业文档。

一轮复习课时训练§2.9:函数模型及其应用

一轮复习课时训练§2.9:函数模型及其应用

第二章§9:函数模型及其应用(与一轮复习课件对应的课时训练)满分100,训练时间60分钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次数学实验中,采集到如下一组数据:则x ,y 的函数关系与下列哪类函数最接近(其中a ,b 为待定系数)A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x2.某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所 示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)A .6.9 mB .7.0 mC .7.1 mD .6.8 m3.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人的前进方向相同),汽车在时间t 内的路程为s =12t 2米,那么,此人A .可在7秒内追上汽车B .可在9秒内追上汽车C .不能追上汽车,但其间最近距离为14米D .不能追上汽车,但其间最近距离为7米4.某市2008年新建住房100万平方米,其中有25万平方米为经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米,按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1.10,1.053=1.16,1.054=1.22,1.055=1.28) A .2010年 B .2011年 C .2012年 D .2013年5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费y(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差A .10元B .20元C .30元 D.403元 二、填空题:本大题共3小题,每小题8分,共24分.6.利民工厂某产品的年产量在150吨至250吨之间,年总成本y(万元)与年产量x(吨)之间 的关系可近似地表示为y =110x 2-30x +4 000,则每吨的成本最低时的年产量为______. 7.某市电力公司鼓励居民节约用电,采用分段计费方法计算电费,每月用电不超过100度时,按每度0.50元计费;每月用电超过100度时,其中的100度仍按原标准收费,超过部分按每度0.57元计费.小王家7月份交电费72.80元,用电________度.8.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图(1)(2)所示,某天0点到6点,该水池的蓄水量如图(3)所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的是________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?10.(本小题满分18分,(1)小问8分,(2)小问10分)通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=⎩⎪⎨⎪⎧ -t 2+24t +100,0<t ≤10240,10<t ≤20-7t +380,20<t ≤40.(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:由表格中的数据,画出散点图,模拟函数y =a +b x 最接近.答案:B2.解析:建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0).设点A 的坐标为(4,-h),则C(3,3-h),将这两点的坐标代入y =ax 2.可得⎩⎪⎨⎪⎧ -h =a·423-h =a·32,解得⎩⎨⎧ a =-37h =487≈6.9.所以厂门的高为6.9 m.答案:A3.解析:t 时刻时人走的路程s ′=6t ,车走的路程s =12t 2,则人与车之间的距离 d =|s +25-s ′|=|12t 2+25-6t|=|12(t -6)2+7|, ∵12(t -6)2+7>0,∴人不可能追上汽车,其间最近距离为7米. 答案:D4.解析:设从2009年起第n 年新建住房面积为a n =100(1+5%)n ,经济适用房面积为 b n =25+10n ,由2b n >a n ,得2(25+10n)>100(1+5%)n ,当n =1,2,3时都不成立, 当n =4时,2b n =130,a n =122,∴2012年时满足题意.答案:C5.解析:设A ,B 两种方式在100分钟时话费为a 元,则A ,B 两种方式的函数关系式分别为y A =a -20100t +20, y B =a 100t , ∴打出150分钟时话费相差:a 100×150-a -20100×150-20=10(元). 答案:A二、填空题:本大题共3小题,每小题8分,共24分.6.解析:依题意得每吨的成本是y x =x 10+4 000x -30,则y x ≥2x 10·4 000x-30=10,当且仅当x 10=4 000x,即x =200时取等号,∴当每吨的成本最低时,相应的年产量为200吨. 答案:200吨7.解析:设用电x 度时交电费y 元,则y =⎩⎪⎨⎪⎧0.50x (0<x ≤100)50+0.57(x -100)(x>100).由y =72.80得 50+0.57(x -100)=72.80,解得x =140. 答案:1408.解析:由图(3)知0点到3点蓄水量为6,故应两个进水口进水,故①正确.由图(3)知3点到4点间1小时蓄水量少1个单位,故1个进水1个出水,故②错误.由图(3)知4点到6点蓄水量不变,故可能不进水也不出水或两个进水一个出水,故排除③.答案:①三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x(100-x -3 00050)-x -3 00050×50-(100-x -3 00050)×150=-x 250+162x -21000=-150(x -4 050)2+307 050, 当x =4 050时,y max =307 050.∴当月租金为4 050元时,最大收益是307 050元.10.(本小题满分18分(1)小问5分,(2)小问6分,(3)小问7分)解:(1)当0<t ≤10时,f(t)=-t 2+24t +100=-(t -12)2+244是增函数,且f(10)=240; 当20<t ≤40时,f(t)=-7t +380是减函数,且f(20)=240.所以,讲课开始后10分钟,学生的注意力最集中,能持续10分钟.(2)f(5)=195,f(25)=205,故讲课开始后25分钟时,学生的注意力比讲课开始后5分钟更集中.(3)当0<t ≤10时,f(t)=-t 2+24t +100=180,则t =4;当20<t ≤40时,令f(t)=-7t +380=180,t ≈28.57,则学生注意力在180以上所持续的时间28.57-4=24.57>24,所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题.。

【北师大版数学】步步高2012版大一轮复习课件:2.9_函数模型及其应用

【北师大版数学】步步高2012版大一轮复习课件:2.9_函数模型及其应用

!

(1)分别将 A、B 两种产品的利润表示为投资的函数关系 分别将 、
新 课 标 资 源 网
式; (2)已知该企业已筹集到 18 万元资金,并将全部投入 A, 已知该企业已筹集到 万元资金, , B 两种产品的生产 两种产品的生产. 若平均投入生产两种产品,可获得多少利润? ①若平均投入生产两种产品,可获得多少利润? ②问:如果你是厂长,怎样分配这 18 万元投资,才能使 如果你是厂长, 万元投资, 该企业获得最大利润?其最大利润约为多少万元? 该企业获得最大利润?其最大利润约为多少万元? 思维启迪
(1)根据函数模型,建立函数解析式.(2)根据 根据函数模型,建立函数解析式. 根据 根据函数模型 资金分配情况,建立利润解析式. 资金分配情况,建立利润解析式.
老 师 都 说 好 !

新 课 标 资 源 网

(1)设甲、乙两种产品分别投资 x 万元 ≥0),所获 设甲、 万元(x≥ , 设甲
老 师 都 说 好 !
新 课 标 资 源 网 Nhomakorabea探究提高
(1)在实际问题中, 在实际问题中, 在实际问题中 有很多问题的两变量之间
的关系是一次函数模型,其增长特点是直线上升(自变 的关系是一次函数模型,其增长特点是直线上升 自变 或直线下降(自变量的系数小于 , 量的系数大于 0)或直线下降 自变量的系数小于 0),构 或直线下降 建一次函数模型,利用一次函数的图像与单调性求解. 建一次函数模型,利用一次函数的图像与单调性求解. (2)有些问题的两变量之间是二次函数关系,如面积问 有些问题的两变量之间是二次函数关系, 有些问题的两变量之间是二次函数关系 利润问题、产量问题等.构建二次函数模型, 题、利润问题、产量问题等.构建二次函数模型,利用 二次函数图像与单调性解决. 二次函数图像与单调性解决. (3)在解决二次函数的应用问题时,一定要注意定义域. 在解决二次函数的应用问题时,一定要注意定义域. 在解决二次函数的应用问题时

函数模型及其应用

函数模型及其应用

2.9函数模型及其应用1.函数的实际应用(1)基本函数模型:函数模型函数解析式一次函数模型二次函数模型指数型函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数型函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂型函数模型f(x)=ax n+b(a,b为常数,a ≠0)(2)函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的单调性单调____函数单调____函数单调____函数增长速度越来越____越来越____相对平稳图象的变化随x值增大,图象与____轴接近平行随x值增大,图象与____轴接近平行随n值变化而不同2.函数建模(1)函数模型应用的两个方面:①利用已知函数模型解决问题;②建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.(2)应用函数模型解决问题的基本过程:_______、_______、_______、_______.自查自纠:1.(1)f(x)=ax+b(a,b为常数,a≠0)f(x)=ax2+bx+c(a,b,c为常数,a≠0)(2)增增增快慢yx2.审题建模解模还原(教材改编题)下列函数中,随x(x>0)的增大,y的增长速度越来越快,并会超过其他三个的是() A.y=e x B.y=100ln xC .y =x 100D .y =2x 解:“指数爆炸”,又e >2.故选A.(2016·湖北天门模拟)某部门为实现当地菜价稳定,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是 ()解:运输效率(单位时间的运输量)逐步提高,即对应曲线上的点的切线斜率逐渐增大,只有B 项符合要求.故选B.(2015·北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量/升 加油时的累计里程/千米2015年5月1日12 35 0002015年5月15日48 35 600注:“累计里程”指汽车从出开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为() A .6升 B .8升 C .10升 D .12升解:因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.要制作一个容积为16 m 3,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 解:设长方体底面矩形的长、宽分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×1×10+20xy =20⎝⎛⎭⎫x +16x +20×16,由基本不等式得,z =20⎝⎛⎭⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.故填480.某汽车运输购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )满足如图所示的二次函数关系,则每辆客车营运________年,其营运的年平均利润yx最大.解:由图象知,营运总利润y =-(x -6)2+11.所以营运的年平均利润y x =-x -25x +12.当且仅当x =5时,yx 取最大值.故填5.类型一幂型函数模型为了保护环境,发展低碳经济,某单位在当地科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为400元.则该单位每月能否获利? 解:设该单位每月获利为S 元, 则S =400x -y=400x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+600x -80 000=-12(x -600)2+100 000,因为400≤x ≤600,所以当x =400时,S 有最小值80 000. 故该单位每月能获利. 点 拨:①列函数关系式时,注意自变量的取值范围;②求最值这里运用了配方法,要特别注意取等条件,通常换元法、导数法、均值不等式法也是解这类题比较常用的方法.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是() A .100台 B .120台 C .150台 D .180台 解:设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000(0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,所以生产者不亏本时的最低产量是150台.故选C.类型二指数型函数模型一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到原面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到2017年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到2017年为止,该森林已砍伐了多少年? (3)从2017年起,还能砍伐多少年?解:(1)设每年降低的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝⎛⎭⎫12110.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a ,即⎝⎛⎭⎫12m 10=⎝⎛⎭⎫1212,即m 10=12,解得m =5.故到2017年为止,该森林已砍伐了5年. (3)设从2017年起还能砍伐n 年, 则n 年后剩余面积为22a (1-x )n . 令2a 2(1-x )n ≥14a ,即(1-x )n ≥24, 所以⎝⎛⎭⎫12n10≥⎝⎛⎭⎫1232,解得n ≤15.故从2017年起还能砍伐15年. 点 拨:此类增长率问题,在实际问题中常可以用指数型函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂型函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.已知某生产某种产品的月产量y (单位:万件)与月份x 之间满足关系y =a ·0.5x +b ,现已知该产品1月、2月的产量分别为1万件、1.5万件,则该产品3月份的产量为________万件.解:由已知得⎩⎪⎨⎪⎧0.5a +b =1,(0.5)2a +b =1.5, 解得⎩⎪⎨⎪⎧a =-2,b =2, 故当x =3时,y =-2×0.53+2=1.75.故填1.75. 类型三对数型函数模型有一片树林现在的木材储蓄量为7 100 m 3,要力争使木材储蓄量20年后翻两番,即达到28 400 m 3,则平均每年木材储蓄量的增长率是________.(参考数据:lg2≈0.301 0,lg3≈0.477 1,lg5≈0.699 0,100.03≈1.072)解:设增长率为x ,由题意得28 400=7 100(1+x )20,所以(1+x )20=4,即20lg(1+x )=2lg2,lg(1+x )≈0.030 10,所以1+x ≈1.072,得x ≈0.072=7.2%.故填7.2%.点 拨:(1)善于利用已知条件,根据问题的实际意义列出方程(组)、不等式(组)等来解决问题.(2)解题过程中注意合理地使用对数式的运算法则进行运算.(2017·广州模拟)在某个物理实验中,测得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00则对x ,y 最适合的拟合函数是() A .y =2x B .y =x 2-1 C .y =ln x D .y =log 2x解:根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入各选项计算,可以排除B ;将各数据代入函数y =log 2x ,可知满足题意.故选D.类型四分段函数模型某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系可用图①中的一条折线表示;西红柿的种植成本与上市时间的关系可用图②中的抛物线段表示.(1)写出图①表示的市场售价与上市时间的函数关系P =f (t ),写出图②表示的种植成本与上市时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/公斤,时间单位:天)解:(1)由题图①可得市场售价与时间的函数关系为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300.由题图②可得种植成本与上市时间的函数关系为g (t )=1200(t -150)2+100,0≤t ≤300. (2)设上市时间为t 的西红柿纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎨⎧-t 2200+12t +1752,0≤t ≤200,-t 2200+72t -1 0252,200<t ≤300,当0≤t ≤200时, 配方整理得h (t )=-1200(t -50)2+100, 所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时, 配方整理得h (t )=-1200(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天上市的西红柿纯收益最大. 点 拨:(1)实际问题的情况是复杂的,许多实际问题要使用分段函数模型求解.(2)解分段函数模型要注意定义域区间的分界点.(3)含有参数的实际应用题要注意分类讨论.(2017·河南省实验中学期中)国庆节期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空包机费15 000元. (1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?解:(1)设旅游团人数为x 人,由题得0<x ≤75,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -3030<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为单调增函数, 故当x =30时,S 取最大值12 000元,又S =-10(x -60)2+21 000在区间(30,75]上,当x =60时,取得最大值21 000. 故每团人数为60人时,旅行社可获得最大利润.1.解函数应用问题的步骤(1)审题:数学应用问题的文字叙述长,数量关系分散且难以把握,因此,要认真读题,缜密审题,准确理解题意,明确问题的实际背景,收集整理数据信息,这是解答数学问题的基础.(2)建模:在明确了问题的实际背景和收集整理数据信息的基础上进行科学的抽象概括,将自然语言转化为数学语言,将文字语言转化为符号语言,合理引入自变量,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式(也叫目标函数),将实际问题转化为数学问题,即实际问题数学化,建立数学模型. (3)解模:利用数学的方法将得到的常规数学问题(即数学模型或目标函数)予以解答,求得结果. (4)还原:将求解数学模型所得的结果还原为实际问题的意义,回答数学应用题提出的问题. 以上过程可以用示意图表示为:模拟函数的过程可以用下面框图表示:2.函数模型的选择解题过程中选用哪种函数模型,要根据题目具体要求进行抽象和概括,灵活地选取和建立数学模型.一般来说:如果实际问题的增长特点为直线上升,则选择直线模型;若增长的特点是随着自变量的增大,函数值增大的速度越来越快(指数爆炸),则选择指数型函数模型;若增长的特点是随着自变量的增大,函数值的增大速度越来越慢,则选择对数型函数模型;如果实际问题中变量间的关系,不能用同一个关系式表示,则选择分段函数模型等.另外,常见的出租车计费问题、税收问题、商品销售等问题,通常用分段函数模型;面积问题、利润问题、产量问题常选择幂型函数模型,特别是二次函数模型;而对于利率、细胞分裂、物质衰变,则常选择指数型函数模型.1.(2015·湖北模拟)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,经过x (x ∈R ,x ≥0)年可增长到原来的y 倍,则函数y =f (x )的图象大致为 ()解:由题意可得y =(1+10.4%)x .故选D.2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲、乙两车的速度曲线分别为v 甲和v 乙,如图所示,那么对于图中给定的t 0和t 1,下列判断中一定正确的是 () A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面解:由图象可知,曲线v 甲比v 乙在0~t 0,0~t 1与t 轴所围成的图形面积大,则在t 0,t 1时刻,甲车均在乙车前面.故选A .3.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4 L ,则m 的值为 ()A .5B .8C .9D .10解:因为5 min 后甲桶和乙桶的水量相等, 所以函数y =f (t )=ae nt 满足f (5)=ae 5n =12a ,可得n =15ln 12,所以f (t )=a ·⎝⎛⎭⎫12t 5, 因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝⎛⎭⎫12k 5=14a ,即⎝⎛⎭⎫12k5=14, 所以k =10,由题可知m =k -5=5.故选A .4.利民某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量(吨)为 ()A .240B .200C .180D .160解:依题意,得每吨的成本为y x =x 10+4 000x -30,则yx≥2x 10·4 000x-30=10, 当且仅当x 10=4 000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.故选B .5.(2015·北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 ()A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油解:对于A 选项,从图中可以看出当乙的行驶速度不小于40 km /h 时燃油效率大于5 km /L ,A 错误.对于B 选项,由图可知甲车消耗汽油最少,B 错.对于C 选项,甲车以80 km /h 的速度行驶时的燃油效率为10 km /L ,故行驶1小时的路程为80千米,消耗8 L 汽油,C 错.对于D 选项,当最高限速为80 km /h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,D 正确.故选D .6.某地兴修水利要挖一条渠道,渠道的横截面为等腰梯形,如图所示,腰与水平线的夹角为60°,要求横截面的周长(实线部分)为定值m ,则流量(横截面的面积)最大时,渠深h = ()A.14mB.13mC.34mD.36m 解:由题知,等腰梯形的腰为233h ,周长为m ,下底为m -433h ,上底为m -433h +233h =m -233h ,得等腰梯形的面积S =12⎝⎛⎭⎫2m -633h h =-3h 2+mh =-3⎝⎛⎭⎫h -3m 62+312m 2⎝⎛⎭⎫0<h <34m ,当h =36m 时,S max =312m 2,此时流量最大.故选D . 7.A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km /h ,B 的速度是16 km /h ,经过________小时,AB 间的距离最短.解:设经过x h ,A 、B 相距为y km ,则y =(145-40x )2+(16x )2⎝⎛⎭⎫0≤x ≤298, 求得函数取最小值时x 的值为258.故填258.8.(2016·北京朝阳区二模)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,再经过________ min ,容器中的沙子只有开始时的八分之一. 解:依题意有a ·e-b ×8=12a ,所以b =ln28, 所以y =a ·t e ⋅-82ln .若容器中只有开始时的八分之一,则有a ·t e ⋅-82ln =18a . 解得t =24,所以经过的时间为24-8=16 min.故填16.9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热屋,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥2(6x +10)·8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.10.(2017·实验中学月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元、0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品为20-x 万元,则投资股票类产品为x 万元. 依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.11.(2017·实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m /s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m /s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1, 得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m /s ,则有v ≥2,即-1+log 3Q 10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.(2016·郑州模拟)已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t(t ≥0,并且m >0).(1)如果m =2,求经过多少分钟,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解:(1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦即m ·2t +22t ≥2⇔m ≥2⎝⎛⎭⎫12t -1t 恒成立. 令12t =x ,则0<x ≤1,不等式化为m ≥2(x -x 2), 由于x -x 2≤14⎝⎛⎭⎫当x =12,即t =1时取等号,所以m ≥12. 因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 另解:由m ·2t +22t ≥22m ≥2求解.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数f (x )=2x -1log 3x的定义域为 () A .(0,+∞) B.⎣⎡⎭⎫12,+∞ C.⎣⎡⎭⎫12,1D.⎣⎡⎭⎫12,1∪(1,+∞)解:由⎩⎪⎨⎪⎧2x -1≥0,x >0,log 3x ≠0,得x ≥12且x ≠1.故选D .2.下列函数中,在(0,+∞)上是增函数的是 () A .y =2 019xB .y =sin xC .y =tan xD .y =ln x 解:只有y =ln x 合要求.故选D.3.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,14,则α-k = () A.12B .1 C.32D .2 解:k =1,⎝⎛⎭⎫12α=14α=2,所以α-k =1.故选B .4.函数y =-x 2+x +2的值域是 () A .[0,+∞) B.⎝⎛⎦⎤-∞,32 C .[0,2]D.⎣⎡⎦⎤0,32 解:由-x 2+x +2≥0⇒x ∈[-1,2],而 -12×(-1)=12∈[-1,2].当x =12时,y =94.所以y ∈⎣⎡⎦⎤0,32.故选D.5.(2016·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =()A.12 B.45C .2D .9解:f (0)=20+1=2,f (f (0))=f (2)=4+2a =4a ,解得a =2.故选C.6.(2015·西安模拟)已知a =313,b =log 1312, c =log 123,则 ()A .a >b >cB .b >c >aC .c >b >aD .b >a >c解:因为a =313>1,b =log 1312=log 32∈(0,1),c =log 123<0,所以a >b >c .故选A.7.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为 ()解:先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y = -f (x +1)的图象,根据上述步骤可知C 正确.故选C.8.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则 ()A .f (x )在(0,2)单调递增B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解:由题意知,f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,A ,B ,D 错误.故选C.9.(2015·湖南模拟)若函数y =f (x )为偶函数,当x ≥0时,f (x )=⎝⎛⎭⎫12x,则满足不等式f (x )≥12的x 的取值范围为()A .(-1,1)B .[-1,1]C .(-∞,1]D .[-1,+∞)解:因为函数y =f (x )为偶函数,所以当x <0时,f (x )=f (-x )=⎝⎛⎭⎫12-x=2x .由f (x )≥12得⎩⎪⎨⎪⎧⎝⎛⎭⎫12x≥12,x ≥0或⎩⎪⎨⎪⎧2x ≥12,x <0,解得-1≤x ≤1.故选B.10.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是(-∞,+∞)上的减函数,则实数a 的取值范围是()A .(0,3)B .(0,3]C .(0,2)D .(0,2]解:因为f (x )为(-∞,+∞)上的减函数,所以⎩⎪⎨⎪⎧a -3<0,2a >0,(a -3)×1+5≥2a1,解得0<a ≤2.故选D.11.(2017·郑州模拟)已知函数f (x )是定义在R 上以2为周期的奇函数,当x ∈(0,1)时,有f (x )=ln11-x,则函数f (x )在x ∈(3,4)时是一个 ()A .增函数且f (x )<0B .增函数且f (x )>0C .减函数且f (x )<0D .减函数且f (x )>0解:当x ∈(0,1)时,f (x )=ln 11-x 是增函数且f (x )>0,又f (x )是奇函数,则当x ∈(-1,0)时,f (x )是增函数且f (x )<0,因为f (x )的周期为2,所以当x ∈(3,4)时,f (x )是增函数且f (x )<0.故选A . 12.已知函数f (x )满足: ①定义域为R ;②对任意x ∈R ,有f (x +2)=2f (x ); ③当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0ln x (x >0则函数y =f (x )-g (x )在区间[-5,5]上零点的个数是 ()A .7B .8C .9D .10解:由条件可作出函数y =f (x )及y =g (x )的图象如图,当x ≤0时,y =f (x )与y =e x 的图象有6个交点;当x >0时,y =f (x )与y =ln x 的图象有4个交点,共10个交点.故选D.二、填空题:本题共4小题,每小题5分,共20分.13.若已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,9-x +1,x ≤0, 则f (f (1))+f ⎝⎛⎭⎫log 312的值是________. 解:f (1)=log 21=0,所以f (f (1))=f (0)=2.因为log 312<0,所以f ⎝⎛⎭⎫log 312=21log 39-+1=4+1=5,所以f (f (1))+f ⎝⎛⎭⎫log 312=2+5=7.故填7. 14.(教材改编题)已知函数f (x )=x 2-kx -8在[1,4]上具有单调性,则实数k 的取值范围是________. 解:k 2≤1或k2≥4,得k ≤2或k ≥8.故填(-∞,2]∪[8,+∞).15.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116<14.所以a =14.故填 14.16.(2017·湖北荆州一模)若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2 (a >0,且a ≠1)的值域是(-∞,-1],则实数a的取值范围是________.解:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,所以f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],所以当x >2时,log a x ≤-1,故0<a <1,且log a 2≤-1, 所以12≤a <1.故填⎣⎡⎭⎫12,1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)作出下列函数的图象: (1)y =sin|x |; (2)y =x +2x +3.解:(1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,其图象关于y 轴对称,故作出其图象如图所示.(2)y =x +2x +3=1-1x +3,该函数图象可由函数 y =-1x 向左平移3个单位再向上平移1个单位得到,故作出其图象如图所示.18.(12分)已知y =f (x )是二次函数,且f ⎝⎛⎭⎫-32+x =f ⎝⎛⎭⎫-32-x 对x ∈R 恒成立,f ⎝⎛⎭⎫-32=49,方程f (x )=0的两实根之差的绝对值等于7.求此二次函数的解析式.解:由x ∈R ,f ⎝⎛⎭⎫-32+x =f ⎝⎛⎭⎫-32-x 知,f (x )的对称轴为x =-32.又f ⎝⎛⎭⎫-32=49,则二次函数f (x )的顶点坐标为⎝⎛⎭⎫-32,49,故设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0). 解法一:设方程f (x )=a ⎝⎛⎭⎫x +322+49=0的两根为x 1,x 2, x 1+x 2=-3,x 1x 2=94+49a ,则|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =-49×4a=7, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x +322+49, 即f (x )=-4x 2-12x +40.解法二:设f (x )=0的两根为x 1,x 2,且x 1<x 2,由两实根之差的绝对值为7得x 1=-32-72=-5, x 2=-32+72=2,将x 1或x 2代入f (x )=0得a =-4.从而得到f (x )=-4x 2-12x +40. 19.(12分) 设函数f (x )=log 3(9x )·log 3(3x ),19≤x ≤9.(1)若m =log 3x ,求m 的取值范围;(2)求f (x )的最值,并给出取最值时对应的x 的值. 解:(1)因为19≤x ≤9,m =log 3x 为增函数,所以-2≤log 3x ≤2,即m 的取值范围是[-2,2]. (2)由m =log 3x 得:f (x )=log 3(9x )·log 3(3x ) =(2+log 3x )·(1+log 3x ) =(2+m )·(1+m )=⎝⎛⎭⎫m +322-14, 又因为-2≤m ≤2,所以当m =log 3x =-32,即x =39时f (x )取得最小值-14, 当m =log 3x =2,即x =9时f (x )取得最大值12.20.(12分)已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a .①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧f (-1)≤0,f (1)≥0, 即⎩⎪⎨⎪⎧a ≤5,a ≥1,所以a 的解集为.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎫-12a ≤0,f (1)≥0, 即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,所以a 的取值范围是[1,+∞).21.(12分) 已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数.(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0, f (x 2)-f (x 1)=⎝⎛⎭⎫a -1x 2-⎝⎛⎭⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.任取x 1,x 2∈(1,+∞)且x 1<x 2, h (x 1)-h (x 2)=(x 1-x 2)⎝⎛⎭⎫2-1x 1x 2. 因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1, 所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增.故a ≤h (1)即a ≤3,所以实数a 的取值范围是(-∞,3]..(12分)(2015·安徽模拟)设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且函数g (x )=a 2x +a -2x -4f (x ),求函数g (x )在[1,+∞)上的最小值.解:因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,所以k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a>0.又a >0且a ≠1,所以a >1.当a >1时,y =a x 和y =-a -x 在R 上均为增函数,所以f (x )在R 上为增函数.原不等式可化为f (x 2+2x )>f (4-x ),故x 2+2x >4-x ,即x 2+3x -4>0,解得x >1或x <-4.所以不等式f (x 2+2x )+f (x -4)>0的解集为{x |x >1或x <-4}.(2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,解得a =2或a =-12(舍去).所以g (x )=x +2-2x -4(2x -2-x)=(2x -2-x )2-4(2x -2-x )+2.令t =h (x )=2x -2-x (x ≥1),则g (t )=t 2-4t +2.因为h (x )在[1,+∞)上为增函数(由(1)可知),所以h (x )≥h (1)=32,即t ≥32.因为g (t )=t 2-4t +2=(t -2)2-2,t ∈⎣⎡⎭⎫32,+∞,所以当t =2时,g (t )取得最小值-2,即g (x )取得最小值-2,此时x =log 2(1+2).故当x =log 2(1+2)时,函数g (x )在[1,+∞)上有最小值-2.。

讲函数模型及其应用课件

讲函数模型及其应用课件

土木工程、航空航天工程等,通过建立数学模型,可以模拟和分析各种
工程系统的性能和行为。
函数模型在人工智能领域的应用
机器学习 机器学习是人工智能领域的一个重要分支,函数模型在机 器学习中扮演着重要的角色,如线性回归、逻辑回归、支 持向量机等算法都是基于函数模型的。
深度学习 深度学习是机器学习的一种,它通过建立复杂的神经网络 模型来模拟人类的学习过程,神经网络的训练和优化过程 实际上就是求解一系列的函数模型。
函数模型可以用来描述自然规律 和现象,例如气候变化、生态平
衡、物种繁衍等。
科学研究
在自然科学领域中,函数模型广 泛应用于各种科学实验和研究中,
例如物理学、化学、生物学等。
预测和预防
通过建立函数模型,科学家可以 预测自然灾害和环境变化,并采
取相应的预防措施。
工程领域中的应用
机械设计
在机械设计中,函数模型可以用来描述力学、热 学等物理现象,例如压力、温度等。
函数模型的优化与改进
参数调整
根据实际需求和数据反馈,调整 模型中的参数以优化模型性能。
模型融合
将多个模型进行融合,综合多个模 型的优点,提高模型的预测精度。
模型泛化
通过增加数据集、改进模型结构等 方式,提高模型对未知数据的预测 能力。
04
函数模型的实际应用案例
经济领域中的应用
描述经济现象
投资决策分析
三角函数模型的应用
三角函数模型在物理学中有广 泛应用,如描述简谐振动、交 流电等周期性变化的现象。
在解决几何问题时,三角函数 也常被用于计算角度、长度等 量,如正弦定理、余弦定理等。
三角函数模型还可以用于信号 处理、图像处理等领域,如傅 里叶变换等。

2021版《3年高考2年模拟》高考数学(浙江版理)检测:2.9 函数的模型及其应用 Word版含答案

2021版《3年高考2年模拟》高考数学(浙江版理)检测:2.9 函数的模型及其应用 Word版含答案

§2.9函数的模型及其应用A组基础题组1.(2021浙江重点中学协作体适应性测试,4)已知0<a<1,则a2、2a、log2a的大小关系是( )A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a22.(2021福建泉州一中期中,5,5分)给出四个函数,分别满足:①f(x+y)=f(x)+f(y),②g(x+y)=g(x)g(y),③h(xy)=h(x)+h(y),④m(xy)=m(x)m(y).下列为四个函数的图象,对应正确的是( )A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙3.(2021湖北,5,5分)小明骑车上学,开头时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上大事吻合得最好的图象是( )4.(2021陕西,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.105.(2022北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次试验的数据.依据上述函数模型和试验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟6.(2021浙江五校第一次联考)一个容器装有细沙acm3,细沙从容器底部一个微小的小孔渐渐地漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发觉容器内还有一半的沙子,则再经过min,容器中的沙子只有开头时的八分之一.7.(2022杭州学军中学其次次月考,13,4分)不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m都成立,则x的取值范围是.8.(2021湖南师大附中月考)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.8元;当超过4吨时,超过部分按每吨3元收费.已知某个月甲、乙两户共交水费y元,并且该月甲、乙两户的用水量分别为5x、3x吨.(1)求y与x的函数关系式;(2)若该月甲、乙两户共交水费26.4元,分别求出该月甲、乙两户的用水量和水费.9.(2022上海普陀调研测试,21,14分)某中学为了落实“阳光运动一小时”活动,方案在一块直角三角形ABC 的空地上修建一个占地面积为S平方米的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].(1)试用x表示S,并求S的取值范围;(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为元,草坪每平方米的造价为(k为正常数)元.设总造价T关于S的函数为T=f(S),试问:如何选取AM的长,才能使总造价T最低?B组提升题组1.(2022湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,其次年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.C. D.-12.(2021北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油3.(2021浙江重点中学协作体摸底)一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时,水的体积为V1,则函数V1=f(h)的大致图象可能是图.4.(2021浙江杭州九中期末)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运年时,其营运的年平均利润最大.5.求实数a的范围,使得关于x的方程x2-ax+2=0在[1,3]上有解.6.(2022杭州学军中学其次次月考,18,14分)已知集合P=,y=log2(ax2-2x+2)的定义域为Q.(1)若P∩Q≠⌀,求实数a的取值范围;(2)若方程log2(ax2-2x+2)=2在内有解,求实数a的取值范围.7.(2021江苏,17,14分)某山区外围有两条相互垂直的直线型大路,为进一步改善山区的交通现状,方案修建一条连接两条大路和山区边界的直线型大路,记两条相互垂直的大路为l1,l2,山区边界曲线为C,方案修建的大路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设大路l与曲线C相切于P点,P的横坐标为t.①请写出大路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,大路l的长度最短?求出最短长度.8.(2022超级中学原创猜测卷六文,20,15分)某市为迎接元旦的到来,拟在市观光巡游区建筑一个花坛,已知用钢管焊接而成的花坛围栏如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底边的中点均是焊接点O,梯形的腰紧靠在抛物线上,且两腰的中点是梯形的腰、抛物线与横梁的焊接点A,B,抛物线与梯形下底边的两个焊接点为C,D.已知梯形的高是40米,C,D两点间的距离是40米.(1)求横梁AB的长度;(2)求制作梯形外框的用料长度.(注:钢管的粗细等因素忽视不计,≈1.41)A组基础题组1.B 由于当0<a<1时,a2∈(0,1),2a>1,log2a<0,所以2a>a2>log2a,故选B.2.D 由题图可知丁是正比例函数图象,满足①;甲是指数型函数图象,满足②;乙是对数型函数图象,满足③;丙是幂函数图象,满足④.故选D.3.C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排解A.因交通堵塞停留了一段时间,与学校的距离不变,故排解D.后来为了赶时间加快速度行驶,故排解B.故选C.4.C 由于函数y=3sin+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.5.B 由已知得解得∴p=-0.2t2+1.5t-2=-+,∴当t==3.75时p最大,即最佳加工时间为3.75分钟.故选B.6.答案16解析当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=,容器中的沙子只有开头时的八分之一,即y=ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24,24-8=16. 7.答案解析构造函数f(m)=(x2-1)m-(2x-1),则f(m)是关于m的一次函数,要使2x-1>m(x2-1)对任意|m|≤2恒成立,即f(m)<0对任意m∈[-2,2]恒成立,只需解得x∈.8.解析(1)当甲的用水量不超过4吨,即5x≤4时,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8; 当乙的用水量超过4吨,即3x>4时,y=1.8×8+3(5x-4+3x-4)=24x-9.6.所以y=(2)y=f(x)在各段区间上均为单调递增函数,当x∈时,y max=f<26.4;当x∈时,y max=f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,水费为4×1.8+3.5×3=17.7(元);乙户用水量为3x=4.5吨,水费为4×1.8+0.5×3=8.7(元).9.解析(1)在Rt△PMC中,|MC|=30-x米,∠PCM=60°,∴|PM|=|MC|·tan∠PCM=(30-x)米,则S=x(30-x),x ∈[10,20],于是200≤S≤225.(2)矩形AMPN健身场地造价T1=37k元,又△ABC的面积为450平方米,∴草坪造价T2=(450-S)元,又T=T1+T2,∴f(S)=25k,200≤S≤225.∵+≥12,当且仅当=,即S=216时等号成立,此时x(30-x)=216,解得x=12或x=18,∴选取AM的长为12米或18米时总造价T最低.B组提升题组1.D 设两年前的年底该市的生产总值为a,则其次年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,因此x=-1,故选D.2.D 对于A选项:由题图可知,当乙车速度大于40km/h时,乙车每消耗1升汽油,行驶里程都超过5km,则A错; 对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.3.答案②解析当h=0时,V1=0,可排解①③;由于鱼缸中间粗两头细,所以当h在四周时,体积变化较快;当h小于时,体积增加得越来越快;当h大于时,体积增加得越来越慢.故填②.4.答案 5解析由题图可得营运总利润y=-(x-6)2+11,则营运的年平均利润为=-x-+12,∵x∈N*,∴≤-2+12=2,当且仅当x=,即x=5时取“=”.∴当x=5时,营运的年平均利润最大.5.解析①当x=1是方程的解时,a=3.②当x=3是方程的解时,a=.③设f(x)=x2-ax+2,则函数在(1,3)内有唯一零点的条件为或解得3<a<或a=2.④当方程x2-ax+2=0在(1,3)上有两解时,设f(x)=x2-ax+2,则解得2<a<3.综上,实数a的取值范围是2≤a≤.6.解析(1)由已知得Q={x|ax2-2x+2>0},若P∩Q≠⌀,则说明在内至少有一个x值,使不等式ax2-2x+2>0成立,即在内至少有一个x值,使a>-成立,令u=-,则只需a>u min,又u=-2+,当x∈时,∈,从而u∈,∴a的取值范围是a>-4.(2)∵方程log2(ax2-2x+2)=2在内有解,∴ax2-2x+2=4,即ax2-2x-2=0在内有解,即存在x∈,使a=+=2-,∵≤2-≤12,∴≤a≤12,即a的取值范围是.7.解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,y'=-,设在点P处的切线l交x,y轴分别于A,B点,l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g'(t)=2t-.令g'(t)=0,解得t=10.当t∈(5,10)时,g'(t)<0,g(t)是减函数;当t∈(10,20)时,g'(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有微小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,大路l的长度最短,最短长度为15千米.8.解析(1)建立如图所示的平面直角坐标系,设梯形的下底边与y轴交于点M,抛物线的方程为x2=2py(p<0). 由题意得D(20,-40),代入抛物线的方程得p=-5,所以抛物线的方程为x2=-10y. 当y=-20时,x=±10,即A(-10,-20),B(10,-20),所以|AB|=20≈28.2.故横梁AB的长度约为28.2米.(2)由题意得梯形的腰QR的中点是梯形的腰QR与抛物线唯一的公共点,设直线RQ的方程为y+20=k(x-10)(k<0),由得x2+10kx-100(2+k)=0,则Δ=100k2+400(2+k)=0,解得k=-2,所以直线RQ的方程为y=-2x+20.从而得Q(5,0),R(15,-40).所以|OQ|=5,|MR|=15,|RQ|=30,所以梯形的周长为2×(5+15+30)=100≈141(米),故制作梯形外框的用料长度约为141米.。

高考数学 2.9 函数模型及其应用

高考数学 2.9 函数模型及其应用

租0元.一个月的本地网内通话时间t(分钟)与电话
费s(元)的函数关系如图所示,当通话150分钟时,这
两种方式电话费相差( )
A.10元
B.20元
C.30元
D. 4 0 元
3
(2)(2015·昆明模拟)在如图所示的锐角三角形空地中,欲建一个面积
最大的内接矩形花园(阴影部分),则其边长x为
m.
【解题提示】(1)根据对应点的坐标分别求出两条直线方程. (2)根据相似三角形的性质,找出比例关系,列出以x为变量的二次函数 式表示出阴影部分的面积。
2.教材改编 链接教材 练一练
(1)(必修1P107A组T1改编)在某个物理实验中,测量得变量x和变量y的
几组数据,如下表:
x 0.50 0.99 2.01 3.98
y -0.99 0.01 则x,y最适合的函数的是( )
0.98
2.00
A.y=2x
B.y=x2-1
C.y=2x-2
D.y=log2x
考点1 一次函数、二次函数模型 知·考情
以一次函数、二次函数为模型的应用题常出现在高考试题中,尤 其是二次函数,考查较多,既有选择题、填空题,也有解答题,难度适中, 属中档题.
明·角度
命题角度1:单一考查一次函数或二次函数模型
【典例1】(1)(2015·西安模拟)某电信公司推出两
种手机收费方式:A种方式是月租20元,B种方式是月
【解析】选B.由题意知h=20-5t(0≤t≤4),故选B.
3.真题小试 感悟考题 试一试
(1)(2015·泉州模拟)某产品的总成本y(万元)与产量x(台)之间的函
数关系是y=3000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

第9讲 函数模型及其应用基础巩固题组(建议用时:40分钟) 一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 ①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案 ①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析 设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案 205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析 当t=0时,y=a,当t=8时,y=a e-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=a e-bt=a,e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.答案 166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km h,B 的速度是16 km h,经过________h,AB间的距离最短.解析 设经过x h,A,B相距为y km,则y==(0≤x≤),求得函数的最小值时x的值为.答案 7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2 +1.5=21.5,当且仅当x=,即x=10时取等号.答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,∴1.12x=,∴x=log1.12=log1.1220-log1.1213=-===3.8.即3年后不到200万元,第4年超过200万元,即2019年超过200万元.答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=x(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2 m时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为(万元).则=+-48≥2 -48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====≤=≤=<.P不可能大于.法二 依题意x=0.2a,所以P====.假设P>,则ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解,假设不成立.P不可能大于.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126 000-,又f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x-300·x,f′(x)=9 000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240 000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.解 (1)由题意得AD=12 千米,≤,解得≤v≤,故乙的速度v的取值范围是.(2)设经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故<2,即v>8.①当0<vt≤5,即0<t≤时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=t2.因为v2-v+36>0,所以当t=时,f(t)取最大值,所以×2≤25,解得v≥.②当5<vt≤13,即<t≤时,f(t)=(vt-1-6t)2+9=(v-6)22+9.因为v>8,所以<,(v-6)2>0,所以当t=时,f(t)取最大值,所以(v-6)22+9≤25,解得≤v≤.③当13≤vt≤16,即≤t≤时,f(t)=(12-6t)2+(16-vt)2因为12-6t>0,16-vt>0,所以f(t)在上单调递减,所以当t=时,f(t)取最大值,2+2≤25,解得≤v≤.因为v>8,所以8<v≤.综上所述,v的取值范围是.。

2.9 函数模型及其应用

2.9 函数模型及其应用

第九节函数模型及其应用1.几类函数模型(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论; (4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.1.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.[由题悟法]应用函数y =x +ax模型的关键点(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=bx叠加而成的.(2)解决实际问题时一般可以直接建立f (x )=ax +bx 的模型,有时可以将所列函数关系式转化为f (x )=ax+bx的形式. (3)利用模型f (x )=ax +bx求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件.[即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C(x)=k50x+250(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C(0)的实际意义,并建立y关于x的函数关系式并化简;(2)当x为多少平方米时,y取得最小值,最小值是多少万元?考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.一抓基础,多练小题做到眼疾手快1.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大() A.8元/件B.10元/件C.12元/件D.14元/件2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x3.向一杯子中匀速注水时,杯中水面高度h随时间t变化的函数h=f(t)的图象如图所示.则杯子的形状是()4.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.5.已知某矩形广场的面积为4万平方米,则其周长至少为________.二保高考,全练题型做到高考达标1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D.403元 2.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元3.(2016·北京朝阳统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .184.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.0075≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%5.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8,则m 的值为( )A .7B .8C .9D .106.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.7.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.8.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为______(万元).9.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE上. (1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.10.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?三上台阶,自主选做志在冲刺名校1.(2017·潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系. Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________. (2)最低种植成本是________(元/100 kg).2.有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R)个单位的洗衣液在装有一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x -1,0≤x ≤4,7-12x ,4<x ≤14.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值; (2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.) A .y =x B .y =lg x C .y =2xD .y =1x2.(2016·全国丙卷)已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b3.(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c4.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )5.(2015·山东高考)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C.(0,1) D.(1,+∞)6.(2015·天津高考)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.c<b<a11。

课件3:2.9函数模型及其应用

课件3:2.9函数模型及其应用

①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,产品停止生产;
④第三年后,这种产品产量保持不变. 其中说法正确的是 ②③ .
(2)上题中产品“总产量”若改为“年产量”,四种说法中 正确的是 ②④ .
第二章 第9讲
第15页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
100千件时,该厂在这一商品的生产中所获利润最大.
第二章 第9讲
第31页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
考向三 构建函数模型解决实际问题
例3 (1)[2013·陕西高考]在如图所示的锐角三角形空地中,
欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为
2.反比例函数模型:y=xk(k≠0); 3.二次函数模型:y= ax2+bx+c (a≠0);
限时规范特训
第二章 第9讲
第8页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
4.指数函数模型:y=N(1+p)x(x>0,p≠0)(增长率问题);
x2+10x(万元);当年产量不少于80千件
时,C(x)=51x+
10000 x
-1450(万元).通过市场分析,若每件售
价为500元时,该厂年内生产该商品能全部销售完.
第二章 第9讲
第27页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码

2.9 函数模型及其应用

2.9 函数模型及其应用

§2.9函数模型及其应用最新考纲考情考向分析1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以解答题为主,中高档难度.1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=kx+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=ax n+b (a,b为常数,a≠0)2.三种函数模型的性质函数性质y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x知识拓展1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × )(2)函数y =2x 的函数值比y =x 2的函数值大.( × )(3)不存在x 0,使0xa <0nx <log a x 0.( × )(4)在(0,+∞)上,随着x 的增大,y =a x (a >1)的增长速度会超过并远远大于y =x a (a >0)的增长速度.( √ )题组二 教材改编2.[P102例3]某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元 答案 D解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为16×(40+60+30+30+50+60)=45(万元),故D 错误.3.[P104例5]生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件. 答案 18解析 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.[P107A 组T4]用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________. 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大. 题组三 易错自纠5.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为____________. 答案(p +1)(q +1)-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.6.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到________只.答案200解析由题意知100=a log3(2+1),∴a=100,∴y=100log3(x+1).当x=8时,y=100log39=200.题型一用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()答案 B解析v=f(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()答案 B解析由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凸的,故选B.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油答案 D解析根据图象所给数据,逐个验证选项.根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.题型二已知函数模型的实际问题答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式, 联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎫t 2-152t +22516+4516-2=-15⎝⎛⎭⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.A .30元B .60元C .28 000元D .23 000元答案 D解析 设毛利润为L (p )元,则由题意知 L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0,当p ∈(30,+∞)时,L ′(p )<0,故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23 000.思维升华 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练(1)拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元.答案 4.24解析∵m=6.5,∴[m]=6,则f(6.5)=1.06×(0.5×6+1)=4.24.(2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500.则当Q=300时,L(Q)的最大值为2 500万元.题型三构建函数模型的实际问题命题点1构造一次函数、二次函数模型典例(1)某航空公司规定,乘飞机所携带行李的质量x(kg)与其运费y(元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.答案19解析由图象可求得一次函数的解析式为y=30x-570,令30x-570=0,解得x=19.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元.答案95∴当x=95时,y最大.命题点2构造指数函数、对数函数模型典例 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;解 (1)设每年降低的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-1101()2.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m =22a ,即101()2m=121()2,即m 10=12,解得m =5. 故到今年为止,该森林已砍伐了5年. 引申探究解 设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 101()2n ≥321()2,即n 10≤32,解得n ≤15. 故今后最多还能砍伐15年. 命题点3 构造y =x +ax(a >0)型函数典例 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.答案 2 3解析 由题意可得BC =18x -x2,∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立. 命题点4 构造分段函数模型(1)求函数y =f (x )的解析式;解 (1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185;对于y =-3x 2+68x -115=-3⎝⎛⎭⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270. ∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.3010,lg 3≈0.477 1) 答案 8解析 设至少过滤n 次才能达到市场要求, 则2%⎝⎛⎭⎫1-13n ≤0.1%,即⎝⎛⎭⎫23n ≤120, 所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________. 答案 300解析 由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 000,0≤x ≤400,60 000-100x ,x >400, 当0≤x ≤400时,y =-12(x -300)2+25 000,所以当x =300时,y max =25 000; 当x >400时,y =60 000-100x <20 000,综上,当门面经营的天数为300时,总利润最大为25 000元.函数应用问题典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x -40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;思维点拨 根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论. 规范解答解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,[2分] 当x >40时,W =xR (x )-(16x +40) =-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.[4分](2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;[6分]②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以此时W 的最大值为5 760.[10分] 综合①②知,当x =32时,W 取得最大值6 104万美元.[12分]解函数应用题的一般步骤第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x答案 B解析 由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )答案 A解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元 D .320万元答案 D解析 设该公司的年收入为x 万元(x >280),则有280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.A .2017年B .2018年C .2019年D .2020年答案 D解析 设从2016年起,过了n (n ∈N *)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3 D .26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx (0<x ≤10),10m +(x -10)·2m (x >10),解得x =13.6.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元 D .43.025万元答案 C解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32 =-0.1()x -10.52+0.1×(10.5)2+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12e k ,∴k =2ln 2,∴y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝⎛⎭⎫x 2+8x (x >0).则当年广告费投入________万元时,该公司的年利润最大. 答案 4解析 由题意得L =512-⎝⎛⎭⎫x 2+8x ≤512-2x 2·8x=21.5, 当且仅当x 2=8x ,即x =4时等号成立.当x -4x=0,即x =4时,L 取得最大值21.5. 故当年广告费投入4万元时,该公司的年利润最大.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设内接矩形另一边长为y m , 则由相似三角形性质可得x 40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),所以当x =20时,S max =400.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v202 km ,那么这批物资全部到达灾区的最少时间是________ h(车身长度不计). 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎝⎛⎭⎫36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v ≥12, 当且仅当36v 400=400v ,即v =2003时取“=”.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.11.声强级Y (单位:分贝)由公式Y =10lg ⎝⎛⎭⎫I10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6 W/m 2,求其声强级;解 (1)当声强为10-6 W/m 2时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎫10-610-12=10lg 106=60(分贝).(2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12 W/m 2, 则常人能听到的最低声强为10-12 W/m 2. (3)当声强为5×10-7 W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.12.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:解 (1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150. 依题意,单套丛书利润P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30, 所以P =-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120.因为0<x <150,所以150-x >0, 则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x ,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.13.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小. 答案 40解析 设每小时的总费用为y 元,则y =k v 2+96,又当v =10时,k ×102=6, 解得k =0.06,所以每小时的总费用y =0.06v 2+96,匀速行驶10海里所用的时间为10v 小时,故总费用为W =10v y =10v (0.06v 2+96)=0.6v +960v ≥20.6v ×960v =48,当且仅当0.6v =960v ,即v =40时等号成立. 故总费用最小时轮船的速度为40海里/小时.14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________. 答案5-12解析 由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),∵b -c =(b -a )-(c -a ), ∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12.时间t 60 100 180 种植成本Q11684116利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________; (2)最低种植成本是________(元/100 kg). 答案 (1)120 (2)80解析 根据表中数据可知函数不单调,所以Q =at 2+bt +c ,且开口向上,对称轴t =-b2a =60+1802=120, 代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80(元/100 kg).(1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 的销售价格,使该店每日销售产品A 所获得的利润最大.(保留1位小数) 解 (1)当x =4时,y =102+4×(4-6)2=21,此时该店每日销售产品A 所获得的利润为 (4-2)×21=42千元.(2)该店每日销售产品A 所获得的利润f (x )=(x -2)⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6), 从而f ′(x )=12x 2-112x +240 =4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,易知在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减.所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/件时,利润最大.。

2.9函数模型及其应用

2.9函数模型及其应用

1.几类函数模型及其增添差别(1)几类函数模型函数模型函数分析式一次函数模型f(x)= ax+ b (a, b 为常数且 a≠ 0)k反比率函数模型f(x)=x+ b (k, b 为常数且 k≠ 0)二次函数模型f(x)= ax2+ bx+ c(a, b,c 为常数, a≠ 0)指数函数模型f(x) =ba x+ c(a,b,c 为常数, b≠ 0,a>0 且 a≠ 1)对数函数模型f(x) =blog a x+ c(a,b,c 为常数,b≠ 0,a>0 且 a≠ 1)幂函数模型f(x) = ax n+ b (a, b 为常数, a≠ 0)(2)三种函数模型的性质函数y= a x(a>1)y= log a x(a>1)y=x n( n>0)性质在(0,+∞ )单一递加单一递加单一递加上的增减性增添速度愈来愈快愈来愈慢相对安稳随 x 的增大渐渐表随 x 的增大渐渐表现为随 n 值变化而各图象的变化现为与 y 轴平行有不一样与 x 轴平行值的比较存在一个 x0,当 x>x0时,有 log a x<x n<a x2.解函数应用问题的步骤(四步八字 )(1)审题:弄清题意,分清条件和结论,理顺数目关系,初步选择数学模型;(2)建模:将自然语言转变为数学语言,将文字语言转变为符号语言,利用数学知识,成立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)复原:将数学识题复原为实质问题的意义.以上过程用框图表示以下:【思虑辨析】判断下边结论能否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100 元,按进价增添25%销售,后因库存积压降价,若按九折销售,则每件还可以赢利.(√)(2)幂函数增添比直线增添更快.(×)(3)不存在 x0,使a x0x0n log a x0 . (×)(4)在 (0,+∞ )上,跟着 x 的增大, y=a x(a>1)的增添速度会超出并远远大于y= x a(a>0)的增添速度.(√)(5)“指数爆炸”是指数型函数y= a·b x+ c(a≠ 0 , b>0 , b≠ 1) 增添速度愈来愈快的形象比喻.(×)(6)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实质问题.(√)1. (2015 ·京北 )某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的状况.加油时间加油量 ( 升)加油时的累计里程( 千米 )2015 年 5月 1日12350002015 年 5月 15 日4835600注:“累计里程”指汽车从出厂开始累计行驶的行程.在这段时间内,该车每100 千米均匀耗油量为______升.答案8分析由表知:汽车行驶行程为35 600- 35 000= 600 千米,耗油量为48 升,∴每 100 千米耗油量 8 升.2.某厂有很多形状为直角梯形的铁皮边角料,如图,为降低耗费,开源节流,现要从这些边角料上截取矩形铁片(如图中暗影部分 )备用,当截取的矩形面积最大时,矩形两边长x,y 应为 ________.答案15,12分析由三角形相像得24- y x5=20,得 x=4(24- y),24- 8∴S= xy=-5(y- 12)2+ 180,4∴当 y= 12 时, S 有最大值,此时 x= 15.3.某市生产总值连续两年连续增添.第一年的增添率为p,第二年的增添率为q,则该市这两年生产总值的年均匀增添率为__________.答案p+ 1 q+ 1- 1分析设年均匀增添率为x,则 (1+ x)2= (1+ p)(1+ q),∴x= 1+ p 1+ q - 1.4.用长度为 24 的资料围一矩形场所,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为 ________.答案3设隔墙的长度为 x(0< x<6),矩形面积为24- 4x分析y,则 y= x×= 2x(6-x) =- 2(x- 3)2+218,∴当 x= 3 时, y 最大.5. (2015 四·川 )某食品的保鲜时间y(单位:小时 )与储蓄温度 x(单位:℃ )知足函数关系y= e kx+ bk,b 为常数 ).若该食品在 0℃的保鲜时间是192小时,(e= 2.718为自然对数的底数,在 22 ℃的保鲜时间是 48 小时,则该食品在33℃的保鲜时间是 ________小时.答案24be = 192,22k48111k 133k+b11k3b 分析由题意得∴e==,∴ e =,∴ x= 33 时, y=e= (e)·ee22k+b=48,1924213 b1=2·e =8× 192= 24.题型一用函数图象刻画变化过程例 1 (1) 设甲、乙两地的距离为 a(a>0),小王骑自行车以匀速从甲地到乙地用了 20 分钟,在乙地歇息10 分钟后,他又以匀速从乙地返回到甲地用了 30 分钟,则小王从出发到返回原地所经过的行程 y 和其所用的时间 x 的函数图象为 ________(填序号 ).(2)物价上升是目前的主要话题,特别是菜价,我国某部门为赶快实现稳固菜价,提出四种绿色运输方案.据展望,这四种方案均能在规定的时间T 内达成展望的运输任务Q0,各样方案的运输总量 Q 与时间 t 的函数关系以下图,在这四种方案中,运输效率 (单位时间的运输量 ) 逐渐提高的是 ________(填序号 ).答案分析(1) ④(2)②(1) y 为“小王从出发到返回原地所经过的行程” 而不是位移,故清除①③ ;又因为小王在乙地歇息10 分钟,故清除②,④ 切合题意.(2)由运输效率 ( 单位时间的运输量)逐渐提高得,曲线上的点的切线斜率应当渐渐增大,故函数的图象应向来是下凹的,故② 正确.思想升华判断函数图象与实质问题变化过程相符合的两种方法(1)建立函数模型法:当依据题意易建立函数模型时,先成立函数模型,再联合模型选图象.(2)考证法:当依据题意不易成立函数模型时,则依据实质问题中两变量的变化快慢等特色,联合图象的变化趋向,考证能否符合,从中清除不切合实质的状况,选择出切合实质状况的答案.已知正方形 ABCD 的边长为 4,动点 P 从 B 点开始沿折线 BCDA 向 A 点运动.设点 P 运动的行程为 x,△ ABP 的面积为 S,则函数 S=f(x)的图象是 ________(填序号 ).答案④分析依题意知当0≤ x≤4 时, f(x)= 2x;当 4< x≤ 8 时, f(x)= 8;当 8<x≤ 12 时, f(x)= 24-2x,察看四个图象知,④ 正确.题型二已知函数模型的实质问题例 2候鸟每年都要随季节的变化而进行大规模的迁移,研究某种鸟类的专家发现,该种鸟类的飞翔速度 v(单位: m/s)与其耗氧量 Q 之间的关系为v= a+ blog3Q(此中 a、b 是实数 ).据10统计,该种鸟类在静止的时候其耗氧量为30 个单位,而其耗氧量为90 个单位时,其飞翔速度为 1 m/s.(1)求出 a、 b 的值;(2)若这类鸟类为赶行程,飞翔的速度不可以低于 2 m/s,则其耗氧量起码要多少个单位?解 (1) 由题意可知,当这类鸟类静止时,它的速度为0 m/s,此时耗氧量为 30 个单位,故有30a+ blog 310=0,90即 a+b= 0;当耗氧量为90 个单位时,速度为 1 m/s,故 a+ blog310= 1,整理得 a+ 2b= 1.a+ b= 0,a=- 1,解方程组得a+ 2b= 1,b= 1.Q Q (2)由 (1)知, v=- 1+ log310.所以要使飞翔速度不低于 2 m/s,则有 v≥ 2,即- 1+ log310≥2,即 log 310Q≥ 3,解得 Q≥ 270.所以若这类鸟类为赶行程,飞翔的速度不可以低于 2 m/s,则其耗氧量起码要270 个单位.思想升华求解所给函数模型解决实质问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)依据已知利用待定系数法,确立模型中的待定系数.(3)利用该模型求解实质问题.某般空公司规定,乘飞机所携带行李的质量(kg) 与其运费 (元 )由如图的一次函数图象确立,那么乘客可免费携带行李的质量最大为________kg.答案19分析由图象可求得一次函数的分析式为y=30x- 570,令 30x- 570= 0,解得 x= 19.题型三结构函数模型的实质问题命题点 1建立二次函数模型例 3某汽车销售公司在A,B 两地销售同一种品牌的汽车,在 A 地的销售利润 (单位:万元 )为 y = 4.1x- 0.1x2,在 B 地的销售利润(单位:万元 )为 y = 2x,此中 x 为销售量 (单位:辆 ),12若该公司在两地共销售16 辆该种品牌的汽车,则能获取的最大利润是________万元.答案43分析设公司在 A 地销售该品牌的汽车x 辆,则在 B 地销售该品牌的汽车(16- x)辆,所以可21222221得利润 y= 4.1x-0.1x + 2(16- x)=- 0.1x + 2.1x+32=- 0.1(x-2 )+ 0.1×4+ 32.因为 x∈ [0,16] ,且 x∈N,所以当 x= 10 或 11 时,总利润获得最大值43 万元.命题点 2 建立指数函数、对数函数模型例 4(1) 世界人口在过去40 年翻了一番,则每年人口均匀增添率约是________(参照数据:lg 2 ≈ 0.301 0,100.007 5≈ 1.017).(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停 (每次上涨 10%) ,又经历了 n 次跌停 (每次下跌10%) ,则该股民这支股票的盈亏状况(不考虑其余花费 )为 ________.①略有盈余②略有损失③没有盈余也没有损失④没法判断盈亏状况答案(1)1.7% (2) ②分析(1) 设每年人口均匀增添率为x,则 (1+ x)40= 2,两边取以 10 为底的对数,则40 lg(1 +lg 2≈ 0.007 5,所以 100.007 5x)= lg 2 ,所以 lg(1+ x)=40= 1+ x,得 1+ x≈ 1.017,所以 x≈ 1.7%.(2)设该股民购进这支股票的价钱为 a 元,则经历 n 次涨停后的价钱为a(1+ 10%)n= a×1.1n 元,经历 n 次跌停后的价钱为a× 1.1n×(1- 10%) n= a× 1.1n× 0.9n=a× (1.1× 0.9)n=0.99n·a<a,故该股民这支股票略有损失.命题点 3建立分段函数模型例 5某市出租车收费标准以下:起步价为8 元,起步里程为 3 km( 不超出 3 km 按起步价付费 );超出 3 km 但不超出8 km 时,超出部分按每千米 2.15 元收费;超出8 km 时,超出部分按每千米 2.85 元收费,另每次乘坐需付燃油附带费 1 元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案9分析设出租车行驶x km 时,付费y 元,9,0<x≤ 3,则 y= 8+2.15 x- 3 + 1, 3<x≤ 8,8+2.15× 5+2.85 x- 8 + 1, x>8,由 y=22.6,解得 x= 9.思想升华建立数学模型解决实质问题,要正确理解题意,分清条件和结论,理顺数目关系,将文字语言转变成数学语言,成立适合的函数模型,求解过程中不要忽视实质问题对变量的限制.(1)一个人喝了少许酒后,血液中的酒精含量快速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地依据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超出0.09 mg/ mL ,那么,这人起码经过________小时才能开车.(精准到 1 小时 )(2)某公司投入100 万元购入一套设施,该设施每年的运行花费是0.5 万元,别的每年都要花费必定的保护费,第一年的保护费为 2 万元,因为设施老化,此后每年的保护费都比上一年增添 2 万元.为使该设施年均匀花费最低,该公司需要更新设施的年数为________.答案(1)5(2)10分析(1) 设经过 x 小时才能开车.由题意得0.3(1-25%) x≤ 0.09,∴0.75x≤ 0.3, x≥ log0.75 0.3≈ 4.19.∴ x 最小为 5.(2)设该公司需要更新设施的年数为x,设施年均匀花费为 y,则 x 年后的设施保护花费为2+ 4++ 2x= x(x+ 1),100+ 0.5x + x x + 1 所以 x 年的均匀花费为y =100= x + x + 1.5,x由基本不等式得 y = x +100 100 + 1.5≥ 2 x · + 1.5xx100= 21.5,当且仅当x = x ,即 x = 10 时取等号.2.函数应用问题典例 (14 分)已知美国某手机品牌公司生产某款手机的年固定成本为 40 万美元,每生产 1万部还需另投入16 万美元. 设公司一年内共生产该款手机x 万部并所有销售完, 每万部的销400- 6x , 0<x ≤ 40,售收入为 R(x)万美元,且 R(x)= 7 400- 40 000x2 , x>40.x(1)写出年利润 W(万美元 )对于年产量 x(万部 )的函数分析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获取的利润最大?并求出最大利润.规范解答解 (1) 当 0<x ≤ 40 时, W = xR(x)- (16x + 40)=- 6x 2+384x - 40,[2 分]当 x>40 时, W = xR(x)- (16x + 40)40 000=-- 16x + 7 360.[4 分 ]- 6x 2+ 384x - 40, 0<x ≤ 40,所以 W =[6 分]- 40 000- 16x + 7 360, x>40.x(2)① 当 0<x ≤40 时, W =- 6(x - 32)2+ 6 104,所以 W max = W(32) =6 104; [8 分 ]40 000② 当 x>40 时, W =-- 16x + 7 360,因为 40 000 + 16x ≥ 240 000× 16x = 1 600,x x40 000当且仅当 = 16x ,即 x=50∈ (40,+∞ ) 时,取等号,所以 W 取最大值为 5 760.[12 分 ]综合①② 知,当 x=32 时, W 获得最大值 6 104 万元. [14 分]解函数应用题的一般程序第一步: (审题 )弄清题意,分清条件和结论,理顺数目关系;第二步: (建模 )将文字语言转变成数学语言,用数学知识成立相应的数学模型;第三步: (解模 )求解数学模型,获取数学结论;第四步: (复原 )将用数学方法获取的结论复原为实质问题的意义;第五步: (反省 )对于数学模型获取的数学结果,一定考证这个数学结果对实质问题的合理性.温馨提示 (1)此类问题的重点是正确理解题意,成立适合的函数模型. (2) 分段函数主假如每一段自变量变化所按照的规律不一样,能够先将其看作几个问题,将各段的变化规律分别找出来,再将其合到一同,要注意各段自变量的范围,特别是端点值.[方法与技巧 ]1.仔细剖析题意,合理选择数学模型是解决应用问题的基础.2.实质问题中常常解决一些最值问题,我们能够利用二次函数的最值、函数的单一性、基本不等式等求得最值.3.解函数应用题的五个步骤:①审题;②建模;③解模;④ 复原;⑤ 反省.[失误与防备 ]1.函数模型应用不妥,是常有的解题错误.所以,要正确理解题意,选择适合的函数模型.2.要特别关注实质问题的自变量的取值范围,合理确立函数的定义域.3.注意问题反应.在解决函数模型后,一定考证这个数学结果对实质问题的合理性.A 组专项基础训练(时间: 40 分钟 )1.若一根蜡烛长20 cm,点燃后每小时焚烧时 )的函数关系用图象表示为________.5 cm ,则焚烧剩下的高度h(cm)与焚烧时间t( 小答案②分析依据题意得分析式为h= 20-5t(0 ≤t≤ 4),其图象为② .2.某家具的标价为132 元,若降价以九折销售(即优惠10%),仍可赢利10%( 相对进货价),则该家具的进货价是________元.答案108分析设进货价为 a 元,由题意知132× (1- 10%)- a= 10%·a,解得a= 108.3.某工厂 6 年来生产某种产品的状况是:保持不变,则该厂 6 年来这类产品的总产量前 3 年年产量的增添速度愈来愈快,后C 与时间 t(年 )的函数关系图象正确的选项是3 年年产量________.答案①分析前 3 年年产量的增添速度愈来愈快,说明呈高速增添,只有①③ 图象切合要求,尔后3 年年产量保持不变,故① 正确.4.将出货单价为 80 元的商品按 90 元一个销售时,能卖出 400个,已知这类商品每涨价1元,其销售量就要减少20 个,为了赚得最大利润,每个售价应定为________元.答案95分析设每个售价定为x 元,则利润 y= (x- 80) ·[400 - (x- 90) ·20] =- 20[(x-95)2- 225] .∴ 当x= 95时, y 最大.5.我国为了增强对烟酒生产的宏观管理,除了应收税收外,还征收附带税.已知某种酒每瓶售价为70 元,不收附带税时,每年大概销售100 万瓶;若每销售100 元国家要征附带税x 元 (叫做税率 x%),则每年销售量将减少 10x 万瓶,假如要使每年在此项经营中所收取的附带税额许多于 112 万元,则 x 的最小值为 ________.答案 2分析由剖析可知,每年此项经营中所收取的附带税额为104x,令 104·(100- 10x)·70··(100100- 10x) ·70·x≥112× 104,解得 2≤ x ≤ 8.故 x 的最小值为 2.1006.在以下图的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(暗影部分 ),则其边长x 为 ________m. 答案 20分析设内接矩形另一边长为y ,则由相像三角形性质可得x 40- y= ,解得40 40y = 40- x ,所以面积22+ 400(0<x<40) ,当 x =20 时, S max S =x(40- x)=- x + 40x =- (x - 20) = 400.7.一个容器装有细沙a cm 3 ,细沙冷静器底下一个细微的小孔慢慢地匀速漏出,t min 后节余- bt3则再经过 ________min ,的细沙量为 y = ae(cm ) ,经过 8 min 后发现容器内还有一半的沙子,容器中的沙子只有开始时的八分之一.答案 16分析 当 t = 0 时, y = a ,当 t = 8 时, y = ae-8b=12a ,∴ e-8b1bt1bt18b 3= 2,容器中的沙子只有开始时的八分之一时,即y = ae -=8a , e -= 8= (e-) = e-24b,则 t =24,所以再经过 16 min.8.西北某羊皮手套公司准备投入适合的广告费对其生产的产品进行促销.在一年内, 依据预51 x 8算得羊皮手套的年利润 L 万元与广告费 x 万元之间的函数分析式为 L = 2 -2+x (x>0) .则当年广告费投入 ________万元时,该公司的年利润最大.答案 451 x 8 43 1 4 24分析 由题意得 L = 2 - 2+ x = 2 - 2 x - x (x>0) .当 x - x =0,即 x = 4 时, L 获得最大值 21.5.故当年广告费投入4 万元时,该公司的年利润最大.9.某地上年度电价为 0.8 元,年用电量为 1 亿千瓦时.今年度计划将电价调至0.55 元~ 0.75元之间,经测算,若电价调至 x 元,则今年度新增用电量 y(亿千瓦时 )与(x -0.4)( 元) 成反比率.又当 x =0.65 时, y = 0.8.(1)求 y 与 x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3 元,则电价调至多少时,今年度电力部门的利润将比上年度增添 20%? [利润=用电量 ×(实质电价-成本价 )]解 (1) ∵ y 与(x -0.4)成反比率,∴设 y=k(k≠ 0).x- 0.4把 x=0.65, y=0.8 代入上式,得 0.8=k, k= 0.2.0.65-0.4∴y=0.2=1,x-0.4 5x-2即 y 与 x 之间的函数关系式为y=1. 5x-21(2)依据题意,得(1+) ·(x- 0.3)5x- 2=1× (0.8- 0.3)× (1+ 20%).整理,得x2- 1.1x+0.3= 0,解得 x1= 0.5, x2= 0.6.经查验 x1= 0.5, x2= 0.6 都是所列方程的根.∵x 的取值范围是 0.55~ 0.75,故 x=0.5 不切合题意,应舍去.∴ x=0.6.∴当电价调至0.6 元时,今年度电力部门的利润将比上年度增添20%.10.某医药研究所开发的一种新药,假如成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量 y(微克 )与时间 t(小时 )之间近似知足以下图的曲线.(1)写出第一次服药后y 与 t 之间的函数关系式y= f( t);(2)据进一步测定,每毫升血液中含药量许多于0.25 微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解(1) 由题图,kt,0≤ t≤ 1,设y=1 t-a,t>1, 2当 t= 1 时,由 y= 4 得 k= 4,由 12 1-a = 4 得 a = 3.4t , 0≤ t ≤ 1,所以 y =1 t -3, t>1.20≤ t ≤ 1,t>1, 1≤ t ≤ 5.(2)由 y ≥ 0.25 得或解得1 t -4t ≥ 0.253162≥ 0.25,所以服药一次后治疗疾病有效的时间是1795- 16= 16(小时 ).B 组 专项能力提高(时间: 20 分钟 )11.有浓度为 90%的溶液 100 g ,从中倒出 10 g 后再倒入 10 g 水称为一次操作,要使浓度低于 10% ,这类操作起码应进行的次数为 (参照数据: lg 2= 0.301 0, lg 3 = 0.477 1)________ .答案 21n 时的浓度为9 n+1,由 9 n +1 - 1- 1分析操作次数为 <10% ,得 n + 1> 9 = ≈ 21.8,1010lg 2lg 3 - 110∴ n ≥ 21.12.某车间分批生产某种产品,每批的生产准备花费为 800 元.若每批生产 x 件,则均匀仓储时间为 x天,且每件产品每日的仓储花费为1 元.为使均匀到每件产品的生产准备花费与仓8储花费之和最小,每批应生产产品 ________件.答案 80分析设每件产品的均匀花费为 y 元,由题意得y = 800 x≥ 2800 x = 20.+ x 8·x 8800 x当且仅当x =8(x>0),即 x = 80 时 “ = ”成立.13. 某种病毒经 30 分钟生殖为本来的 2 倍,且知病毒的生殖规律为y = e kt (此中 k 为常数, t表示时间,单位:小时, y 表示病毒个数 ),则 k = ________,经过 5 小时, 1 个病毒能生殖为________个. 答案2ln 21 024当 t= 0.5 时, y= 2,1 k分析2= e2,∴k= 2ln 2,∴ y= e2tln 2,当 t= 5 时, y= e10ln 2= 210= 1 024.14.某建材商场国庆时期搞促销活动,规定:顾客购物总金额不超出800 元,不享受任何折扣,假如顾客购物总金额超出分别累计计算.800 元,则超出800 元部分享受必定的折扣优惠,按下表折扣某人在此商场购物总金额为能够享受折扣优惠金额不超出 500 元的部分超出 500 元的部分x 元,能够获取的折扣金额为折扣率5%10%y 元,则y 对于x 的分析式为0, 0<x≤ 800,y= 5% x- 800 , 800< x≤ 1 300,10% x- 1 300 + 25, x>1 300.若 y=30 元,则他购物实质所付金额为 ________元.答案 1 350分析若 x= 1 300 元,则 y= 5%(1 300 -800) = 25(元 )<30( 元 ),所以 x>1 300.∴由 10%(x-1 300)+ 25= 30,得 x= 1 350(元 ).15.已知一家公司生产某品牌服饰有年固定成本为10万元,每生产 1 千件需另投入 2.7 万元.设该公司一年内共生产该品牌服饰x 千件并所有销售完,每千件的销售收入为R(x)万元,且 R(x)1 10.8-30x 20<x≤10 ,=108 1 000- 2 x>10 .x3x(1)写出年利润W(万元 )对于年产量x(千件 )的函数分析式;(2)年产量为多少千件时,该公司在这一品牌服饰的生产中所获取的年利润最大?( 注:年利润=年销售收入-年总成本)解(1) 当 0<x≤ 10 时,3xW= xR( x)- (10+2.7x)= 8.1x--10;当 x>10 时, W= xR(x)- (10+ 2.7x)1000=98-3x- 2.7x.3x8.1x-30- 10 0<x≤10 ,∴W=1 00098-3x-2.7x x>10 .x2(2)①当 0<x≤10 时,令 W′=8.1-10=0,得 x= 9,可知当 x∈ (0,9) 时,W′ >0,当 x∈(9,10]时, W′<0 ,∴当 x= 9 时, W 取极大值,即最大值,且 W max= 8.1× 9-1× 93- 10=38.6. 301 000②当 x>10 时, W= 98-3x+ 2.7x≤ 98-21 0003x·2.7x= 38,1 000100当且仅当3x= 2.7x,即 x=9时, W= 38,100故当 x=9时, W 取最大值 38(当 1 000x 取整数时, W 必定小于 38).综合①②知,当 x= 9 时, W 取最大值,故当年产量为9 千件时,该公司在这一品牌服饰生产中所获年利润最大 .。

2.9函数模型及应用

2.9函数模型及应用
高中总复习
人教数学
基础 自主夯实 考点 层级突破
课时 分组冲关
第9节 函数模型及应用
1.常见的函数模型
函数模型
函数解析式
一次函数型 f(x)=ax+b(a,b 为常数,a≠0)
二次函数型 f(x)=ax2+bx+c(a,b,c 为常数,a≠0)
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
指数函数型 f(x)=bax+c(a,b,c 为常数,a>0 且 a≠1,b≠0) 对数函数型 f(x)=blogax+c(a,b,c 为常数,a>0 且 a≠1,b≠0)
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
考点二 应用所给函数模型解决实际问题(师生共研) [典例] 某医药研究所开发的一种新药,如果成年人按规定的剂 量服用,据监测,服药后每毫升血液中的含药量 y(微克)与时间 t(小 时)之间近似满足如图所示的曲线.
(1)写出第一次服药后 y 与 t 之间的函数关系式 y=f(t); (2)据进一步测定,每毫升血液中含药量不少于 0.25 微克时治疗 疾病有效,求服药一次后治疗疾病有效的时间.
当 t=1 时,由 y=4 得 k=4, 由121-a=4 得 a=3.
4t,0≤t≤1, 所以 y=12t-3,t>1.
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
(2)由 y≥0.25 得40t≤≥t0≤.215,,
t>1, 或12t-3≥0.25,
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
[思考辨析]
判断下列说法是否正确,正确的在它后面的括号里打“√”,错
误的打“×”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若0<a<40时,由于函数 W 2 x 1 600 在区间(0,a] 上是减函数,则当x=时,周长W最小,其最小值为 1 600 1 600 2(a ),此时,矩形长与宽分别是a与 . a a [10分]
x
故当a≥40时,矩形长与宽都是40;当0<a<40时,矩
1 600 形长与宽分别是a与 . a
加税额不少于112万元,则x的最小值为
A.2 解析 B.6 C.8 D.10
( A)
依题意 (100 10 x ) 70 x 112, 100 解得2≤x≤8,则x的最小值为2.
2.从1999年11月1日起,全国储蓄存款征收利息税,
利息税的税率为20%,由各银行储蓄点代扣代收,
某人2000年6月1日存入若干万元人民币,年利率 为2%,到2001年6月1日取款时被银行扣除利息税 138.64元,则该存款人的本金介于 A.3~4万元 B.4~5万元 ( A)
400 t,单价应该是 A.820元 B.840元 C.860元 ( C) D.880元
解析
依题意,及x=700,y=2 000, 可得k=-10,b=9000,即y=-10x+9 000, 将y=400代入得x=860。
4.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数;
CB上分别截取AE,AH,CG,
CF都等于x,当x为何值时,四边形EFGH的面积最 大?并求出最大面积. 思维启迪 依据图形建立四边形EFGH的面积S关于 自变量x的目标函数,然后利用解决二次函数的最 值问题求出S的最大值.
设四边形EFGH的面积为S, 1 则S△AEH=S△CFG= x2, 2 1 S△BEF=S△DGH= (a-x)(b-x), 2 1 1 S ab 2 [ x 2 (a x)(b x)] 2 2 a b 2 ( a b) 2 2 x 2 (a b) x 2( x ) , 4 8 由图形知函数的定义域为{x|0<x≤b}. ab , 又0<b<a,∴0<b< 2
合理不重不漏.
知能迁移2
某公司生产一种电子仪器的固定成本为
20 000元,每生产一台仪器需增加投入100元,已知
1 2 400 x x 总收益满足函数: ( x) R 2 80 000 其中x是仪器的月产量.
(0 x 400 ) , ( x 400 )
(1)写出利润f(x)与月产量x的函数关系式; (2)当月产量为何值时公司所获利润最大?最大 利润是多少元?(总收益=总成本+利润)
§2.9 函数模型及其应用 基础知识 自主学习

函 数 y=ax (a>1) ________ 增函数 ________ 越来越快 随x增大逐 渐表现为 y轴 与__几 乎平行 y=logax (a>1) _______ 增函数 ________ 越来越慢 随x增大逐 渐表现为 与____几 x轴 乎平行
当0≤t≤20时,
3 2 9 3 F (t ) 3t ( t 8t ) t 24t 2 , 20 20 27 2 27 F ' (t ) t 48t t (48 t ) 0, 20 20 ∴F(t)在[0,20]上是增函数,
∴F(t)在此区间上的最大值为
为“14”,则原发的明文是______. 4
解析 依题意y=ax-2中,当x=3时,y=6,故6=a3-2, 解得a=2.所以加密为y=2x-2,因此,当y=14时,由 14=2x-2,解得x=4.
题型分类
题型一 【例1】如图所示,在矩形
深度剖析
一次、二次函数模型
ABCD中,已知AB=a,BC=b (b<a),在AB,AD,CD,

矩形的周长为W,
1 600 设一边的长为x m,0<x≤a,则宽为 m, x
[2分]
2 1 600 40 那么W 2( x ), 则 W 2 x 80 , 显然 x x 40 当 x , 即x 40时, 若a 40时, 周长 W 最小, 其最小 x [6分] 值为160 , 此时, 矩形长与宽都是40 .
T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午
3时温度为 A.8℃ 解析 B.78℃ C.112℃ D.18℃ (B )
由题意,下午3时,t=3,∴T(3)=78℃.
5.为了保证信息安全,传输必须使用加密方式,有一
种方式其加密、解密原理如下:
明文 加密 密文 发送 密文 解密 明文 已知加密为y=ax-2(x为明文,y为密文),如果明 文“3”通过加密后得到密文为“6”,再发送,接 受方通过解密得到明文“3”,若接受方接到密文

ab 若 ≤b,即a≤3b时, 4 ( a b) 2 ab ; 则当 x 时,S有最大值 8 4 ab b, 即a>3b时,S(x)在(0,b]上是增函数, 若 4 此时当x=b时,S有最大值为 a b 2 ( a b) 2 2(b ) ab b 2 , 4 8 ab 综上可知,当a≤3b时,x 时, 4 2 ( a b) , 四边形面积Smax= 8 当a>3b时,x=b时,四边形面积Smax=ab-b2.
3.求解函数应用问题的思路和方法,我们可以用示意 图表示为
4.实际问题中函数的定义域要特别注意,另外,结果 要回到实际问题中写答案.
基础自测
1.我国为了加强对烟酒生产的宏观调控,除了应征税
外还要征收附加税,已知某种酒每瓶售价为70元, 不收附加税时,每年大约销售100万瓶,若每销售100 元国家要征附加税为x元(税率x%),则每年销售量 减少10x万瓶,为了要使每年在此项经营中收取的附
=a(x2-0.2x+0.24) =a[(x-0.1)2+0.23] (0<x<0.4),
∵a>0,∴x=0.1时,W有最小值,即总费用最省.
答:当CE=CF=0.1米时,总费用最省.
题型二
分段函数模型
【例2】 某公司研制出了一种新产品,试制了一批样品分别在 国内和国外上市销售,并且价格根据销售情况不断进行调整, 结果40天内全部销完.公司对 销售及销售利润进行了调研, 结果如图所示,其中图①(一条折线)、图②(一条抛物线段) 分别是国外和国内市场的日销售量与上市时间的关系、图③是 每件样品的销售利润与上市时间的关系.
F(20)=6000<6 300.
3 2 当20<t≤30时, (t ) 60( t 8t ). F 20
由F(t)=6300,得3t2-160t+2 100=0,
70 解得t= (舍去)或t=30. 3
当30<t≤40时, (t ) 60( F
由F(t)在(30,40]上是减函数,
(2)每件样品的销售利润h(t)与上市时间t的关系为
3t ,0 t 20, h(t ) 60,20 t 40. 故国外和国内的日销售利润之和F(t)与上市时间t的
关系为
3 2 3t ( 20 t 8t ),0 t 20, 3 2 F (t ) 60 ( t 8t ), 20 t 30 20 3 2 60 ( 20 t 240 ),30 t 40 .
先求得总利润的函数关系式,再将问题转化为方程是 否有解. 解 (1)图①是两条线段,由一次函数及待定系数法,
0 t 30, 2t , 得f (t ) 6t 240 , 30 t 40 . 图②是一个二次函数的部分图象, 3 2 故g (t ) t 6t (0 t 40). 20
探究提高
二次函数是我们比较熟悉的基本函数,建
立二次函数模型可以求出函数的最值,解决实际中的
最优化问题,值得注意的是:一定要注意自变量的取 值范围,根据图象的对称轴与定义域在数轴上表示的 区间之间的位置关系讨论求解.
知能迁移1 某人要做一批地砖,每块地砖(如图1所示)是
边长为0.4米的正方形ABCD,点E、F分别在 边BC和CD上,
质 在(0,+∞)上 的增减性 增长速度
图象的变化
2.常用的几类函数模型 (1)一次函数模型f(x)=kx+b (k、b为常数,k≠0);
k (2)反比例函数模型 f ( x ) b (k、b为常数,k≠0); x
(3)二次函数模型f(x)=ax2+bx+c (a、b、c为常数,a≠0); (4)指数函数模型f(x)=a·bx+c(a、b、c为常数, a≠0,b>0,b≠1); (5)对数函数模型f(x)=mlogax+n(m、n、a为常 数,m ≠ 0,a>0,a≠1);
解 (1)由题意得, 总成本为(20 000+100x)元,
1 2 x 300 x 20 000 (0 x 400 ) 从而 f ( x) 2 . 60 000 100 x ( x 400 ) 1 (2)当0≤x≤400时, f ( x) ( x 300 ) 2 25 000, 2 当x=300时,有最大值25 000;
(1)分别写出国外市场的日销售量f(t)与上市时间t 的
关系及国内市场的日销售量g(t)与上市时间t的关系; (2)国外和国内的日销售利润之和有没有可能恰好等于 6300万元?若有,请说明是上市后的第几天;若没有, 请说明理由.
思维启迪
第(1)问就是根据图①和②所给的数据,
运用待定系数法求出各图象中的解析式;第(2)问
△CFE、△ABE和四边形AEFD均由 单一材料制成,制成 △CFE、△ABE和四边形AEFD的三种材料的每平方米价格 之比依次为3∶2∶1.若将此种地砖按图2所示的形式铺设,能使 中间的深色阴影部分成四边形EFGH.
图1
图2
(1)求证:四边形EFGH是正方形;
(2)E、F在什么位置时,做这批地砖所需的材料费用最省? (1)证明 图2是由四块图1所示地砖组成,由图1依次 逆时针旋转90°,180°,270°后得到, ∴EF=FG=GH=HE,
相关文档
最新文档